
Introduction
We appreciate very much the support from the IET Generation, Transmission & Distribution editorial board for this Special Issue on ‘New Trends in the Planning of Distribution Network with High Penetration of Renewables and Flexible Loads’. In this final version for publication, 29 papers have been selected for this Special Issue. Six papers are related to the grid planning consideration of electric vehicles (EVs) and charging stations, eight papers on the planning of renewables and energy storages, six papers on the investigation of topology of distribution network, and nine papers on the forecasting method and other discussions on the planning and operation of distribution network.

Grid Consideration of Electric Vehicles
To identify the charging behavior of EVs, Paper 1 by Hong et al develops a set of EV charging load profiles by an improved K-prototypes method. Paper 2 by Gjelaj et al presents a planning method to integrate DC fast-charging stations into power grid, Paper 3 by Jiang et al utilizes the multi-agent systems (MAS) and evidential reasoning (ER) approach to optimize the location of charging stations, and Paper 4 by Sun et al introduces a hierarchical optimal planning approach for siting and sizing of fast charging stations. Based on fuzzy Bayesian learning, Paper 5 by Zhang et al proposes a negotiation strategy between EV aggregator and power grid, for the participation of EVs in vehicle-to-grid (V2G) activities. Paper 6 by Su et al considers drivers’ behavior and proposes reactive power compensation strategy using EVs for voltage support of power grid.

Planning of Renewable Generations
The flexibility at the demand side has an impact on the planning of renewable generations and power grid. Paper 7 by Dang et al proposes a distributed generation (DG) planning model coordinating demand flexibility to promote the integration of renewables, and Paper 8 by Ehsan et al presents a scenario-based robust DG investment planning model that can consider the uncertainties of renewables and load demand. Paper 9 by Zhang et al presents a scheduling method using the time-of-use pricing scheme for wind-battery energy storage hybrid systems, and in Paper 10 by Dong et al, the stochastic extreme events are considered for the sizing of battery and backup generators. Paper 11 by Zhang et al presents a life cycle planning method for battery energy system in wind-solar-diesel microgrid. Paper 12 by Lakshmi et al presents an allocation planning method for voltage source converters (VSCs) to improve the photovoltaic (PV) hosting capacity and energy efficiency of distribution network, Paper 13 by Huang et al proposes a graphic processing unit (GPU) based parallel volt/var optimization for distribution network with DG, and Paper 14 by Wu et al proposes a decomposition method for coordinated planning of DG and distribution network.

Topology of Distribution Network
In recent years, some new topologies are identified in distribution network. Paper 15 by Xiao et al introduces flexible distribution network, and presents its definition, configuration, operation and a pilot project. Paper 16 by Zhang et al introduces an optimal configuration of hybrid AC/DC
urban distribution networks for the high penetration of renewable energy, and Paper 17 by Guo et al presents a graph theory based topology design and energy routing control for hybrid AC/DC network. Paper 18 by Teshome et al introduces an enhanced mixed integer linear programming model and Paper 19 by Ganesh et al presents a meta-heuristic technique for reconfiguration of distribution network with DG, respectively. In Paper 20 by Goui et al, the stochastic integration of demand response and reconfiguration is investigated for the expansion planning of distribution network.

Forecasting and Other Considerations for Network Planning

To investigate the correlation between wind and PV power, Paper 21 by Wu et al presents a PV-wind joint power probability model based on multiple temporal and spatial scale. Paper 22 by Iannarelli et al investigates the economic impact of investments in weather forecasts for distribution system operators according to the Italian case. Paper 23 by Zang et al introduces a hybrid method based on deep convolutional neural network for short-term PV power forecasting. Paper 24 by Jia et al analyzes the power fluctuation characteristic of wind power and introduces power smoothing strategies. Paper 25 by Li et al develops a method for division of urban load power supply district, which integrates the open source data into the planning of distribution network. Paper 26 by Liu et al proposes a robust load frequency control strategy based on equivalent input disturbance for power grid with wind farms. Paper 27 by Valsamas et al presents a comparative study of active anti-islanding schemes suitable for module integrated converters at low-voltage distribution network. In Paper 28 by Shuai et al, a fast restraining method for inrush voltage and current is presented for droop controlled inverter during grid fault clearance in distribution network. Paper 29 by Feng et al presents an expansion planning model for distribution network considering the deployment of smart management technologies.

Yong Li, College of Electrical and Information Engineering, Hunan University, China. Prof. Li is a Vice Director of the International Research Center for Smart Grid Optimization and Control, supported by the Ministry of Science and Technology of China. His main research interests are operation and control of smart grid, power conversion system, and HVDC and FACTS technologies.

Zuyi Li, Electrical and Computer Engineering Department, Illinois Institute of Technology (IIT), USA. Prof. Li is currently a Professor and the Associate Director of the Robert W. Galvin Center for Electricity Innovation at IIT. His main research interests include economic and secure operation of electric power systems, cyber security in smart grid, and renewable energy integration.

Lin Jiang, Department of Electrical Engineering & Electronics, University of Liverpool. He is Reader and leads a smart grid and renewable energy control group. His main research interests are control and optimization of smart grid, electrical machine/drives and power electronics.

Zechu Hu, Department of Electrical Engineering, Tsinghua University, where has been an associate professor since 2010. His major research interests include optimal planning and operation of power systems, smart grid, electric vehicles and energy storage systems.