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Abstract 

While usage-based approaches to language development enjoy considerable support from 

computational studies, there have been few attempts to answer a key computational challenge posed by 

usage-based theory: the successful modeling of language learning as language use. We present a usage-

based computational model of language acquisition which learns in a purely incremental fashion, 

through on-line processing based on chunking, and which offers broad, cross-linguistic coverage while 

uniting key aspects of comprehension and production within a single framework. The model’s design 

reflects memory constraints imposed by the real-time nature of language processing, and is inspired by 

psycholinguistic evidence for children's sensitivity to the distributional properties of multi-word 

sequences and for shallow language comprehension based on local information. It learns from corpora 

of child-directed speech, chunking incoming words together to incrementally build an item-based 

“shallow parse.” When the model encounters an utterance made by the target child, it attempts to 

generate an identical utterance using the same chunks and statistics involved during comprehension. 

High performance is achieved on both comprehension- and production-related tasks: the model’s 

shallow parsing is evaluated across 79 single-child corpora spanning English, French, and German, 

while its production performance is evaluated across over 200 single-child corpora representing 29 

languages from the CHILDES database. The model also succeeds in capturing findings from children’s 

production of complex sentence types. Together, our modeling results suggest that much of children's 

early linguistic behavior may be supported by item-based learning through on-line processing of simple 

distributional cues, consistent with the notion that acquisition can be understood as learning to process 

language. 
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Introduction 

The ability to comprehend and produce an unbounded number of novel utterances has long been 

regarded as a hallmark of human language. How does a child acquire such productivity, given input 

that is both noisy and finite? For over half a century, generative linguists have argued that such open-

endedness can only be explained by a system of abstract grammatical rules operating over word 

classes, scaffolded by innate, language-specific knowledge (e.g., Chomsky, 1957; Pinker, 1999). In 

recent years, however, an alternative theoretical perspective has emerged in the form of usage-based 

approaches (e.g., Croft, 2001; Goldberg, 2006; Tomasello, 2003), which hold that children's language 

development is initially item-based. Rather than being guided by system-wide abstract principles, 

productivity is taken to emerge gradually, beginning with concrete items in the child's input. This 

perspective is motivated in part by analyses of child-directed speech, showing that there is considerably 

more information available in the input than previously assumed (e.g., Redington, Chater, & Finch, 

1998; Monaghan & Christiansen, 2008), as well as a wide range of observational and empirical work 

showing that children can use such information in an item-based manner. Such evidence includes 

cross-linguistic findings of item-specific patterns in early verb usage (e.g., Berman, 1982; 

MacWhinney, 1975; Gathercole, Sebastián, & Soto, 1999; Pizutto & Caselli, 1992; Rubino & Pine, 

1998), as well as studies of children's production of novel verbs (e.g., Tomasello & Brooks, 1998; 

Akhtar, 1999), use of determiners (e.g., Mariscal, 2008; Pine & Lieven, 1997), case marking errors 

(e.g., Kirjavainen, Theakston, & Lieven, 2009), production of complex sentence types (e.g., Diessel & 

Tomasello, 2005), and question formation (e.g., Dabrowska, 2000). 

 In addition to this wealth of observational and empirical evidence, a number of computational 

modeling studies have provided a source of complementary support for usage-based approaches, using 

item-based learning to successfully capture specific developmental patterns (Freudenthal, Pine, & 

Gobet, 2006, 2007; Gobet, Freudenthal, & Pine, 2004; Jones, Gobet, & Pine, 2000), the acquisition of 
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item-based constructions and schemas (Chang, 2008; Solan, Horn, Ruppin, & Edelman, 2005), and 

semantic role learning (e.g., Alishahi & Stevenson, 2010), as well as tracing the emerging complexity 

of children's grammatical knowledge more generally (e.g., Bannard, Lieven, & Tomasello, 2009; 

Borensztajn, Zuidema, & Bod, 2009).  

 Despite the considerable success of item-based computational approaches to acquisition, there 

have been few computational accounts of the on-line processes driving children's attempts to 

comprehend and produce speech, or the ways in which these specific usage events incrementally 

contribute to the child's emerging linguistic abilities. This lack seems to stem, in part, from traditional 

ways of idealizing the task facing the language learner: from a computational standpoint, the issue of 

linguistic productivity tends to be approached primarily as a problem of grammar induction; to attain 

open-ended productivity, the learner must first identify a target grammar on the basis of exposure to a 

sample of sentences generated by that grammar (Gold, 1967). While computational approaches to 

acquisition have largely moved beyond Gold's formal learnability approach, incorporating a variety of 

different sources of linguistic information, the idealization of the task facing the learner as one of 

grammar induction has remained largely intact. As a consequence, computational work within the 

usage-based tradition has continued to focus on grammar induction (e.g., Borensztajn et al., 2009).  

 Usage-based theory suggests the possibility of sidestepping the grammar induction approach 

altogether, focusing instead on the ways in which linguistic knowledge is built up and reinforced 

through specific usage events (the child's attempts to comprehend and produce speech). This 

perspective has recently been bolstered by a number of complementary experimental results which 

suggest that the task facing learners is better characterized as one of “learning by doing” than as one of 

grammar induction (see also Chater & Christiansen, 2010, in press; Christiansen & Chater, 2016a). 

Evidence for the psychological reality of multiword linguistic units has served to blur the lines between 

grammar and lexicon, demonstrating the storage of “compositional” phrases as well as their use in 
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comprehension and production (e.g., Arnon & Snider, 2010; Bannard & Matthews, 2008; see also 

contributions in Christiansen & Arnon, 2017). Moreover, work on associative learning (e.g., Perruchet, 

Vinter, Pacteau, & Gallego, 2002) and statistical learning (e.g., Thompson & Newport, 2007) suggests 

that computationally simple mechanisms may be sufficient to identify the boundaries of such units in 

the speech stream.  

 A highly relevant—though previously unconnected—line of research has focused on the issue 

of syntactic processing depth, providing evidence that comprehension processes are often shallow and 

underspecified (e.g., Sanford & Sturt, 2002). Taken together with evidence for the primacy of local 

information during processing (e.g., Tabor, Galantucci, & Richardson, 2004), this suggests that 

children and adults form representations which are merely “good enough” for the communication task 

at hand (e.g., Ferreira & Patson, 2007). Evidence for multiword linguistic units, shallow processing, 

and the use of local information makes contact with other work emphasizing the importance of 

sequential as opposed to hierarchical linguistic structure (e.g., Culicover, 2013; Frank & Bod, 2011; 

Frank & Christiansen, in press; O’Grady, 2015; see Frank, Bod, & Christiansen, 2012, for a review).  

 Despite the importance of these complementary areas of research for strengthening item-based 

approaches, as well as their implications for re-characterizing the task facing language learners, they 

have remained largely unconnected. A recent theoretical proposal by Christiansen and Chater (2016b) 

unites these seemingly disparate strands of evidence. The proposal rests on the uncontroversial 

acknowledgement that language takes place in the “here and now.” The consequences of this real-time 

constraint—which Christiansen and Chater refer to as the “Now-or-Never bottleneck”—are rarely 

considered, however. The fleeting nature of signal and memory have implications for how we approach 

human language: At a normal rate of speech, humans produce between 10 and 15 phonemes per second 

(Studdert-Kennedy, 1986). Nevertheless, the ability to process discrete sounds appears to be limited to 

about 10 items per second (Miller and Taylor, 1948), beyond which they are perceived to fuse into a 
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single buzzing sound. To make matters worse, the auditory trace is limited to about 100 ms (Remez, 

Ferro, Dubowski, Meer, Broder, & Davids, 2010). Moreover, memory for arbitrary sequences seems to 

be limited to about four items (Cowan, 2001; Warren, Obusek, Farmer, & Warren, 1969).   

 Thus, the signal—and human memory for it—are incredibly short-lived. On the surface, the 

Now-or-Never bottleneck would seem to render language learning and use impossible. A key strategy 

for overcoming these sensory and memory limitations lies in chunking: incoming items can be rapidly 

grouped and passed to successively higher levels of representation, with higher-level representations 

allowing input to be dealt with before it is overwritten by the onslaught of incoming information at a 

lower level. It is fairly intuitive and uncontroversial, for instance, that the raw acoustic signal is rapidly 

packaged into some sort of sound-based unit (e.g., phoneme- or syllable-like representations), which 

can in turn be chunked into word-like representations, and so on. The consequences of applying this 

general approach to sentence-level processing and grammatical development are, however, less 

obvious, as discussed by Christiansen and Chater (2016a, b). 

 Though gaining renewed emphasis under this perspective, chunking has been regarded as a key 

learning and memory mechanism in human cognition for over half a century (e.g., Feigenbaum & 

Simon, 1962; Miller, 1956; Simon, 1974). While verbal theories have been more common, 

computational models of chunking have been present in the literature for over four decades (e.g., Ellis, 

1973; French, Addyman, & Mareschal, 2011; Jones, 2012; Perruchet & Vinter, 1998; Servan-Schreiber 

& Anderson, 1990; Simon & Gilmartin, 1973). Previous computational accounts of chunking have had 

a significant impact on approaches to language development, particularly with respect to the area of 

speech segmentation (cf. Frank, Goldwater, Griffiths, & Tenenbaum, 2010).  

 In what follows, we present a computational framework which extends the real-time use of 

chunking beyond word segmentation to aspects of sentence comprehension and production, uniting 

evidence for multiword linguistic units and shallow processing within a simple, developmentally 
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motivated model of acquisition that learns through on-line processing. We begin by discussing these 

lines of research as they pertain to our computational approach, before introducing the model and its 

inner workings. We then report results on the acquisition of English as well as the simulation of a key 

psycholinguistic experiment on children's sentence processing. Finally, we demonstrate that our 

approach extends beyond English to cover the acquisition of a broad array of typologically diverse 

languages. 

 

The Psychological Reality of Multiword Linguistic Units 

Our computational approach to acquisition begins with the idea that language learners form 

representations of differing granularities, with linguistic units ranging from the fine-grained level of 

morphemes and words to the more coarse-grained level of word sequences comprising one or more 

phrases. This perspective emerges straightforwardly from item-based approaches to acquisition; at the 

heart of usage-based theory lies the idea that linguistic productivity develops gradually through 

abstraction over multiword sequences (e.g., Abbot-Smith and Tomasello, 2006; Tomasello, 2003), 

requiring that storage of multiword units (chunks) occurs. In contrast, generative approaches have 

traditionally remained faithful to a words-and-rules perspective, in which learning and processing are 

supported by separate systems for lexicon and grammar (e.g., Pinker, 1999)1. 

 While the assumption that children in some sense store multiword sequences has received 

support from naturalistic observation (e.g., Peters, 1983) and corpus analyses (e.g., Lieven, Behrens, 

Speares, & Tomasello, 2003), it is only recently that its validation has been made the target of 

experimental work. The finding of Bannard and Matthews (2008) that young children repeat phrases 

faster and more accurately when they form a frequent chunk may have provided the first direct 

                                                           

1More recent accounts, however, have allowed for storage of multiword sequences within a generative framework 

(Culicover & Jackendoff, 2005; Culicover, Jackendoff & Audring, 2017; Jackendoff, 2002). 
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evidence not only that multiword chunk storage takes place, but that this storage can actively facilitate 

processing. Controlling for substring frequency, they contrasted repetition of four-word phrases in 

which the fourth word was of either high or low frequency, given the preceding trigram. Two and 3-

year-olds were more likely to repeat a phrase correctly when its fourth word combined with the 

preceding trigram to form a frequent chunk, while 3-year-olds were significantly faster to repeat the 

first three words. Further evidence comes from children's production of irregular plurals: Arnon and 

Clark (2011) found that the overregularization errors are significantly reduced when irregular plurals 

are produced in the context of lexically-specific frames (e.g., “brush your teeth”). 

 The importance of such findings to usage-based approaches is underscored by previous 

computational modeling work demonstrating that the alignment and comparison (cf. Edelman, 2008) of 

multiword sequences can give rise to a considerable amount of linguistic productivity, through the 

abstraction of partially item-based grammatical constructions (Kolodny, Lotem, & Edelman, 2015; 

Solan et al., 2005).  

 While usage-based theory has focused primarily on the importance of stored sequences as 

exemplars in the abstraction of grammatical regularities, children's apparent use of multiword units 

during on-line processing (Arnon & Clark, 2011; Bannard & Matthews, 2008) highlights an active role 

for such units in comprehension and production, suggesting the possibility that multiword sequences 

retain their significance throughout development. Indeed, a number of findings indicate that the storage 

and active use of multiword units persists beyond early acquisition and into adulthood. Bannard and 

Ramscar (2007) found an effect of overall sequence frequency on reading times for units ranging from 

4 to 7 words in length, while Reali and Christiansen (2007) showed chunk frequency effects in the 

processing of complex sentence types. Arnon and Snider (2010) found the same general pattern using a 

phrasal-decision task, whereby four-word expressions were classified as possible or impossible strings 

in English (in a vein similar to lexical-decision tasks). Importantly, Arnon and Snider's study explored 
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multiple frequency bins; reaction times decreased as a function of phrase frequency. Caldwell-Harris, 

Berant, and Edelman (2012) extended this finding to a broader frequency spectrum, showing a 

continuous effect of frequency and providing evidence against a frequency “threshold” beyond which a 

sequence is unitized. Additional evidence for adults' sensitivity to multiword sequence frequency has 

been gained from self-paced reading and sentence recall tasks (Tremblay, Derwing, Libben, & 

Westbury, 2011), eye-tracking data (Siyanova-Chanturia, Conklin, & van Hueven, 2011), and event-

related brain potentials (Tremblay & Baayen, 2010). A similar pattern of results has been found in 

studies of adult production, demonstrating a decrease in naming latencies with increasing phrase 

frequency (Janssen & Barber, 2012) as well as reduced phonetic duration for frequent multiword 

sequences in elicited and spontaneous speech (Arnon & Cohen Priva, 2013)2.  

 There are also direct parallels between the learning and processing of multiword units and 

individual words with respect to age-of-acquisition (AoA) effects. In a variety of tasks, adults exhibit 

processing advantages for words that are acquired earlier in childhood (for reviews, see Ghyselinck, 

Lewis, & Brysbaert, 2004; Johnston & Barry, 2006; Juhasz, 2005). Arnon, McCauley, and Christiansen 

(2017) show that multiword sequences, like individual words, display AoA effects when AoA is 

determined using either corpus-based metrics or subjective AoA ratings. They also show that the effect 

cannot be reduced to frequency, semantic plausibility, or lexical AoA. By underscoring a further 

parallel between words and multiword patterns, this study builds strong support the notion of stored 

multiword sequences as key building blocks for language learning and use.  

 Thus, the importance of multiword linguistic units extends beyond merely serving as exemplars 

for the formation of item-based schemas or the abstraction of grammatical regularities; multiword 

sequences play an active role in on-line processing, and this persists into adulthood. Accordingly, the 

                                                           

2 While the above studies have focused primarily on distributional properties, there are additional semantic and prosodic 

contributions to the ways in which language users represent and draw upon multiword units (e.g., Jolsvai, McCauley, & 

Christiansen, 2013). 
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on-line discovery and use of multiword sequences during comprehension and production forms one of 

the key features of the present computational approach.  

 The use of multiword linguistic units also leads us to explore the possibility that children's 

language development does not inevitably arrive at the use of fully articulated, hierarchical phrase 

structure, as assumed in many previous computational studies. In blurring the lines between lexicon 

and grammar, the active use of multiword sequences points to a potential role for relatively “flat” 

syntactic structures, suggesting that a more shallow form of processing may persist throughout 

development and into adulthood. This radically changes the problem facing the learner; instead of 

being forced to learn global hierarchical structures tied to a target grammar, local sequential structure 

moves to the fore. In what follows, we explore this idea more closely, reviewing evidence that shallow 

processing based on local information represents the norm rather than the exception in language use. 

 

The Ubiquity of Shallow Processing in Language Use 

Evidence for shallow processing of linguistic input has led some researchers to question the centrality 

of hierarchical phrase structure as well as the standard generativist assumption that syntactic and 

semantic processes are carried out completely and automatically. Yet for over half a century, 

hierarchical phrase structure has been viewed as a key theoretical foundation of most accounts of 

language acquisition and processing (e.g., Chomsky, 1957). Consequently, the idea that the meaning of 

a sentence need not stem from a fully articulated syntactic structure remains controversial. 

Nevertheless, shallow processing has been shown to be a widespread phenomenon through 

psycholinguistic research (for reviews, see Ferreira, Bailey, & Ferraro, 2002; Sanford & Sturt, 2002), 

and while the vast majority of this work has dealt with adult subjects, the theoretical implications 

extend from adult processing to the study of language acquisition. Here, we briefly discuss the 

evidence for shallow processing in adult language users before turning our attention to similar (though 
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much more limited) evidence from developmental studies, and finally outlining an account of shallow 

sentence processing which forms part of the motivation for the computational approach to acquisition 

put forth in this paper. 

 What is perhaps the most well-known thread of evidence for shallow processing comes from the 

failure of readers to notice semantically anomalous words and phrases in texts, indicating that 

processes of semantic integration have not been fully completed by readers who nevertheless form 

coherent semantic representations based on the sentences in question (e.g., Barton & Sanford, 1993; 

Erickson & Mattson, 1981). Other work has focused on text-change blindness (following work on 

change blindness in visual processing; e.g., Simons & Levin, 1998) to demonstrate the extent to which 

several factors modulate depth of processing, including focus (Sanford, 2002; Sturt, Sanford, Stewart, 

& Dawydiak, 2004) and computational load (Sanford, Sanford, Filik, & Molle, 2005). Perhaps more 

relevant is work demonstrating subjects' interpretation of nonsensical sentences as coherent 

(Fillenbaum, 1974; Wason & Reich, 1979) as well as the processing of semantically anomalous 

sentences in ways that directly contradict the interpretations that would be made according to a full 

syntactic parse (Ferreira, 2003), demonstrating the on-line use of background world knowledge and 

pragmatic expectations. 

 The above-mentioned evidence for shallow processing meshes naturally with work highlighting 

readers' tendencies to form “underspecified” representations of sentences, in which no commitment is 

made to any one of a number of possible analyses, clearly indicating that fully articulated syntactic 

processing has not taken place. Evidence for underspecification comes from work involving ambiguous 

relative clause attachment (Swets, Desmet, Clifton, & Ferreira, 2008), quantifier scope (Tunstall, 

1998), metonymy (Frisson & Pickering, 1999), ambiguous nouns (Frazier & Rayner, 1990), and 

anaphoric reference (Koh, Sanford, Clifton, & Dawydiak, 2008). Like shallow processing more 

generally, underspecified representations are at odds with theories of processing that assume full 
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completion of syntactic and semantic analyses. Much of the evidence for underspecification makes 

good contact with Ferreira and Patson's (2007) Good Enough approach to sentence processing, in 

which it is argued that the goal of language comprehension is to establish representations which are 

merely “good enough” to suit the needs of a listener or reader in a given situation, as opposed to 

representing communicated information in full detail3. 

 Taken together, the evidence suggests that shallow, underspecified processing, far from 

representing a degenerate case or mere exception to normal full syntactic and semantic processing, is 

ubiquitous. It is worthy of note that current evidence for shallow processing comes from work with 

written texts, a medium which allows subjects to process language without facing considerable 

challenges from 1) the highly noisy, variable nature of the speech signal and 2) the time constraints that 

come with not being able to control the speed at which input is encountered4. Thus, it is likely that 

much stronger evidence for shallow processing can be gained using speech stimuli (cf. Christiansen & 

Chater, 2016b).  

 In the above-mentioned cases, readers seem to rely on local linguistic information and global 

background knowledge rather than compositional meanings derived from fully articulated syntactic 

representations. Thus, support for shallow processing makes close contact with the claim that adults 

process sentences by using small chunks of local information to arrive at a semantic representation 

(e.g., Ferreira & Patson, 2007), which is reflected by local coherence effects (e.g., Tabor et al., 2004).  

 Evidence that adults process sentences in this manner makes it likely that children may rely on 

                                                           

3 As pointed out by Sanford and Sturt (2002), the contrast between traditional notions of full syntactic processing and 

shallow, underspecified processing is mirrored in the fields of computational linguistics and natural language processing 

(NLP) by differences between the output of shallow parsers, which identify a subset of interpretations for a sentence, and 

full syntactic parsers, which build a fully articulated syntactic analysis. Even in the context of NLP, shallow parsing 

sometimes offers computational advantages over full parsing (e.g., Li & Roth, 2001). Recently, it has also been shown that 

shallow parsing is sufficient for semantic role labeling in a morphologically rich language (Goluchowski & Przepiorkowski, 

2012). 

4 Note that there may also be strict time pressures during normal fluent reading, when readers take in about 200 words per 

minute (see Chater & Christiansen, 2016, for discussion). 
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similarly shallow, underspecified processing in which local information is key. While the issue of 

syntactic processing depth remains largely unexplored in children, initial evidence suggests that young 

learners rely upon shallow, underspecified processing to an even greater extent than adults (e.g., 

Gertner & Fisher, 2012). Corpus analyses of child speech similarly suggest that children's earliest 

complex sentences featuring sentential complements (e.g., I think I saw one) represent the simple 

concatenation of a formulaic expression (I think) with a sentence (I saw one) in a shallow rather than 

hierarchical fashion (Diessel & Tomasello, 2000). 

 Evidence for shallow processing based on local information makes close contact with Sanford 

and Garrod's (1981, 1998) Scenario Mapping and Focus theory of comprehension, in which 

background knowledge of situations and scenarios is used on-line to interpret linguistic input as it is 

encountered. During on-line interpretation, incoming linguistic input is mapped onto schemas of 

events, situations, or scenarios which have been established based on previous contexts or input – 

interpretation of the overall message is therefore heavily influenced by the background information 

which linguistic input is mapped onto. It may therefore be fruitful to test the view of language 

comprehension as the attempt to map chunks of language input onto specific parts of a scenario or 

event schema (which can, of course, be quite abstract and need not correspond to concrete objects and 

events in the real world); shallow processing may be sufficient for accomplishing this task. This, in 

turn, helps us reframe the problem facing the language learner: multiword unit learning (which allows 

rapid and efficient retrieval of chunks of local information during comprehension and production) 

naturally dovetails with a shallow processing approach, allowing language learners to comprehend 

much of the input without the need for full global syntactic parsing of the sort assumed in the vast 

majority of approaches to language learning. 

 This perspective fits nicely with several threads of psycholinguistic and computational work 

which are beginning to converge on the view that language users rely on sequential rather than 
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hierarchical structures (for a review, see Frank et al., 2012; Frank & Christiansen, in press). For 

instance, Ferreira and Patson (2007) found that interpretations can be constructed on the basis of small 

numbers of adjacent items, at the expense of more global syntactic structures and meanings, suggesting 

that global hierarchical structures were either impeded by local information or were altogether less 

important. Along the same lines, Christiansen and MacDonald (2009) found that simple recurrent 

networks (Elman, 1990), which simply learn to predict upcoming items in sentences in a linear rather 

than hierarchical fashion, provide a close fit to the abilities of human subjects to process recursive 

constructions involving center-embedding or cross-dependency. Consistent with this finding, Frank and 

Bod (2011) demonstrated that models which learn linear, non-hierarchical sequential information about 

word classes provide a stronger fit to actual human eye movement data during reading than models 

which learn hierarchical phrase structures. 

 In line with the view that sentence processing relies heavily on sequential structures computed 

over chunks of local information, our computational approach is centered on simple mechanisms for 

the on-line discovery, storage, and sequencing of words and chunks through sensitivity to the local 

rather than global information contained in utterances. Before detailing our computational approach in 

greater depth, we briefly discuss the potential sources of information children might use to discover 

useful chunks of local information, and the relationships between them, during their attempts to 

comprehend and produce utterances.  

 

Discovering Useful Multiword Sequences 

Our computational account of children's on-line processing seeks to capture some of the mechanisms 

by which multiword units are learned and employed in language comprehension and production. For 

the sake of simplicity, we distinguish between two types of multiword units: 1) unanalyzed chunks, and 

2) combined chunks (see also Arnon & Christiansen, 2017; McCauley, Monaghan & Christiansen, 
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2015). Unanalyzed chunks are those that are stored and accessed holistically before segmentation of 

their parts has taken place, whereas combined chunks can be (and sometimes are) broken down into 

their component words. Chunks falling into the first category are most relevant to the study of very 

early language development (for a recent incremental, on-line computational model of word 

segmentation which captures processes whereby unanalyzed chunks can be discovered and gradually 

broken down into smaller units, see Monaghan & Christiansen, 2010). As an example, the chunk look 

at this may be treated as a holistic, unanalyzed unit by very young children (for a review of the 

literature on children's use of such “frozen” sequences, see Wray, 2005), while the same chunk would 

fall into the second category (as a combined chunk) for older children who are capable of breaking the 

chunk down into its component parts. 

 Beyond a certain point, chunks will rarely be treated as holistic units: Consider evidence that 

idioms, which even generative grammar-oriented approaches recognize as stored (Jackendoff, 1995; 

Pinker, 1999), prime, and are primed by, their component words (Sprenger, Levelt, & Kempen, 2006) 

as well as lead to syntactic priming (Konopka & Bock, 2009). Given that idioms would appear to form 

stored multiword units (their meanings are idiosyncratic and cannot be determined on the basis of 

component parts), we must allow, then, that a multiword unit can be accessed and used as a meaningful 

entity in its own right, even when activation of its individual parts occurs. 

 One well-studied source of information that infants might use to arrive at some of their earliest, 

unanalyzed multiword chunks lies in the acoustic correlates of clause and phrase boundaries. Pre-

linguistic infants can use prosodic information to segment the speech stream into multiword units, and 

this ability has been shown to facilitate certain types of processing. Early work in this vein established 

that infants are sensitive to the prosodic correlates of clause boundaries (Hirsh-Pasek, Kemler Nelson, 

Jusczyk, Cassidy, Druss, & Kennedy, 1987). Further work demonstrated that infants are better able to 

recall phonetic information when it is packaged in a prosodically well-formed unit, and that infants can 
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use the acoustic correlates of clause boundaries to form representations which are available for use in 

later segmentation of continuous speech (Mandel, Jusczyk, & Kemler-Nelson, 1994). More relevant to 

the present study is work on phrase-level units. Though several studies suggest that phrases are not as 

reliably marked in the speech stream as are clauses (Beckman & Edwards, 1990; Fisher & Tokura, 

1996), infants' sensitivity to these markers has been demonstrated (Jusczyk, Hirsh-Pasek, Kemler 

Nelson, Kennedy, Woodward, & Piwoz, 1992). Moreover, it has been shown that infants can use these 

markers to segment larger prosodic units corresponding to clauses into smaller, phrase-level units 

(Soderstrom, Seidl, Kemler-Nelson, & Jusczyk, 2003). Results from the Soderstrom et al. (2003) study 

went beyond mere on-line recognition of prosodic ill-formedness, suggesting that infants formed 

representations based on the prosodic information in familiarization sequences, and used them to 

segment prosodically well-formed items into phrase-level units at test.  

 The incorporation of such prosodic information, however, represents a challenge for 

computational models of acquisition, given the limited availability of prosodic information in currently 

available corpora of child-directed speech. Fortunately, distributional information is also highly 

relevant to early chunk discovery. Some of children's earliest unanalyzed multiword chunks may stem 

from “errors” in word segmentation (as suggested by Bannard & Matthews, 2008). For instance, using 

mutual information between syllables to find word boundaries in an unsegmented corpus, Swingley 

(2005) found that 91% of bisyllabic false alarms were frequent word pairs, such as come on, while 68% 

of trisyllabic false alarms were frequently occurring multiword phrases. More recent models of word 

segmentation (e.g., Goldwater, Griffiths, & Johnson, 2009; Monaghan & Christiansen, 2010) have 

yielded similar results. Given that such models exploit some of the same distributional cues that infants 

have been shown to be sensitive to in experimental studies of artificial word segmentation, it would not 

be surprising if infants similarly undersegmented the speech stream to arrive at unanalyzed multiword 

chunks. Far from hindering the child's language development, such “mistakes” may actually impart an 
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advantage, as predicted by usage-based theories (e.g., Arnon, 2009; Arnon & Christiansen, 2017). 

 But what of chunks acquired after segmentation of the component words has taken place? 

Presumably, unanalyzed chunks, arrived at through under-segmentation and/or the use of prosodic 

information, are rare once the child reaches a certain level of experience. The usefulness of multiword 

chunks should be no less real for an experienced language user (and indeed, as shown in the studies 

reviewed above, older children and adults actively use multiword units). Thus, we should allow for the 

possibility that statistical information linking words can be used to arrive at multiword chunks by older 

children and adults.  

 How might learners chunk co-occurring words together as a unit after segmentation of the 

component parts has already taken place? The use of raw frequency of co-occurrence would lead to 

placing too much emphasis on co-occurring words that frequently occur adjacent to one another by 

mere virtue of being highly frequent words. Similarly, precise tracking of the frequencies of all 

encountered sequences would lead to a combinatorial explosion (cf. Baayen, Hendrix, & Ramscar, 

2013).  

 Thus, while phrase-frequency effects are continuous rather than threshold-based (e.g., Caldwell-

Harris et al., 2012), meaningful chunks cannot be identified on the basis of raw frequency alone5, in 

much the same way as a word segmentation model based solely on raw frequency of co-occurrence 

would be largely ineffective. Consistent with the Now-or-Never perspective (Christiansen and Chater, 

2016b), which forms part of the theoretical motivation for the present study, we explore the notion that 

many of the same cues and mechanisms involved in word segmentation may be involved in chunking at 

the level of multiword units. In what follows, we discuss previous computational accounts of chunking 

                                                           
5 Indeed, it has been suggested that part of the problem experienced by second-language learners may be due to a 

suboptimal chunking strategy based on raw frequency (Ellis, Simpson-Vlach, & Maynard, 2008)—something that has been 

corroborated by simulations of second-language learning using the CBL model presented below (McCauley & Christiansen, 

2017). 
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which, in the domain of language, have been primarily concerned with word segmentation. We then 

describe our own model, which extends chunk-based learning and processing to the sentence level. 

 

Previous Computational Models of Chunking 

Chunking has been regarded as a key learning and memory mechanism for over half a century (e.g., 

Feigenbaum & Simon, 1962; Miller, 1956), with many of the earliest computational implementations 

being concerned with expertise (e.g., Ellis, 1973; Simon & Gilmartin, 1973) or language-related 

phenomena such as spelling (Simon and Simon, 1973), alphabet recitation (Klahr, Chase, & Lovelace, 

1983), and statistical learning (Christiansen, in press). In recent decades, a number of chunking models 

related to implicit learning have emerged, and have been applied to word segmentation, particularly in 

the context of modeling data from artificial language learning experiments. 

An early instance of one such model is the Competitive Chunking (CC) model of Servan-

Schreiber and Anderson (1990), which views learning as the buildup of progressively larger chunks 

which are structured in a hierarchical network. Servan-Schreiber and Anderson argued that the implicit 

learning of artificial grammars (e.g., Reber, 1967) is primarily driven by chunking, and model the 

discrimination of grammatical vs. ungrammatical strings according to the number of stored chunks 

necessary to describe a sequence. The CC model operates according to activation of hierarchical 

chunks which match a current stimulus. Activated chunks which overlap with one another then 

“compete” to shape perception of the stimulus. Chunk creation and retrieval are determined by chunk 

strength, which is tied to free parameters involving decay and competition. In a Reber (1967) task 

analogue, CC was able to capture 87% of the variance in subject discrimination of grammatical vs. 

ungrammatical strings.  

 Perhaps the most influential chunking model devoted to implicit learning and word 

segmentation is PARSER (Perruchet & Vinter, 1998), which was directly inspired by the CC model of 
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Servan-Schreiber and Anderson (1990). Unlike the CC model, however, PARSER does not build up a 

hierarchical network of chunks, being concerned primarily with identifying structurally relevant units, 

such as words (Perruchet et al., 2002). Like the CC model, PARSER operates through competition, or 

“interference,” between overlapping chunks, and utilizes free parameters for setting decay and 

managing activation rates (chunk strength). PARSER has been used to successfully model some of the 

experimental data involving human word segmentation performance in artificial language learning 

contexts (e.g., Saffran, Newport, & Aslin, 1996; cf. Perruchet & Vinter, 1998), and has also been used 

to discover the syntactically relevant units in an artificial language generated by a finite-state grammar 

(Perruchet et al., 2002).  

 A more recent approach to chunking is the MDLChunker (Robinet, Lemaire, & Gordon, 2011), 

which operates according to the information-theoretic principle of minimum description length (MDL), 

following the notion that human cognition favors simpler representations as a general principle (Chater 

& Vitányi, 2003). Like CC, MDLChunker involves hierarchies of chunks. Unlike CC, or PARSER, 

MDLChunker does not have free parameters. MDLChunker captures human chunking in a novel task 

involving meaningless visual symbols, as well as providing similar results to PARSER and CC on a 

well-known experiment by Miller (1958).  

 Another contemporary model of perhaps greater relevance is the TRACX model (French et al., 

2011). A connectionist auto-associator, TRACX operates according to recognition-based processing 

rather than prediction, as in the case of prediction-based networks like simple recurrent networks 

(SRNs; Elman, 1990). TRACX provides a better fit to human data than either PARSER or SRNs, 

across a range of sequence segmentation studies. 

 French et al. (2011) nicely exemplify the tensions in the implicit learning literature between 

recognition-based processing, through chunking, and statistically-based processing utilizing transitional 

probabilities (TPs). Despite the absence of predictive processing and lack of conditional probability 
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calculation, TRACX is sensitive to TPs in both directions, as is the case with PARSER.  

 A number of studies have argued that recognition-based chunking provides a better fit to human 

performance than do TPs: PARSER offers a better fit to human data than learning based solely on TPs 

in a context in which the statistics of two consecutively learned artificial languages are pitted against 

one another (Perruchet, Poulin-Charronnat, Tillmann, & Peereman, 2014). Moreover, PARSER 

provides a better fit to adult learning of a semi-artificial language than SRNs (Hamrick, 2014). Poulin-

Charronnat, Perruchet, and Tillmann (2016) developed a design which allowed them to dissociate the 

influence of familiarity and transitional probabilities using a pre-exposure phase in a standard artificial 

word segmentation task, in which recognition of familiar units appeared to override sensitivity to 

statistical cues, though findings were only partially captured by PARSER. These findings are 

compatible with a recent recognition-based model of word segmentation (Monaghan & Christiansen, 

2010) which performs reasonably well on child-directed speech input in comparison to more 

computationally complex models. 

 Of the above computational approaches to chunking, PARSER has been the most widely 

explored in the context of human artificial-language data on chunking and segmentation performance. 

PARSER also best satisfies the memory constraints imposed by the Now-or-Never bottleneck, which 

forms part of the theoretical motivation for the present study. MDLChunker, for instance, has no 

memory limitations and is ill-suited to capturing on-line processing. Therefore, we chose PARSER as a 

baseline comparison to our own model, alongside a standard, prediction-based model utilizing 

transitional probabilities over n-grams. 

 

Integrating Recognition-based and Statistically-based Processing  

While chunking models have been argued to offer a better fit than TPs to human performance in studies 

of artificial word segmentation, which involve brief periods of exposure, fewer studies have examined 
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learning over longer periods of time, or the learning of higher-level chunks, such as would be useful in 

learning grammatical regularities.  

 Transitional probabilities have been found to be useful in segmenting out multiword phrases: 

Thompson and Newport (2007) found that peaks in forward transitional probabilities (FTPs) between 

form classes in an artificial language can be used by adult subjects to group artificial words together 

into multiword units, whereas dips in FTPs can be used to identify chunk boundaries. However, there 

are a number of cases in which a sole reliance on forward transitional probabilities in natural language 

might prevent the segmentation of useful multiword chunks. For example, if learners were to compute 

statistics over individual words rather than form classes, the FTP between the words in an English 

phrase such as “the dog” will always be extremely low, given the sheer number of nouns that may 

follow a determiner. Other sources of information, however, such as mutual information or backwards 

transitional probabilities (BTPs) provide a way around this issue: given the word “dog,” the probability 

that the determiner “the” immediately precedes it is quite high, considering the small number of 

determiners one might choose from. Thus, it makes sense that child learners might also make use of 

such sources of information to discover useful multiword units. 

 Along these lines, Saffran (2001, 2002) has shown that dependencies in the form of BTPs 

between words in an artificial phrase-structure grammar not only facilitate learning, but aid in isolating 

specific phrases. That infants and adults are sensitive to BTPs has been established in the chunking 

(French et al., 2011; Perruchet & Desaulty, 2008) and statistical learning (Pelucchi, Hay, & Saffran, 

2009) literatures. Thus, the view of BTPs as a potential cue to useful multiword phrases holds promise. 

That English speakers may be more sensitive to BTPs than FTPs between words during production is 

suggested by auditory corpus analyses showing that functors and content words are shorter when 

predictable given the following word, while the same effect in the forward direction appears only for 

the most frequent functors, and is absent for content words (Bell, Brenier, Gregory, Girand, & Jurafsky, 
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2009). Though much previous work examining adults' production of multiword units has been 

concerned with raw frequency counts rather than conditional probabilities, the Bell et al. (2009) 

findings might also be taken as initial support for idea that speaker sensitivity to BTPs may help drive 

the representation and use of multi-word chunks.  

 The simple architecture of the model used in the present study—while inspired by the successes 

of recognition-based chunking in accounting for experimental data—also seeks to incorporate 

statistical learning, in line with the aforementioned evidence for the use of TPs in phrase-level 

chunking. Rather than rely on prediction-based processing, statistical information tied to BTPs is used 

as a cue for identifying chunks which are then stored as concrete units and used to support further 

processing through recognition. Forward prediction in the model is chunk-based rather than statistical. 

A purely recognition-based model which does not directly utilize statistical cues, PARSER (Perruchet 

& Vinter, 1998), serves as a baseline for comparison to our own model, alongside a purely prediction-

based model utilizing transitional probabilities over n-grams. 

 

The Chunk-Based Learner Model 

In what follows, we present the Chunk-Based Learner (CBL) model of language learning. Following 

Christiansen and Chater (2016b), one of the primary aims of the CBL model is to provide a 

computational test of the idea that the discovery and on-line use of multiword units forms part of the 

backbone for children's early comprehension and production. To this end, the model gradually builds 

up an inventory of chunks consisting of one or more words—a “chunkatory”—which is used to 

simulate aspects of both language comprehension and production. The model explicitly captures the 

shallow processing perspective outlined above—in which chunks of local information are used to 

process sentences—by learning to group words together into local chunks that are appropriate for 
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arriving at an utterance's meaning (a key aspect of comprehension), while simultaneously learning to 

produce utterances in an incremental fashion using the same chunks of local information (a key aspect 

of production). 

 CBL was designed with several key psychological and computational features in mind: 

 

1. On-line processing: During comprehension, input is processed word-by-word as it is 

encountered, reflecting the incremental nature of human sentence processing (e.g., Altmann & 

Steedman, 1988; Tanenhaus, Carlson, & Trueswell, 1989; Tyler & Marslen-Wilson, 1977); 

during production, utterances are constructed incrementally according to a chunk-to-chunk 

process rather than one of whole-sentence optimization (e.g., whereby many candidate 

sentences are compared simultaneously and the one with the highest score selected).This 

approach is consistent with memory constraints deriving from the real-time nature of language 

processing (Christiansen & Chater, 2016b). 

2. Incremental learning: At any given point in time, the model can only rely on what it has 

learned from the input encountered thus far (i.e., unlike the vast majority of computational 

approaches to acquisition, the current model does not rely on batch learning of any sort). 

3. Simple statistics: For reasons detailed above, learning is based on the computation of BTPs, 

which 8-month-old infants (Pelucchi, Hay, & Saffran, 2009) and adults (Perruchet & Desaulty, 

2008) can track. 

4. Local information: Learning is tied to local rather than global information; instead of storing 

entire utterances as sequences, the model learns about transitions between adjacent words and 

chunks. 

5. Item-based: The model learns from concrete words, without recourse to abstract information 

such as that of syntactic categories (as is also the case with a number of other usage-based 
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models; e.g., Freudenthal et al., 2006; Jones et al., 2000; Kolodny et al., 2015; Solan et al., 

2005). This stands in stark contrast to most computational approaches emerging from the 

tradition of generative linguistics; rule-based processing in the “words-and-rules” framework 

operates over word classes rather than words themselves.  

6. Psychologically motivated knowledge representation: In accordance with evidence for the 

role of multiword linguistic units in comprehension and production (reviewed above) as well as 

for the interconnectedness of comprehension and production processes more generally (Chater, 

McCauley & Christiansen, 2016; Pickering & Garrod, 2007, 2013), aspects of both 

comprehension and production are performed by using the same inventory of single- and 

multiword linguistic units. 

7. Naturalistic input: The model learns from corpora of child-directed speech taken from the 

CHILDES database (MacWhinney, 2000). As word segmentation itself lies outside the scope of 

the current model, the use of such pre-segmented corpora (which consist of words rather than 

phonemic transcriptions) enables us to expose the model to a far more diverse array of corpora 

than would be possible otherwise. 

8. Broad, cross-linguistic coverage: The model is designed in such a way that it can be evaluated 

on corpora of child-directed speech in any language (following Chang, Lieven, & Tomasello, 

2008). We therefore evaluate it using a typologically diverse set of 29 languages. 

 

 We begin by providing an initial glance at the general architecture of the model, before 

describing its inner workings in full detail. We then present results from simulations of the acquisition 

of English. Finally, we show that the model successfully extends to the acquisition of a wide array of 

typologically diverse languages. 
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Inner Workings of the Model 

There is growing behavioral and neuroimaging evidence for the involvement of the same mechanisms 

in adult comprehension and production (for reviews, see Pickering & Garrod, 2007, 2013), which 

prompts us to extend the idea of a unified framework for comprehension and production to language 

development (Chater et al., 2016; McCauley & Christiansen, 2013). In light of this, we designed CBL 

to capture the idea that comprehension and production can be viewed as two sides of the same process, 

but with different task demands. Comprehension is approximated by the segmentation of incoming 

speech into chunks relevant for determining the meaning of an utterance. These units are then stored in 

an inventory that makes no distinction between single- and multi-word chunks. Production is 

approximated by the model's ability to reproduce actual child utterances through retrieval and 

sequencing of units discovered during comprehension. Crucially, the very same distributional 

information underlying the model's comprehension-related processing form the basis for production, 

while production itself is taken to feed back into comprehension. 

 The model's inventory of single- and multi-word linguistic units—its chunk inventory, or 

“chunkatory”—is its core feature. Comprehension-related processing is used to build up the chunkatory 

while production-related processing both draws upon it and reinforces it. Through the chunkatory, CBL 

is able to approximate elements of comprehension and production within a unified framework.  

 The model begins by learning—in an incremental, on-line fashion—to segment incoming input 

into groups of related words (similar to phrasal units). These chunks are then stored in the chunkatory 

unless they have been encountered before, in which case the frequency of the relevant chunk is 

incremented by 1. In each simulation, the input consists of a corpus of speech directed to a single child 

(taken from the CHILDES database; MacWhinney, 2000). When the model encounters a multiword 

utterance produced by the target child, the production side of the model comes into play: the model's 

task is to produce an utterance which is identical to that produced by the child, using only statistics and 
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chunks learned and used during comprehension-related processing up to that point in the simulation. 

Thus, we aimed to construct a fully incremental, on-line model of child language development that uses 

the same chunks and distributional statistics to perform aspects of both comprehension and production. 

 To summarize this initial snapshot of the model's inner workings: CBL approximates aspects of 

both comprehension, by learning an inventory of chunks and using them to segment child-directed 

speech into related groups of words (such as would be appropriate for arriving at an utterance's 

meaning via shallow processing), and production, by reproducing actual child utterances as they are 

encountered in a corpus, using the same chunks and statistics learned and used during comprehension. 

We hypothesized that both problems could, to a large extent, be solved by recognition-based processing 

tied to chunks which are discovered through sensitivity to transitional probabilities between linguistic 

units. 

 

Transitional probability: The simple statistic at the heart of CBL: As reviewed above, TPs 

have been proposed as a cue to phrase structure in the statistical learning literature; peaks in TP can be 

used to group words together, whereas dips in TP can be used to find phrase boundaries (e.g., 

Thompson & Newport, 2007). The view put forth in such studies is that TP is useful for discovering 

phrase structure when computed over form classes rather than actual words. We hypothesized, instead, 

that distributional information tied to individual words provides richer source of information than has 

been assumed in such work. Because we adopted this purely item-based approach, and because of 

evidence for greater reliance on BTPs when chunking words together in English (Bell et al., 2009), we 

decided to focus initially on BTPs. 

The computation of TPs in the backward direction also has an unexpected advantage in the 

context of incremental, on-line calculation, in that the properties of the most recently encountered word 

attain the greatest importance (e.g., the BTP linking the sequence XY can be arrived at by normalizing 
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P(X, Y) by P(Y) rather than involving X in the denominator when computing FTP). For the above-

mentioned reasons, the current computational approach focuses initially on backward rather than 

forward TPs as a cue to multiword units—chunks of local information for use in processing—while 

comparing the types of TP in a systematic way in Appendix C. 

 In what immediately follows, we provide an in-depth description of the inner workings of the 

model, showing how simple TPs support recognition-based chunk learning through comprehension- 

and production-related processes. 

 

Comprehension 

Though comprehension and production in the model represent two sides of the same coin, we describe 

them separately for the sake of simplicity. During comprehension, the model discovers its first chunks 

through simple sequential statistics computed over words. Processing utterances on a word-by-word 

basis, the model learns frequency information for words and word pairs, which is used on-line to track 

BTPs between words and maintain a running average BTP across previously encountered word pairs. 

When the model calculates a BTP between two words that is greater than expected, based on the 

running average BTP, it groups the word pair together such that it may form part of a chunk. When the 

calculated BTP falls below the running average, a “boundary” is placed and the chunk thereby 

created—consisting of one or more immediately preceding words—is added to the chunkatory. Then, 

the model moves on to process the next word in the utterance. The use of the running average BTP as a 

threshold allows the avoidance of a free parameter. This process is illustrated using a simple utterance 

in Figure 1. 
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Fig. 1: Incremental, on-line processing of the simple utterance “the dog chased the cat”. Material above the diagonal 

arrow depicts the simple computations driving the model's on-line processing, while material below the arrow 

represents the resulting shallow parse (the model's interpretation of the sentence) as it unfolds over time. At Time 2, 

the model calculates the BTP between the and dog, which exceeds the average TP threshold (indicated by the 

backward arrow's position above the words), resulting in the two words being grouped together. Since the next word 

has not yet been encountered, the two words are not yet stored in the chunkatory as a chunk. At Time 3, the BTP 

between dog and chased falls below the running average (indicated by the backward arrow's position below the 

words), so chased is not grouped together with the preceding material and the dog is then stored in the chunkatory. 

At Time 4, the BTP between chased and the falls below the running average, so the two words are not grouped 

together and chased is added to the chunkatory as a single-word chunk. At Time 5, the BTP between the and cat rises 

above the average threshold and because a pause follows the sequence, the cat is chunked together and stored in the 

chunkatory.  

 

 All newly-added chunks are initialized with a frequency count of 1. The frequency count of a 

chunk is incremented by 1 each time it is encountered subsequently. Single-word utterances are 
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automatically treated as single chunks and stored (or their counts incremented) accordingly, though 

only multi-word utterances are scored when evaluating model performance (scoring procedures are 

described below). 

 Once the model has acquired its first chunk, it begins using its chunkatory in a recognition-

based fashion to assist in processing the incoming input on the same incremental, word-to-word basis 

as before. The model continues learning the same low-level distributional information and calculating 

BTPs, but also uses the chunkatory to make on-line predictions as to which words should form a chunk, 

based on previously learned chunks. Crucially, these predictions are recognition-based rather than 

statistically-based. When a word pair is encountered, it is searched for in the chunkatory; if it has 

occurred more than once, either as a complete chunk or as part of a larger chunk, the words are 

automatically grouped together and the model moves on to the next word without placing a boundary. 

If the word pair has not occurred more than once in the chunks found in the chunkatory at that time 

step, the BTP is compared to the running average, with the same consequences as described above. 

Thus, there are no a priori limits on the number or size of chunks that can be learned.  

 As an example of how this can be understood as prediction, consider the following scenario in 

which the model encounters the phrase the blue ball for the first time and its chunkatory includes the 

blue car and blue ball (with frequency counts greater than 1). When processing the and blue, the model 

will not place a boundary between the two words because the word pair is already strongly represented 

in the chunkatory (as in the blue car). The model therefore predicts that this word-pair will form part of 

a chunk, even though the rest of the chunk has not yet been encountered. Next, when processing blue 

and ball, the model reacts similarly, as this word pair is also represented in the chunkatory. The model 

thereby combines its knowledge of two chunks to discover a new, third chunk, the blue ball, which is 

added to the chunkatory. As a consequence, the sequence the blue becomes even more strongly 

represented in the chunkatory, as there are now two chunks in which it appears. 
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 Thus, once a chunk enters the chunkatory, it remains in the chunkatory. However, if the BTP 

linking the items in a chunk drops below the running average threshold before the model has re-

encountered and “recognized” the chunk (i.e., before the chunk has attained a frequency count of 2 in 

the model’s chunkatory), it will neither be incremented nor treated as a chunk. If the model has 

“recognized” the chunk in a previous encounter, it will continue to be considered as a unit (and its 

count incremented in the chunkatory), even if one of the BTPs linking the internal words should drop 

below the running average threshold. Importantly, there is no decay parameter in CBL. 

 Psychological validity of the model’s multiword units: A recent study by Grimm, Cassani, 

Gillis, and Daelemans (2017) demonstrated that the CBL model extracts chunks with a uniquely 

facilitatory effect on child age-of-first-production, as well as adult reaction times in a word recognition 

task. That is, the greater the number of CBL-discovered chunks a word appears in, the earlier it is 

produced by children and the faster it is recognized by adults, even after controlling for the relevant 

variables (e.g., word frequency). This finding is further bolstered by comparing the CBL model to 

baseline models. 

 The CBL model’s chunking mechanism therefore enjoys independent support from 

psychological findings related to children and adults. Moreover, as discussed below, the model has 

been used to successfully capture developmental psycholinguistic findings spanning a range of 

phenomena.  

 

Production 

While the model makes its way through a corpus incrementally, segmenting and storing chunks during 

comprehension, it encounters utterances produced by the target child, at which point the production 

side of the model comes into play. The model's ability to generate the child's utterance, based on 

chunks learned from previous input, is then evaluated using a sentence production task inspired by the 
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bag-of-words incremental generation task used by Chang et al. (2008), which offers a method for 

automatically evaluating syntactic learners on corpora in any language.  

 We loosely approximate the overall message that the child wants to convey by treating the 

utterance as an unordered set of words: a “bag-of-words,” corresponding to (again, very roughly) the 

set of concepts contributing to the semantics of the utterance to be produced. The task for the model, 

then, is to sequence these words in the correct order, as originally produced by the target child. 

Following evidence for the use of multiword sequences in child production, as well as usage-based 

approaches more generally, the model utilizes its chunkatory to generate the child’s utterances. In order 

to model retrieval of stored chunks during production, the bag-of-words is filled by comparing parts of 

the child’s utterance against the chunkatory. For instance, consider a scenario in which the model is to 

produce the child utterance the dog chased a cat and the largest chunk in the chunkatory consists of 3 

words. To begin, the first 3 words are searched for storage as a single chunk. As this is not found in the 

chunkatory, the dog is searched for. This search succeeds, so the words are removed from the utterance 

and placed in the bag as a single chunk. Next, chased a cat is searched for, unsuccessfully, followed by 

chased a, also without success. The word chased is placed in the bag as a single chunk. Then, a cat is 

searched for, and so on. Crucially, this procedure is not meant to correspond to a psychological process 

as such but simply used as a simulation shortcut to find chunks that the child already knows (i.e., that 

were in the chunkatory as a result of learning during comprehension) and thus would be likely to use as 

such (e.g., the dog). Once in the bag, the order of chunks is randomized. 

 During the second phase of production, the model attempts to reproduce the child’s utterance 

using the unordered chunks in the bag-of-words. We model this as a gradual chunk-by-chunk process 

rather than one of whole-sentence optimization (e.g., calculating the probability of the entire utterance, 

etc.), in order to reflect the incremental nature of sentence processing (e.g., Altmann & Steedman, 
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1988; Christiansen & Chater, 2016b; Tanenhaus et al., 1989; Tyler & Marslen-Wilson, 1977). Thus, the 

model begins by removing from the bag-of-words the chunk with the highest BTP given the start-of-

utterance marker (a hash tag representing the pause preceding the utterance in the corpus), and 

producing it as the start of its new utterance. The chunk is removed from the bag before the model 

selects and produces its next chunk, the one with the highest BTP given the previously produced chunk. 

In this manner, the model uses chunk-to-chunk BTPs to incrementally produce the utterance, adding 

chunks one-by-one until the bag is empty. The model's production of the child utterance I'm gonna stop 

the train with my whistle is depicted in Figure 2. In rare cases where two or more chunks in the bag-of-

words are tied for the highest BTP, one of them is chosen at random. 

 

 

Fig. 2: Incremental, on-line production of the child utterance “I'm gonna stop the train with my whistle.” Material 

above the diagonal arrow depicts the contents of the bag-of-words at each time step. Material below the arrow 

represents the simple computations whereby the model selects the next item to be produced at each time step. At 
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Time 0, the model selects its first chunk from the bag according to the highest BTP, given the pause preceding the 

utterance (which can be understood as a start-of-utterance marker); out of the chunks in the bag, [i'm gonna] has the 

highest BTP in this instance, so it is removed from the bag and produced at the next time step. At Time 1, the model 

calculates the BTP between [i'm gonna] and the remaining chunks in the bag; [stop] has the highest BTP and is 

therefore removed and produced at the next time step. This process continues, with the item possessing the highest 

BTP (given the previous item) being selected until the bag-of-words is empty, at which point the utterance ends. 

 

 Because comprehension and production are seen as two sides of the same process, a child's own 

productions are taken to reinforce statistics previously learned during comprehension. For this reason, 

immediately following the model's attempt to produce a given child utterance, the same utterance is 

used to reinforce the model's low-level sequential statistics as well as its chunkatory, through the 

performance of (incremental and on-line) comprehension on the utterance, in an identical manner to 

any other utterance of child-directed speech in the corpus. The child is taken to “hear” its own 

productions in a manner consistent with the position that no strong distinction can be drawn between 

the mechanisms and statistics underlying comprehension and production (as argued in Chater et al., 

2016).6 Thus, the CBL model features some similarities to the “Traceback Method” of Lieven et al. 

(2003), while also providing the kind of “rigorous computational evaluation” of the general approach 

called for by Kol, Nir, and Wintner (2014). 

 Validity of the bag-of-words production task: We recognize that there is more to language 

production than what is captured by the bag-of-word task, including the important contributions of 

semantics, pragmatics and real-world knowledge. Nonetheless, we suggest that the task does capture 

some important aspects of how distributional information may influence the sequencing of words 

                                                           
6 While we found that the inclusion of this feedback mechanism did not lead to a statistically significant change in the 

model’s shallow parsing performance, we feel that it is nevertheless a valuable inclusion on theoretical grounds. As 

discussed further in the General Discussion, we expect that a larger impact may be found in future versions of the model 

which incorporate semantics.  
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during sentence production. To ensure that our production task in this way approximates linguistic 

sequencing skills, we tested adult native speakers on a behavioral version of the task. Using the largest 

available child corpus of English (Maslen, Theakston, Lieven, & Tomasello, 2004), we extracted, at 

random, 50 grammatical child utterances and 20 child utterances which had been previously marked as 

ungrammatical, for a total of 70 test utterances. Twenty Cornell undergraduates (mean age 20.1 [SE 

0.8], all native speakers of English) then received, for each utterance, an un-ordered set of chunks 

corresponding to the very same chunks the model used when attempting to produce the given utterance 

during a full simulation over the same corpus. The subjects' task, for each utterance, was to sequence 

the chunks to form a sentence. The mean accuracy rate was 95.6% across all subjects for the 

grammatical utterances, and 64% for the ungrammatical utterances (note that only a perfect match to 

the child's utterance was scored as accurate, just as with the model version of the task). Thus, we 

conclude that the bag-of-words task itself does provide a meaningful and valid test of linguistic skills 

which reflect knowledge of grammatical chunk sequences (had subjects performed at chance, this 

conclusion would be unwarranted).  

 

Contrasting Recognition-based and Statistical Approaches to Chunking: Baseline Models 

We compare CBL directly to two models: PARSER (Perruchet & Vinter, 1998) as well as a modified 

n-gram model. PARSER was chosen for comparison because it has been the most widely explored 

model in the context of human data on chunking and segmentation performance, while also best 

satisfying the memory constraints imposed by the Now-or-Never bottleneck (Christiansen & Chater, 

2016b). As such, it provided an ideal instantiation of purely recognition-based processing for 

comparison to the alternative approach taken by the CBL model. As an additional baseline utilizing 

purely prediction-based processing, we implemented a variation on the standard n-gram model, 

focusing on trigrams for reasons explained below. The contrasting unit types and processing styles of 
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the model and its baselines are simplified in Table 1. 

 

Table 1 

Contrasting Unit Type and Processing Style 
 

Model Stored, Variable-

sized Chunks? 

Recognition-

based? 

Prediction-based? 

CBL Yes Yes Yes 

PARSER Yes Yes No 

Trigram No No Yes 

 

 PARSER: We implemented PARSER according to Perruchet and Vinter (1998) as well as 

personal communication with the first author. While a full description of PARSER is beyond the scope 

of the present article, it operates in much the same fashion as the Competitive Chunking model of 

Servan-Schreiber and Anderson (1990), but without building up a hierarchical network of chunks. 

Chunks are initially formed in PARSER through a stochastic process determining the size of percepts 

consisting of elementary units (in the present case, words). At each time step, chunks in the model's 

“lexicon” are affected by decay, with interference between partially overlapping chunks.  

 Perruchet (personal communication) advised us to retain the default values for the free 

parameters governing the threshold beyond which chunks shape percepts, the initial weight assigned to 

newly-segmented chunks, and weight added when existing chunks are reinforced by subsequent 

encounters (1.0, 1.0, and 0.5, respectively). Thus, the free parameters of primary interest for the present 

study were those governing decay and interference. We explored a range of values and adopted the one 

offering the best performance according to the gold standard for evaluating the models (described 

below).  

 While PARSER required no modifications to work with the shallow parsing task (merely the 

addition of a mechanism for recording its “percepts” as segmentations), Perruchet (personal 
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communication) declined to offer suggestions for how it might be applied to sequencing in the bag-of-

words task. PARSER, according to Perruchet and Vinter (1998), was designed merely to build up an 

inventory of chunks rather than capture any sort of on-line usage of those chunks: “The issue addressed 

by PARSER is quite different, insofar as it concerns the creation of the lexicon (p. 252; emphasis in the 

original).” As such, we chose to focus the use of PARSER on the comprehension-related shallow 

parsing task only. Moreover, substantial changes to the model would be necessary in order to adapt it 

for use with the bag-of-words task. 

 Trigram baseline: To assess the usefulness of CBL and PARSER's variable-sized, recognition-

based chunks as opposed to simpler sequential statistics tied to prediction, an additional alternate model 

was created which lacked a chunk inventory, relying instead on FTPs computed over stored n-grams. 

Since trigram models (second-order Markov models) are commonly used in computational linguistics 

as well as the field of machine learning (Manning & Schütze, 1999), we chose to focus on three-word 

sequences. This decision was further motivated by findings that trigram models are quite robust as 

language models, comparing favorably even to probabilistic context-free grammars. Our trigram model 

acquired statistics in an incremental, on-line fashion, in the style of CBL, while simultaneously 

processing utterances through the placement of chunk boundaries.  

 If the FTP between the first bigram and the final unigram of a trigram fell below the running 

average for the same statistic, a chunk boundary was inserted. For instance, as the model encountered Z 

after seeing the bigram XY, it would calculate the FTP for the trigram by normalizing the frequency 

count of the trigram XYZ by the count of the bigram XY, and comparing the result to the running 

average FTP for previously encountered trigrams (inserting a chunk boundary if the running average 

was greater). The start-of-utterance marker made it possible for the Trigram model to place a boundary 

between the first and second words of an utterance.  

 During production attempts, which were also incremental and on-line in the style of CBL, the 
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trigram model began constructing an utterance by choosing from the bag-of-words the word with the 

highest FTP, given the start-of-utterance marker (in other words, bigram statistics were used to select 

the first word). Each subsequent word was chosen according to trigram statistics, based on the two 

most recently placed words (or the initial word and the start-of-utterance marker, in the case of 

selecting the second word in an utterance). This meant the word with the highest FTP given the two 

preceding words was chosen at each time step. 

 Thus, the Trigram baseline model is purely prediction-based, by design. For instance, during 

production, it merely predicts the next word—because there is no recognition-based component, it does 

not work with entire chunks as recognition-based entities. The PARSER model baseline, by contrast, is 

purely recognition-based.  

 

Simulation 1: Modeling Aspects of Child Comprehension and Production of 

English 

In this section, we describe CBL simulations of child language learning and processing using English 

language corpora which capture interactions between children and their caretakers. We begin by 

describing the criteria used in selecting these corpora, followed by a description of the automated 

procedure used to prepare each corpus prior to its use as input in a simulation. Following this, we report 

the results of simulations for each corpus, comparing the performance of CBL to that of the two 

baseline models. For the sake of simplicity, we report performance for comprehension- and production-

related tasks separately. 

 

Corpus Descriptions and Preparation Procedure 

In keeping with the key psychological features of the model, we initially sought to assess what could be 
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learned by CBL from the input available to individual children. We therefore selected developmental 

corpora involving single target children, rather than aggregating data across multiple corpora. From the 

English language sections of the CHILDES database (MacWhinney, 2000), we selected every corpus 

meeting the following criteria: 

 

1) Sufficient data – In order to locate corpora that had sufficient diversity in terms of both 

vocabulary and syntactic constructions, we included only those corpora which contained at least 

50,000 words. 

2) Dyadic – Because we wished to model both comprehension and production for each child, we 

selected only corpora which featured a multiword child-to-adult utterance ratio of at least 1:10. 

3) Developmental – As we sought to model the developmental progression of each child's 

language learning, we included only those corpora that spanned at least a 6-month period (in 

terms of the target child's age across the corpus). 

 

 The three criteria were met by corpora for 42 individual English-learning children (US: 25, UK: 

17). For use in subsequent analyses, we collected, for each child, the age range (mean age of 1;11 at the 

beginnings of the corpora, 3;7 at the ends), number of months spanned by the corpus (mean: 20.6), total 

number of words in the corpus (mean: 183,388), number of child utterances (mean: 20,990), number of 

multiword child utterances (mean: 12,417), number of adult utterances (mean: 33,645), child mean 

length of utterance (MLU; the mean number of morphemes per utterance; mean: 3.17), and child mean 

number of words per utterance (mean: 2.6). For the full list of corpora, see Appendix D. 

Corpus preparation: The corpora were submitted to an automated procedure whereby codes, 

tags, and punctuation marks were removed, leaving only speaker identifiers and the original sequence 

of words. To ensure that the input available to the model was representative of what children actually 
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receive, apostrophes were also removed from the corpora along with the other punctuation symbols. 

Thus, the contraction it's and the word its, for instance, were both represented orthographically as its, 

reflecting their identical phonological forms. This offered a naturalistic approach, considering 

developmental work indicating that children treat contractions as single words (cf. Tomasello, 2003). 

 Lines spanning tagged prosodic breaks, such as pauses (indicated in CHILDES by the (.) code), 

were broken into separate utterances, following research indicating that infants are sensitive to the 

suprasegmental properties of utterances, such as the acoustic correlates of clause boundaries (e.g., 

Hirsh-Pasek et al., 1987). Pauses due to hesitation (as indicated by the [/] code, etc.) were dealt with in 

the same manner. Finally, hash marks were added to the beginning of each line to signal the pause 

preceding each utterance. 

Dense UK English corpus: The corpora in the CHILDES database typically represent a small 

percentage of the input a typical child might receive during the months spanned by the recording 

sessions. To examine subtle developmental trends with the model, a denser sample may be necessary. 

For this reason, we also tested the model using a dense corpus of child-directed speech which contains 

an estimated 8-10% of the target child's total productions (the Thomas corpus, originally known as the 

Brian corpus, which is now part of CHILDES; Maslen et al., 2004).  

 The dense corpus was submitted to the same automated procedure used to prepare the other 

CHILDES corpora. The prepared corpus spanned 36 months from age 2;0 to 5;0, featured 2,437,964 

words, 225,848 child utterances, 114,120 multiword child utterances, 466,484 adult utterances, and an 

overall child MLU (in morphemes, as above) of 2.84. 

Form class corpora: A considerable amount of work in computational linguistics has assumed 

that statistics computed over form classes are superior to item-based approaches for learning about 

structure (hence the widespread use of tagged corpora). This assumption is also present throughout the 

statistical learning literature (e.g., Thompson & Newport, 2007; Saffran, 2002), but is at odds with the 
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present model, which relies on statistics computed over concrete words and chunks rather than classes. 

To evaluate the usefulness of item-based chunking and statistics against those computed over word 

classes, we ran the model and its alternates on separate versions of each corpus, in which words were 

replaced by the names of their lexical categories. This process was automatically carried out by tagging 

each corpus using TreeTagger, a widely used, probabilistic part-of-speech tagger based on decision 

trees (Schmid, 1995). The tag set used by TreeTagger was reduced to the following 12 categories: 

noun, verb, adjective, numeral, adverb, determiner, pronoun, preposition, conjunction, interjection, 

infinitive marker, and proper name. Unknown words (e.g., transcribed babbling) were marked as such. 

As we removed the punctuation from each corpus as part of the preparation procedure, contractions 

were handled straightforwardly: contractions involving verbs were classed as verbs, while possessives 

were classed as nouns. Thus, contractions were classed according to the type of phrase they 

immediately appeared in (noun vs. verb phrases). This allowed us to avoid the use of a tokenizer 

(which would reflect an assumption that children represent contractions such as don't as two separate 

words), while being motivated by psychological considerations (e.g., a child may treat an utterance 

such as that's the car similarly to see the car; the verb-like aspect of the whole contraction takes 

precedence). 

Grammaticality: The CHILDES corpora used are not marked for grammaticality. Thus, the 

present simulations do not distinguish between grammatical and ungrammatical utterances in scoring: 

as detailed below, production attempts are scored according to the same metric regardless of the 

grammaticality of the child’s original utterance. While distinguishing between performance on a child’s 

grammatical vs. ungrammatical utterances may be of interest in future work using corpora marked 

accordingly, such a project would involve a great deal of by-hand scoring by a large team of 

researchers and thus goes beyond the scope of the present work. 
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Evaluating Model Performance 

Gold standard for testing comprehension performance of model and baselines: Shallow parsing: 

As the model approximated important aspects of comprehension by segmenting the incoming input into 

semantically related, phrase-like multiword units, we evaluated the model's comprehension 

performance—as well as that of the three baseline models—against the gold standard of a shallow 

parser. Shallow parsing is a widely used technique in the field of natural language processing, which 

aims to segment text into non-hierarchical (i.e., non-embedded) phrases which are labeled according to 

phrase type. As an example, take the sentence the dog chased the cat. A shallow parser would group 

the words together into noun and verb groups: [NP the dog] [VP chased] [NP the cat]. This choice of 

gold standard reflects the psychological motivation for the model; as observed by Sanford and Sturt 

(2002), shallow parsing identifies a subset of possible analyses for a sentence rather than giving the 

type of articulated analysis created by full syntactic parsers. This is in line with the previously 

discussed evidence for underspecification in sentence comprehension, as well as the shallow processing 

approach we adopt more generally, in which chunks of local information are used to arrive at a 

semantic interpretation of a sentence. 

 For each corpus, we generated a shallow parse for all utterances using the Illinois Chunker 

(Punyakanok & Roth, 2001), a widely used shallow parser based on constraint satisfaction with 

classifiers in a probabilistic framework. Phrase tags were then removed, leaving only the original 

sequence of words segmented via the phrase boundaries placed by the parser.  

 The model's on-line comprehension performance was scored according to two measures: 

accuracy and completeness, which are analogous to precision and recall, respectively. Each boundary 

marker placed by the model was scored as a hit if it corresponded to a boundary marker inserted by the 

shallow parser, and as a false alarm otherwise. Each boundary inserted by the shallow parser which 

was not placed by the model was scored as a miss. Thus, accuracy could be calculated as the proportion 
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of hits out of all boundaries placed by the model, hits / (hits + false alarms), and completeness as the 

proportion of hits out of all boundaries placed by the shallow parser, hits / (hits + misses). To avoid 

score inflation due to trivial factors, the model was only scored on utterance-internal boundaries (i.e., 

no boundary placement decisions were made at the beginnings or ends of utterances). Single-word 

utterances were excluded to avoid inflating the comprehension scores. 

 For purposes of scoring the model's comprehension performance on the form class corpora (in 

which individual items were replace by their lexical categories), the set of phrase boundaries placed by 

the shallow parser and used as the gold standard for scoring the original corpus was overlaid on the 

corresponding form class corpus. For instance, the utterance “[the dog] [chased] [the cat],” became 

“[DET N] [V] [DET N]” in the form class version, which therefore featured identical phrase boundary 

markers. 

 As an overall measure of comprehension performance for a given simulation, we relied on the 

F-score, which is widely used as a measure of performance in the fields of information retrieval and 

machine learning (e.g., van Rijsbergen, 1979). The F-measure combines both the precision (or 

accuracy, in the current case) and recall (completeness) of a test to compute a single score. We used the 

general Fβ formula, which weights the completeness score according to β: 

 

𝐹
β = (1+β

2
) ∗ (

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∗ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠

(β
2

∗𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) + 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠
)
(1) 

 

In other words, the Fβ metric attaches β times as much importance to completeness as to accuracy.  

In our case, β is the ratio of gold standard phrase boundaries to the total number of word pairs (the 

number of possible slots for boundary insertion) across a given corpus. The choice of the Fβ metric 

reflects the need to control for score inflation stemming from trivial factors, such as over-segmentation 
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(e.g., due to data sparseness). As an example of this, consider a toy corpus which features phrase 

boundaries between exactly half of its word pairs. A model which heavily over-segments, placing 

phrase boundaries in every possible position, would receive a completeness score of 100%, and an 

accuracy score of 50%. By simply taking the harmonic mean of accuracy and completeness (what is 

known as the F1 score), the model would receive an F-score of 66.67, despite its heavy over-

segmentation. The Fβ score, on the other hand, uses the number of word pairs straddling gold standard 

phrase boundaries to appropriately weight completeness in the calculation. For the previous example 

(where β = .5), this would yield an Fβ-score of 55.56 (as opposed to the score 66.67 yielded by F1) 

thereby reducing the impact of the perfect completeness score, which was achieved through trivial 

means (segmenting the corpus to the maximum extent).  

Weighting accuracy more heavily than completeness in this way is also motivated by 

psychological considerations: phrases like go to the shop might be chunked as a single item by a child 

(as suggested by the results of Bannard & Matthews, 2008), or the model, whereas a shallow parser 

would segment it into three separate chunks: [go] [to] [the shop]. Therefore, the calculation also 

reflects the fact that accuracy, which reflects the model's ability to place boundaries that correspond to 

actual phrase boundaries (e.g., after shop or before the instead of between the and shop), may be more 

important than following the fine-grained chunking of a shallow parser (which penalizes the model 

through the completeness measure for not placing boundaries after go or to in a phrase like go to the 

store).  

Gold standard for production: Child utterances. Each utterance produced by the model is 

evaluated against the corresponding child utterance in the original corpus, according to a simple all-or-

nothing criterion: if the model's utterance matches the child utterance in its entirety, a score of 1 is 

assigned. In all other cases, a score of 0 is assigned, despite the degree of similarity between the model- 

and child-produced utterances. Thus, the overall percentage of correctly produced utterances provides 



 

44 

the sentence production performance for a given child/corpus. This represents a fairly conservative 

measure, as the model may produce sentences that are grammatical but nevertheless fail to match the 

target utterance. For example, the model may produce a sentence such as the cat chased the dog when 

the target sentence is the dog chased the cat. In such instances, the model receives a score of 0, due to 

the lack of principled and efficient way of automatically evaluating mismatching utterances that are 

nevertheless grammatical. 

Parameter selection for PARSER: Following communication with the model's creator 

(Perruchet, personal communication), we adjusted the interference and decay parameters along a wide 

range, maintaining their separation by a factor of ten (following the settings used by Perruchet & 

Vinter, 1998), and selected the one offering the best combination of accuracy and completeness. At 

higher settings (e.g., Decay: 0.001, Interference: 0.0001), the model heavily over-segmented, placing 

boundaries between 90% of words. At settings 0.0001 and 0.00001 (for decay and interference, 

respectively), the model saw substantial improvements in accuracy while segmenting at a rate 

comparable to the CBL model. Decreasing the parameters by a further factor of ten lead to slight drops 

in accuracy and completeness. Thus, for the natural language simulations, we adopted settings of 

0.0001 and 0.00001 for decay and interference, respectively. 

 

Results and Discussion: Simulating Aspects of Comprehension and Production of English 

Shallow parsing performance. Across all 43 single-child English corpora, CBL attained a mean F-

score of 75.4, while the PARSER model attained a mean F-score of 66.1. The Trigram model had a 

mean F-score of 65.9. Comprehension performance for each model is shown in Figure 3. As can be 

seen, the CBL model not only outperformed its baselines, but yielded a tighter, more uniform 

distribution of scores across the corpora.  
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Fig. 3: Boxplots depicting English shallow parsing F-scores for the CBL model and its baselines. Boxes depict the 

median (thick line), with upper and lower edges representing the respective quartiles. Whiskers depict the range of 

scores falling within 1.5 IQR of the quartiles, while dots depict outliers. 

 

 The F-scores for the model and its baselines were logit-transformed7 and submitted to a 

repeated-measures ANOVA including the factor Model (3: CBL vs. PARSER vs. Trigram) with Child 

Corpus as a random factor. This yielded a significant main effect of Model [F(2,84) = 643.3, p < 

0.0001], with post-hoc analyses confirming stronger performance for CBL compared to the PARSER 

[t(42)=35.9, p<0.0001] and Trigram [t(42)=28.3, p<0.0001] models, with no significant difference in 

                                                           

7 As the scores necessarily have both floors and ceilings, and represent proportional data, a logit transformation was applied 

prior to analysis in order to fit the assumptions of the test. 
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means between PARSER and the Trigram model [t(42)=0.49, p=0.63]. 

 In line with the developmental motivation for the model, we also examined accuracy rates 

independently. Across the 43 child corpora, CBL achieved a mean accuracy rate of 76.4%, while 

PARSER attained a mean accuracy of 65.2% and the Trigram model reached a mean accuracy rate of 

65.8%. The same general pattern was seen for completeness: CBL achieved a mean completeness of 

73.8%, while the PARSER attained a mean completeness of 68.7% and the Trigram model reached a 

mean completeness rate of 66.5%. Accuracy and completeness scores are described more fully in 

Appendix A. 

 Thus, the best combination of accuracy and completeness (as measured by the F-score), as well 

as the best accuracy and completeness overall, was achieved by CBL's statistically-based chunking for 

the English child corpora. CBL was able to approximate the performance of a shallow parser through a 

combination of recognition- and statistically-based processing in an on-line, incremental fashion 

starting with a single distributional cue. This result is encouraging, as shallow parsing is regarded as a 

nontrivial problem in the field of natural language processing (e.g., Hammerton, Osborne, Armstrong, 

& Daelemans, 2002).  

 In addition to highlighting the wealth of distributional information in the input, these results 

suggest that purely item-based information may be far more useful to early learners than has been 

assumed previously; in addition to providing the basis for discovering useful multiword sequences 

(which may later be abstracted over, as proposed by usage-based approaches more generally; e.g., 

Tomasello, 2003), statistical information tied to concrete items can help uncover chunks of local 

information necessary to interpret sentences (“phrase structure,” in most approaches), as demonstrated 

by the present model.  

 It is also worth noting that the CBL model tends to discover chunks at a coarser level of 

granularity than the shallow parser used as a gold standard, as reflected by the difference in accuracy 
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and completeness scores. As noted above, phrases like go to the shop form useful chunks for a child (as 

suggested by Bannard & Matthews, 2008), whereas the gold standard posits three separate chunks: [go] 

[to] [the shop]. Therefore, accuracy, which measures the model's ability to place boundaries 

corresponding to actual phrase boundaries, may be more useful for our purposes than completeness, 

given the fine-grained chunking of a shallow parser (as completeness would involve penalties for not 

placing boundaries after go or to in a phrase like go to the store). 

 CBL and the Trigram model may have outperformed PARSER in part because of the latter 

model's over-reliance on raw frequency of occurrence. For instance, CBL can identify high TPs 

between items which have occurred with very low frequency in the corpus: the relative, rather than 

absolute, frequency of the two items is stressed. While PARSER is indirectly sensitive to TPs, via its 

decay and interference parameters, the use of these parameters along with randomly determined percept 

sizes may requires more exposure. 

 CBL also has the additional advantage of being directly sensitive to background rates (cf. 

Ramscar, Dye, & McCauley, 2013). Words that occur extremely often in a variety of contexts have 

high background rates, which mean they are less informative about the items preceding them (or 

following them, in the case of the Trigram model). Conditional probabilities directly reflect this. 

PARSER is only indirectly sensitive to background rates, through its interference feature: items that 

occur often as parts of larger chunks will lead to decreases in the strength of chunks featuring the same 

item. However, the impact of the decay parameter on less-frequent chunks may still lead to an 

overemphasis on items with high background rates. 

 For these reasons, PARSER may ultimately be best suited to working with small, artificial 

languages which involve fairly uniform frequency distributions over items, such as those featured in 

studies to which it has previously been applied (e.g., Perruchet et al., 2002; Saffran et al., 1996).  



 

48 

Development of the chunkatory. The development of the model's knowledge over the course of 

a simulation, independently of its scored performance, may offer potential predictions on which to base 

future psycholinguistic work. To provide a snapshot of the types of sequences chunked by the model, 

we provide in Appendix B a breakdown of the most highly activated chunks in the model’s inventory at 

three separate points in development. Table B1 shows this for individual items, while Table B2 shows 

this after conversion of each chunk into lexical categories (e.g., the dog and the cat would both be 

counted as determiner noun and both contribute to the frequency count thereof).  

Briefly, as can be seen in Appendix B, the most highly activated chunks cover a range of usage 

contexts, extend beyond just noun- and verb-phrases, and have significance for connecting the model to 

existing work on the role of chunks in language development. For instance, units like I think are highly 

relevant to previous work on the role of chunks in the acquisition of finite complement structures (e.g., 

Brandt, Lieven, & Tomasello, 2010; Diessel & Tomasello, 2001), while units covering wh- formulae 

(e.g., what’s this) make contact with work on question development (e.g., Ambridge, Rowland, & Pine, 

2008; Rowland, 2007).8 In Simulation 2, below, we discuss the model’s ability to directly simulate data 

from developmental psycholinguistic studies. 

To examine the development of the chunkatory more generally, we tracked the percentage of 

stored chunks which consisted of multiple words, for chunk types as well as chunk types weighted by 

their frequency counts in the chunkatory (akin to chunk tokens). Figure 4a shows the percentage of 

multiword chunks in the chunkatory as it develops, for each of the 43 child corpora. As can be seen, the 

percentage of multiword chunk types increased logarithmically over the course of the simulations, 

leveling off below 90%. The first data point fell above 50% for all child corpora. When we weighted 

individual chunk types by their strength (frequency counts) in the chunkatory, however, we found 

                                                           
8 We thank an anonymous reviewer for suggesting that we highlight these connections with items appearing prominently in 

the chunk inventory. 
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higher percentages for single-word chunks, as shown in Figure 4b.The percentage of multiword chunk 

types, when weighted by frequency, began well below 50% at the first data point for all corpora, with 

percentages for many of the child simulations dipping within the first 20,000 utterances before rising 

sharply and then climbing more steadily. 

 

 

Fig. 4: a) Development of the English chunkatory by percentage of multiword types; b) Development of the English 

chunkatory by percentage of multiword types weighted by frequency of use. 

 

 

 The dense corpus (Thomas) shows the same pattern. To look more closely at the makeup of 

chunks we might expect the child to actively use in production, we calculated the percentage of 

multiword chunk types, weighted by frequency, which were actively used by the model during the bag-

of-words task. This is depicted in Figure 5 for the dense corpus (Thomas). 

 

Fig. 5: Percentage of multiword types weighted by frequency of use in the production task for the dense corpus of 
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English (Thomas). Each time step represents the mean percentage across 2,000 child utterances. 

 

 As can be seen, the prominence of multiword chunks in the chunkatory for the Thomas 

simulation mirrors the general pattern illustrated by Figure 4b, dipping early before rising once more. 

However, because the dense corpus extends well past the other corpora in terms of length, we were 

able to look at a more complete trajectory, which included a sharp dip followed by a more subtle 

increase which spanned the remainder of the simulation. This pattern derives from: 1) an initial period 

in which newly-encountered words are naturally chunked with preceding material owing to transition 

probabilities at or approaching 1, yielding large chunks; 2) a period in which the model gains more 

exposure to words and increasingly discovers more fine-grained units, rapidly reducing the average 

chunk size as a result; and 3) a more gradual increase in the average chunk size as the model gains 



 

51 

enough exposure to combine its knowledge of chunks through its on-line “recognition-based 

prediction” mechanism (which assists in chunk formation based on previously learned chunks, as 

described above).    

 The U-shaped curve exhibited by the model mirrors a common developmental pattern which 

has been tied to several aspects of language learning, including phonological development (Stemberger, 

Bernhardt, & Johnson, 1999), morphological development (Marcus, Pinker, Ullman, Hollander, Rosen, 

& Xu, 1992), relative clause comprehension (Gagliardi, Mease, & Lidz, submitted), and verb usage 

(Alishahi & Stevenson, 2008; Bowerman, 1982). The model's behavior therefore points to the 

prediction that children's reliance on multiword chunks may shift in similar ways to that of the model, 

and that this may have some bearing on U-shaped trajectories in other areas, such as morphological 

development. For instance, Arnon and Clark (2011) found that over-regularization errors were less 

likely when irregular plurals were produced in the context of a lexically-specific frame; the facilitatory 

role played by chunks in this area (and others) may wax and wane with the “degree of chunkedness” of 

the child's linguistic representations, consistent with preliminary findings demonstrating a U-shaped 

pattern for this over-regularization effect across children of different ages (Arnon, personal 

communication). The overall trajectory of CBL’s chunk development therefore leads to a concrete 

prediction, to be tested in future developmental psycholinguistic work. 

 In summary, multiword chunks ultimately grow in importance to the model over the course of a 

simulation, both in terms of types and in terms of tokens. In light of psycholinguistic work with adults 

(Arnon & Snider, 2010; Bannard & Ramscar, 2007), this leads us to predict that children do not merely 

“start big” by relying on larger multiword sequences which break down over time, leaving single 

words; rather, the child's memory-based processing is dynamic, and the degree to which representations 

of linguistic material are tied to multiword sequences ultimately grows in importance over time. The 

model's U-shaped reliance on weighted multiword chunks also leads us to propose that children may go 
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through periods where new knowledge of the properties of single words may lead to a decreased 

reliance on multiword sequences, only to be followed by a renewed reliance on chunked 

representations. 

Class- vs. item-based comprehension performance. As discussed above, most generative 

approaches as well as certain trends within the statistical learning literature (cf. Thompson & Newport, 

2007) have assumed that language learning is tied to word classes. For this reason, we re-ran the 43 

simulations reported above, using the form class corpora (see the corpus preparation above for a 

description of how words were converted to form classes).  

Because PARSER is sensitive to overall number of unit types it is exposed to, we found that the 

highest parameter setting we tested for natural language (0.01 for decay, and 0.001 for interference) 

provided the best trade-off between accuracy and completeness when working with form classes. 

Class- versus item-based performance for the model and its baselines is depicted in Figure 6. 

Performance for CBL was considerably worse when working with class-based statistics, with a sharp 

decrease in the mean F-score (from 75.4 to 39). For PARSER there was a far less drastic decrease in 

performance (from a mean F-score of 66.1 to 63.1). The Trigram baseline also fared worse under class-

based statistics, though with less dramatic decreases in performance. The mean F-score dropped from 

65.9 to 57.2. 

In the case of the CBL model, the lower comprehension performance when working with class 

statistics was driven both by a drop in accuracy as well as a more drastic drop in completeness scores, 

the latter owing partly to the use of the chunkatory in phrase segmentation; the relatively small number 

of possible class combinations in a sequence lead to the automatic grouping of items together (based on 

the use of the chunkatory) with increasing frequency throughout the models' pass through a corpus. As 

more combinations exceeded the average TP threshold, the models placed progressively fewer phrase 

boundaries. PARSER, however, saw a slight increase in accuracy accompanied by a decrease in 
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completeness. As PARSER was designed for use with small item sets, as discussed above, further 

experimentation with the parameter settings of PARSER may be necessary in order to improve 

performance on the form-class simulations. 

 

 Fig. 6: Boxplots depicting English comprehension performance (F-scores) for the CBL model and its baselines, 

comparing item-vs. class-based simulations. Boxes depict the median (thick line), with upper and lower edges 

representing the respective quartiles. Whiskers depict the range of scores falling within the 1.5 IQR of the quartiles, 

while dots depict outliers. 

 

 We evaluated the effects of learning from class-based information using a two-way ANOVA 

with factors Statistic Type (2: item- vs. class-based) and Model (3: CBL vs. PARSER vs. Trigram), 

with Child Corpus as a random factor, over logit-transformed F-scores. This yielded main effects of 
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Statistic Type [F(1,42) = 1562, p<0.0001], confirming stronger performance for item-based models, 

and of Model [F(2,84)=171.4, p<0.0001], with an interaction between Statistic Type and Model 

[F(2,84)=25.5, p<0.0001], due to a more drastic drop in performance for the CBL model relative to the 

baselines when working with classes. 

 Thus, a reliance on word classes did not improve the performance of the model or its baselines; 

instead, knowledge of classes lead to a decrease in performance, which was considerably more drastic 

for CBL. This result makes close contact with item-based approaches more generally (e.g., Tomasello, 

2003), suggesting that successful language learning can begin without the sort of abstract syntactic 

categories that much previous psycholinguistic and computational work has focused upon. This also 

runs counter to claims made in the statistical learning literature that children and adults use transitional 

probabilities to segment phrases by calculating statistics over word classes rather than concrete items 

(e.g., Saffran, 2002; Thompson & Newport, 2007). Indeed, we have shown elsewhere (McCauley & 

Christiansen, 2011) that comprehension through item-based learning in our model captures subject 

performance in one such study (Saffran, 2002) better than class-based learning. 

Production performance. Across all 43 single-child corpora, CBL achieved a mean sentence 

production performance of 58.5%, while the Trigram model achieved a sentence production 

performance score of 45.0%. Recall that PARSER was not compatible with the production task (for 

reasons discussed in the Methods section above). The distributions of the scores for each model are 

depicted in Figure 7. As can be seen, the overall pattern of results was similar to that seen with 

comprehension, with CBL achieving the highest mean score. 
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Fig. 7: Boxplots depicting English Sentence Production Performance scores for the CBL model and the Trigram 

baseline. Boxes depict the median (thick line), with upper and lower edges representing the respective quartiles. 

Whiskers depict the range of scores falling within 1.5 IQR of the quartiles, while dots depict outliers. 

 

 A repeated-measures ANOVA including the factor Model (2: CBL vs. Trigram), with Child 

Corpus as a random factor, yielded a significant effect of Model [F(1,42) = 514.9, p < 0.0001], 

indicating better performance for CBL.  

 Thus, CBL exhibited clear advantages over the baseline. The advantage of stored-chunks 

(which do not have to be sequenced, in and of themselves) is clear in these results. What is less clear is 

that BTPs may offer an advantage over FTPs when there is a limited, specified set of possible items 

that can follow the most recently placed item in a sequence (such as a bag-of-words, in the present 

instance). The FTP-based Trigram model simply selects, at each time step, the item combination with 

the highest frequency, since the frequency of every possible sequence is normalized by the preceding 
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item, which is fixed, as it has already been produced. The CBL model, however, through the use of 

BTPs, is sensitive to the background rate (discussed above; cf. Ramscar et al., 2013) of the candidate 

items: items that occur more often in contexts other than the present one will not be selected. 

Production summary and discussion. CBL not only outperformed its baselines in reproducing 

child utterances, but was able to produce the majority of the target utterances it encountered, with a 

mean score of nearly 60% based on our conservative all-or-nothing measure of production 

performance. This not only underscores the usefulness of chunks and simple statistics such as BTPs, 

but serves to demonstrate that the same sources of information can be useful for learning about 

structure at multiple levels: a single distributional statistic (BTP) can be used to segment words when 

calculated over syllables (e.g., Pelucchi et al., 2009), to discover multiword sequences (or perhaps even 

“phrase structure”) when calculated over words (demonstrated by the present model), and to construct 

utterances when calculated over stored multiword chunks themselves (demonstrated in the current 

section). 

 Despite this success, the model nevertheless failed to account for 40% of the child utterances, a 

significant proportion, and yielded a less dramatic advantage over its baseline than was the case with 

comprehension. This pattern of results, when considered alongside the idea of shallow processing as a 

central feature of a child's language comprehension, has immediate implications for the 

comprehension/production asymmetry in children, insofar as it stems from differing task demands. 

Through shallow processing of the sort captured by the model, a child can give the appearance of 

having utilized a construction (such as a transitive construction in canonical word order) in 

comprehension while still lacking the sequential knowledge to use it in production. This is especially 

true if one considers specific aspects of shallow processing in adults, as well as its ubiquitous nature in 

language comprehension more generally. Take, for instance, passive sentences. Ferreira (2003) found 

that when adults were exposed to anomalous sentences using passive constructions (“The dog was 
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bitten by the man”) many readers utilized global pragmatic information rather than the passive 

construction to identify agents and patients of actions, and gave higher plausibility ratings than for the 

same content given in active voice (i.e., they interpreted the passive sentence as meaning that the dog 

bit the man). If even adults rely as much on local information, pragmatic expectations, and background 

world knowledge to interpret sentences as on the actual constructions used in the sentence, it seems 

likely that children also will depend on such information, giving the appearance of having fully 

exploited a grammatical construction when in actuality they merely interpreted the utterance at a more 

superficial level. 

 Under such a view, children may understand specific utterances utilizing passive voice without 

having mastered the passive construction. By contrast, to correctly sequence the words (or word 

chunks) in a passively voiced sentence, the child would necessarily need to have substantial knowledge 

of the passive construction schema (such as PATIENT is ACTION by AGENT) as well as knowledge of 

the pragmatic motivations for using it (for a model which learns to produce sentences using such 

semantic role information, see Chang, Dell, & Bock, 2006). Thus, shallow processing allows a child to 

make a great deal of progress towards understanding language input merely on the basis of an ability to 

chunk parts of utterances and form associations between those chunks and concrete parts of the world, 

as well as event schemas or scenarios; it is in the sequencing of those chunks that the problem of 

production becomes more difficult than that of comprehension. This idea is explored further using the 

CBL model by Chater et al. (2016). 

 The relationship between comprehension- and production-related processes in the model is 

especially relevant in light of current theoretical perspectives that view comprehension as 

fundamentally tied to prediction in ways that are mediated by production itself (e.g., Martin, Branzi, & 

Bar, 2018; Pickering & Gambi, 2018). Future work should aim to more fully integrate production- and 

comprehension-related processes in the model in order to explore such perspectives in the context of 
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child language development.  

Interim summary: Learning English. We have shown that the CBL model is able to 

approximate shallow parsing through the incremental, on-line discovery and processing of multiword 

chunks, using simple statistics computed over local information. The model is able to use the same 

chunks and statistics to produce utterances in an incremental fashion, capturing a considerable part of 

children's early linguistic behavior in the process. This is achieved through item-based learning, 

without recourse to abstract categorical information such as that of word classes. When the model 

learns class-based statistics, its ability to segment useful chunks is impaired. Furthermore, the 

development of the model's chunk inventory offers the novel prediction that subtle shifts in the “degree 

of chunkedness” of children's linguistic units may impact on other areas of language development. 

Finally, the model, which combines chunking with statistical cues, compares favorably to exclusively 

recognition-based and exclusively prediction-based baselines. 

 

Simulation 2: Modeling the Development of Complex Sentence Processing Abilities 

Whereas the previous simulations examined the ability of CBL to discover building blocks for 

language learning, in the present section we investigate the psychological validity of these building 

blocks. Previous modeling work has demonstrated the ability of CBL to fit developmental 

psycholinguistic data related to children’s chunk-sensitivity and morphological development (cf. 

McCauley & Christiansen, 2014a), while work by other researchers has demonstrated the psychological 

validity of CBL’s chunk discovery using reaction time patterns (Grimm et al., 2017). 

In the present section, we report simulations of empirical data covering children's ability to 

process complex sentence types (Diessel & Tomasello, 2005). Usage-based approaches predict that 

stored chunks play an integral role in the development of complex grammatical abilities (e.g., 
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Christiansen & Chater, 2016a; Tomasello, 2003), which have been argued to emerge from abstraction 

over multiword sequences (e.g., Goldberg, 2006; for models, see Kolodny et al., 2015; Solan et al., 

2005).  

 Nevertheless, there is strong evidence of a role for concrete multiword chunks in adult 

processing of grammatically complex sentences, such those featuring embedded relative clauses (e.g., 

Reali & Christiansen, 2007), which in turn suggests that children's ability to comprehend and produce 

complex sentences should be influenced by the same type information. If this holds true, and if CBL 

provides a reasonable approximation of children's discovery and use of chunks, the model should be 

able to offer some insight into the development of complex grammatical abilities, despite its lack of 

abstract grammatical knowledge. In order to test this notion, we used CBL to model children's ability to 

produce different relative clause types (Diessel and Tomasello, 2005), as a great deal of previous 

developmental work on grammatically complex sentences has focused on relative clause constructions 

(see Christiansen & Chater, 2016a, for a review).  

 This particular study was chosen because its stimuli were designed to reflect the types of 

relative constructions children actually produce in spontaneous speech (specifically, those that attach to 

either the predicate nominal of a copular clause, or to an isolated head noun; Diessel, 2004; Diessel & 

Tomasello, 2000). Prior to this study, developmental work on relative clauses focused mainly on 

sentence types which children rarely produce spontaneously, and which therefore may not adequately 

reflect children's grammatical knowledge (e.g., Hamburger & Crain, 1982; Keenan & Hawkins, 1987; 

Tavakolian, 1977). Of further importance is the study's focus on children's production abilities as 

opposed to just comprehension; because the stimuli consisted of whole sentences, this allowed us to 

model child performance using the entire model architecture (comprehension as well as production). 

 Using a repetition paradigm, Diessel and Tomasello exposed a group of UK English-speaking 
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children (mean age: 4;7) to sentences featuring one of six relative clause types: subject relatives 

featuring intransitive verbs (S), subject relatives featuring transitive verbs (A), direct-object relatives 

(P), indirect-object relatives (IO), oblique relatives (OBL), and genitive relatives (GEN). An example 

of each relative clause type is shown in Table 2. Following exposure to a sentence, the child was 

prompted to repeat it to the experimenter. The authors found that children's ability to reproduce the 

relative clauses closely mirrored the similarity of each clause type to simple non-embedded sentences 

(with the greatest accuracy for subject relatives).  

Table 2 

Relative Clause Types from Diessel and Tomasello (2005) 

 

Type Example 

S There’s the boy who played in the garden yesterday.  

A That’s the man who saw Peter on the bus this morning.  

P That’s the girl who the boy teased at school this morning.  

IO There’s the girl who Peter borrowed a football from.  

OBL That’s the dog that the cat ran away from this morning.  

GEN That’s the woman whose cat caught a mouse yesterday.  

 

Method. We began by exposing CBL to a corpus of UK English. As the original English study 

was conducted in Manchester, we focused on the dense Thomas corpus (which was recorded in 

Manchester; Maslen et al., 2004). Following exposure to the corpus, CBL was presented with the same 

test sentences heard by children in the original study. Immediately following comprehension on a given 

test sentence, the model simulated a repetition trial by attempting to produce the utterance (using the 

bag-of-words task in an identical manner to the child utterances in our original natural language 

simulations). If the utterance produced by the model matched the target utterance in its entirety, a score 

of 1 was assigned; otherwise, a score of 0 was assigned. 
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 To order the test items, we used the same randomization procedure as was used in the original 

study: items were organized into four consecutive blocks of six randomly chosen sentences, with the 

constraint that each block included one sentence from each condition (Diessel, personal 

communication). This randomization allowed for small individual differences to arise between 

simulations (21 in total; a different randomization/simulation pair for each child in the original study).  

 Results and discussion. The children in the original study achieved the following correct 

response rates, as shown in Figure 8: 82.7% (S), 59.5% (A), 40.5% (P), 31% (IO), 31.5% (OBL), and 

2.5% (Gen). As also shown in Figure 8, correct response rates for the model were 77.4% (S), 48.8% 

(A), 75% (P), 39.3% (IO), 34.5% (OBL), and 16.7% (GEN). As can be seen, the model followed the 

same general pattern as the children in the original study, with the exception of its performance on P-

Relatives, which was almost as high as its performance on S-Relatives. 

 

Fig. 8: Mean correct response rates for CBL model and the child subjects in Diessel & Tomasello (2005). Error bars 

denote 2x standard error. 
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 That the model was able to mirror the child repetition performance for most of the clause types 

is unexpected, considering its complete lack of semantic/pragmatic information or distributional 

information spanning non-adjacent chunks. Previous connectionist modeling work has successfully 

captured data from the Diessel and Tomasello study by incorporating structured meaning 

representations (Fitz & Chang, 2008). While this work is somewhat limited in that it involves the use of 

hand-generated datasets as input rather than child-directed speech, it nonetheless suggests a crucial role 

for meaning in explaining processing differences across relative clause types, a role which is 

emphasized in subsequent modeling work on subject-auxiliary inversion in question formation (Fitz & 

Chang, 2017). Following such work, we view the incorporation of meaning as a key future challenge in 

the extension of distributional models such as CBL (this challenge is further discussed below; see also 

McCauley & Christiansen, 2014b). 

 Despite the model's decent fit to the child data for 5 of the 6 relative clause types, its over-

performance on the P-Relatives serves as a reminder of the limits of a purely distributional approach; 

semantics obviously plays a role not only in children's on-line chunking of test utterances upon first 

exposure (corresponding to the comprehension side of the model), but their incremental production 

during repetition attempts (corresponding to the sequencing stage of production in the model), and their 

recall of chunks throughout both (corresponding to recognition-based processing during comprehension 

and the retrieval stage of production in the model). As the model receives no input related to semantic 

roles, it received no information on the patient role of the main clause subject within the P-Relatives, 

and hence no interference from its deviation from the agent-action-patient sequence most commonly 

encountered in simple non-embedded sentences. Instead, the model relied on purely item-based 

similarity or dissimilarity to sentences in the child-directed speech it initially learned from. Moreover, 
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the model's high performance on P-Relatives might also stem in part from the nature of its input: P-

Relatives may be even more common in English child-directed speech than A- and S-Relatives. In an 

analysis by Diessel (2004), 56.8% of all relative clauses produced by four English-speaking parents 

were P-Relatives, while 35.6% were S- or A-relatives, 7.6% were OBL-Relatives, whereas IO- and 

GEN-Relatives did not occur.  

 Diessel and Tomasello (2005), in accord with usage-based approaches, propose that young 

children's ability to produce relative clauses depends on the degree of similarity between the type of 

relative clause and simple non-embedded sentences of the sort encountered most often in child-directed 

speech (an idea which has received considerable empirical support in recent years; e.g., Brandt, 

Diessel, & Tomasello, 2008; see Christiansen & Chater, 2016a, for a review). This stands in contrast to 

the hypothesis that the distance between filler and gap determines processing difficulty (Wanner & 

Maratsos, 1978), which initially sought to explain the well-documented phenomenon of greater 

processing difficulty for object relative as opposed to subject relative clauses (as demonstrated in 

Dutch, English, and French; Wanner & Maratsos; 1978, Frauenfelder, Segui, & Mehler, 1980; Holmes 

& O’Regan, 1981; Ford, 1983; Frazier, 1985; King & Just, 1991; Cohen & Mehler, 1996; though see 

also Brandt, Kidd, Lieven, & Tomasello, 2009). Under this view, object relatives cause more 

difficulties than subject relatives because they feature a greater distance between filler and gap, and the 

filler must be retained in working memory until the gap is encountered. The distance between filler and 

gap has also been hypothesized to play a role in the ease of acquisition of relative clauses, favoring 

relative clauses with a short distance between filler and gap (e.g., de Villiers et al., 1979; Clancy, Lee, 

& Zoh, 1986; Keenan & Hawkins, 1987).  

 In CBL, both comprehension and production rely on statistics computed over adjacent chunks; 

the model has no “working memory,” and thus no sensitivity to the distance between filler and gap in 
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relative clause constructions. Nevertheless, we observe better performance on the S-Relatives (for 

which the distance between filler and gap is the smallest) than other relative clause types. At the same 

time, CBL fits the pattern of better performance on the S- than A-Relatives exhibited by the children in 

the original study; as Diessel and Tomasello note, the distance between filler and gap cannot account 

for this result, as the distance is the same in both relative clause types. Furthermore, we observed the 

worst performance with GEN-Relatives (again, a pattern exhibited by the child subjects), despite the 

small distance between filler and gap for these sentences. Our results therefore have a direct bearing on 

the filler-gap hypothesis, beyond merely reinforcing Diessel and Tomasello's findings, suggesting that 

children's item-specific knowledge may play a greater role in relative clause processing than working 

memory constraints (see Christiansen & Chater, 2016a; MacDonald & Christiansen, 2002; McCauley 

& Christiansen, 2015, for extensions of this perspective to individual differences in adult relative clause 

processing). 

 The results of this simulation also allow us to derive a novel prediction from the model: the very 

factor driving the model's performance, item-based statistics computed over adjacent chunks, may well 

be a factor in the apparent ease with which children learn to produce certain kinds of sentences while 

encountering difficulties in learning to produce others. Indeed, previous evidence from children's 

elicited question formation indicates a role for such surface distributional statistics (Ambridge, 

Rowland, & Pine, 2008). This prediction can be tested further with a simple repetition paradigm such 

as that used by Diessel and Tomasello, using stimuli which systematically pit adjacent chunk statistics 

against statistics derived from large corpora of child and child-directed speech, in such a way that local 

information conflicts with the global properties of coherent target utterances. 

 

Modeling Child Comprehension and Production across a Typologically Diverse 
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Array of Natural Languages 

We have shown that CBL can capture a considerable part of children's early linguistic behavior, in 

addition to making close contact with developmental psycholinguistic data from a key study on 

children's item-based distributional learning. Nevertheless, these findings—like most of the 

psycholinguistic findings forming the basis for the model—are based entirely on the use of English 

data; the computational approach we have adopted may not actually characterize aspects of learning 

held in common by learners of typologically different languages. In the next series of simulations, we 

explore the question of whether the model can extend beyond English to cover a typologically diverse 

set of languages. 

 The goal of attaining broad, cross-linguistic coverage extends beyond merely building support 

for the model; we aim to address certain limitations of the psycholinguistic literature. For instance, a 

potential problem with the view of multiword chunks as an important feature of language use is that 

most of the directly supporting psycholinguistic evidence has been gathered from English-speaking 

subjects. Importantly, English is an analytic language; it has a low ratio of words to morphemes, 

relative to synthetic languages, which have higher ratios due to the many ways in which morphemes 

can be combined into words. What may apply to arguments about unit size in the learning of analytic 

languages (such as Mandarin or English) may not apply to the learning of synthetic languages (such as 

Tamil or Polish), and vice versa. It is therefore essential to test the predictions of both CBL and 

previous empirical work with English-speaking subjects by modeling chunk-based learning across a 

typologically diverse set of languages. The breadth of material in the CHILDES database 

(MacWhinney, 2000) makes it possible to test the model on a typologically diverse array of languages. 

 Following a description of the corpora used to simulate learning cross-linguistically, we report 

comprehension performance for the languages for which an automated scoring method was available. 
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We then report sentence production performance for 28 additional languages. 

 

Corpus Selection and Preparation 

Corpora were selected from the CHILDES database (MacWhinney, 2000), and covered a typologically 

diverse set of languages, representing 15 genera from 9 different language families (Haspelmath, 

Dryer, Gil, & Comrie, 2005). As with the English simulations, we sought to assess what could be 

learned by CBL from the input available to individual children. We therefore selected, once more, 

developmental corpora involving single target children, rather than aggregating data across multiple 

corpora. However, due to the limited availability and size of corpora representing several of the 

languages in the CHILDES database (MacWhinney, 2000), we relaxed our criteria somewhat. Thus, we 

used corpora that met the following criteria: 

 

1) Sufficient data – As we sought to use corpora of a sufficient density to offer input of 

representative diversity in terms of both vocabulary and sentence types, we included only those 

corpora which contained at least 10,000 words. 

2) Dyadic – Because we wished to model production for each child, we selected only corpora 

which featured at least 1000 multiword child utterances, with a multiword child-to-adult 

utterance ratio of no less than 1:20. 

 

 These criteria were met by corpora for 160 individual children (Afrikaans: 2, Cantonese: 8, 

Catalan: 4, Croatian: 3, Danish: 2, Dutch: 12, Estonian: 3, Farsi: 2, French: 15, German: 22, Greek: 1, 

Hebrew: 6, Hungarian: 4, Indonesian: 8, Irish: 1, Italian: 8, Japanese: 10, Korean: 1, Mandarin: 7, 

Polish: 11, Portuguese: 2, Romanian: 1, Russian: 2, Sesotho: 3, Spanish: 11, Swedish: 5, Tamil: 1, 
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Welsh: 6). We recorded, for each child, the age range (mean age of 1;11 at the beginnings of the 

corpora, 3;10 at the ends), the number of months spanned by the corpus (mean: 23), the total number of 

words in the corpus (mean: 103,555), the number of child utterances (mean: 14,248), the number of 

multiword child utterances (mean: 7,552.7), the number of adult utterances (mean: 23,207), the 

multiword child-to-adult utterance ratio (mean: 0.49), and the mean words per child utterance (overall 

mean: 2.3). Since a method for automated morpheme segmentation was not available for all 28 

languages, we do not include MLU calculations. For the full list of corpora (including references), see 

Appendix D. 

 The final set of 28 languages (including English, 29) differed typologically from one another in 

a number of important ways. Four dominant word orders were represented: SVO (18), VSO (2), SOV 

(4), and no dominant order (5; Haspelmath et al. 2005). The languages varied widely in their 

morphological complexity, ranging from languages with no morphological case marking (e.g., Sesotho; 

Demuth, 1992) to languages with 10 or more cases (e.g., Estonian; Haspelmath et al., 2005). Table 3 

shows the family, genus, dominant word order, and number of cases for each of the 28 languages, in 

addition to English. 

Table 3 

Typological Properties of the 29 Languages 

Language Family Genus 
Word 

Order 
# Cases 

Irish Indo-European Celtic VSO 2 

Welsh Indo-European Celtic VSO 0 

English Indo-European Germanic SVO 2 

German Indo-European Germanic N.D. 4 

Afrikaans Indo-European Germanic N.D. 0 

Dutch Indo-European Germanic N.D. 0 

Danish Indo-European Germanic SVO 2 

Swedish Indo-European Germanic SVO 2 

Greek Indo-European Greek N.D. 3 
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Farsi Indo-European Iranian SOV 2 

Romanian Indo-European Romance SVO 2 

Portuguese Indo-European Romance SVO 0 

Catalan Indo-European Romance SVO 0 

French Indo-European Romance SVO 0 

Spanish Indo-European Romance SVO 0 

Italian Indo-European Romance SVO 0 

Croatian Indo-European Slavic SVO 5 

Russian Indo-European Slavic SVO 7 

Polish Indo-European Slavic SVO 7 

Estonian Uralic Finnic SVO 10+ 

Hungarian Uralic Ugric N.D. 10+ 

Sesotho Niger-Congo Bantoid SVO 0* 

Hebrew Afro-Asiatic Semitic SVO 0 

Tamil Dravidian S. Dravidian SOV 7 or 8** 

Indonesian Austronesian Malayic SVO 0 

Cantonese Sino-Tibetan Chinese SVO 0 

Mandarin Sino-Tibetan Chinese SVO 0 

Korean Korean Korean SOV 7 

Japanese Japanese Japanese SOV 9 

Note: Information from Haspelmath et al. (2005), except where noted otherwise 

*Demuth, 1992 

**Schiffman, 1999 

 

 We sought to gauge the morphological complexity of the languages quantitatively, thereby 

placing them on an analytic/synthetic spectrum (Greenberg, 1960). Analytic languages such as 

Mandarin or English have a low morpheme-to-word ratio, whereas synthetic languages like Polish or 

Hungarian have a high morpheme-to-word ratio. We therefore carried out an analysis of the type/token 

ratio for each language (following Chang et al., 2008). This allowed us to approximate the morpheme-

to-word ratio differences between languages without the aid of an automated method for morpheme 

segmentation: Morphological richness mirrors type/token ratio in the sense that morphologically 

complex languages yield a greater number of unique morpheme combinations, and thus a higher 
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number of unique word types, relative to the number of tokens, whereas analytic languages rely on a 

smaller number of unique morpheme combinations.  
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 Thus, type/token ratio was used to compute a Morphological Complexity score for each 

language. For the type/token ratio calculation, we used only the adult utterances in the included 

corpora. Because type/token ratios are highly sensitive to the size of speech samples, we controlled for 

the lengths of individual corpora by calculating the mean type/token ratio per 2,000 words across all 

corpora representing a given language. The results of these calculations are depicted on an 

analytic/synthetic spectrum in Figure 9, and demonstrate the wide variation of the 29 languages, 

including English, in terms of morphological complexity. While some languages had relatively low 

Morphological Complexity scores (e.g., Cantonese), others had much higher scores (e.g., Tamil), and 
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others had scores falling between the two (e.g., Sesotho).9 

 

Fig. 9: Morphological Complexity scores for each of the 29 languages. 

 

 

                                                           
9 While type/token ratios allow us to gain a rough estimate of morphological complexity across all languages in the 

CHILDES database, the method is nonetheless highly sensitive to the properties of individual corpora. Note, for instance, 

that Catalan and Spanish diverge based on type/token ratio despite close similarities between the two languages. There is 

less data available for Catalan, and the four corpora which met our selection criteria have a lower mean target child age than 

the Spanish corpora – such factors will impact type/token ratio independently of the morphological properties of the 

language. Thus, these scores are meant merely to provide a very rough estimate of morphological richness. 
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Simulation 3: Modeling Child Comprehension of French and German 

Shallow parsers (providing a gold standard for comprehension performance) were only available to us 

for two of the additional languages: French and German. TreeTagger (Schmid, 1995) was used to 

evaluate comprehension-related performance (through shallow parsing) for both languages. In this 

section, we report shallow parsing performance for French and German CBL simulations. Fifteen 

French and 22 German child corpora in the CHILDES database met our selection criteria and were 

used to simulate aspects of comprehension and production in exactly the same model architecture as 

used in the English simulations (as was also the case for the baseline models). 

French: Comprehension performance. Across all 15 French single-child corpora, CBL 

achieved a mean F-score of 71.6, while the PARSER model reached a mean F-score of 64.4. The 

Trigram model attained a mean F-score of 59.0. Comprehension performance for each model is shown 

in Figure 10. As with the English simulation, the model not only outperformed its baselines, but 

yielded a tighter, more uniform distribution of scores. 
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Fig. 10: Boxplots depicting shallow parsing F-score (%) for the CBL model and its baselines for the French 

simulations. Boxes depict the median (thick line), with upper and lower edges representing the respective quartiles. 

Whiskers depict the range of scores falling within 1.5 IQR of the quartiles, while dots depict outliers. 

 

The F-scores for the model and its baselines were logit-transformed and submitted to a repeated-

measures ANOVA including the factor Model (2: CBL vs. PARSER vs. Trigram), with Child Corpus 

as a random factor. This yielded a significant effect of Model [F(2,26) = 214.6, p < 0.0001], with post-

hoc analyses confirming stronger performance for CBL compared to the PARSER [t(14)=14.33, 

p<0.0001] and Trigram [t(14)=15.72, p<0.0001] models, as well as for PARSER compared to the 
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Trigram model [t(14)=11.99, p=0.0001]. 

 As with the English simulations, we followed up this analysis by examining accuracy 

separately. Across the 15 child corpora, CBL attained a mean accuracy rate of 72.0%, while the 

PARSER model attained a mean accuracy rate of 61.8%. The Trigram model attained a mean accuracy 

rate of 57.0%. For completeness, CBL attained a mean score of 70.8%, while the PARSER model 

attained a mean completeness rate of 73.5%. The Trigram model attained a mean completeness rate of 

66.1%. Detailed analysis of accuracy and completeness scores are provided in Appendix A. 

 Therefore, similar to our English simulations, the best combination of accuracy and 

completeness (as measured by the F-score), as well as the best accuracy specifically, was achieved by 

CBL for the French child corpora. 

 German: Comprehension performance. Across all 22 single-child corpora, CBL attained a 

mean F-score of 75.7, while the PARSER model attained a mean F-score of 73.4. The Trigram model 

reached a mean F-score of 67.4. Though CBL once more attained the highest scores, its performance 

advantage over the PARSER model was markedly smaller than in the English and French simulations. 

The distributions of scores for the model and its baselines are shown in Figure 11. 
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Fig. 11: Boxplots depicting shallow parsing F-score (%) for the CBL model and its baselines for the German 

simulations. Boxes depict the median (thick line), with upper and lower edges representing the respective quartiles. 

Whiskers depict the range of scores falling within 1.5 IQR of the quartiles, while dots depict outliers. 

 

The F-scores for the model and its baselines were once more logit-transformed and submitted to a 

repeated-measures ANOVA, including the factor Model (3: CBL vs. PARSER vs. Trigram), with Child 

Corpus as a random factor. This yielded a significant effect of Model [F(2,40) = 69.43, p < 0.0001], 
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with post-hoc analyses confirming stronger performance for CBL compared to the PARSER 

[t(21)=2.78, p<0.05] and Trigram [t(21)=17.67, p<0.001] models, as well as for PARSER compared to 

the Trigram model [t(21)=6.8, p=0.0001]. 

 As with the English and French simulations, we followed up this analysis by examining 

accuracy separately. Across the 22 child corpora, CBL attained a mean accuracy rate of 78.0%, while 

PARSER attained a mean accuracy rate of 69.4%. The Trigram model attained an accuracy of 70.5%. 

For completeness, CBL attained a mean score of 72.2%, while PARSER attained a mean completeness 

of 83.5%. The Trigram model attained a completeness of 62.9%. Accuracy and completeness scores are 

analyzed in Appendix A. 

 Thus, as with our English and French simulations, the best accuracy, as well as the best 

combination of accuracy and completeness (as measured by the F-score), was achieved by CBL across 

the German child corpora. PARSER tended to segment more heavily than with English and French, 

leading to a drop in accuracy, relative to baselines, and a boost in completeness.   

 Comparing CBL's French and German shallow parsing performance to English 

performance: The CBL model's performance was highly similar across English, French, and German. 

Beyond outperforming baseline models on all three languages (both in terms of Accuracy and in terms 

of the overall F-score), the model yielded mean scores which were highly similar across languages: 

mean F-scores of 75.4 (English), 71.6 (French), and 75.7 (German) were achieved, alongside mean 

Accuracy rates of 76.4 (English), 72 (French), and 78 (German) and mean completeness scores of 73.8 

(English), 70.8 (French), and 72.2 (German). 

 Thus, the model's ability to group related words together in an incremental, on-line fashion was 

remarkably stable across the three languages, despite important differences along a number of 

dimensions such as morphological complexity (French and German are morphologically richer than 

English) and word order (while English and French have an SVO word order, German has no dominant 
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word order). This result offers important cross-linguistic support not only for the importance of 

multiword sequences, but for memory-based (as opposed to purely predictive) on-line learning as well 

as the plausibility of shallow linguistic processing based on local information. 

 Class-based simulations. We sought to test our item-based approach cross-linguistically by 

once more creating form class corpora from the single-child corpora used in the French and German 

simulations (using the same corpus preparation procedure described for English). We then tested the 

comprehension performance of the model and its baselines when learning from class-based statistics. 

 Figures 10 and 11 also compare class- and item-based F-scores for comprehension across the 

French and German corpora. For CBL, performance was considerably worse when working with class-

based statistics, with a sharp decrease in the mean F-score for both French (from 71.6 to 53.5) and 

German (from 75.7 to 39.1). For PARSER, there was a similar decrease in performance for German 

(from 73.4 to 67.5), but an increase in score for French, from a mean F-score of 64.4 to 68.6. In the 

case of CBL, the lower comprehension performance when working with class statistics was driven by a 

drastic drop in completeness scores (French: from 70.8 to 29.9; German: from 72.2 to 21.4), owing 

partly to the use of the chunkatory in phrase segmentation; the relatively small number of possible class 

combinations in a sequence lead to the automatic grouping of items together (based on chunkatory 

searches) with increasing frequency throughout the models' pass through a corpus. As more 

combinations exceeded the average TP threshold, the models placed progressively fewer phrase 

boundaries. For CBL there were less drastic changes in accuracy (French: from 72 to 75.4; German: 

from 78 to 68.9). 

 PARSER actually increased French F-scores under class-based information, owing to an 

increase in accuracy (from 61.8 to 71.9), though with a drop in completeness (from 73.5 to 60.5), while 

German scores decreased due to a drop in completeness (from 83.5 to 56.9), while accuracy scores 

increased (from 69.4 to 74.8). 
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The Trigram baselines showed less drastic changes in performance: the mean F-score rose for 

French (from 59 to 66.2) while decreasing slightly for German (67.4 to 66). Though accuracy scores 

increased for sharply French (from 57 to 73.9), completeness dropped (from 66.1 to 51.5). German 

accuracy increased (70.5 to 76.9) while completeness also dropped (from 62.9 to 53.1). 

 We evaluated the effects of learning from French class-based information using a two-way 

ANOVA with factors Statistic Type (2: item- vs. class-based) and Model (3: CBL vs. PARSER vs. 

Trigram), with Child Corpus as a random factor, over logit-transformed F-scores. This yielded main 

effects of Statistic Type [F(1,14) = 6.09, p<0.05], confirming stronger performance for item-based 

models, and of Model [F(2,28)=19.91, p<0.0001], with an interaction between Statistic Type and Model 

[F(2,28)=348.4, p<0.0001], due to a more drastic drop in performance for the CBL model relative to 

the baselines when working with classes. 

 We also evaluated the effects of learning from German class-based information using a two-

way ANOVA with factors Statistic Type (2: item- vs. class-based) and Model (3: CBL vs. PARSER vs. 

Trigram), with Child Corpus as a random factor, over logit-transformed F-scores. This yielded main 

effects of Statistic Type [F(1,21) = 243.4, p<0.0001], confirming stronger performance for item-based 

models, and of Model [F(2,42)=324, p<0.0001], with an interaction between Statistic Type and Model 

[F(2,42)=301.3, p<0.0001], due to a more drastic drop in performance for the CBL model relative to 

the baselines when working with classes. 

 As was the case with the English simulations, a reliance on word classes did not improve the 

performance of the model; instead, the use of classes leads to a decrease in performance. Though 

performance did increase for the baseline models when using French class-based information, CBL still 

yielded the strongest performance out of all simulations in its original item-based form. This result 

reaffirms the item-based approach, as well as the broader notion that initial language learning can take 

place without abstract syntactic categories. This also resonates with our previous simulation of child 
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artificial grammar learning (McCauley & Christiansen, 2011), casting further doubt on to claims that 

children and adults can use transitional probabilities to segment phrases by calculating statistics over 

word classes (e.g., Saffran, 2002; Thompson & Newport, 2007) rather than concrete items.  

 Chunk inventory characteristics across all 29 languages: While shallow parsing 

performance could only be automatically evaluated for English, French, and German, we nevertheless 

sought to explore differences in the development of the chunk inventory across the full set of 

languages. For each simulation, we separated the input corpus into 5 bins of equal size and plotted, 

separately for each bin, the percentage of actively used chunk types (weighted by frequency) consisting 

of multiple words (as in Figure 5). The outcome is depicted in Figure 12, organized based on the 

Morphological Complexity scores described above. 
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Fig. 12: Percentage of multiword chunk types weighted by frequency of use for: a) languages with high 

Morphological Complexity scores; b) languages with intermediate Morphological Complexity scores; c) languages 

with low Morphological Complexity scores; d) the overall mean across all 29 languages.10 

  

As can be seen, there is considerable variation across languages. While the overall mean across bins 

                                                           
10 Romanian was excluded from Figure 12 as it constituted an extreme outlier, with mean percentages of 83%, 11%, 19%, 

38%, and 38% for each of the five successive bins. 
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roughly follows the U-shaped pattern observed for English, as do many of the individual languages, 

some of the languages (including two of the most morphologically rich: Korean and Hungarian) exhibit 

an inverted U-shape. The most consistent trend overall is that multiword chunk prominence increases 

over time, although some languages with extremely small corpora (Tamil, Catalan) exhibit the opposite 

pattern. Variation in corpus size is ultimately a limiting factor, and future work focusing on specific 

languages will be needed to determine the extent to which these differences stem from typological 

factors versus cultural differences in usage patterns versus individual differences across specific 

children and caretakers.  

Additionally, we examined the relationship between morphological richness of the input 

language and the mean size of chunks (in words) discovered by the model. Unsurprisingly, there was a 

clear relationship between the two, as depicted in Figure 13. 

  

Fig. 13: Scatterplot depicting the relationship between mean chunk size and Morphological Complexity Scores of the 
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29 languages. Trendline derived from simple linear regression. 

 

 As can be seen, higher Morphological Complexity Scores predicted mean chunk size in the 

expected direction. However, this relationship was only marginally significant (β=-0.2, t=-2.05, 

p=0.051, R2=0.134). Thus, there are clearly additional typological and usage differences across 

languages and individuals which go beyond morphological complexity (as estimated indirectly through 

type-token ratio) in determining the size of chunks discovered by the model.    

 Case study: Learning grammatical gender: Cross-linguistically, children master grammatical 

gender quite early in development (e.g., Slobin, 1986), and rarely make the sort of gender agreement 

errors often made by second language learners (e.g., Rogers, 1987; Holmes & de la Bâtie, 1999). Such 

findings resonate with the proposal that children treat article-noun pairs as single units (e.g., 

MacWhinney, 1978; Carroll, 1989), an idea which receives support from item-based patterns observed 

in children's use of articles (e.g., Mariscal, 2008; Pine & Lieven, 1997). More recently, Arnon and 

Ramscar (2012) used an artificial language learning paradigm to test the idea that learning article-noun 

pairings as chunks imparts an advantage in the learning of grammatical gender. They found that 

subjects receiving initial exposure to unsegmented article-noun sequences, which was only later 

followed by exposure to the noun labels in isolation, exhibited better mastery of grammatical gender in 

the artificial language at test than did those subjects who underwent the very same exposure phases in 

reverse order. 

 The findings of Arnon & Ramscar (2012), as well as children's item-based patterns in article 

usage and the apparent ease with which they master grammatical gender more generally, lead us to 

examine the model's ability to construct the right article-noun pairings during production. While CBL 

does not possess chunks arrived at via under-segmentation (the model initially recognizes articles and 

nouns as separate entities by virtue of the fact that the input corpora are in the form of words), the 
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model may nevertheless learn to chunk articles and nouns together, leading to an item-based mastery of 

grammatical gender. To explore the model's learning of grammatical gender and determine whether its 

production of article-noun pairs exhibits the early mastery demonstrated by children, we analyzed the 

model's productions from the simulation involving the largest German corpus from CHILDES (Leo). 

We found that the model's article-noun pairings were correct over 95% of the time. Out of those article-

noun pairs produced by the target child in the corpus11, the model correctly captured 11,703, pairing the 

wrong article with a noun in only 557 cases. When we considered only those 513 utterances which 

featured multiple articles (as in the sentence die Katze jagte den Hund), rather than two or more 

instances of the same article being paired with different nouns (as in die Katze jagte die Maus), we 

found that the model paired nouns with the wrong gender marker in only 14 cases (an error rate of 

2.7%). Thus, consistent with the findings of Arnon & Ramscar (2012), the distributional learning of 

article-noun sequences as chunks leads the model to mirror both children's early mastery of 

grammatical gender as well as the item-based nature of children's early article usage.  

 

Simulation 4: Modeling Child Production Performance across a Typologically 

Diverse Set of 29 Languages 

                                                           
11 In theory, this could also include incorrect article-noun pairings produced by the target child of the corpus, but previous 

work (e.g., Rogers, 1987; Holmes & de la Bâtie, 1999) suggests children rarely make errors with grammatical gender. 
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We conducted production simulations for each corpus from the additional languages, using the same 

model architecture and baseline models as used in each of the previous simulations. In the overall 

analysis of Sentence Production Performance, we include the scores for the English corpora for a total 

of 204 individual child simulations. CBL achieved a mean sentence production accuracy of 55.3%, 

while the Trigram model achieved a mean sentence production accuracy of 46%. The results for each 

language are depicted in Figure 14. 

 

Fig. 14: Mean Sentence Production Accuracy scores for the CBL model and its trigram baseline across all 29 

languages, including English (shown at top). Bars are non-cumulative (e.g., the Japanese CBL score was just over 
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60%, while the Trigram score was near 45%). 

 

As with the English-only production simulations, we submitted the production scores to a 

repeated-measures ANOVA including, once more, the factor Model (2: CBL vs. Trigram) with Child 

Corpus as a random factor. This yielded a significant effect of Model [F(1,203) = 575.2, p < 0.0001], 

indicating better performance for CBL.  

 When all utterances across the simulations were considered together, CBL was able to produce 

the majority of those utterances. The same pattern held for all but five of the individual languages, with 

CBL failing reach the 50% mark for Sesotho, Polish, Farsi, Portuguese, and Swedish.  

 As can be seen, CBL outperformed its baseline for 26 of the 29 languages; the exceptions were 

Russian, Romanian, and Korean for which the Trigram scored highest. It should be noted that for two 

of the exceptions (Romanian and Korean), there was only one child corpus; for Russian, there were 

only two available corpora. Moreover, all three of these languages fall towards the extreme synthetic 

end of the analytic/synthetic spectrum estimated by our morphological analyses. Below, we explore the 

notion that the CBL model performed worse as a function of morphological complexity. 

 Effects of morphological complexity and word order: To assess the effect of morphological 

complexity on the model's performance, we fit a linear regression model to the Sentence Production 

Accuracy scores across the 204 simulations using the morphological complexity measure calculated for 

each language previously. This yielded a significant negative value for morphological complexity [β=-

0.17, t(202)=-4.35, p<0.0001], indicating that the model's sentence production tended to be less 

accurate when learning morphologically rich languages, although the amount of variance explained by 

the linear model was moderate to low (Adjusted R-squared: 0.08). Figure 15 depicts the Sentence 

Production Accuracy for each simulation according to the morphological complexity score of the 29 
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languages. 

 

 

Fig. 15: Scatterplot depicting Sentence Production Accuracy (%) for each simulation by the Morphological 

Complexity score for the corresponding language. 
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 Because the three languages on which the word-based Trigram model outperformed CBL were 

on the extreme synthetic end of the analytic/synthetic spectrum, we tested whether the model's sentence 

production accuracy advantage over the Trigram baseline decreased as a function of morphological 

richness. A linear model with Morphological Complexity as a predictor of the difference between CBL 

and Trigram scores for each simulation confirmed this to be the case [β=-0.4, t(201)=-5.6, p<0.0001], 

with the overall model explaining a significant amount of variance in the difference scores (Adjusted 

R-squared: 0.13).  

 That the advantage of a chunk-based model such as CBL would decrease as a function of 

morphological complexity is perhaps unsurprising. However, segmenting corpora into their component 

morphemes may better accommodate a chunk-based model while helping to deal with data sparseness 

tied to high type/token ratios. Since an automated method for morpheme segmentation was not 

available for many of the languages, we were unable to test this intuition cross-linguistically. However, 

the CHILDES segmentation system for one of the more synthetic languages, Japanese, treats verb 

morphemes as separate words (Chang et al., 2008; Miyata, 2000; Miyata & Naka, 1998). Interestingly, 

model performance, on average, is far stronger for Japanese corpora than for languages of comparable 

morphological complexity, especially relative to the Trigram baseline. Additionally, the greatest 

difference in scores between the model and its baselines was seen for Japanese. Future work will focus 

on comparing model performance on synthetic languages with morphologically segmented vs. standard 

corpora. 

 Despite the effect of morphological complexity on model production performance, there was no 

effect of word order (mean scores: SOV, 58.7; SVO, 55.5; VSO, 63; no dominant order: 52.9). We 

used a linear model to test for a potential effect of word order on model performance, while controlling 

for morphological richness. As the effect of Morphological Complexity on model performance was 
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significant, we included it as a predictor alongside Word Order in the model. However, no significant 

effect of word order emerged. Figure 16 depicts the mean Sentence Production Accuracy score across 

each of the four word orders. 

Fig. 16: Barplot depicting the mean Sentence Production Accuracy (%) for each of the four word orders represented 

across the 29 languages. Error bars depict standard errors. While there were only two corpora tested with VSO 

word order (precluding a statistical test), visual inspection of the error bars indicates that the model's performance 

was highly similar across the four word orders represented. 

 

Production summary: The model outperformed its baseline for 26 of the 29 languages, 

correctly producing the majority of child utterances for 24 languages. The usefulness of BTP-based 

chunking across so wide an array of languages is somewhat surprising, given previous work 
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demonstrating that the usefulness of forward vs. backward probability calculations in word 

segmentation is highly sensitive to cross-linguistic differences in distributional features (e.g., heavy 

suffixing in case of Hungarian, phrase-initial function words in the case of Italian; Gervain & Guevara 

Erra, 2012). While our model was somewhat sensitive to differences in morphological complexity, 

tending to perform slightly better on morphologically simple languages, it did not appear to be sensitive 

to differences in dominant word order. The fact that multi-word units were useful even for the learning 

of morphologically rich languages is of particular interest, considering the difficulties inherent in 

working with morphologically rich languages in the field of computational linguistics (cf. Tsarfaty, 

Seddah, Kübler, & Nivre, 2012). Taken together with previous findings of item-based patterns in 

children's learning of morphologically rich languages (e.g., MacWhinney, 1978), this result is quite 

encouraging in the context of future cross-linguistic item-based modeling work. 

 These results offer substantial cross-linguistic support for CBL, and, more broadly, for the view 

that simple learning mechanisms underlie a large part of early linguistic behavior. The outcome of our 

simulations strengthens previous psycholinguistic evidence for chunk-based learning, which has been 

gained primarily from English speakers (e.g., Bannard & Matthews, 2008), suggesting that multiword 

sequences play an important role cross-linguistically, in analytic and synthetic languages alike. 

 

General Discussion 

 We have shown that the CBL model can approximate key aspects of children's comprehension 

and production of language by learning in a purely incremental fashion through on-line processing. The 

model gradually builds up an inventory of chunks consisting of one or more words, which unites 

aspects of comprehension and production within a single framework. On the comprehension side, the 
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model chunks incoming words together to incrementally build an item-based “shallow parse” of each 

utterance as it is encountered. Chunks discovered in this fashion are used to make predictions about 

upcoming words in subsequent input, facilitating the model's on-line processing. When the model 

encounters an utterance produced by the target child of the input corpus, it attempts to generate an 

identical utterance using the same chunks and statistics used in shallow parsing. Importantly, 

production is modeled as an incremental, chunk-to-chunk process rather than one of whole-sentence 

optimization (as would be the case by, e.g., choosing among candidate sentences based on whole-string 

probabilities).  

 The model achieves strong performance across English single-child corpora from the CHILDES 

database, approximating the performance of a shallow parser with high accuracy and completeness. In 

line with expectations derived from usage-based theories, item-based information is shown to be more 

useful than statistics or chunks computed over form classes. The model is also able to fit much of 

children's early linguistic behavior, correctly generating the majority of the child utterances 

encountered across the English corpora. The model exhibits similar shallow parsing performance for 15 

French and 22 German corpora alongside similar sentence production performance for nearly 200 

additional child corpora drawn from a typologically diverse set of 28 languages (also from CHILDES). 

In each case, the model outperforms baseline models. In addition to its strong cross-linguistic 

performance in approximating aspects of comprehension and production, the model provides close 

quantitative fits to children's production of complex sentences featuring six different relative clause 

types (Diessel & Tomasello, 2005). 

 Together, these findings suggest that a fair amount of children's early language use may be 

supported by incremental, on-line learning of item-based information using simple distributional cues. 

By the same token, the model also serves to highlight the limits of what can be achieved through 
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distributional learning alone. In what follows, we discuss the limitations of the model and directions for 

future modeling work addressing them. We then place the model in the larger context of usage-based 

computational approaches to acquisition. Finally, we highlight insights drawn from the model to be 

explored in future psycholinguistic work.  

 

Limitations of the Model 

As an initial step towards a comprehensive computational account of language learning, CBL is not 

without limitations. Perhaps most immediately obvious is that the model learns from segmented input. 

It does not confront one of the early challenges facing language learners: that of segmenting an 

uninterrupted speech stream. The problem of segmenting the speech stream (traditionally thought of as 

word segmentation) and discovering useful multiword sequences are likely to impact one another: 

Children do not learn about phonology, words, multiword sequences, and meanings in discrete, 

separable stages, but instead learn about multiple aspects of linguistic structure simultaneously and 

their interaction with each other (see also Christiansen & Chater, 2016b). Indeed, many of children's 

earliest, unanalyzed chunks are likely to stem from under-segmentation “errors,” which may offer 

insights into a number of phenomena tied to early language learning (Arnon, 2009; Arnon & 

Christiansen, 2017). Future work will focus on using the model to learn from unsegmented corpora in 

ways that maintain a fluid rather than rigid relationship between individual words, unanalyzed chunks, 

and chunks which the model is capable of breaking down into its component words.  

 A further limitation stems from what may also arguably be one of the model's greatest strengths: 

reliance on a single source of distributional information. CBL was designed to be as simple as possible, 

in order to demonstrate that a model can approximate aspects of comprehension and production 

through incremental, on-line processing based on simple statistics. Though the model, which relies 
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upon BTPs, is evaluated against a baseline which uses FTPs in Appendix C, it is clear from the 

modeling results that both information sources are potentially useful. Infants, children, and adults have 

been shown to be sensitive to TPs calculated in both directions (e.g., French et al., 2011; Pelucchi et al., 

2009; Perruchet & Desaulty, 2008). Future work should be based on a principled, parameter-free 

method for seamlessly integrating TP calculations in both directions (in addition to other potentially 

useful distributional and non-distributional cues). 

 A further limitation is demonstrated by work with adult subjects, which suggests that there is no 

frequency “threshold” beyond which a multiword sequence is stored as a chunk, but rather that the 

extent to which sequences cohere as multiword units is graded in nature (cf. Caldwell-Harris et al., 

2012). While CBL does not make use of raw whole-sequence frequency information in chunk 

discovery, it does rely on the use of a running average BTP as a threshold. Future work might benefit 

from considering the graded nature of “chunk” status for multiword units, while also seeking to make 

predictions about part/whole interactions (reflecting findings that stored multiword sequences both 

prime and are primed by their component words; e.g., Sprenger et al., 2006). 

 CBL’s lack of “abstraction” over chunks: The current lack of abstraction in the model leads 

to a number of limitations, such as its inability to produce utterances “from scratch:” The randomly 

ordered bag-of-words which the model attempts to sequence during production is always populated by 

words from one of the target child's actual utterances. This means that the model cannot be used to 

capture children's systematic errors on a case-by-case basis (the model can only commit errors which 

are made by the target child). Previous models capable of producing novel utterances have successfully 

captured such developmental trends, such as optional infinitive errors (e.g., MOSAIC; Freudenthal et 

al., 2006, 2007).  

A number of previous models have served to demonstrate that considerable linguistic 
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productivity can emerge from abstracting over multiword sequences (e.g., Solan et al., 2005). Thus, 

ongoing work with CBL seeks to derive partially-abstract, item-based schemas (“I want more X,” 

where X is restricted to a class of words the model has learned to group together) while still adhering to 

the psychological principles of incremental, on-line processing without automatic storage of global 

utterance properties. The learning of increasingly abstract units may be essential in boosting model 

performance on the shallow parsing and production tasks to the limits of what is possible using 

distributional information alone. 

 Moving beyond the limitations of a purely distributional approach: Each of the limitations 

discussed immediately above can be addressed within a purely distributional framework. From a 

multiple-cue integration perspective (e.g., Bates & MacWhinney, 1989; Monaghan & Christiansen, 

2008), distributional information is only one of a number of crucial factors in the language learner’s 

input. The present study goes some distance towards demonstrating how far a single source of 

distributional information can take the learner while also underscoring the need for moving beyond a 

purely distributional framework; it attains strong performance in capturing specific aspects of language 

learning and use, but cannot hope to offer a more complete account of comprehension and production.  

 Thus, a limitation which must be addressed lies in the model's lack of semantic information; the 

model never learns “meanings” corresponding to the chunks it discovers, and is never called to 

interpret the meanings of utterances. Moreover, the psychological motivation for the model is partially 

driven by the perspective that semantic/conceptual information—such as that tied to event schemas, 

situational settings, and background world knowledge—is a key factor in generalizing to unbounded 

productivity of the sort exhibited by mature language users, superseding the importance of abstract 

“syntactic” knowledge, such as that of form classes (as discussed in the Introduction). The project of 

expanding the model to incorporate such information in idealized forms therefore represents a key 
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challenge. 

 One of the most tractable aspects of meaning for an incremental, on-line model such as CBL to 

learn and use lies in the assignment of semantic roles (often referred to as thematic roles), such as 

AGENT, ACTION, and PATIENT, and their use in the development of verb-argument structure 

constructions. Support for the psychological reality of semantic roles comes from empirical work on 

adult sentence comprehension (e.g., Altman & Kamide, 1999; Carlson & Tanenhaus, 1988). A number 

of the earliest computational models of language to incorporate meaning were focused on learning to 

assign semantic roles to sentence constituents within a connectionist framework (McClelland & 

Kawamoto, 1986; St. John & McClelland, 1990), while more recent connectionist modeling has 

extended the use of semantic roles to networks that use them to acquire verb-argument structure and 

make contact with a range of psycholinguistic data related to meaning (e.g., Chang et al., 2006). Such 

models are limited, of course, in that they are trained on non-naturalistic datasets rather than full 

corpora of child-directed speech, and in the case of the Chang et al. (2006) model, the problem facing 

the learner is simplified considerably by assuming the correct mapping between roles and lexical-

semantic representations. Nevertheless, such approaches demonstrate the feasibility and psychological 

value of semantic role information in capturing meaning in comprehension and production (for an 

extensive review of models that deal with semantic roles and argument structure, see McCauley & 

Christiansen, 2014b). 

However, it remains unclear whether young children possess coarse-grained, canonical 

semantic roles such as AGENT, ACTION, and PATIENT (cf. Shayan, 2008, for a review and empirical 

data), with some researchers going so far as to suggest that even adults represent thematic roles in a 

verb-specific manner (McRae, Ferretti, & Amyote, 1997). Thus, the extension of CBL and similar 

models should ideally involve the learning of semantic roles from the input, rather than use canonical 
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roles that are pre-determined and fixed. Alishahi and Stevenson (2010) achieve an initial step in this 

direction with a model that learns a probability distribution over featural semantic properties of 

arguments, which allows semantic roles and verb-argument structure to develop simultaneously. 

Featural input for nouns is derived from WordNet (Miller, 1990), which yields lists ranging from 

specific to general properties (e.g., CAKE: {baked goods, food, solid, substance, matter, entity}), while 

verbs involve hand-constructed primitives (e.g., EAT: {act, consume}). Throughout the course of 

exposure to the input corpus, the model gradually sees the transformation of item-based roles into more 

abstract representations which capture semantic properties of arguments across a range of verbs. 

Thus, a promising initial step for CBL in moving towards a more comprehensive account of 

comprehension and production lies in the use of automatically generated featural input (utilizing 

existing resources such as FrameNet: Baker, Fillmore, & Lowe, 1998; VerbNet: Kipper-Schuler, 2005; 

and WordNet: Miller, 1990), which is then presented as input to the model alongside corresponding 

utterances in a child corpus. The key psychological underpinnings of the model can be maintained by 

ensuring that approximations of semantic roles, argument structures, etc., are learned through simple 

statistical and recognition-based processes that can be carried out incrementally. For instance, the 

recognition-based “prediction” mechanism currently featured in CBL could be slightly modified to 

accomplish something similar to the alignment and comparison technique of Solan et al. (2005) in an 

on-line fashion. The resulting item-based schemas could be further refined through learning featural 

information to arrive at partially-abstract constructions. The notion that an extended version of CBL 

could accomplish something on this level without resorting to probabilistic inference is bolstered by a 

recent model of reading (Baayen, Milin, Durdevic, & Hendrix, 2011) which is able to account for a 

range of psycholinguistic data through associative learning processes tying letters and letter trigrams to 

meaning representations derived from morphemes.  
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Relationship to other Usage-Based Modeling Approaches 

Despite its current limitations, the CBL model may be viewed as a possible foundation for a more 

comprehensive computational account of language acquisition. While previous computational models 

within the usage-based tradition have boasted great success, CBL possesses a number of features that 

have been largely absent from language modeling, several of which represent desiderata for a fully 

comprehensive approach to acquisition.  

 Firstly, and perhaps most importantly, CBL takes usage-based theory to its natural conclusion in 

making no distinction between language learning and language use (Chater & Christiansen, in press); 

the model learns solely by attempting to comprehend and produce language. That is, the very processes 

by which input is interpreted and output is constructed are the same processes involved in learning; at 

no point does the model engage in a separate “grammar induction” process. This sets the present model 

apart from a number of extant usage-based models that have focused on grammar induction (e.g., 

Bannard et al., 2009) or conceived of learning and processing separately. 

 Also of great importance is that CBL learns incrementally, without batch learning of the sort 

used by most existing computational approaches (e.g., Bannard et al., 2009; Jones et al., 2004). While 

more sophisticated models of grammatical development have captured incremental learning (e.g., Bod, 

2009; Kolodny et al., 2015), CBL is unique in offering an account of the on-line processes leading to 

linguistic knowledge over time; the model learns incrementally not only from utterance-to-utterance, 

but within individual utterances themselves as input is received, on a word-by-word basis. Thus, its 

design reflects the constraints imposed by the Now-or-Never bottleneck (Christiansen & Chater, 
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2016b). 

 Although a number of previous usage-based models have captured the generation of novel 

utterances (e.g., Jones et al., 2004; Solan et al., 2005), none have simultaneously sought to approximate 

aspects of comprehension in an explicit fashion. A further contribution of CBL is that it not only 

captures aspects of both comprehension and production, but also in unites them within a single 

framework. Pickering and Garrod (2007; 2013) argue that comprehension and production should not be 

seen as separate processes, a view compatible with usage-based approaches more generally (cf. Chater 

et al., 2016; McCauley & Christiansen, 2013). While connectionist models have utilized the same 

network of nodes to simulate comprehension and production (e.g., Chang et al., 2006; see also 

MacKay, 1982), ours is the first full-scale (taking full corpora as input) model to offer a unified 

framework. 

 Finally, CBL was designed to reflect psychologically parsimonious processing and knowledge 

representation. Outside the realm of word segmentation, the model is unique in its reliance solely on 

simple recognition-based processing and simple statistics of a sort that infants, children, and adults 

have been shown to be sensitive to (BTPs; French et al., 2012; Pelucchi et al., 2009; Perruchet & 

Desaulty, 2008). While a number of more complex computational approaches have made use of 

transitional probabilities (e.g., Kolodny et al., 2015; Solan et al., 2005), CBL relies solely on 

transitional probabilities computed in an incremental, on-line fashion, and is not supplemented by more 

complex processes. Furthermore, the model relies on local information; rather than automatically 

storing entire utterances, the model shallow parses and produces utterances in an incremental, chunk-

to-chunk fashion rather than relying on whole-sentence representation or optimization. 

 

Insights Derived from the Model 
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Beyond CBL's unique features, its ability to capture much of children's early linguistic behavior cross-

linguistically, and its success in accounting for key psycholinguistic findings, the model leads to 

several insights which may be further explored through psycholinguistic research: 

1) Simple distributional cues are useful at every level of language learning. The model was 

able to use a simple distributional cue previously shown to be useful in word segmentation 

(BTP; Pelucchi et al., 2009; Perruchet & Desaulty, 2008) in order to segment speech into useful 

multiword units, as well as to combine them to create sentences. Though based on this simple 

statistic, the model was able to make close contact with psycholinguistic results on children's 

production of complex sentence types (Diessel & Tomasello, 2005).   

2) Previous artificial grammar learning results may reflect item-based rather than class-

based computations. The decision to focus on learning through purely item-based statistics 

stands in contrast to several threads of argument within the statistical learning literature, which 

hold that learners discover phrase structure by computing statistics over form classes rather than 

individual words (e.g., Saffran, 2002; Thompson & Newport, 2007). As discussed above, we 

have found that the discovery of useful chunks of local information (which, being as our model 

was scored against a shallow parser, is analogous to phrase segmentation of the sort discussed 

by Thompson & Newport, 2007) was actually enhanced as a consequence of a reliance on item-

based statistics, as was also often the case with the model's baselines. The model performed 

worse when exposed to class-based information – a pattern which was replicated in our 

simulation of Saffran’s (2002) child artificial language learning experiment (McCauley and 

Christiansen, 2011).  

We suggest, then, that artificial language learning results which have previously been 

taken to reflect learners' sensitivity to the phrase-like structure of the stimuli be reassessed to 
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determine whether item-based calculations might be sufficient to capture the learning of both 

children and adults. Previous modeling work on chunking has been shown to better account for 

segmentation performance in artificial language studies than more complex learning 

mechanisms (e.g., Perruchet et al., 2002; French et al., 2011). This general approach may be 

extended to full-blown language development. 

3) Most of the difficulty faced by the learner lies outside the distributional realm. The 

difficulty of learning from distributional information may be compounded by the problem 

combining multiple probabilistic cues (which CBL, relying on a single distributional cue, does 

not attempt to capture). However, given the rapidity with which the model was able to learn 

how to identify useful chunks of local information, as well as to sequence those chunks to 

create new utterances, we suggest that the greatest difficulties children face in learning to 

process sentences may have less to do with distributional information or even “linguistic 

structure,” but instead derive from conceptual/semantic dimensions of the problem, such as 

learning event schemas and scenarios to map chunks onto.  

4) Multiword sequences remain important throughout development. The model ultimately 

relied more heavily on multiword units over time, as shown in various analyses of the model's 

chunk inventory. This leads us to suggest that instead of “starting big” by merely relying upon 

multiword units during the early stages of learning (e.g., Arnon, 2009), learners continue to rely 

on chunks throughout development; representations may actually become more chunk-like 

instead of less. At the same time, subtle shifts in the “degree of chunkedness” of children's 

representations, as suggested by the U-shaped development of the model's chunk inventory, 

may interact with U-shaped trajectories observed in seemingly disconnected areas, such as the 

learning of irregular forms. 
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5) Learners rely on multiword units even in morphologically rich languages. The model 

benefited from the use of chunks in learning analytic and synthetic languages alike. At the same 

time, chunk-to-chunk sequential information of the type learned by the model clearly matters 

less in synthetic languages, where there may be stronger pragmatic constraints on ordering. 

Moreover, as suggested by a corpus analysis of Turkish (Durrant, 2013)—an agglutinating 

language—chunking over sublexical elements, such as morphemes, might be important to the 

processing of morphologically rich languages. CBL currently lacks such information and this 

may partly explain the lower performance of the model when learning morphologically rich 

languages. 

 

Conclusion 

We have presented the foundations of a new approach to modeling language learning in the form of the 

CBL model, which provides a computational framework based on incremental, on-line learning from 

simple chunks and statistics. The model makes close contact with psycholinguistic evidence for both 

multiword unit storage and shallow, underspecified language processing; rather than attempting to 

induce a target grammar, the model learns chunks of local information which are used to simulate 

aspects of comprehension and production. CBL approximates the performance of a shallow parser by 

segmenting utterances into chunks of related words on-line, and simultaneously uses the same chunks 

to incrementally produce new utterances. The model's production abilities can account for a 

considerable part of children's early linguistic behavior. The model offers broad, cross-linguistic 

coverage and successfully accounts for key developmental psycholinguistic findings, in addition to 

making several predictions on which to base subsequent psycholinguistic work. But, perhaps most 

importantly, CBL demonstrates how language learning can modeled as language use. 
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Appendix A: Shallow parsing accuracy and completeness statistics for English, 

French, and German 
 

English 

In line with the developmental motivation for the model, we examined accuracy rates independently. 

Across the 43 child corpora, CBL achieved a mean accuracy rate of 76.4%, while PARSER attained a 

mean accuracy of 65.2% and the Trigram model reached a mean accuracy rate of 65.8%. The scores are 

shown in Table A1. As can be seen, CBL not only outperformed its baselines, but once more yielded a 

tighter, more uniform distribution of scores 

 As in our analysis of the overall comprehension performance scores, we submitted the logit-

transformed accuracy scores to a repeated-measures ANOVA, including the factor Model (3: CBL vs. 

PARSER vs. Trigram) with Child Corpus as a random factor. This yielded a significant main effect of 

Model [F(2,84) = 1877, p < 0.0001], with post-hoc analyses confirming stronger performance for CBL 

compared to the PARSER [t(42)=65.17, p<0.0001] and Trigram [t(42)=39, p<0.0001] models, as well 

as stronger performance for the Trigram model compared to PARSER [t(42)=2.63, p<0.05]. 

 Finally, we looked at completeness scores. Across the 43 child corpora, CBL achieved a mean 

completeness of 73.8%, while the PARSER attained a mean completeness of 68.7% and the Trigram 

model reached a mean completeness rate of 66.5%. The scores are shown in Table A1. 

As with accuracy, we submitted the logit-transformed completeness scores to a repeated-

measures ANOVA, including the factor Model (3: CBL vs. PARSER vs. Trigram) with Child Corpus 

as a random factor. This yielded a significant main effect of Model [F(2,84) = 42.14, p < 0.0001], with 

post-hoc analyses confirming stronger performance for CBL compared to the PARSER [t(42)=7.77, 
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p<0.001] and Trigram [t(42)=11.9, p<0.0001] models, with no significant difference in means for 

PARSER relative to the Trigram model [t(42)=1.94, p=0.06]. 

Table A1 

Shallow Parsing Accuracy and Completeness for English 

 Accuracy Completeness 

CBL 76.4% 73.8% 

PARSER 65.2% 68.7% 

Trigram 65.8% 66.5% 

 

French 

As with the English simulations, we examined accuracy separately. Across the 15 child corpora, 

CBL attained a mean accuracy rate of 72.0%, while the PARSER model attained a mean accuracy rate 

of 61.8%. The Trigram model attained a mean accuracy rate of 57.0%. The scores are shown in Table 

A1. 

 As with the previous analyses, we submitted the logit-transformed accuracy scores to a 

repeated-measures ANOVA, including the factor Model (3: CBL vs. PARSER vs. Trigram), with Child 

Corpus as a random factor. This yielded a significant effect of Model [F(2,26) = 342.3, p < 0.0001], 

with post-hoc analyses confirming stronger performance for CBL compared to the PARSER 

[t(14)=24.54, p<0.0001] and Trigram [t(14)=18.69, p<0.0001] models, as well as for PARSER 

compared to the Trigram model [t(14)=9.7, p=0.0001]. 

 We also analyzed completeness: across the 15 child corpora, CBL attained a mean 

completeness score of 70.8%, while the PARSER model attained a mean completeness rate of 73.5%. 

The Trigram model attained a mean completeness rate of 66.1%. The scores are shown in Table A2. As 

with accuracy, we submitted the logit-transformed completeness scores to a repeated-measures 

ANOVA, including the factor Model (3: CBL vs. PARSER vs. Trigram), with Child Corpus as a 

random factor. This yielded a significant effect of Model [F(2,26) = 21.96, p < 0.0001], with post-hoc 

analyses confirming stronger performance for PARSER compared to the CBL [t(14)=2.54, p<0.05] and 
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Trigram [t(14)=5.29, p<0.001] models, as well as for CBL compared to the Trigram model [t(14)=6.35, 

p=0.0001]. 

Table A2 

Shallow Parsing Accuracy and Completeness for German 

 Accuracy Completeness 

CBL 72.0% 70.8% 

PARSER 61.8% 73.5% 

Trigram 57.0% 66.1% 
 

German 

As with the English and French simulations, we examined German accuracy separately. Across the 22 

child corpora, CBL attained a mean accuracy rate of 78.0%, while PARSER attained a mean accuracy 

rate of 69.4%. The Trigram model attained an accuracy of 70.5%. The scores are shown in Table A3. 

We once more submitted the logit-transformed accuracy scores to a repeated-measures 

ANOVA, including the factor Model (3: CBL vs. PARSER vs. Trigram), with Child Corpus as a 

random factor. This yielded a significant effect of Model [F(2,40) = 475.2, p < 0.0001], with post-hoc 

analyses confirming stronger performance for CBL compared to the PARSER [t(21)=29.4, p<0.0001] 

and Trigram [t(21)=20.05, p<0.0001] models, as well as for the Trigram model compared to PARSER 

[t(21)=4.23, p=0.001]. 

 As with the English and French simulations, we also examined completeness separately. Across 

the 22 child corpora, CBL attained a mean completeness of 72.2%, while PARSER attained a mean 

completeness of 83.5%. The Trigram model attained a completeness of 62.9%. The scores are shown in 

Table A3. 

We once more submitted the logit-transformed completeness scores to a repeated-measures 

ANOVA, including the factor Model (3: CBL vs. PARSER vs. Trigram), with Child Corpus as a 

random factor. This yielded a significant effect of Model [F(2,40) = 61.7, p < 0.0001], with post-hoc 
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analyses confirming stronger performance for PARSER compared to the CBL [t(21)=5.49, p<0.0001] 

and Trigram [t(21)=8.59, p<0.0001] models, as well as for CBL compared to the Trigram model 

[t(14)=11.3, p=0.0001]. 

Table A3 

Shallow Parsing Accuracy and Completeness for German 

 Accuracy Completeness 

CBL 78.0% 72.2% 

PARSER 69.4% 83.5% 

Trigram 70.5% 62.9% 
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Appendix B: Examples of Frequent Chunks 

Table B1: Most Frequent Chunks Across Three Timesteps: English Dense Corpus Simulation 

1000 Utterances 10,000 Utterances 100,000 Utterances 

oh dear oh dear oh dear 

is it what’s this I think 

the giraffe I think all done 

a hat you like what’s this 

I think look at that’s right 

the basket that’s right and then 

the steps is it isn’t it 

the lion all done is it 

what does and there’s is that 

what do oh dear dear look at 

are they this morning you like 

it’s gone and then you see 

you like what does a big 

and there’s going to you want 

the wind the bus you can 

what about under a ride what do 

the boat what do you’ve got 

on mummy’s head the door on the floor 

that’s Thomas a hat a mess 

your birthday cards as well bye bye 
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Table B2: Most Frequently Chunked Items by Category: English Dense Corpus Simulation 

1000 Utterances 10,000 Utterances 100,000 Utterances 

DET NOUN DET NOUN DET NOUN 

PRO VERB PRO VERB PRO VERB 

NOUN VERB NOUN VERB NOUN VERB 

ADJ NOUN PRO NOUN ADJ NOUN 

DET ADJ NOUN PREP NOUN PREP NOUN 

NOUN ADV  ADJ NOUN DET ADJ NOUN 

CONJ NOUN DET ADJ NOUN PRO NOUN 

INTRJ NOUN VERB NOUN PREP DET NOUN 

NOUN PREP CONJ NOUN VERB NOUN 

VERB PRO NUM NOUN CONJ NOUN 

Note: ADJ = adjective; ADV = adverb; CONJ = conjunction; DET = determiner; INTRJ = interjection; 

NOUN = noun; NUM = numeral; PREP = preposition; PRO = pronoun; VERB = verb. 
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Appendix C: Evaluating the Effects of Forwards vs. Backwards Transitional 

Probability 
 

Baseline Models 

We created three baseline models in order to explore a 2 x 2 design, depicted in Table C1, including the 

factors unit type (chunks vs. n-grams) and direction (backward vs. forward transitional probability).  

 

 

Table C1 

Contrasting Direction and Unit Type 

 Chunks N-grams 

BTP CBL BTP3G 

FTP FTP-Chunk FTP3G 

 

As previous work in the statistical learning literature has focused on FTP as a cue to phrase 

structure (e.g., Thompson & Newport, 2007), an alternate model was created to compare the usefulness 

of this cue against the BTPs used by CBL. Thus, the first baseline model, hereafter referred to as the 

FTP-Chunk model, was identical to CBL, with the sole exception that all BTP calculations were 

replaced by FTP calculations.  

 As the Trigram model described in the main paper relied on FTPs, we created an otherwise 

identical baseline model which relied on BTP rather than FTP calculations. Both models learned 

trigram statistics in an incremental, on-line fashion, in the style of CBL, while simultaneously 

processing utterances through the placement of chunk boundaries. In the present appendix we refer to 

the Trigram baseline as the FTP3G baseline, and the backwards transitional probability version as the 

BTP3G baseline. 

In the case of the FTP3G baseline, if the FTP between the first bigram and the final unigram of 

a trigram fell below the running average for the same statistic, a chunk boundary was inserted. For 
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instance, as the model encountered Z after seeing the bigram XY, it would calculate the FTP for the 

trigram by normalizing the frequency count of the trigram XYZ by the count of the bigram XY, and 

comparing the result to the running average FTP for previously encountered trigrams (inserting a chunk 

boundary if the running average was greater). In the case of the BTP3G baseline, a chunk boundary 

was placed if the BTP between the first unigram and the final bigram of the trigram fell below the 

running average. The start-of-utterance marker made it possible for the 3G baselines to place a 

boundary between the first and second words of an utterance. During production attempts, which were 

also incremental and on-line in the style of CBL, both trigram models began constructing an utterance 

by choosing from the bag-of-words the word with the highest TP (FTP for the FTP3G model, and BTP 

for the BTP3G model), given the start-of-utterance marker (in other words, bigram statistics were used 

to select the first word). Each subsequent word was chosen according to trigram statistics, based on the 

two most recently placed words (or the initial word and the start-of-utterance marker, in the case of 

selecting the second word in an utterance). For the FTP3G model, this meant the word with the highest 

FTP given the two preceding words was chosen; for the BTP3G model, the word resulting in the 

highest BTP between the final bigram and the first unigram of the resulting trigram was chosen. Thus, 

like CBL and its FTP-based counterpart, both trigram baseline models relied on identical statistics 

during comprehension and production (either BTPs or FTPs, computed over trigrams). 

 

Shallow Parsing Results 

Shallow parsing results for the same English child corpora are shown for the model and its baselines in 

Table C2.  

Table C2: English Shallow Parsing F-Scores 

 Chunks N-grams 
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BTP 75.4 61.3 

FTP 67.5 65.9 

 

We submitted the shallow parsing F-scores (logit-transformed) to a repeated-measures ANOVA with 

the factors Unit Type (2: Chunks vs. n-grams) and Direction (2: BTP vs. FTP), with Child Corpus as a 

random factor. This yielded main effects of Unit Type [F(1,42) = 1184, p < 0.0001] and Direction 

[F(1,42) = 78.01, p < 0.0001], indicating better performance for chunk-based models and BTPs, 

respectively, and a significant Unit Type x Direction interaction [F(1,42) = 792.5, p < 0.0001], 

indicating better performance for the CBL model’s combination of BTPs and chunks. 

 The French shallow parsing scores, depicted in Table C3, followed the same qualitative pattern 

as the English data. 

 

Table C3: French Shallow Parsing F-Scores 

 Chunks N-grams 

BTP 71.6 51.6 

FTP 61.7 59.0 

 

We submitted the French shallow parsing F-scores (logit-transformed) to a repeated-measures 

ANOVA with the factors Unit Type (2: Chunks vs. n-grams) and Direction (2: BTP vs. FTP), with 

Child Corpus as a random factor. This yielded main effects of Unit Type [F(1,14) = 573.5, p < 0.0001] 

and Direction [F(1,14) = 14.7, p < 0.01], indicating better performance for chunk-based models and 

BTPs, respectively, and a significant Unit Type x Direction interaction [F(1,14) = 234.2, p < 0.0001], 

indicating better performance for the CBL model’s combination of BTPs and chunks. 
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The German shallow parsing scores, shown in Table C4, followed once more the same general 

pattern. 

Table C4: German Shallow Parsing F-Scores 

 Chunks N-grams 

BTP 75.7 53.2 

FTP 71.0 67.4 

 

We submitted the German shallow parsing F-scores (logit-transformed) to a repeated-measures 

ANOVA with the factors Unit Type (2: Chunks vs. n-grams) and Direction (2: BTP vs. FTP), with 

Child Corpus as a random factor. This yielded main effects of Unit Type [F(1,203) = 890.2, p < 0.0001] 

and Direction [F(1,203) = 47.5, p < 0.0001], indicating better performance for chunk-based models and 

BTPs, respectively, and a significant Unit Type x Direction interaction [F(1,203) = 389.8, p < 0.0001], 

indicating better performance for the CBL model’s combination of BTPs and chunks. 

 

Sentence Production Performance Results 

The sentence production performance results for the CBL model, the FTP-Chunk model, and the two 

3G baselines are shown in Figure C1. 
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Fig. C1: Mean Sentence Production Accuracy scores for the CBL model and its trigram baseline across all 29 

languages, including English (shown at top). Bars are non-cumulative 

 

We submitted the sentence production performance F-scores (logit-transformed) to a repeated-measures 

ANOVA with the factors Unit Type (2: Chunks vs. n-grams) and Direction (2: BTP vs. FTP), with 

Child Corpus as a random factor. This yielded main effects of Unit Type [F(1,21) = 801.4, p < 0.0001] 

and Direction [F(1,21) = 128.4, p < 0.0001], indicating better performance for chunk-based models and 

BTPs, respectively. 
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Appendix D: Corpus List and Citations 

Language Child Citation 

Afrikaans Chan No citation provided 

Afrikaans Jean No citation provided 

Cantonese Chunyat 

Lee, T. H.T., Wong, C. H., Leung, S., Man. P., Cheung, A., Szeto, K., & Wong, C. 
S. P. (1996). The development of grammatical competence in Cantonese-
speaking children (RGC Project No. CUHK 2/91). Hong Kong: Hong 
Kong Research Grant Committee. 

Cantonese Gakei 

Lee, T. H.T., Wong, C. H., Leung, S., Man. P., Cheung, A., Szeto, K., & Wong, C. 
S. P. (1996). The development of grammatical competence in Cantonese-
speaking children (RGC Project No. CUHK 2/91). Hong Kong: Hong 
Kong Research Grant Committee. 

Cantonese Tsuntsun 

Lee, T. H.T., Wong, C. H., Leung, S., Man. P., Cheung, A., Szeto, K., & Wong, C. 
S. P. (1996). The development of grammatical competence in Cantonese-
speaking children (RGC Project No. CUHK 2/91). Hong Kong: Hong 
Kong Research Grant Committee. 

Cantonese Johnny 

Lee, T. H.T., Wong, C. H., Leung, S., Man. P., Cheung, A., Szeto, K., & Wong, C. 
S. P. (1996). The development of grammatical competence in Cantonese-
speaking children (RGC Project No. CUHK 2/91). Hong Kong: Hong 
Kong Research Grant Committee. 

Cantonese Jenny 

Lee, T. H.T., Wong, C. H., Leung, S., Man. P., Cheung, A., Szeto, K., & Wong, C. 
S. P. (1996). The development of grammatical competence in Cantonese-
speaking children (RGC Project No. CUHK 2/91). Hong Kong: Hong 
Kong Research Grant Committee. 

Cantonese Tinfaan 

Lee, T. H.T., Wong, C. H., Leung, S., Man. P., Cheung, A., Szeto, K., & Wong, C. 
S. P. (1996). The development of grammatical competence in Cantonese-
speaking children (RGC Project No. CUHK 2/91). Hong Kong: Hong 
Kong Research Grant Committee. 

Cantonese Bernard 

Lee, T. H.T., Wong, C. H., Leung, S., Man. P., Cheung, A., Szeto, K., & Wong, C. 
S. P. (1996). The development of grammatical competence in Cantonese-
speaking children (RGC Project No. CUHK 2/91). Hong Kong: Hong 
Kong Research Grant Committee. 

Cantonese Bohuen 

Lee, T. H.T., Wong, C. H., Leung, S., Man. P., Cheung, A., Szeto, K., & Wong, C. 
S. P. (1996). The development of grammatical competence in Cantonese-
speaking children (RGC Project No. CUHK 2/91). Hong Kong: Hong 
Kong Research Grant Committee. 

Catalan Gisela No citation provided 

Catalan Guillem No citation provided 

Catalan Jordina No citation provided 

Catalan Laura No citation provided 

Croatian Antonija 
Kovacevic, M. (2003). Acquisition of Croatian in crosslinguistic perspective. 
Zagreb. 
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Croatian Marina 
Kovacevic, M. (2003). Acquisition of Croatian in crosslinguistic perspective. 
Zagreb. 

Croatian Vjeran 
Kovacevic, M. (2003). Acquisition of Croatian in crosslinguistic perspective. 
Zagreb. 

Danish Anne 
Plunkett, K. (1985). Preliminary approaches to language development. Århus: 
Århus University Press. 

Danish Jens 
Plunkett, K. (1985). Preliminary approaches to language development. Århus: 
Århus University Press. 

Dutch Abe 
Wijnen, F. & M. Verrips (1998). The acquisition of Dutch syntax. In S. Gillis & 
A. De Houwer (Eds.), The acquisition of Dutch. Amsterdam: John Benjamins. 

Dutch Arnold 
Schaerlaekens, A. M. (1973). The two-word sentence in child language. The 
Hague: Mouton. 

Dutch Daan 
Wijnen, F. & M. Verrips (1998). The acquisition of Dutch syntax. In S. Gillis & 
A. De Houwer (Eds.), The acquisition of Dutch. Amsterdam: John Benjamins. 

Dutch Iris 
Wijnen, F. & M. Verrips (1998). The acquisition of Dutch syntax. In S. Gillis & 
A. De Houwer (Eds.), The acquisition of Dutch. Amsterdam: John Benjamins. 

Dutch Josse 
Wijnen, F. & M. Verrips (1998). The acquisition of Dutch syntax. In S. Gillis & 
A. De Houwer (Eds.), The acquisition of Dutch. Amsterdam: John Benjamins. 

Dutch Laura 
van Kampen, J. (2009). The non-biological evolution of grammar: Wh-
question formation in Germanic. Biolinguistics, 2, 154-185. 

Dutch Maarten 

Schaerlaekens, A., & Gillis, S. (1987). De taalverwerving van het kind: 
Eenhernieuwdeorientatie in het Nederlandstaligonderzoeks. Groningen: 
Wolters-Noordhoff. 

Dutch Matthijs 
Wijnen, F. & M. Verrips (1998). The acquisition of Dutch syntax. In S. Gillis & 
A. De Houwer (Eds.), The acquisition of Dutch. Amsterdam: John Benjamins. 

Dutch Niek 
Elbers, L., & Wijnen, F. (1993). Effort, production skill, and language learning. 
In C. Stoel-Gammon (Ed.) Phonological development. Timonium, MD: York. 

Dutch Peter 
Wijnen, F. & M. Verrips (1998). The acquisition of Dutch syntax. In S. Gillis & 
A. De Houwer (Eds.), The acquisition of Dutch. Amsterdam: John Benjamins. 

Dutch Sarah 
van Kampen, J. (2009). The non-biological evolution of grammar: Wh-
question formation in Germanic. Biolinguistics, 2, 154-185. 

Dutch Tom 
Wijnen, F. & M. Verrips (1998). The acquisition of Dutch syntax. In S. Gillis & 
A. De Houwer (Eds.), The acquisition of Dutch. Amsterdam: John Benjamins. 

English Abe 
Kuczaj, S. (1977). The acquisition of regular and irregular past tense forms. 
Journal of Verbal Learning and Verbal Behavior, 16, 589–600. 

English Adam 
Brown, R. (1973). A first language: The early stages. Cambridge, MA: Harvard 
University Press. 

English Alex 
Demuth, K. & McCullough, E. (2009). The prosodic (re)organization of 
children’s early English articles. Journal of Child Language, 36, 173-200. 

English Anne 

Theakston, A. L., Lieven, E. V. M., Pine, J. M., & Rowland, C. F. (2001). The role 
of performance limitations in the acquisition of verb-argument structure: An 
alternative account. Journal of Child Language, 28, 127-152. 

English Aran 

Theakston, A. L., Lieven, E. V. M., Pine, J. M., & Rowland, C. F. (2001). The role 
of performance limitations in the acquisition of verb-argument structure: An 
alternative account. Journal of Child Language, 28, 127-152. 
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English Barbara 
Henry, A. (1995). Belfast English and Standard English: Dialect variation and 
parameter setting. New York: Oxford University Press. 

English Becky 

Theakston, A. L., Lieven, E. V. M., Pine, J. M., & Rowland, C. F. (2001). The role 
of performance limitations in the acquisition of verb-argument structure: An 
alternative account. Journal of Child Language, 28, 127-152. 

English Carl 

Theakston, A. L., Lieven, E. V. M., Pine, J. M., & Rowland, C. F. (2001). The role 
of performance limitations in the acquisition of verb-argument structure: An 
alternative account. Journal of Child Language, 28, 127-152. 

English Conor 
Henry, A. (1995). Belfast English and Standard English: Dialect variation and 
parameter setting. New York: Oxford University Press. 

English David 
Henry, A. (1995). Belfast English and Standard English: Dialect variation and 
parameter setting. New York: Oxford University Press. 

English Dominic 

Theakston, A. L., Lieven, E. V. M., Pine, J. M., & Rowland, C. F. (2001). The role 
of performance limitations in the acquisition of verb-argument structure: An 
alternative account. Journal of Child Language, 28, 127-152. 

English Emily 
Weist, R. M. & Zevenbergen, A. (2008). Autobiographical memory and past 
time reference. Language Learning and Development, 4, 291 – 308. 

English Emma 
Weist, R. M. & Zevenbergen, A. (2008). Autobiographical memory and past 
time reference. Language Learning and Development, 4, 291 – 308. 

English Ethan 
Demuth, K. & McCullough, E. (2009). The prosodic (re)organization of 
children’s early English articles. Journal of Child Language, 36, 173-200. 

English Eve 
Brown, R. (1973). A first language: The early stages. Cambridge, MA: Harvard 
University Press. 

English Gail 

Theakston, A. L., Lieven, E. V. M., Pine, J. M., & Rowland, C. F. (2001). The role 
of performance limitations in the acquisition of verb-argument structure: An 
alternative account. Journal of Child Language, 28, 127-152. 

English Jilly 
Weist, R. M. & Zevenbergen, A. (2008). Autobiographical memory and past 
time reference. Language Learning and Development, 4, 291 – 308. 

English Jimmy 

Demetras, M. (1989). Changes in parents’ conversational responses: A 
function of grammatical development. Paper presented at ASHA, St. Louis, 
MO. 

English Joel 

Theakston, A. L., Lieven, E. V. M., Pine, J. M., & Rowland, C. F. (2001). The role 
of performance limitations in the acquisition of verb-argument structure: An 
alternative account. Journal of Child Language, 28, 127-152. 

English John 

Theakston, A. L., Lieven, E. V. M., Pine, J. M., & Rowland, C. F. (2001). The role 
of performance limitations in the acquisition of verb-argument structure: An 
alternative account. Journal of Child Language, 28, 127-152. 

English Lara 
Rowland, C. F. & Fletcher, S. L. (2006). The effect of sampling on estimates of 
lexical specificity and error rates. Journal of Child Language, 33, 859-877. 

English Lily 
Demuth, K. & McCullough, E. (2009). The prosodic (re)organization of 
children’s early English articles. Journal of Child Language, 36, 173-200. 

English Liz 

Theakston, A. L., Lieven, E. V. M., Pine, J. M., & Rowland, C. F. (2001). The role 
of performance limitations in the acquisition of verb-argument structure: An 
alternative account. Journal of Child Language, 28, 127-152. 

English Matt 
Weist, R. M. & Zevenbergen, A. (2008). Autobiographical memory and past 
time reference. Language Learning and Development, 4, 291 – 308. 
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English Michelle 
Henry, A. (1995). Belfast English and Standard English: Dialect variation and 
parameter setting. New York: Oxford University Press. 

English Nai 
Demuth, K. & McCullough, E. (2009). The prosodic (re)organization of 
children’s early English articles. Journal of Child Language, 36, 173-200. 

English Naomi 

Sachs, J. (1983). Talking about the there and then: The emergence of 
displaced reference in parent–child discourse. In K. E. Nelson (Ed.), Children’s 
language, Vol. 4 (pp. 1-28), Hillsdale, NJ: Lawrence Erlbaum Associates. 

English Nathaniel 
MacWhinney, B., & Snow, C. (1990). The Child Language Data Exchange 
System: An update. Journal of Child Language, 17, 457-472. 

English Nic 

Theakston, A. L., Lieven, E. V. M., Pine, J. M., & Rowland, C. F. (2001). The role 
of performance limitations in the acquisition of verb-argument structure: An 
alternative account. Journal of Child Language, 28, 127-152. 

English Nina 
Suppes, P. (1974). The semantics of children’s language. American 
Psychologist, 29, 103– 114. 

English Peter 
Bloom, L., Hood, L., & Lightbown, P. (1974). Imitation in language 
development: If, when and why. Cognitive Psychology, 6, 380–420. 

English Roman 
Weist, R. M. & Zevenbergen, A. (2008). Autobiographical memory and past 
time reference. Language Learning and Development, 4, 291 – 308. 

English Ross 
MacWhinney, B. (1991). The CHILDES project: Tools for analyzing talk. 
Hillsdale, NJ: Erlbaum. 

English Ruth 

Theakston, A. L., Lieven, E. V. M., Pine, J. M., & Rowland, C. F. (2001). The role 
of performance limitations in the acquisition of verb-argument structure: An 
alternative account. Journal of Child Language, 28, 127-152. 

English Sarah 
Brown, R. (1973). A first language: The early stages. Cambridge, MA: Harvard 
University Press. 

English Seth 
Peters, A. (1987). The role of imitation in the developing syntax of a blind 
child. Text, 7, 289–311. 

English Shem 

Clark, E. V. (1978). Awareness of language: Some evidence from what children 
say and do. In R. J. A. Sinclair & W. Levelt (Eds.), The child’s conception of 
language (pp. 17-43). Berlin: Springer Verlag. 

English Thomas 

Lieven, E., Salomo, D. & Tomasello, M. (2009). Two-year-old children’s 
production of multiword utterances: A usage-based analysis. Cognitive 
Linguistics, 20, 481-508. 

English Tow 
Demetras, M., Post, K., & Snow, C. (1986). Feedback to first-language 
learners. Journal of Child Language, 13, 275–292. 

English Trevor 
Demetras, M. (1989). Working parents conversational responses to their two-
year-old sons. Working paper. University of Arizona. 

English Violet 
Demuth, K. & McCullough, E. (2009). The prosodic (re)organization of 
children’s early English articles. Journal of Child Language, 36, 173-200. 

English Warren 

Theakston, A. L., Lieven, E. V. M., Pine, J. M., & Rowland, C. F. (2001). The role 
of performance limitations in the acquisition of verb-argument structure: An 
alternative account. Journal of Child Language, 28, 127-152. 

English Will 
Demuth, K. & McCullough, E. (2009). The prosodic (re)organization of 
children’s early English articles. Journal of Child Language, 36, 173-200. 

Estonian Henri 
Kohler, K. (2004) Erwerb der frühen Verbmorphologieim Estnischen. 
Unpublished doctoral thesis, University of Potsdam. 
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Estonian Hendrik 

Argus, R. (1998). CHILDES'ieestiandmepank ja sellesuhtluskeskneanalüüs 
(Hendrik, 1.6-2.6). Magistritöö, TallinnaPedagoogikaülikool, 
filoloogiateaduskond, eestikeeleõppetool. Tallinn: Tallinna 
Pedagoogikaülikool. 

Estonian Antsu No citation provided 

Farsi Lilia 

Family, N. (2009). Lighten up: The acquisition of light verb constructions in 
Persian. In J. Chandlee, M. Franchini, S. Lord, & G-M. Rheiner (Eds.) 
Proceedings of BUCLD 33. Sommerville, MA: Cascadilla Press. 

Farsi Minu 

Family, N. (2009). Lighten up: The acquisition of light verb constructions in 
Persian. In J. Chandlee, M. Franchini, S. Lord, & G-M. Rheiner (Eds.) 
Proceedings of BUCLD 33. Sommerville, MA: Cascadilla Press. 

French Anais 

Demuth, K. & Tremblay, A. (2008). Prosodically-conditioned variability in 
children's production of French determiners. Journal of Child Language, 35, 
99-127. 

French Greg 

Champaud, C. (1994). The development of verb forms in French children at 
around two years of age: some comparisons with Romance and non-Romance 
languages. Paper presented at the First Lisbon Meeting on Child Language, 
Lisbon, Portugal. 

French Leonard 

Leroy, M., Mathiot, E., & Morgenstern, A. (2009). Pointing gestures and 
demonstrative words: Deixis between the ages of one and three. In J. Zlatev, 
M. J. Falck, C. Lundmark, & M. Andrén (Eds.) Studies in language and 
cognition (pp. 386-404). Cambridge: Cambridge Scholars Publishing. 

French Liea 

De Cat, C. & Plunkett, B. (2002). ‘Qu’est ce qu’i(l) dit, celui +la`?’ Notes 
methodologiques sur la transcription d’un corpus francophone. In C. D. Pusch 
& W. Raible (eds), Romance corpus linguistics : Corpora and spoken language. 
Tubingen: Narr. 

French Madeleine 

Leroy, M., Mathiot, E., & Morgenstern, A. (2009). Pointing gestures and 
demonstrative words: Deixis between the ages of one and three. In J. Zlatev, 
M. J. Falck, C. Lundmark, & M. Andrén (Eds.) Studies in language and 
cognition (pp. 386-404). Cambridge: Cambridge Scholars Publishing. 

French Marie 

Hamann, C., Ohayon, S., Dubé, S., Frauenfelder, U. H., 
Rizzi, L., Starke, M., et al. (2003). Aspects of grammatical 
development in young French children with SLI. 
Developmental Science, 6, 151-160. 

French Marie 

Demuth, K. & Tremblay, A. (2008). Prosodically-conditioned variability in 
children's production of French determiners. Journal of Child Language, 35, 
99-127. 

French Mona 

De Cat, C. & Plunkett, B. (2002). ‘Qu’est ce qu’i(l) dit, celui +la`?’ Notes 
methodologiques sur la transcription d’un corpus francophone. In C. D. Pusch 
& W. Raible (eds), Romance corpus linguistics : Corpora and spoken language. 
Tubingen: Narr. 

French Nathan 

Demuth, K. & Tremblay, A. (2008). Prosodically-conditioned variability in 
children's production of French determiners. Journal of Child Language, 35, 
99-127. 

French Para 
De Cat, C. & Plunkett, B. (2002). ‘Qu’est ce qu’i(l) dit, celui +la`?’ Notes 
methodologiques sur la transcription d’un corpus francophone. In C. D. Pusch 
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& W. Raible (eds), Romance corpus linguistics : Corpora and spoken language. 
Tubingen: Narr. 

French Pauline 

Bassano, D. & Maillochon, I. (1994). Early grammatical and prosodic marking 
of utterance modality in French : a longitudinal case study. Journal of Child 
Language, 21, 649-675. 

French Phil 
Suppes, P., Smith, R., & Leveillé, M. (1973). The French syntax of a child’s 
noun phrases. Archives de Psychologie, 42, 207–269. 

French Rondal 
Rondal, J. A. (1985). Adult–child interaction and the process of language 
understanding. New York: Praeger. 

French Theophile 

Leroy, M., Mathiot, E., & Morgenstern, A. (2009). Pointing gestures and 
demonstrative words: Deixis between the ages of one and three. In J. Zlatev, 
M. J. Falck, C. Lundmark, & M. Andrén (Eds.) Studies in language and 
cognition (pp. 386-404). Cambridge: Cambridge Scholars Publishing. 

French Theotime 

Demuth, K. & Tremblay, A. (2008). Prosodically-conditioned variability in 
children's production of French determiners. Journal of Child Language, 35, 
99-127. 

German Andreas 
Wagner, K. R. (1985). How much do children say in a day? Journal of Child 
Language, 12, 475–487. 

German Ann 
Szagun, G. (2001). Learning different regularities: The acquisition of noun 
plurals by German-speaking children. First Language, 21, 109-141. 

German Caroline No citation provided 

German Cosima No citation provided 

German Emely 
Szagun, G. (2001). Learning different regularities: The acquisition of noun 
plurals by German-speaking children. First Language, 21, 109-141. 

German Falko 
Szagun, G. (2001). Learning different regularities: The acquisition of noun 
plurals by German-speaking children. First Language, 21, 109-141. 

German Finn 
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