Cell response to sterilized electrospun poly(-caprolactone) scaffolds to aid tendon regeneration <i>in vivo</i>

Bhaskar, Prajwal, Bosworth, Lucy A ORCID: 0000-0002-6726-4663, Wong, Richard, O'brien, Marie A, Kriel, Haydn, Smit, Eugene, McGrouther, Duncan A, Wong, Jason K and Cartmell, Sarah H
(2017) Cell response to sterilized electrospun poly(-caprolactone) scaffolds to aid tendon regeneration <i>in vivo</i>. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 105 (2). pp. 389-397.

Access the full-text of this item by clicking on the Open Access link.


The functional replacement of tendon represents an unmet clinical need in situations of tendon rupture, tendon grafting, and complex tendon reconstruction, as usually there is a finite source of healthy tendon to use as donors. The microfibrous architecture of tendon is critical to the function of tendon. This study investigates the use of electrospun poly(ɛ-caprolactone) scaffolds as potential biomaterial substitutes for tendon grafts. We assessed the performance of two electrospinning manufacturers (small- and large-scale) and the effect of two sterilization techniques-gamma irradiation and ethanol submersion-on cell response to these electrospun scaffolds after their implantation into a murine tendon model. Cell infiltration and proliferation analyses were undertaken to determine the effect on cell response within the implant over a 6-week period. Immunohistochemical analysis was performed to characterize inflammatory response and healing characteristics (proliferation, collagen deposition, myofibroblast activity, and apoptosis). Neither the sterilization techniques nor the manufacturer was observed to significantly affect the cell response to the scaffold. At each time point, cell response was similar to the autograft control. This suggests that ethanol submersion can be used for research purposes and that the scaffold can be easily reproduced by a large-scale manufacturer. These results further imply that this electrospun scaffold may provide an alternative to autograft, thus eliminating the need for sourcing healthy tendon tissue from a secondary site. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 389-397, 2017.

Item Type: Article
Uncontrolled Keywords: tendon repair, electrospinning polycaprolactone, sterilization, gamma irradiation, ethanol
Depositing User: Symplectic Admin
Date Deposited: 13 Aug 2018 06:35
Last Modified: 17 Oct 2023 21:29
DOI: 10.1002/jbm.a.35911
Open Access URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jb...
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3024868