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Abstract

Time-continuous emotion recognition has become an increasingly compelling task in machine learning. Con-

siderable efforts have been made to advance the performance of these systems, but the main foci have been the

development of more sophisticated models and the incorporation of different expressive modalities (e.g., voice, face,

and physiology). In this paper, motivated by the benefits of difficulty awareness in a human learning processes, we

propose a novel machine learning framework – Dynamic Difficulty Awareness Training (DDAT). DDAT sheds new

light on the research–directly exploiting the difficulties in learning to boost the machine learning process. The DDAT

framework consists of two stages: information retrieval and information exploitation. In the first stage, we make

use of the reconstruction error of input features or the annotation uncertainty to estimate the difficulty of learning

specific information. The obtained difficulty level is then used in tandem with original features to update the model

input in a second learning stage with the expectation that the model can learn to focus on high-difficulty regions of

the learning process. We perform extensive experiments on a benchmark database to evaluate the effectiveness of

the proposed framework. The experimental results show that our approach outperforms related baselines as well as

other well-established time-continuous emotion prediction systems, which suggests that dynamically integrating the

difficulty information for neural networks can help enhance the learning process.

Index Terms

emotion prediction, difficulty awareness learning, dynamic learning

I. INTRODUCTION

Time-continuous emotion prediction systems have received widespread interest in the machine learning (ML)

community over the past decade [1]–[3]. One of the main reasons for this interest is the fact that time-continuous

emotion predictions can analyse subtle and complex affective states of humans over time and play a central role in
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smart conversational agents that aim to achieve a natural and intuitive interaction between humans and machines [2],

[4]–[7]. Great efforts have been made in this field, and most of them can generally be classified into two strands. One

strand mainly focuses on designing or implementing increasingly sophisticated and robust prediction models, such

as long short-term memory (LSTM)-based recurrent neural networks (RNNs) [1], [8], convolutional neural networks

(CNNs) [9]–[13], and end-to-end learning frameworks [14]. Another strand mainly focuses on the integration of

multiple modalities (e.g., audio and video) and modelling techniques [15], [16].

Apart from those studies, other research has recently found that emotional training data can be practically learnt

in different degrees [17], [18]. That is, some data can be easily learnt given a specific model, whilst some data are

relatively tough. In this light, some promising approaches have been proposed in machine learning to optimise the

learning procedure. For example, the most conventional approach is associated with boosting [19], [20], which

dynamically updates the weights of those samples that are hard to recognise or are even falsely recognised.

Additionally, a more recent and promising approach refers to curriculum learning, which was firstly introduced

in [21]. Curriculum learning presents the data from easy to hard during the training process so that the model can

better avoid being caught in local minima in the presence of non-convex training criteria. Curriculum learning has

become even more popular with the advance of deep learning. For emotion prediction, a handful of related studies

have been reported very recently [18], [22], [23], which have shown the efficiency of curriculum learning.

However, one of the major disadvantages of these approaches is their non-friendliness to sequence-based pattern

recognition tasks, such as the one we are facing. That is, in the learning process, the samples, whether or not they

were presented within a sequence, are considered individually and independently. The ignored context information,

nevertheless, indeed plays a vital role in sequence-based pattern recognition [24]. To this end, we propose a novel

learning framework, Dynamic Difficulty Awareness Training (DDAT), for time-continuous emotion prediction in this

article. In contrast to the previous approaches, such as the aforementioned boosting and curriculum learning, the

proposed DDAT can be well integrated into conventional context-sensitive models (e. g., LSTM-RNNs), enabling the

models to ultimately exploit the context information. To the best of our knowledge, this is the first effort at exploring

the difficulty information in sequence-based pattern recognition, such as the present case of time-continuous emotion

prediction.

The underlying assumption of DDAT is that a model is able to deliver better performance if we explicitly let the

model know the learning difficulty of the samples along with time. This assumption is in line with the finding that

humans normally pay more attention to the tasks that are inherently difficult so as to perform better [25], [26].

To implement DDAT, we consider two strategies, i. e., utilising the Reconstruction Error (RE) of the input data

or the perception uncertainty (PU) level of emotions as dynamic indicators of the difficulty to drive the learning

process. Then, we integrate the difficulty indicator with original data for further learning, such that it endows the

models with a difficulty learning awareness. This process is also partially inspired by the awareness techniques

proposed for robust speech recognition [27], [28], where the noise types are considered to be auxiliary information

for acoustic modelling.

In ML, RE normally serves as an objective function of an auto-encoder (AE) when extracting high-level represen-

tations. A well-designed AE is considered to reconstruct well the input from its learnt high-level representations [29].
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Recently, the RE has also been exploited for tasks, such as anomaly detection [30], [31] and classification [32].

For anomaly detection, an AE is trained on normal samples beforehand to serve as a novel event detector. When

feeding a new sample into the AE, the obtained RE compared with a predefined threshold decides whether it

is abnormal [30], [31]. For classification, several class-specific AEs are pre-trained separately. When feeding an

unknown sample into these AEs simultaneously, the values of the corresponding RE are then interpreted as indicators

of class membership [32]. Notably, all these works hypothesise that data with the same label have similar data

distributions. That is, the mismatched data potentially result in higher REs than those of the matched data. This

motivates us to employ the RE as a learning difficulty index because it is well known in ML that mismatched data

severely promote the complexity of modelling [33].

In addition, PU is a term employed in subjective pattern recognition tasks to refer to the inter-annotator dis-

agreement level when calculating a gold standard in an annotation process [34]. For emotion prediction, it has

been frequently determined that the PU has a high correlation with the learning difficulty of a recognition model.

For example, the reported work in [35] and [36] found that the emotion prediction systems perform better in low-

uncertainty regions than in high-uncertainty regions. Likewise, the findings in [17] showed that the elimination of

the samples labelled with a high uncertainty from the training set leads to a better emotion prediction model. This

finding provokes us to use the PU as another learning difficulty index. It is also worth noting that the principle of

PU-based strategy constrains its application to subjective pattern recognition tasks. Despite the fact that the concept

of ‘uncertainty’ was employed in previous emotion prediction work, it was calculated among multiple predictions

from variable systems [37], which significantly differs from the definition of PU in this article, or merely utilised

for multi-task learning [38] (cf. Section II).

Motivated by the above analysis and following our previous tentative work [39], where only the RE was

investigated for emotion prediction in speech, we demonstrate in this paper that the proposed DDAT framework can

aid the ML models in detection of ‘moments’ in the learning process that are of higher difficulty in the context of

audiovisual time-continuous emotion prediction. More specifically, the contributions of the present article include

the following: (i) proposing a new framework that exploits knowledge about the learning difficulty of the samples

during the learning process for time-continuous emotion prediction; (ii) introducing and analysing two specific

strategies (i. e., based on RE or PU) to implement this framework; (iii) presenting a dynamic tuning approach to

further dynamically tune the predictions; and (iv) comprehensively evaluating the effectiveness of the proposed

framework on a benchmarked audiovisual emotion prediction database.

The remainder of this article is organised as follows. In Section II, we briefly review past and related studies. In

Section III, we present a detailed description of the structure and algorithm of the proposed DDAT framework. Then,

in Section IV, we offer an extensive set of experiments conducted to exemplify the effectiveness and robustness of

the DDAT framework along with a discussion. Finally, we present our conclusions and future research directions

in Section V.
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II. RELATED WORK

For continuous emotion prediction, plenty of novel approaches have been proposed and investigated over the

past decade. Some approaches expect to design or implement a more sophisticated and robust prediction model [1],

[8]–[11], [14]. Given that context information is crucial for estimating sequential patterns (continuous emotion

prediction in our case), recurrent neural networks (RNNs), especially the ones implemented with long short-term

memory (LSTM) cells, were introduced [1], and they are still amongst current state-of-the-art models [40]. One

of the main advantages of LSTM-RNNs is that they can model long-range dependencies between sequences [24],

[41], and therefore, they are efficient in capturing the temporal information of emotional expression [1]. More

recently, the so-called end-to-end network architecture has been emerging as a promising network structure, which

can automatically derive representations directly from raw (unprocessed) data, rather than manually extracting hand-

crafted features. For example, in [14], Tzirakis et al. jointly trained the CNNs at the front end and the LSTM-RNNs

at the back end, where the CNNs mainly take charge of extracting representations from raw audio signals and the

concatenated LSTM-RNNs are responsible for capturing the temporal information. A similar framework has also

been shown in [42].

Meanwhile, some other approaches attempt to overcome the drawbacks of individual models by means of

integrating multiple different modalities or models in an ensemble strategy [15], [16]. One common approach

when considering multiple modalities is early (aka feature-level) fusion of unimodal information. This is typically

achieved by concatenating all the features from multiple modalities into one combined feature vector, which is

then used as the input information for the models [16], [43]–[45]. A benefit of early fusion is that it can provide

better discriminative ability to the model by exploiting the complementary information that exists among different

modalities. For example, acoustic features empirically outperform visual features for arousal estimation, whereas

the opposite occurs for valence estimation [43]. Another frequently employed approach is late (aka decision-level)

fusion, which involves the combination of predictions obtained from diverse learners (models) to determine the final

prediction. To build the diverse learners, Wei et al. [46] created an ensemble of LSTM-RNN learners that were trained

on different modalities (e. g., audio and video), whereas Qiu et al. [47] developed a variety of topology structures of

deep belief networks (DBN). To combine the predictions from multiple learners, a straightforward approach applies

(un-)weighted averaging, such as simple linear regression (SLR) [45], [48]. Another common approach is stacking,

whereby the predictions from different learners are stacked and used as inputs of a subsequent non-linear model

that is trained to make a final decision [46], [47], [49]. In order to leverage the individual advantages of different

models, Han et al. [16] further proposed a strength modelling framework that concatenates two different models

in a hierarchical architecture. In this approach, the prediction yielded by the first model is concatenated with the

original input features, and this expanded feature vector is then set as the input to the next model.

All of the outlined approaches above merely focus on either extending the capability or overcoming the drawbacks

of the learning model. Difficulty information in the learning process, however, has seldom been exploited to date,

to the best of our knowledge.

Moreover, DDAT relates to multi-task learning (MTL) as well [6], [38], [50], [51]. In [51], Deng et al. recon-
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structed the inputs with an AE as an auxiliary task for emotion prediction in a semi-supervised manner, and they

demonstrated that the AE can distill representative high-level features from large-scale unlabelled data. In [38],

Han et al. proposed utilisation of the PU as an auxiliary task for continuous and dimensional emotion prediction,

and they found that this information helps improve performance. In [50], Nicolaou et al. introduced an output-

associative framework to learn the correlations and patterns among different emotional dimensions (i. e., arousal

and valence). In this framework, the arousal and valence predictions from independent models are fused together

and fed into a consequential model for a final prediction (i. e., arousal or valence). The effectiveness of this approach

has been replicated in [52], [53].

Analogous to MTL, the present DDAT framework considers the tasks of reconstructing inputs or predicting

perception uncertainty to be auxiliary tasks. Nevertheless, the RE and the PU are further assumed to be the learning

difficulty indicators, and the model inputs are dynamically updated in order to endow the model with a difficulty-

aware learning capability.

III. DYNAMIC DIFFICULTY AWARENESS TRAINING

In this section, we describe the DDAT framework. Let x ∈ X denote the feature vector in the input feature

space, and y ∈ Y , the label in the emotion label space. For a sequential pattern recognition task in our case, xt

thus indicates a feature vector at the t-th frame extracted from an utterance.

A. System Overview

The pseudo-code describing the proposed algorithm is presented in Algorithm 1. It consists of two main stages:

(i) retrieving difficulty information and (ii) exploiting difficulty information. In the first stage, in order to extract

and indicate the information related to the difficulty of the learning process, we propose two different strategies:

ontology- and content-driven strategies.

The ontology-driven strategy focuses on the model itself. Specifically, we determine the difficulty of the task

through the reconstruction of the input information, assuming that the RE is a proxy for its learning capability in

a given moment.

On the contrary, the content-driven strategy focuses on the data and assumes that different data can be learnt to

different degrees. That is, some data can be easily learnt with a specific model, whereas other data can be difficult.

This approach partially stems from curriculum learning [21], which has demonstrated that each datum cannot be

equally learnt so as to be well-organised for model training. In the field of emotion prediction, a few studies have

shown that the difficulty-level of the data to be learnt is closely related to its PU [35], [36], as discussed in Section I.

Inspired by these studies, we employ the PU to represent the difficulty and complexity of the samples.

In the second stage, we concatenate the original features xt with the difficulty vector dt retrieved by one of

the aforementioned two strategies, update the inputs via [xt,dt] and re-train the regression model for continuous

emotion prediction. Due to the fact that dt varies along with time, the extended difficulty vector provides dynamic

awareness when modelling x in a continuum.
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Algorithm 1: Dynamic Difficulty Awareness Training
Initialise:

h: neural networks;

x: feature vector, x = [x1, x2, . . . , xr] I, J : predefined training epochs

1 if ontology-driven then

2 auxiliary task T ← reconstructing input;

3 else if content-driven then

4 auxiliary task T ← predicting perception uncertainty;

5 end

6 % retrieving difficulty information stage

7 for i = 1, ..., I do

8 optimise h by minimising a joint loss function J (θ0) = w1 ∗Lemt(·) +w2 ∗Laux(·) + λR(θ0), where w1

and w2 regulate the contributions of the emotion prediction Lemt(·) and the auxiliary task prediction

Laux(·);

9 evaluate h on the development set for emotion prediction: CCCval,i;

10 if CCCval,i > CCCval,i−1 then

11 save h;

12 end

13 end

14 obtain the difficulty attention d based on the chosen auxiliary task T ;

15 % exploiting difficulty information stage

16 for j = 1, ..., J do

17 update the input feature vector: x′ = [x,d];

18 optimise h by minimising the loss function J (θemt) for emotion prediction;

19 evaluate h on the development set for emotion prediction: CCCval,j ;

20 if CCCval,j > CCCval,j−1 then

21 save h;

22 end

23 end

B. Multi-Task Learning

MTL is a process of learning multiple tasks concurrently. Typically, there is one main task and one or more

auxiliary tasks. By attempting to model the auxiliary tasks together with the main task, the model learns shared

information among tasks, which may be beneficial to learning the main task. Mathematically, the objective function
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in MTL can be formatted as:

J (θ0) =

M∑
m=1

wmLm(x, ym;θm) + λR(θ0), (1)

where M denotes the number of tasks and Lm(·) represents the loss function of the task m, which is weighted by

wm. θ0 and θm represent, respectively, the general model parameters and the specific ones with respect to task m,

and λ is a hyperparameter that controls the importance of the regularisation term R(θ0).

In this article, in order to infer the difficulty of the information being modelled in the first stage of the DDAT

framework, we use an MTL structure to jointly learn continuous emotion prediction together with the reconstruction

of the input features or the PU prediction. The rationale is twofold: On the one hand, the model makes better use

of MTL for continuous emotion prediction. The benefit of MTL has been shown by several studies for emotion

prediction, as described in Section II. On the other hand, the model takes one network, rather than two [39], to

explore the difficulty of the learning process.

C. Ontology-Based Difficulty Information Retrieval

Figure 1 illustrates the framework of RE-based DDAT, where the difficulty indicator d is generated from the

reconstruction process of the inputs. As described in Section III-B, the employed network is trained in an MTL

context, and so the output includes two paths–the emotion prediction path and the AE path. The former is trained

in a supervised fashion, whereas the latter is trained in an unsupervised manner. Thus, there are two tasks to be

conducted when training the network, i. e., predicting emotions and reconstructing inputs. Specifically, given a time

sequence as input x, the network is optimised by minimising the loss function as

J (θ0) = w1 ∗ Lemt(·) + w2 ∗ Lre(·) + λR(θ0), (2)

where Lemt(·) and Lre(·) denote the loss functions for emotion prediction and input reconstruction, respectively.

To calculate them, we take the mean square error (MSE) for both learning paths, i. e., for emotion prediction,

Lemt(·) =

T∑
t=1

||ŷt − yt||2; (3)

and for the input reconstruction,

Lre(·) =

T∑
t=1

||x̂t − xt||2, (4)

where xt and yt are a sample and its annotation at time t from an input sequence with a period of time T ,

respectively. x̂t and ŷt denote the network predictions to reconstruct its inputs xt and estimate the emotions yt,

respectively.

It is expected that Lre(·)→ 0 if the model is sufficiently powerful and robust. However, empirical experiments

have shown that the results are far from this expectation. Previous findings frequently indicate that a higher

distribution mismatch between the given data and the entire training dataset is inclined to produce a higher RE [30],

[31], [54], [55]. Therefore, the RE somewhat implies the difficulty degree of the model to learn such data or, in

other words, reflects the difficulty of the data to be learnt by the model.
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Fig. 1. Dynamic Difficulty Awareness Training (DDAT) includes difficulty information (a) retrieving stage and (b) exploiting stage. Difficulty

information is indicated by either the input reconstruction error (i. e., an error vector or the sum of all errors), or the emotion perception

uncertainties.

Once the model is trained, the difficulty of the learning process (d) can be obtained by computing the distance

between the input x and its corresponding reconstruction x̂. The distance can be either a vector e calculated by,

d = e = x− x̂, (5)

or a scalar E summed over all attributes, i. e.,

d = [E] = [

r∑
i=1

(xi − x̂i)], (6)

where x = [x1, x2, . . . , xr] and r is the dimension of the feature vector.

In the difficulty exploitation stage, we update the model input with the new vector, i. e., x′ = [x, e] or x′ = [x, E].

In doing this, the input feature vectors are of 2r or r + 1 dimensions when feeding back an error vector or scalar.
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D. Content-Based Difficulty Information Retrieval

As mentioned earlier, PU is an indicator of the uncertainty level of the perception of an emotional state for

a given observed sample. In the context of affective computing, we deem that emotion prediction is a subjective

task that differs from many other objective pattern recognition tasks, such as face recognition, that hold a ground

truth [56]. In order to obtain a gold standard for a subjective task, it is required that a sufficient number of raters

observe the same sample and that their ratings are collapsed in order to eliminate as much as possible individual

variations in perception and rating. In this case, a possible way to infer uncertainty is by calculating the inter-rater

disagreement level, which assumes that for each sample, the personal PU is highly correlated with the inter-rater

disagreement level [38], [57].

In this study, the PU u(i), i ∈ {arousal, valence}, is represented by the standard deviation of the K annotations

as

u(i)n =

√√√√ 1

K − 1

K∑
k=1

(y
(i)
n,k − ȳ

(i)
n )2, (7)

where ȳ(i)n denotes the mean value given K annotations:

ȳ(i)n =
1

K

K∑
k=1

y
(i)
n,k. (8)

The framework of PU-based DDAT is also illustrated in Fig. 1, where the difficulty indicator d is determined

by the perception uncertainty. The designed network includes an emotion prediction path and a PU prediction

path, both of which are jointly trained in a supervised manner. Therefore, the objective function of Eq. (1) can be

re-formulated as

J (θ0) = w1 · Lemt(∗) + w2 · Lpu(∗) + λ ·R(θ0). (9)

Lpu(∗) stands for the loss functions for PU prediction, and it is expressed by

Lpu(∗) =

T∑
t=1

||ût − ut||, (10)

where ut is a PU value for the sample at time t from input sequences with time T .

Once the network is optimised in the first learning stage, its input will then evolve to x′ = [x, u] with r + 1

dimensions in the second learning stage.

E. Late Fusion and Dynamic Tuning

As discussed in Section II, late fusion approaches have been frequently shown to be effective for continuous

emotion prediction [15], [16], [48] due to the fact that complementary information can be provided by the various

modalities or models [15], [16], [48]. In this light, we conduct a late fusion to combine the emotion predictions

from different modalities, learning models, or a combination thereof. The late fusion is performed with an SLR

approach:

y = ε+
∑

γi · yi, (11)
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where yi denotes the original prediction with the modality (i. e., audio or video) or model i (i. e., RE- or PU-based

DDAT), ε and γi are the parameters estimated on the development set, and y is the fused prediction.

Despite the effectiveness of SLR, this conventional fusion approach simply assumes that the predictions yi,t in a

continuum are considered to be equally important for each prediction stream yi. This means that the parameter of

γi remains a constant in time, given a set of yi, and therefore, this approach ignores the changes of the reliability

of the predictions along time. To address this problem, we further propose a dynamic tuning strategy according to

the reliability of predictions in time.

Mathematically, we applied an additional SLR on the original prediction yi,t and the corresponding difficulty

indicator di,t at time t:

y′i,t = ε+ γi · yi,t + γd · di,t, (12)

where di,t is represented by Et for the RE-based DDAT systems or ut for the PU-based DDAT systems. Intuitively,

the prediction is dynamically tuned by the difficulty information.

IV. EXPERIMENTS AND RESULTS

To evaluate the effectiveness of the proposed methods, we conducted extensive experiments with the benchmark

database of the AudioVisual Emotion Challenges (AVEC) from 2015 [58] and 2016 [48].

A. Databases and Features

The multimodal corpus REmote COLlaborative and Affective interactions (RECOLA) [59] (a standard database

of the AVEC challenges for audiovisual time-continuous emotion prediction [48], [58]) was selected for our

experiments due to its widespread use in this area. This database was created to study socio-affective behaviours from

multimodal data in the context of remote collaborative tasks. It includes audiovisual (and physiological) recordings

of spontaneous and natural interactions from 27 French-speaking participants whilst solving a collaborative task

conducted in dyads via video conferencing. The corpus is comprised of audio, video, and peripheral physiology

recordings that were obtained synchronously and continuously over time.

In order to ensure speaker-independence for ML experiments, the corpus was divided into three partitions–

training, development (validation), and testing–with each partition containing nine collaborative sessions. This

division is balanced in terms of gender, age, and mother tongue of the participants. The corpus contains value- and

time-continuous annotations of two affective dimensions–arousal and valence–that were obtained from six French-

speaking raters (three female) for the first five minutes of each audiovisual recording. The obtained labels were

then resampled at a constant frame rate of 40 ms and averaged over all raters to create a ‘gold standard’ for each

instance. Inter-rater disagreements were also computed for all instances [59]. For our experiments, we only made

use of audio and video signals.

The acoustic and visual features employed in our experiments are the same sets used to compute the AVEC 2015

and 2016 baselines for fair comparison with other methods. The acoustic features consist of the extended Geneva

Minimalistic Acoustic Parameter Set (eGeMAPS [60]). Since the RECOLA database contains long time-continuous

signals and annotations, two functionals (arithmetic mean and standard derivation) were applied over the sequential
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low-level descriptors (LLDs, e. g., pitch, loudness, energy, Mel Frequency Cepstral Coefficients, jitter, and shimmer)

over a fixed window of 8 s with a 40 ms step. This resulted in a set of 88 acoustic features per segment.

In relation to the visual features, we utilised both the appearance and geometric standard features of the AVEC

challenges. The appearance features were computed by using local Gabor binary patterns from three orthogonal

planes through splitting the video into spatio-temporal video volumes. A feature reduction was then performed by

applying a principal component analysis from a low-rank (up to rank 500) approximation, leading to 84 features

representing 98% of the variance. To extract the geometric features, 49 facial landmarks were firstly extracted

from each frame and then aligned with a mean shape from stable points (located on the eye corners and on the

nose region). This resulted in 316 features per frame: i. e., 196 features were obtained by computing the difference

between the coordinates of the aligned landmarks and those from the mean shape and between the aligned landmark

locations in the previous and the current frame, and 71 were obtained by calculating the Euclidean distances (L2-

norm) and the angles (in radians) between the points in three different groups. An additional 49 features correspond

to the Euclidean distance between the median of the stable landmarks and each aligned landmark in a video frame.

Similar to the acoustic features, the arithmetic mean and the standard derivation were computed over the sequential

visual features of each frame using a sliding window of 8 s with a step size of 40 ms. This process led to 168

appearance and 632 geometric visual features.

For full details on the database and feature sets, please refer to [48], [58]. Note that we obtained 67.5 k extracted

segments in total for each partition (training, development, or test).

B. Experimental Setup and Evaluation Metrics

The implemented DDAT framework in our experiments consists of a deep RNN (DRNN) equipped with gated

recurrent units (GRUs) [61]. GRUs are an alternative to long short-term memory units, which can also capture the

long-term dependencies in sequence-based tasks and mitigate the effects of the vanishing gradient problem [61].

Compared to LSTM units, GRUs have fewer parameters due to the fact that they do not have separate memory

cells and output gates, which results in a faster training process and a less-training-data demand for achieving

a good generalisation. Most importantly, many empirical evaluations [62] have indicated that GRUs perform as

competitively as LSTM units.

The DRNN structure was optimised in terms of the number of hidden layers and the number of GRUs per layer

in the development phase. We applied a search grid that is comprised of {1, 3, 5, 7, 9} hidden layers and {40, 80,

120} hidden units per layer. For each learning strategy, we always choose the best performing network structure

in order to alleviate the impact of the variation of network structures on the system performance. The training of

the DRNNs was conducted using the Adam optimisation algorithm [63] with an initial learning rate of 0.001. To

facilitate the training process, we set the size of mini-batch to four. Additionally, an online standardisation was

applied to the input data by using the means and variations of the training set.

Additionally, as suggested in [48], annotation delay compensation was employed to compensate for the temporal

delay between the observable cues and the corresponding annotations reported by the annotators [64]. We identified
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this delay to be 2.4 s, according to a series of experimental evaluations in [65], and shifted the gold standard back

in time with respect to the features for all modalities and tasks in our experiments.

In order to evaluate the performance of the models, we took the official metric of the AVEC 2015 and 2016

challenges–the Concordance Correlation Coefficient (CCC) [58]:

rc =
2rσxσy

σ2
x + σ2

y + (µx − µy)2
, (13)

where r represents Pearson’s correlation coefficient between two time series (e. g., prediction and gold-standard),

µx and µy denote the mean of each time series, and σ2
x and σ2

y stand for the corresponding variances. Compared

with PCC, the CCC considers not only the shape similarity between two series but also the value precision. This is

especially relevant for estimating the performance of time-continuous emotion prediction models, as both the trends

as well as absolute prediction values are relevant for describing the performance of a model. The CCC metric falls

in the range of [-1, 1], where +1 represents perfect concordance, −1 total discordance, and 0 no concordance at

all.

To refine the obtained prediction, we further performed a chain of post-processing, including median filtering,

centering, scaling, and time-shifting, as suggested in [48], [58]. The filtering window size W (ranging from 0.12 s

to 0.44 s at a rate of 0.08 s) and the time-shifting delay D (ranging from 0.04 s to 0.60 s at a step of 0.04 s) were

optimised using a grid search method. All the post-processing parameters were optimised on the development set

and then applied to the test set. Therefore, those post-processing parameters had various settings for different tasks.

To compare the proposed DDAT approach with other related and state-of-the-art approaches, we further conducted

curriculum learning, as introduced in Section I. We particularly selected the criterion of ‘disagreement between

annotators’ (i. e., PU in this article) as an example because it is appropriate for the task at hand and also superior to

other criteria [23]. To retain the optimised setups, we continued using the deep neural networks (DNNs) equipped

with two hidden layers (1 024 nodes per layer) and split the whole training set into five parts based on the PU levels.

Moreover, we implemented it with GRU-RNNs as well for a fair performance comparison between the curriculum

learning and the proposed DDAT.

Finally, to statistically compare the various experiments conducted with the AVEC challenges baselines, we

carried out the Fisher r-to-z transformation [66]. In detail, given two distributions X and Y [the pairs (Xi, Yi)

∼ i.i.d.] that have a bivariate normal distribution with correlation, the Fisher transformation z is approximately

normally distributed with mean

m =
1

2
ln

(
1 + r

1− r

)
= arctanh(r), (14)

and standard error

σ =
1√
N − 3

, (15)

where N is the sample size and r is the true correlation coefficient. Theoretically, the Fisher transformation is

exceptionally efficient for small sample sizes because the sampling distribution of the Pearson correlation is normally

highly skewed.
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After the Fisher transformation, a one-tailed test was performed to compare two distributions. A p-value lower

than .05 indicates a significant difference. It is noted that r is replaced with rc (CCC) due to the efficiency of rc

in this article.

C. Emotion prediction with Dynamic Difficulty Awareness Training

TABLE I

SYSTEM PERFORMANCE (CONCORDANCE CORRELATION COEFFICIENT; CCC) before POST-PROCESSING THE MODEL PREDICTIONS FOR

THE CONVENTIONAL SINGLE-TASK LEARNING (BASELINE) FRAMEWORK, THE MULTI-TASK LEARNING (MTL) FRAMEWORK, AND THE

PROPOSED DYNAMIC DIFFICULTY AWARENESS TRAINING (DDAT) FRAMEWORK USING RECONSTRUCTION ERROR (RE, A VECTOR OR A

SCALAR OF SUM) AND PERCEPTION UNCERTAINTY (PU) VARIANTS. THESE RESULTS PERTAIN TO THE EXPERIMENTS CONDUCTED ON THE

devELOPMENT AND test PARTITIONS FOR BOTH aroUSAL AND valENCE TARGETS. THREE FEATURE SETS (AUDIO-EGEMAPS,

VIDEO-APPEARANCE, AND VIDEO-GEOMETRIC) WERE EMPLOYED TO EVALUATE ALL APPROACHES. THE CASES WHERE DDAT HAS A

STATISTICAL SIGNIFICANCE OF PERFORMANCE IMPROVEMENT OVER MTL ARE MARKED BY THE “?” SYMBOL.

CCC

audio-eGeMAPS video-appearance video-geometric

aro val aro val aro val

dev test dev test dev test dev test dev test dev test

baseline .743 .617 .460 .380 .501 .416 .481 .391 .407 .256 .598 .403

Multi-task learning (MTL)

RE-based .743 .590 .513 .298 .472 .434 .512 .351 .429 .283 .632 .487

PU-based .727 .613 .485 .417 .459 .426 .444 .342 .442 .284 .630 .444

Proposed Dynamic Difficulty Awareness Training (DDAT)

RE-based (vector) .745 .605? .485 .374? .473 .429 .482 .326 .509? .299? .627 .464

RE-based (sum) .783? .671? .495 .410? .487? .464? .507 .460? .478? .359? .633 .467

PU-based .769? .623? .493 .397 .478? .457? .476? .412? .450 .336? .629 .500?

Other state of the art

DNNs [23] .216 .362 .003 .004 .265 .173 .294 .174 .017 .011 .193 .128

Curriculum learning (DNN) [23] .445 .533 .018 .006 .402 .292 .437 .444 .199 .116 .271 .245

Curriculum learning (GRU-RNN) .711 .600 .494 .335 .406 .366 .547 .479 .392 .291 .582 .497

The performance of the evaluated systems before and after post-processing the predictions for both arousal

and valence targets is presented in Tables I and II, respectively. To investigate the proposed DDAT framework,

we not only conducted the traditional single-task learning but also the MTL for comparison, with three different

feature sets–one acoustic feature set (eGeMAPS) and two visual feature sets (appearance and geometric features), as

described in Section IV-A. It is worthy to note that the network structure employed for each modality and learning

approach was respectively optimised in the constrained parameter space, as mentioned in Section IV-B. Then, the

best performing network structures were employed for performance comparison. Doing this largely alleviates the

inconsistent impact on the system performance due to the variation of network structures. From the comparison

of both Tables I and II, it can be seen that the post-processing of the model predictions generally leads to better

performance. For instance, the best baselines for arousal and valence are respectively boosted from 0.617 to 0.652

CCC with acoustic features (eGeMAPS) and from 0.403 to 0.417 CCC with visual features (geometric). Similar
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TABLE II

SYSTEM PERFORMANCE (CONCORDANCE CORRELATION COEFFICIENT; CCC) after POST-PROCESSING THE MODEL PREDICTIONS FOR THE

CONVENTIONAL SINGLE-TASK LEARNING (BASELINE) FRAMEWORK, THE MULTI-TASK LEARNING (MTL) FRAMEWORK, AND THE

PROPOSED DYNAMIC DIFFICULTY AWARENESS TRAINING (DDAT) FRAMEWORK USING RECONSTRUCTION ERROR (RE, A VECTOR OR A

SCALAR OF SUM) AND PERCEPTION UNCERTAINTY (PU) VARIANTS. THESE RESULTS PERTAIN TO THE EXPERIMENTS CONDUCTED ON THE

devELOPMENT AND test PARTITIONS FOR BOTH aroUSAL AND valENCE TARGETS. THREE FEATURE SETS (AUDIO-EGEMAPS,

VIDEO-APPEARANCE, AND VIDEO-GEOMETRIC) WERE EMPLOYED TO EVALUATE ALL APPROACHES. THE BEST RESULTS ACHIEVED ON THE

TEST SET ARE IN BOLD. THE CASES WHERE DDAT HAS A STATISTICAL SIGNIFICANCE OF PERFORMANCE IMPROVEMENT OVER MTL ARE

MARKED BY THE “?” SYMBOL.

CCC

audio-eGeMAPS video-appearance video-geometric

aro val aro val aro val

dev test dev test dev test dev test dev test dev test

baseline .783 .652 .473 .400 .528 .403 .493 .404 .523 .314 .620 .417

Multi-task learning (MTL)

RE-based .788 .629 .519 .331 .512 .425 .529 .366 .502 .324 .632 .488

PU-based .803 .654 .506 .416 .502 .406 .468 .418 .508 .327 .643 .452

Proposed Dynamic Difficulty Awareness Training (DDAT)

RE-based (vector) .806? .676? .517 .378? .533? .434 .520 .329 .559? .355? .634 .473

RE-based (sum) .807? .694? .508 .422? .539? .437? .528 .457? .544? .400? .639 .471

PU-based .811 .664? .498 .407 .518? .438? .514? .431? .513 .397? .632 .501?

Other state of the art

DNNs [23] .573 .517 .129 .044 .387 .220 .306 .206 .312 .296 .362 .216

Curriculum learning (DNN) [23] .687 .591 .159 .174 .417 .343 .446 .419 .394 .267 .300 .269

Curriculum learning (GRU-RNN) .754 .611 .501 .357 .491 .391 .557 .492 .444 .336 .609 .500

Strength modelling [16] .755 .666 .476 .364 .350 .196 .592 .464 – – – –

End-to-end [14] a .786 .715 .428 .369 .371 .435 .637 .620 – – – –

Feature selection + offset [49] b .800 – .398 – .587 – .441 – .173 – .441 –

SVR + offset [48] c .796 .648 .455 .375 .483 .343 .474 .486 .379 .272 .612 .507

SC + CNN + LSTM [40] d .846 – .450 – .346 – .511 – – – – –

Note: “–” indicates that the corresponding CCC is not provided.
a acoustic and visual features automatically extracted by deep neural network models
b AVEC ’15 challenge winner method
c AVEC ’16 baseline method
d AVEC ’16 challenge winner method

observations can also be obtained in the MTL systems and the proposed DDAT systems; e. g., for the MTL systems,

the CCCs are increased from 0.613 to 0.654 with the eGeMAPS feature set for arousal and from 0.487 to 0.488

with the geometric feature set for valence. Given these results, we henceforth focus on analysing the experiments

with the post-processing step (cf. Table II).

For the baseline system, the obtained results are competitive to, or even better than, the benchmark of the emotion

prediction subchallenge in the AVEC 2016 [48] over three information streams and two prediction tasks. These

results support previous findings showing that GRUs can deliver competitive performance when compared to LSTM
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TABLE III

OBTAINED PCCS BETWEEN EACH OTHER AMONG THE PERFORMANCE IMPROVEMENT (∆c), THE RECONSTRUCTION ERROR (ε), AND THE

PERCEPTION UNCERTAINTY (µ).

aro val

dev test dev test

PCC(ε, ∆c)

audio-eGeMAPS .128 .180 .078 .114

video-appearance .139 .371 .304 .263

video-geometric .140 .155 .044 .090

PCC(µ, ∆c)

audio-eGeMAPS .150 .181 .150 .181

video-appearance .205 .173 .383 .440

video-geometric .101 -.104 .310 .103

PCC(ε, µ)

audio-eGeMAPS .150 .072 .040 -.024

video-appearance -.077 .060 -.077 .059

video-geometric .127 .071 .050 .021

units [61], [62].

When training the networks jointly with input reconstruction (RE-based MTL) or perception uncertainty prediction

(PU-based MTL), one can observe that the systems slightly outperform the baseline systems in nine out of twelve

cases on the test set. This indicates that there is a substantial relationship between the two jointly learnt tasks. To

be more specific, the representations from the last neural network hidden layer, which are learnt synchronously

from the emotion prediction and other auxiliary tasks (i. e., reconstructing the input or predicting the perception

uncertainty), potentially further benefit the emotion prediction.

We further implemented the curriculum learning approach as well as its baseline by means of DNNs [23] and

GRU-RNNs. From Table I, it can be seen that the DNNs perform unsurprisingly worse than GRU-RNNs, mainly

due to their limited capability of capturing the context information [24]. When feeding the data to the training model

from a low-difficulty level to a high-difficulty level, the performance of the models is remarkably boosted in all

scenarios. Nevertheless, it is still not competitive with the DDAT models in most cases. Moreover, it is observed that

the GRU-RNN-based curriculum learning outperforms the DNN-based system mainly due to the learning capability

of GRUs.

The performance of the MTL systems is further enhanced by the proposed DDAT framework, as shown in Table II.

In particular, the performance of the DDAT system for arousal and valence regressions respectively reaches CCC

values of 0.694 and 0.422 with the audio-eGeMAPS feature set, 0.438 and 0.457 with the video-appearance feature

set, and 0.400 and 0.501 with the video-geometric feature set. These results demonstrate that the DDAT systems

significantly outperform (p < .05 via Fisher r-to-z transformation) the baseline method as well as the MTL approach

(except in the case of valence regression with the audio-eGeMAPS feature set).
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Moreover, the systems using the proposed DDAT framework consistently outperform the curriculum learning

approach, and they are competitive with, and in some cases even superior to, most other state-of-the-art methods,

such as the strength modelling [16] and the ‘sparse coding (SC) + CNN + LSTM’ systems (AVEC 2016 winner) [40].

Despite the fact that the proposed systems are slightly worse than the end-to-end system, which automatically extracts

the representations from raw audio and video signals that retain complete pattern information, the DDAT framework

can be incorporated with the end-to-end system in the future.

When comparing the two approaches used in the RE-based DDAT experiments, we find that adding the overall

sum of the error [cf. Fig. 1 (b)] leads to a better performance than adding the error vector [cf. Fig. 1 (a)]. This

is possibly attributable to the redundant dimensionality of the error vector, which meanwhile yields much noise

in the network training. When comparing the RE-based DDAT and the PU-based DDAT, it is noticeable that the

two approaches perform similarly. This suggests that both approaches achieve the same goal but in different ways.

That is, both approaches successfully explore the difficulty information in the pattern learning process, whereas the

RE-based and PU-based DDAT approaches measure the difficulty information by the data reconstruction-capability

and by the data perception-uncertainty, respectively. Moreover, it is worth mentioning that the RE-based DDAT

approach, in contrast to the PU-based DDAT, not only fits the subjective pattern recognition tasks (e. g., emotion

prediction in this work) but also holds the potential to be applied to objective tasks (e. g., phoneme prediction).

To investigate the contribution of the extracted difficulty information to the system performance improvement,

we further calculated the correlation (in terms of PCC) between the values of the difficulty indicator (i. e., the

obtained RE or the PU) between the performance improvement. Specifically, the performance improvement ∆c was

computed as ∆c = |ŷbs − y| − |ŷDDAT − y|, given the target (gold standard) y and the prediction of the DDAT

system ŷDDAT (or the baseline system ŷbs).

The first three rows of Table III show the obtained PCCs between the RE and the performance improvement [i. e.,

PCC(ε, ∆c)]. These positive PCCs suggest that the difficulty information can help improve the model performance in

the learning process. This conclusion confirms our previous findings in [39]. Note that, in [39], the selected database

has subjects that are different from the one in this article. Similar observations can be found when calculating the

PCCs between the PU and the performance improvement [i. e., PCC(µ, ∆c), as shown in the second three rows]. The

PCCs are boosted to .384 and .440 in the development and test sets in the case of valence when using appearance-

based visual features. In more detail, it can be seen that when using the RE-based DDAT approach, the achieved

PCCs for arousal prediction are relatively higher than the ones for valence prediction in most cases. Nevertheless,

an opposite observation is made when using the PU-based DDAT approach. This is probably due to the fact that

arousal is more sensitive than valence to the expression strength or scale that potentially results in higher RE, whilst

the valence is more associated with the subtle variations that easily mislead the judgement of annotators [15], [56].

Furthermore, we calculated the PCCs between the obtained RE and PU, as shown in the last three rows in Table III.

Generally speaking, most of these PCCs are around zero, indicating the obtained RE is largely independent of the

PU. This further implies that the proposed RE-based and PU-based DDAT strategies capture the different underlying

phenomena. Thus, the combination of the two approaches is expected to deliver better performance. The related

experiments and corresponding results are given in Section IV-D.
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Fig. 2. Performance comparison (CCC) between the single-task learning, the proposed dynamic difficulty awareness training approach based

on reconstruction error (RE) or perception uncertainty (PU), and their dynamically-tuned (DT) versions. Results pertain to the test partition for

both arousal (a) and valence (b) targets using three feature sets (audio-eGeMAPS, video-appearance, and video-geometric).

D. Dynamic Tuning and Late Fusion

Figure 2 illustrates the performances of the DDAT models with and without dynamic-tuning of the predictions.

Compared with the predictions without dynamic-tuning, the dynamically-tuned predictions yield gains in most cases.

For instance, the best achieved CCC for arousal prediction increased from 0.684 to 0.699, using the RE-based DDAT

system with the audio-eGeMAPS feature set, whereas for valence prediction it increased from 0.511 to 0.531, using

the PU-based DDAT system with the video-geometric feature set. The exceptions include the arousal predictions

for both RE- and PU-based DDAT systems using the video-geometric feature set and the valence predictions for

the PU-based DDAT system using the video-appearance feature set. In both cases, the differences remain minimal

and insignificant via the aforementioned statistical test of Fisher z-to-r transformation.

We then conducted a set of late fusions on the individual predictions produced by using different modalities and

models. Table IV lists all scenarios (combinations) considered in our experiments as well the respective performance.

As can be seen in the table, the best performance on the test set for both arousal and valence was obtained when

fusing the predictions from all modalities and models. In this context, the best results on the test set have been

achieved at 0.766 CCC for arousal and 0.660 CCC for valence. These results beat most of the latest reported results

from the same data, and they are close to the best result presented in AVEC 2016 [40] (i. e., 0.770 and 0.687 of

CCCs for arousal and valence prediction), despite this system also utilising an additional modality (physiological

features). An illustration of the performance of the best DDAT system compared to the baseline system and the

gold standard is depicted in Fig. 3 (data from a random subject from the test partition). Generally, it can be seen

that our predictions are closer to the gold standard, especially in the region that has relative peak values.

In order to analyse the importance of each modality and model, we calculated their contributions to the arousal

and valence predictions of the respective best performing models. Fig. 4 depicts their contributions. For arousal

prediction, the acoustic features play a more important role than the visual features, whereas the opposite happens

for valence prediction. It is also expected that the RE-based and PU-based DDAT systems contribute more than

the baseline systems to the final predictions. Furthermore, the PU-based DDAT system is slightly more important

for valence prediction than it is for arousal prediction. This might be due to the fact that prediction of emotional

valence is much more difficult than arousal for audio modality [2], [67], [68].
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TABLE IV

LATE FUSION PERFORMANCE (CCC) IN DIFFERENT FUSION STRATEGIES (I. E., MODALITY-BASED, MODALITY- AND MODEL-BASED, AND

DYNAMICALLY-TUNED MODALITY- AND MODEL-BASED) FOR THE devELOPMENT AND test PARTITIONS OF BOTH aroUSAL AND valENCE

REGRESSIONS. THE PREDICTIONS ARE GENERATED FROM THE RECONSTRUCTION-ERROR-BASED DDAT FRAMEWORK (Pre) OR THE

PERCEPTION-UNCERTAINTY-BASED DDAT FRAMEWORK (Ppu); THEIR DYNAMICALLY-TUNED VERSIONS (Pre,dt OR Ppu,dt); OR THE

BASELINE MODEL (Pbs). THE BEST RESULTS ACHIEVED ON THE TEST SET ARE IN BOLD. NOTE THAT Pre , Pre,dt , Ppu , Ppu,dt , AND Pbs

ARE THE FUSED PREDICTIONS FROM DIVERSE INFORMATION STREAMS (I. E., AUDIO-EGEMAPS, VIDEO-APPEARANCE, AND

VIDEO-GEOMETRIC). THE 1ST-3RD, 4TH-5TH, AND 6TH-8TH RESULT ROWS ARE RESPECTIVELY OBTAINED FROM THE MODALITY-BASED,

MODALITY- AND MODEL-BASED, AND DYNAMICALLY-TUNED MODALITY- AND MODEL-BASED LATE FUSION STRATEGIES.

various late fusion approaches aro val

Pre Pre,dt Ppu Ppu,dt Pbs dev test dev test

modality-based

X .822 .690 .705 .584

X .853 .763 .738 .615

X .838 .715 .738 .615

modality- and model-based

X X .860 .761 .755 .639

X X X .864 .752 .766 .653

modality- and model-based (dynamically-tuned)

X .853 .761 .739 .621

X .819 .721 .733 .631

X X .856 .766 .756 .651

X X X .863 .754 .766 .660

state of the art

strength modelling [16] .808 .685 .671 .554

end-to-end [14] .731 .714 .502 .612

state of the art (+ physiology)

feature selection + offset [49] a .824 .747 .688 .609

SVR + offset [48] b .820 .702 .682 .638

SC + CNN + LSTM [40] c .862 .770 .750 .687

a AVEC ’15 winner
b AVEC ’16 baseline
c AVEC ’16 winner

V. CONCLUSIONS AND FUTURE WORK

In contrast to previous studies that aimed to explore the ‘strength’ or overcome the ‘weakness’ of modelling,

we for the first time investigated exploiting the difficulty (weakness) information straightforwardly in the learning

process for continuous emotion prediction. To extract the difficulty information, we proposed two strategies based

on either the ontology of modelling or the content to be modelled. The two types of information separately measure

the learning difficulty of a model by reconstructing its input, or the ‘hardness’ of the data to be learnt by predicting

their perception uncertainty. This information indicated by an index was then concatenated into the original features

to update the inputs. The proposed methods were systematically evaluated on a benchmark database RECOLA [48].
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Fig. 3. Automatic prediction of arousal (a) and valence (b) via audiovisual signals obtained with the best late fusion model for a random subject

(# 9) from the test partition.
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Fig. 4. Percentage of the contribution of each information stream (a) or model (b) for achieving the best arousal or valence predictions.

Experimental results have demonstrated that the proposed methods clearly improve the prediction performance of

a model by evolving the difficulty information into its learning process.

Going beyond the traditional curriculum learning and boosting approaches that are specifically designed for

discrete pattern recognition tasks, the proposed Dynamic Difficulty Awareness Training (DDAT) approaches can

particularly learn well the sequential pattern, such as the continuous emotion prediction in this article. When

involving either the input reconstruction error information or the emotion perception uncertainty information, we

find that the neural networks can better perform. Nevertheless, it is worth noting that the perception uncertainty is

merely defined for a subjective pattern recognition task. For an objective task, it might be reasonable to alternatively

employ the prediction uncertainty.

In future, we will continue investigating the efficiency of the proposed DDAT in discrete pattern predictions.

Additionally, we will investigate the approaches for which the difficulty information could be possibly used as

the prediction weights. Moreover, end-to-end structures that are designed to automatically extract representations

have attracted increasing attention, and they are starting to show promising performance. Therefore, an advanced

end-to-end framework will be considered in our system as well. In more detail, with respect to the perception-

uncertainty-based DDAT end-to-end system, we can simply replace the GRN-RNNs with an end-to-end network

while all other inputs and outputs remain. With respect to the reconstruction-error-based end-to-end system, we may
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consider reconstructing the high-level representations rather than the raw signals when extracting the reconstruction

error information (i. e., the difficulty indicator).
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