Continuous millennial decrease of the Earth’s magnetic axial dipole

Wilbor Polettia,b,*, Andrew J. Bigginb, Ricardo I.F. Trindadea, Gelvam A. Hartmannc, Filipe Terra-Novad

aUniversidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Geofísica, Laboratório de Paleomagnetismo – USPMag, Rua do Matão, 1226, 05508-090 São Paulo, Brazil
bGeomagnetism Laboratory, Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, UK
cInstituto de Geociências, Universidade Estadual de Campinas, Rua João Pându Calégeras, 51, 13083-870 Campinas, Brazil
dCNRS, Université de Nantes, Nantes Atlantiques Universités, UMR CNRS 6112, Laboratoire de Planétologie et de Géodynamique, 2 rue de la Houssinière, F-44000 Nantes, France

ARTICLE INFO

Keywords: Geomagnetism Archaeointensity Axial dipole Archaeomagnetic dataset Data selection criteria

ABSTRACT

Since the establishment of direct estimations of the Earth’s magnetic field intensity in the first half of the nineteenth century, a continuous decay of the axial dipole component has been observed and variously speculated to be linked to an imminent reversal of the geomagnetic field. Furthermore, indirect estimations from anthropologically made materials and volcanic derivatives suggest that this decrease began significantly earlier than direct measurements have been available. Here, we carefully reassess the available archaeointensity dataset for the last two millennia, and show a good correspondence between direct (observatory/satellite) and indirect (archaeomagnetic) estimates of the axial dipole moment creating, in effect, a proxy to expand our analysis back in time. Our results suggest a continuous linear decay as the most parsimonious long-term description of the axial dipole variation for the last millennium. We thus suggest that a break in the symmetry of axial dipole moment advective sources occurred approximately 1100 years earlier than previously described. In addition, based on the observed dipole secular variation timescale, we speculate that the weakening of the axial dipole may end soon.

1. Introduction

The continuous intensity record of the Earth’s magnetic field was started in 1833 CE by Carl Friedrich Gauss, enabling the precise direct recording of the full geomagnetic vector for the past 184 years (e.g. Kono (2007)). Nonetheless, ancient civilizations, when baking pottery, were also inadvertently recording the Earth’s magnetic field. This archaeomagnetic record can be retrieved from ancient baked clay (and from historical lavas) using laboratory techniques developed more than one hundred years ago (Folgerairte, 1899), that were subsequently significantly improved (Thellier and Thellier, 1959; Coe, 1967; Coe et al., 1978; Aitken et al., 1988; Shaw et al., 1996; Riisager and Riisager, 2001; Yu et al., 2004; Le Goff and Gallet, 2004). Archaeomagnetism provides information about geomagnetic field variations thousands of years before the “Gauss era” and can help in unveiling the processes operating in the Earth’s core at time-scales longer than the past 184 years (e.g. Dumberry and Finlay (2007), Amit et al. (2011), Sanchez et al. (2016), Terra-Nova et al. (2015, 2016)).

Variations observed in intensity data from observatories, satellites, volcanic lavas, and archaeological artefacts can be linked to the main component of the geomagnetic field (e.g., Jackson et al. (2000), Olson and Amit (2006), Gubbins et al. (2006), Finlay (2008), Korte et al. (2009), Korte and Constable (2011), Suttie et al. (2011), Licht et al. (2013), Nilsson et al. (2014), Pavón-Carrasco et al. (2014)), which originates from the movement of the outer core’s conductive fluid and is dominated by the axial dipole component. Thanks to the continuous direct records over a wide spatial coverage during the Gauss era, it was possible to describe the geomagnetic dipole variation in detail for the past 184 years (e.g. Jackson et al. (2000), Gillet et al. (2013), Finlay et al. (2015)). For this period, the decay rate of the axial dipole is, on average, about 15 nT/yr, with decadal fluctuations (Jackson et al., 2000; Finlay et al., 2015). Prior to the Gauss era, the Earth’s magnetic field record provided by archaeomagnetism is still scarce both temporally and spatially (Genevey et al., 2008, Donadini et al., 2009, Brown et al., 2015; Poletti et al., 2016). Yet, it is sufficiently robust for the description of local, rapid variations (de Groot et al., 2013; Genevey et al., 2016). It is also the only means to analyze geomagnetic axial dipole evolution on millennial timescales.

* Corresponding author at: Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Geofísica, Laboratório de Paleomagnetismo – USPMag, Rua do Matão, 1226, 05508-090 São Paulo, Brazil.

E-mail address: wilbor.poletti@iag.usp.br (W. Poletti).

https://doi.org/10.1016/j.pepi.2017.11.005

Received 29 June 2017; Received in revised form 22 September 2017; Accepted 14 November 2017

Available online 15 November 2017

0031-9201/ © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
Several datasets of full vector archaeomagnetic data exist (e.g., Brown et al. (2015), Arneitz et al. (2017b)). From such datasets, different descriptions of global variations of the geomagnetic axial dipole have emerged (e.g., Valet et al. (2008), Genevey et al. (2008), Knudsen et al. (2008), Uosokin et al. (2016)). However, although such efforts have produced useful and detailed descriptions of millennial timescale variations, they have tended to avoid making links between surface observations and Earth’s core process. Furthermore, due to fundamental differences between the magnetic intensity records obtained by direct and indirect measurements (e.g., spatial and temporal coverage, experimental errors) (Arneitz et al., 2017a), the geomagnetic axial dipole variations are usually described independently for two distinct periods: before and after 1840 CE and there have been few attempts to critically compare and integrate them. From 1840 to today, the axial dipole variations are robust, meanwhile for the period of 1590–1840 CE, the widely utilized historical field model gufm1 (Jackson et al., 2000) uses an arbitrary extrapolation of the axial dipole intensity from the Gauss era, whereas estimations incorporating only archaeointensity data tend to favor a rather flat decay of the axial dipole field (Gubbins et al., 2006; Finlay, 2008; but also see Suttie et al. (2011)).

In this work, we present a new description of geomagnetic axial dipole variations before the Gauss era by evaluating the Axial Dipole Moment (ADM) and Virtual Axial Dipole Moment (VADM) obtained from archaeointensity data for the entirety of the last two millennia. To do so, we accepted only high-quality archaeointensity estimates into our evaluation, and attempted to assess these data using a minimum number of linear trends. Our compilation indicates a significant shift in the trend of the axial dipole strength around the interval 550–750 CE, initiating a continuous decay in the same order of magnitude of the Gauss era up to the present. We attribute this shift to fundamental changes in geodynamo workings in the last millennium, ultimately attempting to link the archaeointensity record to dynamical processes within Earth’s outer core.

2. Methods

2.1. Datasets

Thellier and Thellier (1959) defined the original double-heating protocol (TT) which today incorporates checks for alteration (Coe et al., 1978) and multi-domain effects (e.g. Rogers et al. (1979)) as well as corrections for the effects of magnetic anisotropy (e.g. Rogers et al. (1979)) and for the fast cooling-rates applied in the laboratory (e.g. Fox and Aitken (1980)). Other methods such as the Microwave (MW; Shaw et al., 1996) and Triaxe (TR; Le Goff and Gallet, 2004) have also been developed and their results have been systematically compared one to each other, thus increasing our confidence in the results (e.g., TT-TR: Le Goff and Gallet (2004), Gallet and Le Goff (2006), Genevey et al. (2009), Hartmann et al. (2010, 2011); TT-MW: Shaw et al. (1999), Hill et al. (2002a,b), Casas et al. (2005), Stark et al. (2010), Ertepinar et al. (2016); TT-TR-MW: Poletti et al. (2013). A detailed historical and physical description of the Thellier-Thellier method and its modifications was put forward by Dunlop (2011).

GEOMAGIA50.v3 (Brown et al., 2015) is a comprehensive database comprising 14,645 data (declination, inclination, and intensity) from archaeological artifacts and volcanic material, obtained over the past half century. In our analysis we used a catalogue of archaeointensities from the GEOMAGIA50.v3 database, and some other data recently published that were not incorporated into the collection at the time of our analysis (Table A1). The time window investigated was the past two millennia as this period shows the best temporal and spatial coverage.

2.2. Selection criteria

Data selection was performed by checking if current laboratory criteria were satisfied (e.g. Poletti et al. (2016)). We considered seven factors in our assessment of the archaeointensity data when considering the archaeological material. The factors were applied following the sequence in which they are presented below:

(i) Age uncertainty. For this study, we accepted data with age uncertainty less than or equal to 100 years ($\sigma_{age} \leq 100$). This rather strict choice was made to enable the comparison between archaeomagnetic and observatory/satellite data in the Gauss era (i.e., 184 years). Data were not filtered by the dating technique (except that archaeomagnetic dates were excluded);

(ii) The archaeointensity method used and the protocol adopted. We only accepted intensity data performed exclusively with the classical double-heating method at room-temperature (Thellier and Thellier, 1959) in one of its modified versions (TT) (Coe, 1967; Aitken et al., 1988; Yu et al., 2004), the microwave method (MW) (Shaw et al., 1996; Hill and Shaw, 1999), or the high-temperature Triaxe method (TR) (Le Goff and Gallet, 2004). Our choice was based on palaeointensity methods that perform a gradual and progressive replacement between the magnetizations acquired from the nature and laboratory. The results obtained from these three specific methods are more likely to be high-quality and concordant as highlighted by several works published in the last few decades (e.g. Hill et al. (2002a), Genevey et al. (2009), Poletti et al. (2013));

(iii) Additional steps to check alterations during the experiment. For TT and MW, we required additional steps in the laboratory protocol, referred to as pTRMs checks, to monitor possible (thermo)chemical alterations during the gradual increase of temperature (TT) or power (MW) steps on the experiment (Coe et al., 1978). For TR, these additional steps are unnecessary (Le Goff and Gallet, 2004);

(iv) Evaluation of the influence of multi-domain (MD) grains. We required at least one test-type to verify possible MD grains influence (e.g. Riisager and Riisager (2001), Krása et al. (2003), Yu et al. (2004)), in order to avoid the violation of the principles of additivity and reciprocity, which are part of the backbone of the Thellier-Thellier method (Yu and Dunlop, 2003; Dunlop, 2011);

(v) Anisotropy thermoremanent magnetization (ATRM) correction. We accepted only data largely unbiased by anisotropy effects either by having the laboratory field applied in a direction within 10 degrees of the principal component of the natural remanent magnetization (NRM) (Rogers et al., 1979; Aitken et al., 1981), or by the correction of the tensor of ATRM being obtained experimentally and calculated through the formulation proposed by Veitch et al. (1984). Although there are other ways to correct the ATRM effect, for example, through the tensor obtained from measures of anhysteretic remanent magnetization (ARM) or magnetic susceptibility (MS), we restrict our analysis to results that take into account the same physical basis between anisotropy correction and Thellier-Thellier method (see ii). Data corrected by the ATRM effect using ARM or MS technique implicitly assume equivalence between the pairs of anisotropy sensors TRM-ARM or TRM-MS, which are not always true (Stephenson et al., 1986; Yu et al., 2003), although we acknowledge the need for further advances in this topic.

(vi) Cooling rate correction. We accepted only archaeointensity data that were corrected for cooling rate effects following the experimental procedure described by Chauvin et al. (2000) and Genevey and Gallet (2002) for data from TT, and Poletti et al. (2013) for data from MW, in order to avoid possible bias in the final archaeointensity result due to the difference between natural (NRM) and experimental (pTRMs imparted) cooling times (e.g. Fox and Aitken (1980); Dodson and McClelland-Brown (1980), Halgedahl et al. (1980), Biggin et al. (2013)). All results from TR were accepted without this correction, since TR routinely produces results consistent with cooling-rate-corrected TT and MW estimates (e.g. Genevey et al. (2009), Hartmann et al. (2010), Hartmann et al.
represents a solution with a specific location for a given age (e.g., magnetic intensity for an archaeological ruin or destruction level that represents a specific period, magnetic intensity for a specific lava flow, etc.). There is no uniformity in nomenclature in relation to the other terms, which in turn are used in the calculations of the means. Thus, there are several ways in which the calculated mean from measured data in the laboratory is associated with a site (e.g., mean of several samples/specimens from a single fragment, mean of several fragments with a single sample each, mean of several fragments with several samples each, etc.). We understand that the result of a site can be given by the mean value obtained from the results of at least three independent fragments; that the result of each fragment is given by the mean value from the results of at least two independent samples/specimens extracted from the same fragment in question; and that the result of each sample/specimen is given by the value obtained in the laboratory, processed, analyzed, approved by current selection criteria (e.g., Paterson et al. (2014)), and corrected for the possible anisotropy and cooling rate effects (e.g., Genevey et al. (2009), Hartmann et al. (2010, 2011), Poletti et al. (2016)). Due to the non-uniformity about the nomenclatures described, we did not distinguish between the results presented as site in our assessment. However, it is important to emphasize that our final results already have strong restrictions due to the previously applied selection criteria (i–vi). Finally, we suggest that future works should include more details about the distinction made between site, fragment and sample/specimen.

For volcanic rocks we applied the same selection criteria as for data obtained from archaeological materials with some exceptions. In criteria ii) the pseudo-Thellier method proposed for volcanic rocks (de Groot et al., 2013) (only 18 entries) were also accepted; in criterion v) an ATRM correction was not required; in criterion vi) the cooling rate correction was neglected once its effect has been shown to be very small for the assemblages of PSD and interacting SD grains that are most commonly found in lavas (Biggin et al., 2013).

2.3. ADMs and VADMs

From filtered archaeointensity data (B_{indirect}), axial dipole moments (ADM_{indirect}) are calculated using the theorem of Hulot et al. (1997), following the strategy applied by previous works (Gubbins et al., 2006; Genevey et al., 2009; Hartmann et al., 2011), described as:

\[g_i(t)_{\text{indirect}} = g_i(t)_{\text{field model}} \frac{B(\lambda, \phi)_{\text{indirect}}}{B(\lambda, \phi)_{\text{field model}}} \]

(1)

where \(\lambda, \phi, t \) represent, longitude, latitude and age, respectively; the field models used are gufm1 (Jackson et al., 2000) for 1590 \(\leq t \leq 1990 \) and CHAOS-5 (Finlay et al., 2015) for 1997 \(< t \leq 2015 \). Then, the absolute intensities of \(g_i(t)_{\text{indirect}} \) from archaeointensity estimates are calculated by:

\[B_0 = g_{0,\text{indirect}} \frac{a^2}{r^3} (1 + 3 \cos^2 \theta) \frac{\tau}{2} \]

(2)

where \(r \) is the mean Earth radius, \(\theta \) is the co-latitude, and \(a \) is the mean radial distance from the Earth’s center; for Earth surface estimation, we can approximate a by \(r \). Finally, for this case, ADM_{indirect} are estimated (in \(\times 10^{22} \text{A}^2 \text{m}^{-2} \)) by:

\[\text{ADM}_{indirect} = 4\pi \frac{B^0_{\text{indirect}}}{\mu_0} (1 + 3 \cos^2 \theta) \frac{\tau}{2} \]

(3)

where \(\mu_0 \) is the permeability of free space. Note that the insertion of Eq. (2) into Eq. (3) eliminates the dependence with the co-latitude, transforming it in a direct relation between ADM_{indirect} and \(g_i(t) \). Virtual axial dipole moments (VADMs_{indirect}) are calculated (in \(\times 10^{22} \text{A}^2 \text{m}^{-2} \)) using Eq. (3), replacing ADM_{indirect} by VADMs_{indirect} and \(B_0 \) by \(B_{\text{indirect}} \).

2.4. Linear regression applied to the selected dataset

There are several statistical methods to infer the geomagnetic axial dipole variations through time from intensity data (e.g., splines, polynomials, moving averages). We decided to use linear regression in order to simplify the description of the geomagnetic dipole variations, thus providing a common solution across the longest possible period within the last two millennia; and also to correlate the variations described by direct and indirect data, considering their respective resolutions. We justify our parsimonious model on the grounds of four main (general) points: i) linear fits have proved to be sufficient to account for archaeanomagnetic and historical data within their estimated errors during the historical period (Gubbins et al., 2006; Finlay, 2008); ii) a robust linear fit that describes the dataset taking into account all experimental errors will ignore any rapid, local variations; iii) at the point where the linear model no longer satisfies the dataset, it suggests that there has been a change in the general trend; iv) with a model (mathematical function) it is possible to make quantitative comparisons in relation to the physical models that may describe, for example, core features (e.g. Jackson (2003)). Therefore, if linear regression is statistically satisfied, this may provide us with insights into links between long-term (millennial) geomagnetic dipole variations recorded at Earth’s surface and core physical mechanisms.

In this light, we describe the strategy employed in this work as follows. First an expression regarding the variations of the geomagnetic axial dipole as a function of time is defined as:

\[g_i(t) = \alpha + \beta + f(t) \]

(4)

where \(f(t) \) represents all nonlinear variations of \(g_i(t) \) as a function of time, and \(t \) is the time in years (CE) defined for the interval \(0 \leq t \leq t_y \), where \(t_y \) is the current year. Since \(f(t) \) is an unknown function and represents the manifestation of several mechanisms operating in the Earth’s core, its modeling requires more sophisticated physical/mathematical approach as well as a large number of data. However, if we assumed the hypotheses that short-period variations of \(f(t) \) can be minimized through average trends in restricted time windows (e.g., \(-15 \text{nT/yr} \) for the last 150 years; Jackson et al., 2000; Finlay et al., 2015), we can represent the variation of the geomagnetic axial dipole as:

\[g_i(t_y) = axp + \beta \]

(5)

where \(t_y \) represents the time for a sub period between 0 and \(t_y \), and \(\alpha \) and \(\beta \) represent the angular and linear coefficients. In addition, we have \(g_i(t_y) = \alpha \).

From Eq. (5) we can calculate linear regressions for datasets belonging to different time windows. From an appropriated linear regression method, which provides both \(\alpha \) and \(\beta \) values and their respective uncertainties (\(\sigma_\alpha \) and \(\sigma_\beta \)), it is possible to obtain a set of \(y \) linear solutions for each sub period \(t_y \), which can be written as:

\[L = [y_1, y_2, \ldots, y_n] \]

(6)

where each \(y \in L \) represents a solution with a specific value of \(\alpha \pm \sigma_\alpha \) and \(\beta \pm \sigma_\beta \), and \(n \) represents the number of solutions belonging to the set \((n \to \infty, \text{since } [\alpha, \beta, \sigma_\alpha, \sigma_\beta] \in \mathbb{R}) \). Fixing a sub period with a time window \((t_y) \) that minimizes \(f(t) \), it is possible to perform successive linear regressions in order to cover the entire period between 0 and \(t_y \).
Thus we can find a subset of linear solutions (S) given by the intersection of the largest number of sets L (i.e., $S = L_1 \cap L_2 \cap \ldots \cap L_m$). Finally, from a priori information of the geomagnetic field, it is feasible to refine the number of linear solution $\gamma \in S$ that represents the linear variation of the geomagnetic axial dipole for the longest period between 0 and t_m. The advantages of this approach are: i) it tends to minimize the effect of rapid variations of $f(t)$, thus restricting the scenario of signals from mechanisms that operate in the Earth’s core; and ii) it is sufficiently robust to define a period in which the variations represented by equation 5 is valid, by using the condition $S \cap L = \emptyset$, i.e., it is sufficient to capture the period in which there is no significant influence of nonlinear variations expressed by $f(t)$ for long periods (millenial scale), further restricting the scenario of physical mechanisms responsible for geomagnetic axial dipole variations as a function of time for the last millennium. In this work the value of $g^0(2015)$ from CHAOS 5 (Finlay et al., 2015) will be used to estimate β and gufm1 (Jackson et al., 2000) will be used to refine the α value.

To calculate the linear regressions, we employ the following strategy. Initially, for the data belonging to Gauss era (1840–2009 CE) we computed a linear regression and its respective “reduced residual” (RR). The RR is defined by $|y_i - \hat{y}_i(x)| / \sqrt{(\sigma_i)^2 + (\sigma_{\alpha})^2}$, where $\hat{y}_i(x) = ax + \beta$ is an interpolated linear function and σ_i and σ_{α} are uncertainties of (V)ADM and age, respectively. The fitting parameters were obtained from the dataset into a fixed limit of ± 3 of RR in order to refine the uncertainties of the linear model (σ_i and σ_{α}), assuming that “y” (VADM and ADM) and “x” (age of thermoremanent magnetization of the material) are variables with independent uncertainties (Bevington and Robinson, 2003). The described procedure was repeated for multiple earlier intervals spanning an arbitrary time period such that each contained the same number of data of the Gauss era (48 data). The end dates of each interval were 50 years apart (1959, 1909, etc) but the start date was determined solely by the requirement to have 48 data within the interval. Interval lengths therefore varied from 107 years-subsets of the archaeointensity data are represented in blue and black, mean and standard deviation for the same subsets are represented in red, and age-intensity uncertainties of all dataset are represented in light green. a) represents the complete dataset, and b) the filtered dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2 shows the means and medians for the non-filtered (Fig. 2a) and filtered (Fig. 2b) datasets, as well as the age and intensity uncertainties of each data. For the original dataset (Fig. 2a), disregarding the uncertainties of individual measurements (i.e., box-and-whisker plot), there is a greater smoothing of the virtual axial dipole variations for the last 2000 years. This comes as no surprise, since the means and medians were estimated from a cloud of many values within a restricted range. Applying the selection criteria reduces the smoothness of the variation prior to 1000 CE but enhances how well the trend is defined in the later part of the record whilst maintaining its shape (Fig. 2b).

Fig. 3 shows the spatial (Fig. 3a–c) and temporal (Fig. 3d–f) distribution of the archaeointensity data for the last two millennia. The representations were divided into three distinct periods that will be explored throughout the work: between 1840 and 2009 CE (Gauss era) (Fig. 3a and d), 1590 and 2009 CE (Fig. 3b and e), and 0 and 2009 CE (Fig. 3c and f). Although there is a greater concentration of data in Europe, it is important to note that, even after data selection, the same relative geographic distribution remained (Fig. 3a–c). The temporal
distribution of the data provides a good coverage for the three averaged periods, albeit with some peaks in the number of data (e.g., 1940–1960 CE, 1600–1700 CE).

Considering the similarity of the spatial distribution and the good temporal coverage of the selected data for the three periods described above, the results were compared with the gufm1 and CHAOS 5 models (Jackson et al., 2000; Finlay et al., 2015) for the periods 1840–2009 CE (Gauss Era) and 1590–2009 CE. The main objectives of this comparison were to test the latitudinal distribution of the data, since this variation has a direct influence on the magnetic intensity estimates (e.g., Campuzano et al. (2015)), as well as to test the compatibility between the high-quality archaeointensity values and the historical field models (Fig. 4). Fig. 4a and b show the mean VADM-ADM values from archaeointensity data (each point represents the averaged intensity in a latitudinal-degree-spaced) and from the gufm1 (each point is given by the averaged intensity of 36 data in a longitudinal-equally-spaced distribution, represented every five degrees of latitude). Although there is a greater concentration of data in the northern hemisphere (~72.9% and ~73.2% for Gauss era and 1590–2009 CE, respectively), it is important to note that they are distributed in a range of ~100 degrees (~38 to 64 degrees) of latitude. In addition, considering the uncertainties of the measurements, the difference between VADM and ADM presents values close or equal to zero. Also, almost all data (except one result) show a good correspondence with gufm1 for both temporal averages.

For the same periods, the archaeointensity results were compared to expected values from gufm1 and CHAOS 5 (simplified by B_{gufm1}; Jackson et al., 2000; Finlay et al., 2015) and the resulting distributions of the residuals plotted in Fig. 4c and d. In both cases the selected data show less scatter than the original unfiltered data. A symmetric distribution within one standard deviation of zero was observed for both subsets (-0.58 ± 4.18 and -2.01 ± 5.48 μT), indicating a good concordance between measured data and the historical field models. In order to test all possible scenarios regarding the differences between archaeointensity and gufm1 data, we repeated the same comparison taking into account experimental and age uncertainties of the indirect results, where a normal distribution with standard deviation covering the zero was also observed (Fig. S1a to S1i). In addition, we performed a Monte Carlo approach by using a homogeneous distribution for the intensity and age uncertainties, and again the averaged residual shows values close to zero for both periods (Fig. S2). This high-quality and historical-model-comparable catalogue is the main basis for our analysis of the temporal variation of the geomagnetic axial dipole.

3.2. The geomagnetic ADM for the last four centuries

Filtered intensity estimates for the Gauss era comprise 48 data time-geographically distributed (Fig. 3a and d; Table A1). These data were converted into ADM$_{\text{indirect}}$ values from the theorem of Hulot et al. (1997) (see Methods). It is worth noting that this theorem requires a complete geometric coverage of the magnetic field on the globe. Therefore, we computed the ADM$_{\text{indirect}}$ values from archaeointensity data using gufm1 (Jackson et al., 2000) for 1840-1990 CE and CHAOS-5 (Finlay et al., 2015) for 1997–2015 CE, since they are well-established field models available for these respective periods. Then a linear regression was performed from converted ADM$_{\text{indirect}}$ data, resulting in a set of linear solutions for this particular time interval. In our analyzes, the linear solution set is given by the uncertainties of α and β of a linear
function type; in our case \(y = ax + \beta \) with \(y \) representing (virtual) axial dipole moment and \(x \) the age of the thermostmanent magnetization of the material (Fig. 5; see Methods). ADM\textsubscript{model} decay rates from gufm1 and CHAOS-5 field models for the Gauss era fall well within our linear solution set (Fig. 6a).

Similarly, for the 1590 and 1840 CE time interval, we converted 81 high-quality archaeointensity data into ADM\textsubscript{indirect} values (Fig. 3b and e; Table A1), using gufm1 for 1590–1840 CE. Subsequently, six linear regressions were calculated individually using the same number of data for the Gauss era, every 50 years before 2009 CE (Fig. 6a, see Methods). All solution sets comprise the ADM\textsubscript{model} decay rate from gufm1. Between 1600 CE and 1800 CE the sets of linear solutions have greater uncertainties than those obtained for more recent periods. This is due to the sensitivity of linear regressions to uncertainties of age and axial dipole moment. For example, Schnepf et al. (2009) presented 25 archaeointensity results from ovens floors collected in Germany. From these, 10 sites dated for 1665 ± 85 AD show intensity values over a wide range from 59.7 ± 2.9 to 44.1 ± 3.3. So, despite the excellent quality of individual archaeointensity estimates their relatively high age uncertainties and range in the intensity results strongly influence our regressions. Notwithstanding, the removal of these data reduces the uncertainties of regressions, but does not change any features or trends. For this reason, we decided to keep them into our analyses.

When we consider the whole filtered archaeointensity dataset comprising the past four centuries, the data are normally distributed, but the mean is slightly offset relative to intensity estimates of the gufm1 model (Fig. 4d). The same behavior is observed when this archaeointensity catalogue is converted into VADM\textsubscript{indirect} values and compared with gufm1 (Fig. 6b). It is important to note that several studies have emphasized poor accuracy at the values calculated by gufm1, especially for the pre-Gauss era (e.g. Le Goff and Gallet (2017)). However, the comparisons performed in this work between high-quality archaeointensity data and those calculated by gufm1 present, on average, a satisfactory correspondence (Figs. 4c, d and 6b), since the mean residual covers the zero value within one standard deviation. Although there is a need to generate models with greater accuracy in the calculation of the complete vector of the Earth's magnetic field, the gufm1 remains the most robust full-vector magnetic field model for the historical period. Thus, we use the gufm1 and CHAOS-5 for the Gauss era and gufm1 for the period 1590–1990 CE in an attempt to capture a linear trend exclusively from archaeointensity data, which represents the average variation of the axial dipole for the historical period; and also minimizes the slightly offset of the mean residual between indirect data and model.

The mean linear trend given by the slope from the gufm1 and CHAOS-5 models (i.e., ∼15 nT/yr) is one of several possible solutions that belong to the set of linear solutions between 1590 and 2009 CE (i.e., \(Y_{\text{gufm1}} \) and \(\text{CHAOS-5} \)). However, there are many other slopes that satisfy the condition \(\gamma \in S \) for this period. To determine a single linear solution that better represents the average decrease of the geomagnetic axial dipole, we firstly: i) fix the ADM for 2015 CE at \(7.61 \times 10^{22} \text{ A m}^2 \) (Finlay et al., 2015), in order to restrict the \(\beta \) value in the Eq. (5); and ii) find a slope (\(\gamma \)) that minimizes the difference between absolute data from laboratory and model in order to obtain a normal distribution of the residual centered on zero value. To obtain (ii), we replaced the \(g^\beta \) coefficient of gufm1 by those extracted from linear solutions trends, and then we recalibrated all coefficients.

![Fig. 4](image_url) Latitudinal influence and intensity consistency of the archaeomagnetic dataset when compared with gufm1. (a–b) show the variation of the intensity for different latitudes, where opened circles (gray) represent data from gufm1, given by the averaged intensity of 36 data for every 10 degrees of longitude equally-spaced; and closed circles (red) represent the averaged intensity in a latitudinal-degree-spaced of the filtered archaeointensity data (see Methods). Histograms show the distribution of the absolute archaeointensity data obtained from laboratory and: (*) gufm1 (Jackson et al., 2000) for 1590–1990 CE, and CHAOS-5 (Finlay et al., 2015) for 1990–2009 CE. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
following the strategy showed by Whaler and Holme (2011):

\[g_{\text{Gauss}}^{m} = g_{\text{field}}^{m} + g_{\text{arch}}^{0} / g_{\text{arch}}^{m} \] \hspace{1cm} (7)

and

\[h_{\text{Gauss}}^{m} = h_{\text{field}}^{m} + h_{\text{arch}}^{0} / h_{\text{arch}}^{m} \] \hspace{1cm} (8)

where \(l \) and \(m \) represent degree and order, respectively. Finally, the best linear fit found is indicated as a blue continuous line in Fig. 6a (relative to the residual represented with the same color in Fig. 6b) and corresponds to an intensity decay rate of 12.5 nT/yr.

In order to statistically test the slope of 12.5 nT/yr obtained for the period between 1590 and 2009 CE, we performed 100 simulations in which 60% of 129 archaeointensity data were randomly selected, and then we calculated the 95% bootstrapping confidence intervals (N = 1999) (Hammer et al., 2001) for each linear regression, and also evaluated the residuals between the mean linear fit and i) the data used to compute the linear fit; and ii) the data that were not used to compute the linear fit (Fig. S3). Then we observe that the slope obtained above is statistically robust (Fig. S3a) and that both residuals show a normal distribution within one standard deviation of zero (Fig. S3b). Therefore, the linear solution obtained exclusively by archaeointensity data apparently emerges as a robust solution to describe the average ADM decay trend for the historical period.

3.3. The geomagnetic ADM for the last two millennia: VADM application as a proxy

Do the linear trend obtained for the past four centuries also describe the geomagnetic axial dipole further back in time? To address this question, we first need to test whether we are able to safely use VADM as a “proxy” of ADM.

In order to estimate the error arising from our use of VADMs\textsubscript{indirect} in the pre-Gauss era instead of values of ADMs\textsubscript{indirect} calculated from theorem of Hulot et al. (1997), we compare the distributions of ADMs (both those calculated using Hulot et al.’s theorem from archaeointensity data and those taken directly from gufm1 and CHAOS-5) and VADMs\textsubscript{indirect} (both those taken from archaeointensity data and from gufm1 and CHAOS-5), for the periods 1840–1990 CE, 1590–1840 CE and 1590–1990 CE (Fig. 7). In all cases, the residuals distributions between VADM and ADM are centered close to zero and well-inside of one standard deviation. We concluded that, although the (V)ADM\textsubscript{indirect} are marginally offset to lower values than the ADMs\textsubscript{model} (Fig. 8a), they nevertheless provide a useful proxy for the Gauss era, as well as for the entire historical period.

In order to test whether the geographical distribution of the entire dataset used here is sufficient to define ADMs over the last two millennia, we segmented this into 150 years intervals (taken as the same duration as the Gauss era time interval belonging to gufm1 – 1840–1990 CE), and then for each sub-period we re-sampled VADMs\textsubscript{model} from gufm1 (1840–1990 CE) taking into account the longitudes and latitudes of each of the archaeointensity data from the preceding time intervals (Fig. S4). Alternatively we calculated the normal distribution of the difference between the re-sampled VADMs\textsubscript{model} and the ADMs\textsubscript{model} from gufm1 (Fig. S4). For all segments, the obtained
peak of the VADM-ADM distributions was close to and within one standard deviation of the zero value. This suggests that, presuming variability with the Gauss era is reasonably representative of that for the last 2000 years, the geographical distribution of VADMindirect data in the intervals prior to 1840 would be sufficient to adequately describe the main trend of ADM in the post-1840 interval and that the limited geographical distribution of VADMindirect estimates prior to 1840 should not be a barrier to defining ADM variations.

Additionally, we show that the trend of (V)ADMindirect from the archaeointensities in the gufm1 time period is close to that of the ADMmodel taken from gufm1 and falls within one standard deviation of the VADMmodel values from gufm1 in a degree-spaced coverage around the globe for each year (64,800 estimations per year) (Fig. 8a). Finally, the geographical distribution of VADMindirect estimates prior to 1840 should not be a barrier to defining ADM variations.

We therefore proceeded back in time with the linear regressions using groups of 48 data (i.e., the same number used for the Gauss era), every 50 years, over the pre-gufm1 period (Fig. 9). The 26 sets of linear regressions include a total of 275 high-quality archaeointensity data (Table A1), belonging to the range of 0–1590 CE. Linearly extrapolating the previous linear trend back 1590 CE we found that it is a common solution (that satisfy y ∈ S) for 18 sets of solutions, being consistent until the period between 550 CE and 750 CE (Fig. 9). The period 550–750 CE marks the interval of two consecutive sets of linear solutions where the linear fit is a solution for the last time (550–800 CE) and where it fails for the first time (475–750 CE). Thus, for the last millennium, the single linear regression with slope 12.5 nT (∼−0.0032 × 10^22 Am^2), intercept 7.61 × 10^22 Am^2 at 2015 CE (Finlay et al., 2015) and valid for the period 750–2015 CE (hereafter called by archaeo_adm1.3k), appears to be a useful description of the long-term variations of the geomagnetic axial dipole and one that differs substantially from existing models in the interval 750–1200 CE (Fig. 10).

4. Discussion

4.1. Effects of small spatial and temporal variations

Some studies have consistently reported rapid local variations of the geomagnetic field for the past two millennia. For example, de Groot et al. (2013) studied lava flow sequences from Hawaii and reported a rapid increase in geomagnetic field strength of about 1 μT between ~850 and 925 CE (~200 nT/yr), followed by a rapid decrease at ~1150 CE (~190/yr). For Western Europe, Genevey et al. (2016) and Gómez-Paccard et al. (2016) used high-quality archaeointensity data to argue for a rapid decrease in geomagnetic field strength of ~100 nT/yr between 800 and 1050 CE. Rapid variations have also been reported for older periods, including dramatic field intensity spikes in southern

Fig. 7. Correlations between ADMs and VADMs from archaeointensity data and gufm1. Normal distribution of the difference between VADMs and ADMs for: (a, d, g) only archaeointensity data, (b, e, h) only gufm1 with the same time-space coverage, and (c, f, i) archaeointensity data (VADM) and gufm1. The comparisons were separated into the periods: (a, b, c) Gauss era, (d, e, f) 1590–1980 CE, and (g, h, i) 1590–1990 CE.
Israel reported by Shaar et al. (2011, 2016). These rapid variations have been attributed to local anomalies caused by dynamic processes at the CMB (e.g. Livermore et al. (2014), Davies and Constable (2017)). A complete assessment of these variations would require a more complete coverage of the globe with high-quality archaeointensity data, particularly in the southern hemisphere where the field may be more time-dependent (Constable et al., 2016) but which is underrepresented in the archaeomagnetic database. Our analysis tends to eliminate rapid local variations, thus describing only the long-term variations of the axial dipole field strength.

Our analysis also tends to average out the small amplitude variations of ADM$_{\text{model}}$ derived from observatory and satellite data that are taken into account in, for example, gufm1 and CHAOS-5 models (Jackson et al., 2000; Finlay et al., 2015; Figs. 6a and 9). Some studies reported that regional high-quality archaeointensity data have sufficient resolution to suggest oscillatory behavior of the geomagnetic axial dipole (Genevey et al., 2009; Hartmann et al., 2011). However, given the inherent experimental errors and limited geographical coverage, we suggest that the current global archaeointensity dataset, on average, cannot reproduce small fluctuations in the geomagnetic axial dipole.

4.2. Comparison between archaeo_adm1.3k and geomagnetic field models

When the archaeo_adm1.3k is compared with historical models, some differences can be related to data quality instead of Earth’s core dynamics. Between 1590 and 1840 CE some models described the ADM evolution by a linear trend. For example, gufm1 (Jackson et al., 2000) used a linear extrapolation from the main trend of the Gauss era, Gubbins et al. (2006) proposed a linear regression from 315 non-
filtered archaeointensity data, and Finlay (2008) suggested a linear trend given by the best fit from inversion of the same 315 archaeointensity data (Fig. 10a). The models of Gubbins et al. (2006) and Finlay (2008) suggested a shift in decay trend at 1840 CE, which is a recurrent feature of the differences between direct and indirect estimates (Suttie et al., 2011). Here, using only high-quality archaeointensity data to describe the ADM time-evolution, the shift in decay at 1840 CE is suppressed. Our estimates of ADM before 1840 CE differ from the flat evolution proposed by Gubbins et al. (2006) and Finlay (2008). Instead, we suggest an earlier start in the decay of the ADM.

Greater time-period models obtained by different data sets and modeling strategies also show significant differences regarding archae_adm1.3k (Fig. 10a). We compare our main result with the CALS3k series of field models (Korte et al., 2009; Korte and Constable, 2011), and with the A_FM-M and ASDI_FM-M models, which are the mean models of ensemble of time-varying archaeomagnetic field models (Licht et al., 2013). The CALS3k and the ASDI_FM-M field models are constructed from archaeological, volcanic and sedimentary data, whereas A_FM-M only uses archaeointensity data. For better visualization, all millennial models used in our comparison had their ADM' curves smoothed using a larger smooth factor in a sequence of third-order polynomials continuous up to the second derivative (de Boor, 1978) (Fig. 10a). Besides differences in the main trend between the archae_adm1.3k and the mentioned models, in the specific period 550–900 CE the CALS3k models present a low of the ADM, being opposite to the peak described here. The Licht et al. model shows intermediate values of ADM for this period. This may be a consequence of the field models inappropriately partitioning energy into higher order components and/or their inclusion of less reliable intensity data.

Other descriptions regarding the variations of the geomagnetic axial dipole were presented through VADM curves computed using temporal and spatial averaging, for the CALS3k series, A_FM-M and ASDI_FM-M dashed lines represent the original ADM models, and continuous line the smoothed trend. Dashed lines for Gubbins et al. (2006) are dipole were presented through VADM curves computed using temporal and spatial averaging (e.g. Valet et al. (2008), Genevey et al. (2008), Knudsen et al. (2008), Usoskin et al. (2016)) (Fig. 10b). From a non-filtered archaeointensity database, Valet et al. (2008) proposed a third-order polynomial model for the last millennium. They compare their main result with the CALS3k series of field models (Licht et al., 2013). The CALS3k and the ASDI_FM-M field models are constructed from archaeological, volcanic and sedimentary data, whereas A_FM-M only uses archaeointensity data. For better visualization, all millennial models used in our comparison had their ADM' curves smoothed using a larger smooth factor in a sequence of third-order polynomials continuous up to the second derivative (de Boor, 1978) (Fig. 10a). Besides differences in the main trend between the archae_adm1.3k and the mentioned models, in the specific period 550–900 CE the CALS3k models present a low of the ADM, being opposite to the peak described here. The Licht et al. model shows intermediate values of ADM for this period. This may be a consequence of the field models inappropriately partitioning energy into higher order components and/or their inclusion of less reliable intensity data.

Other descriptions regarding the variations of the geomagnetic axial dipole were presented through VADM curves computed using temporal and spatial averaging, for the CALS3k series, A_FM-M and ASDI_FM-M dashed lines represent the original ADM models, and continuous line the smoothed trend. Dashed lines for Gubbins et al. (2006) are dipole were presented through VADM curves computed using temporal and spatial averaging (e.g. Valet et al. (2008), Genevey et al. (2008), Knudsen et al. (2008), Usoskin et al. (2016)) (Fig. 10b). From a non-filtered archaeointensity database, Valet et al. (2008) proposed a third-order polynomial model for the last millennium. They compare their main result with the CALS3k series of field models (Licht et al., 2013). The CALS3k and the ASDI_FM-M field models are constructed from archaeological, volcanic and sedimentary data, whereas A_FM-M only uses archaeointensity data. For better visualization, all millennial models used in our comparison had their ADM' curves smoothed using a larger smooth factor in a sequence of third-order polynomials continuous up to the second derivative (de Boor, 1978) (Fig. 10a). Besides differences in the main trend between the archae_adm1.3k and the mentioned models, in the specific period 550–900 CE the CALS3k models present a low of the ADM, being opposite to the peak described here. The Licht et al. model shows intermediate values of ADM for this period. This may be a consequence of the field models inappropriately partitioning energy into higher order components and/or their inclusion of less reliable intensity data.
degree polynomial function model to describe the variation of the V(ADM) indirect for the last 2000 years, from a running-window approach using time-averaged data over 100 years and shifted by 25 years. They argued that time-averaged windows of 100 years are enough to attenuate non-dipolar contributions. The result from Valet et al.’s work shows a peak of V(ADM) values at about 700 CE, followed by a decrease up to the present. Knudsen et al. (2008) adopted a running-window approach to calculate the VADM variations during the entire Holocene. They presented a least-square fit from time-averaged data using 500 year long sliding windows shifted by 100 years (between ∼2000 and 2000 CE). The description put forward by Knudsen et al.’s VADM curve shows a similar behavior to that described in Valet et al.’s paper, with relatively lower values beginning from a peak in the VADM at about 700 CE. Genevey et al. (2008) proposed a VADM evolution for the last 10,000 years. Their results are given by time-averaged data using 200 year long sliding windows shifted by 100 years (between ∼1500 and 2000 CE), and show a peak in VADM values between 300 and 400 CE, and the beginning of the VADM decrease at about 1200 CE. Similarly, Usoskin et al. (2016) presented a description of VADM from time-averaged data using 200 year long sliding windows shifted by 10 years (between ∼1500 and 2000 CE), using the newly updated database GEOMAGIA50.v3 (Brown et al., 2015). Usoskin et al.’s work provides a VADM curve with variations similar to that presented by Genevey et al. (2008), but with relatively lower mean values for the period 0–1440 CE. For the last nine centuries, our results, which were obtained through regressions by different time-windows with each individual endpoints regularly spaced by 50 years, are in agreement with that proposed by Valet et al.’s, Genevey et al.’s, Knudsen et al.’s, and Usoskin et al.’s works, and emerge as a simplification of all them. Before 900 CE the archaeo_adm1.3k presents a unique trend that started between 550 and 750 CE. This reinforces that, for the last two millennia, the current models tend to lose information about the variation of the geomagnetic axial dipole, even if it is not possible to state specifically the cause.

A promising approach to combine short and long-term changes in axial dipole intensity into a complete description of the geodynamo has been put forward by Sanchez et al. (2016). These authors constructed a geomagnetic field model for the last three millennia using non-filtered archaeomagnetic data and prior information from geodynamo simulations (Aubert et al., 2013). Their geomagnetic axial dipole presents an average decay of ∼7 nT/yr for the last millennium, which differs from the result obtained here (12.5 nT/yr). In view of the new methodological approach presented by Sanchez et al’ model, we tentatively suggest that the use of only high-quality archaeointensity data may improve attempts to describe physical processes of the Earth’s core, which drive global millennial features of the field.

4.3. Implications for core dynamics

The average rate of geometric axial dipole decay for the last 184 years is ∼15 nT/yr (Jackson et al., 2000; Finlay et al., 2015). For this period, Finlay et al. (2016) combined geomagnetic field models (Gillett et al., 2013) and equatorially symmetric core flow models (e.g. Pais and Jault (2008), Amit and Pais (2013), Aubert (2014), Gillet et al. (2015)) to attribute the axial dipole decay to symmetry breaking in advection sources in the Southern Hemisphere. They showed that the drift of an intense normal polarity flux path equatorward, which diminishes the ADM (e.g. Olson and Amit (2006)), is unbalanced by any other significant advection source, causing the ADM decrease. According to our analysis, the intensity of the Earth’s magnetic axial dipole had an average decay rate of 12.5 nT/yr from ∼750 CE to present, beginning after a clear change in the trend of the geomagnetic axial dipole (Fig. 9). Therefore, we have provided evidence for a continuous linear decay comparable in order of magnitude with the average rate for the Gauss era (e.g. Jackson et al. (2000), Finlay et al. (2015), Finlay et al. (2016)). Consequently, we suggest an early break in the symmetry of the ADM advection sources in the Earth’s core at about 750 CE.

According to our analysis, the ADM has been decreasing at roughly the rate of present-day for the past ∼1265 years. This corresponds to estimations of axial dipole secular variation (SV) time-scales (∼1000 years) recently observed by Amit et al. (in press). This SV timescale represents the reorganization time of the axial dipole (Hulot and Le Mouël, 1994). Based on the similarity between our estimate of ADM decrease period and the axial dipole SV timescale (Amit et al., in press), we speculate that the ADM decrease may reach its end soon.

5. Conclusions

From a careful analysis of the current archaeointensity dataset we propose a well defined linear trend that describes the variation of the geomagnetic axial dipole for the last millennium: archaeo_adm1.3k. The main conclusions of this work are:

(i) The comparison between the data obtained by direct and indirect measurements during the Gauss era allowed the analysis of the axial dipole to be extrapolated back in time for two millennia.
(ii) The shift in the trend of the geomagnetic axial dipole variation at 1840 CE described by previous studies (Gubbins et al., 2006; Finlay, 2008) is a biased feature of the difference between direct and indirect measurements.
(iii) Considering the last 2000 years, at approximately 750 CE there was a peak of intensity of the axial dipole followed by a quasi-constant decrease, which is not captured by millennial models.
(iv) If the recent decay of the Earth’s magnetic axial dipole is caused by asymmetry in the advective sources then this commenced within the interval 550–750 CE.
(v) Comparable duration of the dipole decay and the ADM SV timescale suggests that this event may be reaching its end soon, and therefore tend to disfavor the hypothesis of an imminent geomagnetic reversal.

Acknowledgements

Richard Holme and Hagay Amit are thanked for pre-submission readings and discussions that helped in improving the paper. We thank two anonymous reviewers for their helpful and constructive comments. W.P. thanks the São Paulo Research Foundation (FAPESP) (grant #2013/16382-0). A.J.B. acknowledges a NERC standard grant (NE/P00170X/1) and funding from The Leverhulme Trust. G.A.H. thanks CAPES (grant AUXPE 2043/2014) and CNPq (grant 454609/2014-0). F.T.N. thanks The National Council for Scientific and Technological Development (CNPq/Brazil) (grant 206997/2014-0).

Appendix A

In our analysis we used a catalogue of archaeointensities, which was approved by the data selection criteria adopted, from the GEOMAGIA50.v3 database and from some published studies that has not been inserted into it so far (Gallet et al., 2009; de Groot et al., 2013; Cai et al., 2014; Di Chiara et al., 2014; Kissel et al., 2015; Goguitchaichvili et al., 2015; Osote et al., 2015; Roperch et al., 2015; Shaar et al., 2015; Tarduno et al., 2015; Cai et al., 2016; Genevey et al., 2016; Gómez-Paccard et al., 2016; Poletti et al., 2016; Genevey et al., in press; Salnaia et al., 2017; Shaar et al., 2017) (Table A1).
<table>
<thead>
<tr>
<th>Number of data</th>
<th>Age interval</th>
<th>Material</th>
<th>Reference ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-0</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0-1300</td>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0-1700</td>
<td>a</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1030-1546</td>
<td>a</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1103-1696</td>
<td>a</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1150-0</td>
<td>a</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>1160-1390</td>
<td>a</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>123-1320</td>
<td>a</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1237-1832</td>
<td>a</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>1331-1665</td>
<td>a</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>140-1840</td>
<td>v</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>1440-1835</td>
<td>v</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>1450-0</td>
<td>a</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>1550-1750</td>
<td>a</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>1576-1910</td>
<td>a</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>1591-1909</td>
<td>a</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>1610-1850</td>
<td>a</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>1610-1950</td>
<td>v</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>1615-0</td>
<td>a</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>1672-1691</td>
<td>a</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>1706-0</td>
<td>v</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>1766-0</td>
<td>v</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>1766-0</td>
<td>v</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>1790-0</td>
<td>a</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>1835-0</td>
<td>a</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>1886-0</td>
<td>v</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>1955-0</td>
<td>v</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>1959-0</td>
<td>a</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>1960-1982</td>
<td>v</td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td>1980-2000</td>
<td>v</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>1993-1998</td>
<td>v</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td>220-1138</td>
<td>a</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>235-1959</td>
<td>a</td>
<td>33</td>
</tr>
<tr>
<td>34</td>
<td>260-1690</td>
<td>v</td>
<td>34</td>
</tr>
<tr>
<td>35</td>
<td>27-899</td>
<td>a</td>
<td>35</td>
</tr>
<tr>
<td>36</td>
<td>316-601</td>
<td>a</td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td>330-0</td>
<td>a/v</td>
<td>37</td>
</tr>
<tr>
<td>38</td>
<td>337-1575</td>
<td>a</td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td>350-1855</td>
<td>a</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>360-1380</td>
<td>v</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>370-665</td>
<td>a</td>
<td>41</td>
</tr>
<tr>
<td>42</td>
<td>37-100</td>
<td>a</td>
<td>42</td>
</tr>
<tr>
<td>43</td>
<td>385-1975</td>
<td>v</td>
<td>43</td>
</tr>
<tr>
<td>44</td>
<td>388-424</td>
<td>a</td>
<td>44</td>
</tr>
<tr>
<td>45</td>
<td>450-810</td>
<td>a</td>
<td>45</td>
</tr>
<tr>
<td>46</td>
<td>480-1660</td>
<td>v</td>
<td>46</td>
</tr>
<tr>
<td>47</td>
<td>550-875</td>
<td>a</td>
<td>47</td>
</tr>
<tr>
<td>48</td>
<td>588-2009</td>
<td>v</td>
<td>48</td>
</tr>
<tr>
<td>49</td>
<td>590-1950</td>
<td>v</td>
<td>49</td>
</tr>
<tr>
<td>50</td>
<td>622-1180</td>
<td>a</td>
<td>50</td>
</tr>
<tr>
<td>51</td>
<td>691-1320</td>
<td>a</td>
<td>51</td>
</tr>
<tr>
<td>52</td>
<td>726-1950</td>
<td>v</td>
<td>52</td>
</tr>
<tr>
<td>53</td>
<td>765-1779</td>
<td>v</td>
<td>53</td>
</tr>
<tr>
<td>54</td>
<td>775-0</td>
<td>a</td>
<td>54</td>
</tr>
<tr>
<td>55</td>
<td>800-1563</td>
<td>v</td>
<td>55</td>
</tr>
<tr>
<td>56</td>
<td>815-1797</td>
<td>a</td>
<td>56</td>
</tr>
<tr>
<td>57</td>
<td>825-0</td>
<td>a</td>
<td>57</td>
</tr>
<tr>
<td>58</td>
<td>850-1088</td>
<td>a</td>
<td>58</td>
</tr>
<tr>
<td>59</td>
<td>852-1350</td>
<td>a</td>
<td>59</td>
</tr>
<tr>
<td>60</td>
<td>87-1779</td>
<td>a</td>
<td>60</td>
</tr>
<tr>
<td>61</td>
<td>934-1783</td>
<td>v</td>
<td>61</td>
</tr>
<tr>
<td>62</td>
<td>990-1450</td>
<td>a</td>
<td>62</td>
</tr>
</tbody>
</table>

Reference IDs: 1 – Tema et al. (2012); 2 – De Marco et al. (2008); 3 – Chauvin et al. (2000); 4 – Tarduno et al. (2015); 5 – Sabaia et al. (2017); 6 – Gómez-Paccard et al. (2006a); 7 – Stark et al. (2010); 8 – Cai et al. (2014); 9 – Genevey et al. (2009); 10 – Schnepf et al. (2009); 11 – Tanaka and Kono (1991); 12 – Roperch et al. (2015); 13 – Shaar et al. (2017); 14 – Hartmann et al. (2009); 15 – Hartmann et al. (2010); 16 – Hartmann et al. (2011); 17 – Gallet et al. (2005); 18 – Bowles et al. (2005); 19 – Oste et al. (2015); 20 – Poletti et al. (2016); 21 – Kisel et al. (2015); 22 – Gratto et al. (2005a); 23 – Conde-Fasano et al. (2006); 24 – Goguitchaichvili et al. (2015); 25 – Gómez-Paccard et al. (2006b); 26 – Tanaka et al. (2009); 27 – Cottrell and Tarduno (1999); 28 – Catanzariti et al. (2008); 29 – Chauvin et al. (2005); 30 – Michalk et al. (2008); 31 – Carlut and Kost (2000); 32 – Genevey et al. (2003); 33 – Gómez-Paccard et al. (2008); 34 – Mankinen and Champion (1993); 35 – Mitra et al. (2013); 36 – Catanzariti et al. (2012); 37 – Böhnel et al. (2003); 38 – Genevey and Gallet (2002); 39 – Tema et al. (2013); 40 – Pressling et al. (2007); 41 – Genevey et al. (2017); 42 – Gómez-Paccard et al. (2013); 43 – Pick and Tanke (1993); 44 – Shaar et al. (2015); 45 – Farjat et al. (2013); 46 – Pressling et al. (2006); 47 – Genevey et al. (2016); 48 – De Groot et al. (2013); 49 – Yoshihara et al. (2003); 50 – Gómez-Paccard et al. (2012b); 51 – Cai et al. (2016); 52 – Spassov et al. (2010); 53 – Yu et al. (2012); 54 – Donadini et al. (2008); 55 – Di Chiara et al. (2014); 56 – Genevey et al. (2013); 57 – Gallet et al. (2009); 58 – Gómez-Paccard et al. (2016); 59 – Gómez-Paccard et al. (2012a); 60 – Gratto et al. (2005b); 61 – Stanton et al. (2011); 62 – Goguitchaichvili et al. (2011).
Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.pepi.2017.11.005.

References

Gillet, N., Jaul, D., Finlay, C.C., 2015. Planetary gyre and time-dependent midlatitude
84
eddy at the Earth’s core surface. J. Geophys. Res. 120, 39914013.

