RETINAL VASCULAR TOPOLOGY ESTIMATION VIA DOMINANT SETS CLUSTERING

1Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing, China.
2Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, China
∗E-mail: yitian.zhao@nimte.ac.cn

ABSTRACT

The estimation of vascular topology in complex networks is important in understanding vascular changes. Automatic method of analysis of vascular networks would be of great assistance to the ophthalmologist in terms of diagnosis and treatment. In this paper, we propose a novel vessel topology estimation method based on the concept of dominant sets clustering. Dominant sets clustering is a graph-theoretic approach that has proven to work well in data clustering, and has been successfully adapted to topology estimation in this work. The experimental results show that it has addressed the bottleneck issue of vessel connection at crossovers, and yielded accuracy of 0.915, 0.928, and 0.889 on the IOSTAR, INSPIRE, and VICA VR databases, respectively. It is worth noting that we have made manual annotations of vessel topologies from these databases, and these annotations will be released soon.

Index Terms—Dominant sets, topology, retinal vessel, graph.

1. INTRODUCTION

Automated analysis of retinal vascular structure is very important for many clinical applications to support examination, diagnosis and treatment of eye disease. This has the potential to perform automated screening for pathological conditions, and to provide crucial hints on various diseases [1, 2, 3, 4, 5], in particular diabetic retinopathy (DR), malaria retinopathy (MR), glaucoma, and hypertensive retinopathy.

The above-mentioned diseases always cause vascular abnormalities. Amongst these are variations in vascular width and changes in vascular tortuosity. It is often crucial to identify the structure of individual vessels from the entire retinal blood vessel network. This calls for proper description of vascular structure in terms of topological and geometrical properties from retinal images. Extensive work has been done on automatic vessel segmentation[1, 6, 7, 8, 9] and classification[4, 10, 11, 12, 13], but automated estimation of retinal vascular topology has received relatively limited attention. To the best of our knowledge, a small number of studies have addressed this subject directly.

A semi-automatic method of measuring and quantifying the topological properties of retinal vessels was proposed by Martinez-Perez et al.[14], which we consider to be the first work on retinal vascular topology estimation. Measurements of length, area, angles and connectivity between branches were taken to label the segmented vessel trees. Qureshi et al.[15] used a Bayesian approach to addressing the configuration of vascular junctions, and utilized a probabilistic model and Maximum A Posterior (MAP) to construct the vascular trees. Estrada et al.[16] regularized the topology estimation problem with a generative, parametric tree-growth model. A combination of greedy approximation and heuristic search algorithm was proposed to explore the space of possible trees. De et al.[3] proposed a graph-theoretical method to trace tree structures in neuronal and retinal images. The authors reformulated the topology estimation problem as label propagation over directed graphs: in this way the graph is decomposed into sub-graphs, and each vessel tree may be separated from the vessel network. Another graph-based approach for retinal vessel topology estimation was introduced by Dashtbozorg et al.[11]. They classified the entire vessel networks depending on the type of graph nodes and assigned one of two labels to each vessel fragment. These earlier proposed methods often fail to describe the presence of crossover at vessel junctions, as the measurements of caliber are unreliable at abrupt changes from one vessel to another of different bore.

The main contributions of this paper are as follows. First, we adapted the concept of dominant sets clustering [17, 18] to the task of vessel topology estimation, as it offers an efficient way of addressing problem of the tracing of crossovers. Second, the proposed method has been validated quantitatively using three publicly accessible datasets. Manual annotations of vessel topologies from these datasets were established, and these annotations will be released for public access.

2. METHOD

The proposed vessel topology estimation method relies on a prior vessel segmentation procedure, which may be performed manually or automatically. A skeletonization method is then used to generate the vessel centreline map, and the
significant points, such as bifurcation, crossing, meeting and
connecting points can be identified. These points are then uti-
lized to create a graph. Finally, the dominant sets concept is
used to classify the significant nodes, in order to estimate the
vessel topology.

2.1. Vessel segmentation

In this work, our proposed topology estimation procedure is
applied either on manual annotations or automated segmen-
tation results. The method proposed by Zhao et al.[19] was
employed to segment the retinal vessel automatically. This
method uses an infinite perimeter active contour model for its
effectiveness in detecting vessels with irregular and oscilla-
tory boundaries, and it also considers hybrid region informa-
tion in order to achieve further improved performance. Fig. 1
(b), above, demonstrates the segmentation result of Fig. 1 (a).

2.2. Graph generation

An iterative morphology thinning operation [20] is performed
on the vessel segmentation results to obtain the single-pixel-
wide skeleton map. The generated skeleton map is shown in
Fig. 1 (c). The vascular bifurcation / crossover points, and vessel ends (connecting points) can be extracted from the
skeleton map by locating intersection points (pixels with more
than two neighbors) and terminal points (pixels with just one
neighbor). All the intersection points and their neighbors may
then be removed from the skeleton map, in order to obtain an
image with clearly separated vessel segments. Finally, a ves-
sel graph can be generated by linking first and last nodes in
the same vessel segment, as shown as Fig. 1 (d).

2.3. Graph modification

However, the generated graph always includes misrepresen-
tations of the vessels, and so it is important to modify this
incorrect graph in order to avoid false classification of nodes.
As summarized in [11], typical errors are node splitting and
false link. The representation and modification of these two
errors are as follows.

1) False link is demonstrated in Fig. 2 (a): an incorrect
link c between two nodes n1 and n2 is created. This happens
when two vessels are close to each other, but do not cross.
To resolve this case, the angles α and β between the edges
connected to each node are computed. If the angles satisfy
α1, α2 ∈ (180° ± 10°) and β1, β2 ∈ (90° ± 10°), then we
consider link c to be a false link, which should be removed.
Fig. 2 (c) demonstrates the corrected graph.

2) Node splitting is illustrated in Fig. 2 (d): false nodes
n1 and n2 are created. This happens when two vessels are
close enough to cross each other. To address this problem, we
define two angles α and β as shown in Fig. 2 (e). If the mea-
sured angles satisfy α1, α2 < 60° and β1, β2 > 90°, this sit-
tuation can be considered as an instance of node splitting, and
edge c should be removed and the two neighborhood intersect
point n1 and n2 merged as one node n. Fig. 2 (f) reveals the
misrepresented graph is modified.

Fig. 2. The two types of graph modification. (a)(b) illustrate a
false link, corrected at (c) to show two separate vessels, while
(d)(e) illustrate node splitting, corrected at (f) to show a single
node at an intersection.

2.4. Node Analysis

Node analysis is broken down into four cases (node degrees 2-
5), based on four different types of nodes: connecting points
(2), bifurcation points (3, 4), crossing points (4, 5), and meet-
ing points (3, 4, 5). The number in the bracket indicates the possible number of links connected to each node (node degree). The method proposed by Dashbozorg et al.[11] is used to handle the cases of nodes of degree 2-3. For the more complicated cases, nodes of degree 4 and 5, a classification method based on dominant sets clustering is proposed. In this work, for each centerline pixel, the intensities in R, G, B channels, orientations, curvatures, and diameters of vessel are used as the input of the dominant sets clustering based classifier.

2.4.1. Dominant set clustering

The nodes to be classified are represented as an undirected edge-weighted graph with $G = (V, E, \omega)$, where the node set $V = \{1, \cdots, n\}$, and usually $n \leq 5$. The edge set $E \subseteq V \times V$ indicates all the possible connections. $\omega : E \rightarrow R^+$ is the positive weight function. Nodes in G correspond to vessel node ends: edges represent node relationships, and edge weights reveal similarity between pairs of linked nodes. The symmetric matrix $A = (a_{ij})$ is used to represent the graph G with weighted adjacency matrix. This non-negative adjacency matrix is defined as:

$$a_{ij} = \begin{cases} \omega(i, j) & \text{if } (i, j) \in E \\ 0 & \text{otherwise.} \end{cases}$$

(1)

Note: all elements on the main diagonal of A are zero, since G is self-loops free.

In general, the weights of edges within a vessel segment should be large, representing high internal homogeneity or similarity. By contrast, the weights of edges will be small for two or more different vessel segments, those on the edges connecting the vessel ends representing high inhomoegeneities[17].

The assignment of the edge-weights can be analyzed based on the above perspectives. Let $S \subseteq V$ be a nonempty subset of nodes, $i \in S$, and $j \notin S$. Intuitively, the similarity between nodes j and i can be defined as:

$$\phi_S(i, j) = a_{ij} - \frac{1}{|S|} \sum_{j \in S} a_{ij}$$

(2)

This measure is with respect to the mean similarity between i and its surroundings in S, and $\phi_S(i, j)$ can be either positive or negative. $\frac{1}{|S|} \sum_{j \in S} a_{ij}$ is the average weighted degree of i with regard to S. It can be observed that $\frac{1}{|S|} \sum_{j \in S} a_{ij} = 0$ for any $i \in V$ and $\phi_{\{i\}}(i, j) = a_{ij}$. For each node $i \in S$, the weight of i with regard to S is assigned as:

$$\omega(i) = \begin{cases} 1 & \text{if } |S| = 1 \\ \frac{1}{|S|} \sum_{j \in S \setminus \{i\}} \phi_S(i, j) \omega_S(i, j) & \text{otherwise.} \end{cases}$$

(3)

where $S \setminus \{i\}$ indicates the nodes set S excluding the node i, and $\omega_S(i)$ demonstrates the overall similarity between node i and the nodes of $S \setminus \{i\}$ with respect to the overall similarity among the nodes in $S \setminus \{i\}$.

Finally, the total weight of S can be calculated by summing $\omega_S(i)$: $W(S) = \sum_{i \in S} \omega_S(i)$. For example, Fig. 3 demonstrates an edge-weighted graph, and we have: $\omega_{1,2,3}(1) = \phi_{2,3}(1) + \phi_{2,3}(2) + \phi_{2,3}(3) = 12$. Similarly, $\omega_{1,2,3}(2) = 0$ and $\omega_{1,2,3}(3) = 12$ are obtained, which yield $W(1, 2, 3) = 12 + 0 + 12 = 24$.

We define set as a dominant set if the set satisfies the following two conditions: 1. $\omega_S(i) > 0$, for all $i \in S$; 2. $\omega_S(i) \leq 0$, for all $i \notin S$. It is evident from the above properties that the first condition defining a dominant set is internal homogeneity, whereas the second concerns external incoherence.

3. EXPERIMENTAL RESULTS

We evaluated the proposed topology estimation method against three publicly available datasets: the Iowa Normative Set for Processing Images of the Retina (INSPIRE)[21], OSTAR[22], and VICA VR[23] datasets. The INSPIRE dataset has 40 high resolution images, each of 2392 x 2048 pixels. OSTAR contains 24 images taken with a scanning laser camera (SLO) each of 1024 x 1024 pixels. The VICA VR dataset includes 58 images with a resolution of 784 x 584 pixels each. All of these datasets have manual annotations on artery/vein classification[10, 11, 13], and the OSTAR dataset also has annotations on vessel bifurcation/crossing. However, none of these three datasets has annotations on vessel topology. Therefore, we asked an expert to manually label the topological information of the vascular structure on all images from these datasets. Each single vessel tree is graded as one color, as shown in middle column of Fig. 4.

The right-hand column of Fig. 4 illustrates the results of our vascular topology estimation method on datasets INSPIRE, IOSTAR, and VICAVR, respectively. Compared with the manual annotations, it reveals that our method is able to trace most vascular structures correctly: only a few crossing points were incorrectly traced, as shown in the middle column of Fig. 4 - the pink squares indicate the significant points which were traced incorrectly. To facilitate better observation of the performance of the proposed method, the accuracy results with regard to different significant points (connecting, bifurcation, and crossing points) are presented individually in Table 1. It may be observed that the method achieved accuracy of 0.915, 0.928, and 0.889 in INSPIRE, IOSTAR, and VICAVR, respectively. The accuracy scores in this table indicate the percentage of the relevant significant points that were correctly handled.

In addition, the results obtained by the proposed vascular topology estimation method were compared with those obtained by five state-of-the-art vascular topology estimation methods.
methods [3, 10, 11, 12, 24] on images from the INSPIRE dataset: the results are shown in Table 2. The results show that our method achieves the best performance, with an accuracy score of 0.883. For the purposes of a fair comparison, the accuracy scores in Table 2. are the percentage of correctly classified vessels’ centerline pixels[11].

4. CONCLUSIONS

In this work, we have proposed a novel framework to estimate the topology of retinal vascular trees based on the concept of dominant set clustering. The problem of estimating the topology of vascular trees was formalized as a pairwise clustering problem. It is demonstrated that our method achieves competitive results when compared with existing state-of-the-art methods. It is believed that the proposed method could be a powerful tool for analyzing vasculature for better management of a wide spectrum of vascular-related diseases.

In our future work, we will test our method on other retinal datasets (e.g., RITE[25]) and neuronal datasets (e.g., DIADEM[26]), and the validations will be taken under both connection points-wise and centreline pixel-wise. Furthermore, the estimated vascular topology will be used to support artery / vein discrimination and classification.

<table>
<thead>
<tr>
<th>INSPIRE</th>
<th>IOSTAR</th>
<th>VICAVR</th>
</tr>
</thead>
<tbody>
<tr>
<td># connecting points</td>
<td>3,209</td>
<td>1,920</td>
</tr>
<tr>
<td># correctly detected</td>
<td>3,125</td>
<td>1,874</td>
</tr>
<tr>
<td>accuracy</td>
<td>0.973</td>
<td>0.976</td>
</tr>
<tr>
<td># bifurcation points</td>
<td>1,998</td>
<td>1,213</td>
</tr>
<tr>
<td># correctly detected</td>
<td>1,776</td>
<td>1,109</td>
</tr>
<tr>
<td>accuracy</td>
<td>0.889</td>
<td>0.914</td>
</tr>
<tr>
<td># crossing points</td>
<td>778</td>
<td>482</td>
</tr>
<tr>
<td># correctly detected</td>
<td>574</td>
<td>373</td>
</tr>
<tr>
<td>accuracy</td>
<td>0.738</td>
<td>0.774</td>
</tr>
<tr>
<td>overall accuracy</td>
<td>0.915</td>
<td>0.928</td>
</tr>
</tbody>
</table>

Table 1. Performances of the proposed method on vessel tracing at different significant points.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>accuracy</td>
<td>0.769</td>
<td>0.845</td>
<td>0.773</td>
<td>0.851</td>
<td>0.769</td>
</tr>
</tbody>
</table>
5. REFERENCES

