
Learning from Demonstration in the Wild

Feryal Behbahani1, Kyriacos Shiarlis1, Xi Chen1, Vitaly Kurin1,2, Sudhanshu Kasewa1,2, Ciprian Stirbu1,2,
João Gomes1, Supratik Paul1,2, Frans A. Oliehoek1,3, João Messias1, Shimon Whiteson1,2

Abstract— Learning from demonstration (LfD) is useful in
settings where hand-coding behaviour or a reward function
is impractical. It has succeeded in a wide range of problems
but typically relies on artificially generated demonstrations or
specially deployed sensors and has not generally been able
to leverage the copious demonstrations available in the wild:
those that capture behaviour that was occurring anyway using
sensors that were already deployed for another purpose, e.g.,
traffic camera footage capturing demonstrations of natural
behaviour of vehicles, cyclists, and pedestrians. We propose
video to behaviour (ViBe), a new approach to learning models of
road user behaviour that requires as input only unlabelled raw
video data of a traffic scene collected from a single, monocular,
uncalibrated camera with ordinary resolution. Our approach
calibrates the camera, detects relevant objects, tracks them
through time, and uses the resulting trajectories to perform
LfD, yielding models of naturalistic behaviour. We apply ViBe
to raw videos of a traffic intersection and show that it can learn
purely from videos, without additional expert knowledge.

I. INTRODUCTION

Learning from demonstration (LfD) is a machine learning
technique that can learn complex behaviours from a dataset
of expert trajectories, called demonstrations. LfD is partic-
ularly useful in settings where hand-coding behaviour, or
engineering a suitable reward function, is too difficult or
labour intensive. While LfD has succeeded in a wide range
of problems [1], [2], [3], nearly all methods rely on either
artificially generated demonstrations (e.g., from laboratory
subjects) or those collected by specially deployed sensors
(e.g., MOCAP). These restrictions greatly limit the practical
applicability of LfD, which to date has largely not been able
to leverage the copious demonstrations available in the wild:
those that capture behaviour that was occurring anyway using
sensors that were already deployed for other purposes.

For example, consider the problem of training autonomous
vehicles to navigate in the presence of human road users.
Since physical road tests are expensive and dangerous, sim-
ulation is an essential part of the training process. However,
such training requires a realistic simulator which, in turn, re-
quires realistic models of other agents, e.g., vehicles, cyclists,
and pedestrians, that the autonomous vehicle interacts with.
Hand-coded models of road users are labour intensive to
create, do not generalise to new settings, and do not capture
the diversity of behaviours produced by humans.
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Fig. 1. Schematic of the ViBe approach

LfD is an attractive alternative. In principle, subjects
could be recruited to demonstrate such behaviour or existing
road users could be augmented with sensors to record their
trajectories. However, doing so would be expensive and yield
only limited datasets. A more effective way would be to use
the abundance of relevant demonstrations available in the
wild, such as traffic camera footage. Unfortunately, there are
currently no LfD methods that can learn from such sources
of traffic demonstrations.

In this paper, we propose video to behaviour (ViBe), a
new approach to learning models of road user behaviour
that requires as input only unlabelled raw video data of a
traffic scene collected from a single, monocular, uncalibrated
camera with ordinary resolution. Our approach, illustrated
in Figure 1, works by calibrating the camera, detecting
the relevant objects, and tracking them through time. Each
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trajectory, together with the static and dynamic context of
that road user at each moment in time, is then fed as
a demonstration to our LfD system, which learns robust
behaviour models for road users. The resulting models are
then used to populate a simulation of the scene built using
the Unity game engine.

The contributions of this paper are two-fold: First, we
present a vision pipeline that can track different road users
and map their tracked trajectories to 3D space and is
competitive with the state-of-the art approaches for image
space tracking. Second, we extend generative adversarial
imitation learning (GAIL) [4], a state-of-the-art LfD method,
with a novel curriculum-based training regime that enables
our agents to gradually learn to mimic temporally extended
expert demonstrations and successfully generalise to unseen
situations. We evaluate our method against several baselines,
including behavioural cloning (BC) and state-of-the-art vari-
ants of GAIL. Using a number of metrics, we show that our
method can better imitate the observed demonstrations and
results in more stable learning.

While this paper focuses on traffic applications, ViBe is
general and could be extended to other applications where
large amounts of video data containing demonstrations in the
wild are available.

II. RELATED WORK

A. Computer Vision

In recent years, neural network approaches have signifi-
cantly advanced the state of the art in computer vision tasks
such as classification [5] and object detection [6]. Object
detection is usually performed using region-based object
detectors such as Fast R-CNN [7], Faster R-CNN [8], or
Mask R-CNN [9]. Such methods are usually slower but
more accurate than single-object detectors such as SSD [10],
YOLO [11], RetinaNet [12], and hence more appropriate for
the application considered here.

When tracking multiple objects, tracking by detection, in
which objects are first detected, then associated into tracks, is
usually preferred. State-of-the art tracking methods employ
deep features [13], [14] often generated by Siamese networks
[15], [16] alongside image space motion models [17] and
intersection over union (IOU) trackers [18].

Our work employs a number of techniques for robust de-
tection and tracking. However, unlike most vision pipelines,
ours maps detections to 3D space, and makes extensive use
of 3D information while tracking. Recent work [19] explores
a similar application and uses the resulting 3D trajectories
to estimate car velocities and detect traffic anomalies. By
contrast, we use the trajectories as input to LfD.

B. Learning from Demonstration

ViBe’s LfD component extends GAIL [4] which is in-
spired by inverse reinforcement learning [20], [21], [22] and
is discussed further in Section III. A wide range of LfD
techniques have been developed using supervised, unsuper-
vised, or reinforcement learning [2]. However, most methods

[3], [23], [24], even when using raw video as sensory input
[25], rely on either artificially generated demonstrations or
those collected by specially deployed sensors, limiting their
application in realistic domains.

By contrast, ViBe leverages demonstrations of behaviour
that was occurring naturally. The same idea has been used to
imitate basketball teams [26], predict taxi driver behaviour
[27], and control complex animations [28]. However, all
these methods still rely on sensors (or manual labelling)
that provide ground truth information about the observed
demonstrations, whereas ViBe extracts trajectories directly
from raw, unlabelled videos.

Related to ViBe are several existing LfD methods that
learn road and pedestrian behaviour [29], [30], [31]. Most
relevant is learning highway merging behaviour [32], [33]
from NGSIM [34], a publicly available dataset of vehicle
trajectories. However, these methods again rely on manual
labelling or specialised equipment to obtain the trajectories,
while ViBe learns from raw, unlabelled videos.

Recent work proposed a method that can learn to play
ATARI games by observing YouTube videos [35]. Like ViBe,
this method requires only raw videos, and leverages existing
publicly available data. However, it trains only a single
agent operating in 2D space, whereas ViBe learns to control
multiple agents in 3D space.

Concurrently to our work, Peng et al. [36] proposed a
similar approach in the context of character animation. An
off-the-shelf vision module extracts 3D poses from unstruc-
tured YouTube videos of single agents performing acrobatic
motions. A simple LfD approach then rewards behaviour
that matches waypoints in individual demonstrations. By
contrast, we consider a more challenging setting with mul-
tiple agents, occlusions, and complex interactions between
agents. Consequently, behaviour detection, reconstruction,
and imitation are more difficult. In particular, interactions
between agents preclude a waypoint-matching approach, as
there is no unique set of waypoints for an agent to match
that would be robust to changes in other agents’ behaviour.

III. BACKGROUND

To realistically model the traffic environment of an au-
tonomous vehicle, we need to simulate multiple agents
interacting in the same environment. Unfortunately, due to
the large number of road users that may populate a traffic
scenario, learning a centralized policy to control all agents
simultaneously is impractical. The size of the joint action
space of such a policy grows exponentially in the number of
agents, leading to poor scalability in learning. Furthermore,
it is crucial to model variable numbers of agents (e.g., cars
routinely enter and leave an intersection), to which such joint
policies are poorly suited (each agent typically has a fixed
agent index).

To this end, we take an approach similar to that of
independent Q-learning (IQL) [37], where each agent learns
its own policy, conditioned only on its own observations. The
other actors are effectively treated as part of the environment.



We can then treat the problem as one of single-agent learning
and share the parameters of the policy across multiple
agents. Parameter sharing [38] avoids the exponential growth
of the joint action space and elegantly handles variable
numbers of agents. It also avoids instabilities associated with
decentralised learning by essentially performing centralised
learning with only one policy.

We model the problem as a Markov decision process
(MDP). The MDP is defined by the tuple (S,A, P,R).
S represents the set of environment states, A the set of
actions, P (st+1|st, at) the transition function, and R(st , at)
the reward function. We use π for the stochastic policy
learnt by our agent and πE for the expert policy which
we can access only through a dataset DE . The agent does
not have access to R(st , at) and instead must mimic the
expert’s demonstrated behaviour. Given a dataset DE , we
denote sample trajectories as τE . They consist of sequences
of observation-action pairs generated by the expert τE =
{(sE

1
, aE

1
), . . . , (sE

T
, aE

T
)}. Similarly, we denote trajectories

generated by our agent as τ = {(s
1
, a

1
), . . . , (s

T
, a

T
)}. In

our case, DE is obtained from raw videos, via the process
described in Section IV.

The simplest form of LfD is behavioural cloning (BC)
[39], [40], which trains a regressor (i.e., a policy) to replicate
the expert’s behaviour given an expert state. BC works well
for states covered by the training distribution but generalises
poorly due to compounding errors in the actions, a problem
also known as covariate shift [41]. By contrast, GAIL [4]
avoids covariate shift by learning via interaction with the
environment, similar to inverse reinforcement learning [20]
methods.

GAIL, aims to learn a deep neural network policy πθ that
cannot be distinguished from the expert policy πE . To this
end, it trains a discriminator Dφ, also a deep neural network,
to distinguish between state-action pairs coming from expert
and agent. GAIL optimises πθ to make it difficult for the
discriminator to make this distinction. Formally, the GAIL
objective is:

min
θ

max
φ

E
πθ

[log(Dφ(s, a))] + E
πE

[
log(1−Dφ(s

E , aE))
]
.

Here, Dφ outputs the probability that (s, a) originated from
π. As the agent interacts with the environment using πθ,
(s, a) pairs are collected and used to train Dφ. Then, GAIL
alternates between a gradient step on φ to increase the
objective function with respect to D, and an RL step on
θ to decrease it with respect to π. Optimisation of π can
be done with any RL algorithm using a reward function of
the form R(s, a) = − log(Dφ(s, a)). Typically, GAIL uses
policy gradient methods that approximate the gradient with
Monte Carlo rollouts [42] or a critic [43]. Optimisation of
Dφ minimises a cross entropy loss function.

Early in training, the state-action pairs visited by the policy
are quite different from those in the demonstrations, which
can yield unreliable and sparse rewards from Dφ, making
it difficult to learn πE . We will show how we address this
problem by introducing a novel curriculum in Section IV-C.

Fig. 2. Example of how ViBe’s vision module tracks cars (blue) and
pedestrians (red). The tracks are projected to 3D space using a reference
satellite image from Google Maps. The tracks are played back in a
simulation of the scene developed in Unity.

In multi-agent situations, GAIL agents trained in a single-
agent setting can fail to generalise to multi-agent settings
[33]. PS-GAIL [33] is an extension to GAIL that addresses
this issue by gradually increasing the number of agents
controlled by the policy during training. We compare to
PS-GAIL experimentally in Section V. However, it is com-
plementary to the Horizon GAIL method we propose in
Section IV-C and future work can focus on using them in
conjunction.

IV. VIBE: VIDEO TO BEHAVIOUR

In this section, we describe ViBe, which learns road
behaviour policies from raw traffic camera videos (see
Figure 1). We first describe how trajectories are extracted
from these videos. We then describe how they are used to
create a simulation of the scene. Finally, we detail how the
trajectories and the simulator are used to learn realistic road
behaviour policies via our novel LfD approach.

A. Extracting Demonstrations

This section describes our vision pipeline, whose main
steps are detection, calibration, and tracking.

Our detector uses the bounding box output of a pre-trained
model of Mask R-CNN [9] [6] based on ResNet-101 [5]
architecture, pre-trained on the COCO dataset [44]. Since
we are only interested in the traffic information, we remove
all classes except car, bus, truck, pedestrian, and bicycle.

The next step is calibration. As traffic cameras tend to
have a large field of view, the camera images tend to be
highly distorted. Due to being unable to calibrate the camera
using traditional methods (e.g., using a checkboard) [45].
Instead, we obtain a top-down satellite image of the scene
from Google Maps and add landmark points to both camera
and satellite images. We then undistort the camera image



and use the landmark points to calculate the camera matrix.
Given the camera calibration, we map the detected bounding
boxes into 3D by assuming that the detected object is a fixed
height above the ground, with the height depending on its
class.

The final step is tracking multiple objects in unstructured
environments. Our multiple object tracking (MOT) module is
similar to that of Deep SORT [14], which makes heavy use of
an appearance model to make associations. For each scene,
we train an appearance model using a Siamese network (SN)
[15]. We first run our object detector over the whole video,
followed by an IOU tracker. This yields short tracks that
we call tracklets. Objects in the same tracklets form positive
pairs, and objects from different tracklets form negative pairs
used to train the SN. To avoid the possibility of similar
objects appearing in negative pairs, we form these pairs using
tracklets with a large temporal difference. The SN is trained
using a cosine distance metric and a contrastive loss.

Our MOT pipeline then processes the detected objects
through several steps. Track initialisation occurs when a
simple IOU tracker associates more than five consecutive
detections. The initialised track is mapped to 3D space,
where a Kalman filter predicts the next position of the object.
Next, objects in the next frame within the vicinity of this
prediction are compared with the current track using the
features generated by SN. An association is made if this
comparison yields a cosine distance in the feature space
below a certain threshold. If no such association is made,
the tracker attempts to associate detections using IOU. If
association still fails, a final attempt is made using nearest
neighbour association in 3D space. Figure 2 shows an
example output of our tracking pipeline in both 2D and 3D
space.

B. Simulation
Our vision pipeline outputs timestamped trajectories of

different road users. However, a simulator also requires a
reliable representation of the static elements of the scene
such as pavements and zebra crossings. To this end, we use
Google Maps as a reference to build a simulation of the
scene in Unity. Building the static elements of the simulation
is straightforward and significantly easier than realistically
modeling the dynamic elements of the scene. In this paper,
we simulate a roundabout intersection in Purmerend, a city
in the Netherlands that provided the traffic video data used
in our experiments. Figure 2 shows how the scene along
with some tracks from our vision pipeline is recreated in our
simulator.

Section IV-C describes our LfD approach, which requires
a state representation for the agent. Our simulator generates
such a representation based on both the static and dynamic
context. Pseudo-LiDAR readings, similar to those in [33],
are used to represent different aspects of the static (e.g.,
zebra crossings and roads) and dynamic (e.g., distance and
velocity of other agents) context of the agent. In addition,
we provide information such as the agent’s heading, distance
from goal, and velocity. Our simulator uses a simple linear
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Fig. 3. Schematic of Horizon GAIL for different values of the horizon H ,
compared to BC. When H =∞, Horizon GAIL matches original GAIL.

motion model, which we found sufficient for learning, though
in the future individual motion models for each road entity
could be considered.

Given a start frame in the dataset, our simulator plays
back tracked trajectories from that frame onwards, produces
observations and accepts actions from agents controlled by
neural network policies. In other words, it provides exactly
the environment needed to both perform LfD on the extracted
trajectories, and evaluate the resulting learnt policies.

C. Learning

Given the trajectories extracted by the vision processing
from Section IV-A, ViBe uses the simulator from Section IV-
B to learn a policy that matches those trajectories. Learning
is based on GAIL, which leverages the simulator to train the
agent’s behaviour for states beyond those in the demonstra-
tions, avoiding the compounding errors of BC. However, in
the original GAIL method, this interaction with the simulator
means that the agent has control over the visited states from
the beginning of learning. Consequently, it is likely to take
bad actions that lead it to undesirable states, far from those
visited by the expert, which in turn yields sparse rewards
from the discriminator and slow agent learning.

To address this problem, we propose Horizon GAIL,
which, like BC, bootstraps learning from the expert’s states,
in this case to ensure a reliable reward signal from the
discriminator. To prevent compounding errors, we use a
novel horizon curriculum that slowly increases the number
of timesteps for which the agent interacts with the simulator.
Thus, only at the end of the curriculum does the agent
have the full control over visited states that the original
GAIL agent has from the beginning. This curriculum also
encourages the discriminator to learn better representations
early on.

In each episode, the agent is initialised from a random ex-
pert state, sEt and must act for H steps, where H is the length
of the horizon. Once the horizon is reached, the simulation
ends but the episode is not considered terminated. Instead,



Algorithm 1 Horizon Curriculum for GAIL
Initialise policy πθ, discriminator Dφ, expert demonstra-
tions DE
for h = 1 . . . T do

Sample expert trajectory: τE ∼ DE
for t = 0, h, 2h, . . . , T − h do

Use expert observation sEt to initialise the agent and
initialise the environment to its corresponding state
at time t
Sample an agent’s trajectory of length h: τ ∼ πθi

end for
Sample M observation-action pairs χ ∼ τ and M pairs
χE ∼ τE
Update the discriminator parameters from φi to φi+1

with the gradient:

E
(sm,am)∈χ

[∇φ log(Dφ(sm, am))]

+ E
(sEm,a

E
m)∈χE

[
∇φ log(1−Dφ(s

E
m, a

E
m))

]
Compute reward ∀(sm, am) ∈ χ using the discrimina-
tor: rm = − log(1−Dφi+1

(sm, am))
Take a policy step from θi to θi+1, with any policy
optimisation method

end for

Horizon GAIL uses an actor-critic approach, with the actor
following a gradient estimated from an n-step return, with
n = H , bootstrapping from a critic Vψ when the horizon
is reached. This prevents the agent from learning myopic
behaviour when H is small. Hence, while GAIL is agnostic
about the policy gradient method it uses, Horizon GAIL
commits to an actor-critic approach in order to bootstrap
beyond the simulated horizon.

When H = 1, Horizon GAIL is similar to BC. In fact, pre-
training GAIL with BC is known to be beneficial [32], [46],
[47], [48]. However, even with H = 1, a crucial difference
remains (see Figure 3). BC does not interact with a simulator,
as the agent simply learns to predict the expert’s action given
its state. By contrast, when H = 1, the Horizon GAIL agent’s
action is fed back into the simulator, which generates st+1

and the policy gradient estimate bootstraps with Vψ(st+1).
When H = 2, the agent, initialised from sEt , acts for two

steps in the simulator before being terminated. H is increased
during training according to a schedule. When H = ∞,
Horizon GAIL is equivalent to GAIL. See Algorithm 1 for
a complete overview of our training scheme.

Gradually moving from single step state-action pairs to
more difficult multi-step trajectories helps stabilise learning.
It allows the generator and discriminator to jointly learn to
generalise to longer sequences of behaviour and match the
expert data more closely while ensuring the discriminator
does not collapse early in training.

We found that Horizon GAIL was critical to successfully
reproduce naturalistic behaviour in our complex traffic inter-

section problem, as we show in Section V-B.

V. EXPERIMENTAL RESULTS

We evaluate ViBe on a complex multi-agent traffic scene
involving a roundabout in Purmerend (Section IV-B). The
input data consists of 850 minutes of video at 15 Hz from
the traffic camera observing the roundabout.

Our vision pipeline identifies all the agents in the scene
(e.g. cars, pedestrians and cyclists), and tracks their trajecto-
ries through time, resulting in around 10000 car trajectories.
Before any learning, these trajectories are filtered and pruned.
Specifically, any trajectories that result in collisions or very
large velocities are considered artifacts of the tracking pro-
cess and are not used during training. We split the resulting
dataset into training, validation, and test sets such that there
is no temporal overlap, i.e., no test trajectories occur at the
same time as training trajectories. The validation set is used
to tune hyper-parameters and choose the best performing
model (for all baselines) in evaluation. As discussed in
Section IV-B, we can use our simulator to play back these
trajectories at any point in time (see Figure 1).

When training with Horizon GAIL, in each episode the
agent is initialised at a point sampled from an expert tra-
jectory. The sampled point determines the full initial state
of the simulator, including position, velocity, and heading
of all agents in the scene. We use our policy to simulate
the agent for H steps. The agent is also assigned a goal
corresponding to the last state of the expert trajectory. The
episode terminates if the agent collides with an object or
another agent, or reaches its goal.

We compare Horizon GAIL to a number of baselines: BC,
GAIL [4] and PS-GAIL [33], using the same dataset and
observation and action spaces to train all methods. We show
results using the best hyper-parameters we found after tuning
them separately for each method.

Policies, πθ, take as input 64 dimensional pseudo-LiDAR
observations with a field of view of 2π radians, generated
by our simulator as described in Section IV-B. These LiDAR
observations are stacked together and processed in two layers
of 1x1 convolutions of 15 and 3 channels respectively. These
convolutions act as channel mixing operations but maintain
the spatial information of the original signal. The output
then passes through a series of fully connected layers and is
concatenated with the agent’s orientation, distance from the
goal, and a one-hot encoding of the target roundabout exit.
The network outputs displacements in Cartesian coordinates,
used by the simulator to update the agent’s location.

TABLE I
COMPARISON OF VIBE VISION MODULE TO BASELINE TRACKERS

NT IDF1 IDP IDR

IOU 400 51.1% 50.3% 51.8%

Deep SORT 129 68.1% 66.6% 69.7%

ViBe 97 70.5% 68.1% 73.1%



Fig. 4. Results of evaluation across 4 independent 4000 timesteps of multi-agent simulations across different metrics: Jensen-Shannon divergence between
joint velocity-occupancy, speed and occupancy distributions of ground truth and simulated agents. The collision probability, either with other agents or the
environment. Probability of failing to reach the correct exit.

We use identical core architectures for the discriminator
Dφ and value function Vψ . Contrary to [33] we do not
represent the policy using a recurrent neural network, thus
assuming that the state is fully observable. We did not
find this assumption to pose a significant obstacle to our
performance, and thus leave its assessment for future work.

We train πθ with proximal policy optimisation (PPO) with
a clipping objective [43], an actor-critic method known to
perform well for long-horizon problems [49]. We train each
model for 5000 epochs, each containing 1024 environment
interactions. For Horizon GAIL, the horizon schedule starts
with H = 1 and increments by 1 every 100 epochs. However,
performance is quite robust to this hyperparameter: varying
the schedule from 50 to 200 epochs and did not create any
significant performance differences.

A. Performance Metrics

To evaluate the ViBe vision module, we measure the
reliability of the tracks it generates using the metrics intro-
duced by Ristani et al. [50]: number of tracked trajectories
(NT), identity F1 score (IDF1), identity precision (IDP) and
identity recall (IDR). These metrics are suitable because they
reflect the key qualities of reliably tracked trajectories.

To evaluate our policies, we chose a 4000 timestep window
of the test data and simulate all the cars within that interval.
These windows do not overlap for each evaluation run.
Pedestrians and other road users are played back from the
dataset. In contrast to training, during evaluation we do not
terminate the agents upon collision, so as to assess how well
each method models long term behaviour.

Unlike in reinforcement learning, where the true reward
function is known, performance evaluation in LfD is not
straightforward and typically no single metric suffices. Sev-
eral researchers have proposed metrics for LfD, which are
often task specific [32], [51], [47]. We take a similar ap-
proach, using a suite of metrics, each comparing a different
aspect of the generated behaviour to that of human behaviour.

During evaluation we record the positions and velocities
of all simulated agents. Using kernel density estimation, we
estimate probability distributions for speed and 2D space

occupancy (i.e locations in 2D space) as well as a joint
distribution of velocities and space occupancy. The same
distributions are computed for the ground truth data. We
then measure the Jensen-Shannon divergence (JSD) between
the data and the respective model generated distributions
for these three quantities. We also measure how often the
simulated agents collide with objects or other agents in the
environment, i.e. the collision rate. Finally, we measure how
often the agents fail to reach their goal.

B. Results

To validate the ViBe vision module, we manually label
43 trajectories from the dataset and then compare its perfor-
mance against two baselines, a simple IOU [18] tracker and
Deep SORT [13], [14], a state-of-the-art MOT pipeline. We
replace Deep SORT’s appearance model with our own, as it
is specifically trained for this scene.

The results in Table V show that the ViBe vision module
outperforms both baselines. In particular, ViBe’s higher IDF1
score gives confidence that the trajectories provided are of
sufficient quality for LfD. The most substantial difference
between Deep SORT and ViBe is that ViBe performs Kalman
filtering in 3D space, which likely explains the performance
difference. Even for ViBe, the number of tracked trajec-
tories (NT) is substantially higher than ground truth (43).
However, this is not caused by false positives but merely by
the tracker treating a single trajectory as two separate ones.
This in turn implies that ViBe produces longer tracks than
the baseline methods.

The results of our LfD evaluation can be seen in the
following figures: Figure 4 shows performance with respect
to the evaluation metrics discussed in Section V-A for 4 inde-
pendent 4000 timesteps of multi-agent simulations. Figure 5
shows the trajectories generated by a single such simulation
by each method. The first observation is that Horizon GAIL
outperforms all baselines and produces trajectories that more
closely resemble the data. GAIL and PS-GAIL perform
relatively poorly, failing to capture the data distribution. It is
worth noting that these results represent the best training
epoch out of the 5000 performed during training, as we



BC GAIL PS-GAIL Horizon GAIL Expert data

Fig. 5. Top views of the trajectories taken by the agents, when trying to replicate the expert trajectories shown on the right-most column. These trajectories
are produced across 4000 timesteps of multi-agent simulation.

Fig. 6. Progression of Speed, Occupancy and Joint velocity-occupancy
JSD metrics through training, indicating difference in stability between our
method (Horizon GAIL) and other GAIL baselines across 3 random seeds.

observed that both baseline GAIL methods exhibit quite
unstable training dynamics. This can be further observed
from Figure 6 where we plot the speed, occupancy and joint
velocity-occupancy JSD metrics across the training epochs

for a multi-agent evaluation of 4000 timesteps across 3
random seeds. We can see that Horizon GAIL is noticeably
more stable across both metrics. With respect to PS-GAIL,
we observed that the curriculum parameter was relatively
hard to tune. For example, adding agents too soon causes
the discriminator to learn too quickly that these agents are
not real.

Another notable observation is that BC performs well
when compared to both baseline GAIL methods. This re-
sult can be attributed to the abundance of data available
for training. From Figure 5 however we can see that the
qualitative performance of these policies is relatively poor
when compared to Horizon GAIL. As expected, the BC
baseline quickly diverges from plausible trajectories, as mi-
nor errors compound over time. The long evaluation times
exacerbate this effect. Horizon GAIL avoids compounding
error problems associated with BC through interaction with
the environment. It also avoids unstable training related with
GAIL through the gradually increasing horizon. This yields
stable, plausible trajectories with fewer collisions than any
other method 1.

VI. CONCLUSION

This paper presented a novel method for learning from
demonstration in the wild that can leverage abundance of
freely available videos of natural behaviour. In particular,
we proposed ViBe, a new approach to learning models of
road user behaviour that requires as input only unlabelled
raw video data of a traffic scene collected from a single,
monocular, uncalibrated camera with ordinary resolution.
ViBe calibrates the camera, detects relevant objects, tracks
them reliably through time, and uses the resulting trajectories
to learn driver policies via a novel LfD method. The learned
policies are finally deployed in a simulation of the scene
developed using the Unity game engine. According to several
metrics our LfD method exhibits better and more stable
learning than baselines such as GAIL and BC.

1 A video presenting ViBe and showcasing the learned behaviour can be
found here: https://www.youtube.com/watch?v=K8ugVsW3Gm4
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