Design of Robust MPPT Controller for Grid-connected PMSG-Based Wind Turbine via Perturbation Observation Based Nonlinear Adaptive Control

Jian Chen\textsuperscript{a}, Wei Yao\textsuperscript{b},\textsuperscript{c}, Chuan-Ke Zhang\textsuperscript{c}, Yaxing Ren\textsuperscript{d}, Lin Jiang\textsuperscript{d}

\textsuperscript{a}School of Electrical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
\textsuperscript{b}State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronics Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
\textsuperscript{c}School of Automation, China University of Geosciences, Wuhan, 430074, China
\textsuperscript{d}Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, United Kingdom.

Abstract

This paper presents a robust maximum power point tracking (MPPT) control scheme for a grid-connected permanent magnet synchronous generator based wind turbine (PMSG-WT) using perturbation observation based nonlinear adaptive control. In the proposed control scheme, system nonlinearities, parameter uncertainties, and external disturbances of the PMSG-WT are represented as a lumped perturbation term, which is estimated by a high-gain perturbation observer. The estimate of the lumped perturbation is employed to compensate the actual perturbation and further achieve adaptive feedback linearizing control of the original nonlinear system, without requiring the detailed system model and full state measurements. The effectiveness of the proposed control scheme is verified through both simulation studies and experimental tests. The results show that, compared with the conventional vector controller and the standard feedback linearizing controller, the proposed control strategy provides higher power conversion efficiency and has better dynamic performances and robustness against parameter uncertainties and external disturbances.

Keywords: Permanent magnet synchronous generator (PMSG), nonlinear adaptive control (NAC), maximum power point tracking (MPPT), perturbation observer, perturbation estimation.

1. Introduction

Wind energy has become an attractive and competitive clean renewable source. Most current wind energy conversion systems (WECSs) employ variable speed wind turbines such as doubly-fed induction generator (DFIG) based wind turbine and permanent magnet synchronous generator (PMSG) based wind turbine [1]-[8]. A DFIG-based wind turbine normally uses a gearbox to couple the rotor shaft of the wind turbine and the DFIG, which increases the

\textsuperscript{c}Corresponding Author: W. Yao, Tel.: +86 13657247542, Email: w.yao@hust.edu.cn

Preprint submitted to Renewable Energy October 20, 2018
maintenance cost and failure rate of the whole wind energy conversion system (WECS) [9]. Since the rotor of the
PMSG can be coupled directly to the one of the wind turbine, the usage of the gearbox is removed, and the installment
of direct-drive PMSG-based wind turbine (PMSG-WT) nowadays has been increasing, especially in offshore wind
farms, together with other merits such as high efficiency and high torque to weight ratio [10]-[17].

A maximum power point tracking (MPPT) control scheme can increase the power conversion efficiency by regu-
lating the mechanical rotation speed according to actual wind speeds [18, 19, 20]. Therefore, to improve the overall
efficiency of a WECS, an effective MPPT control scheme is essential [21, 22, 23, 24]. To extract maximum power
from time-varying wind power, some typical controllers are proposed and designed based on an approximated linear
model and linear techniques, such as conventional vector control (VC) with proportional-integral (PI) loops [14, 25]
and linear quadratic Gaussian [26]. Among these control strategies, the VC is the current industrial standard solution.
Despite the advantages of simplicity and decoupling control of active and reactive power, the VC based MPPT (VC-
MPPT) may not provide satisfactory performance as the PMSG-WT is a highly nonlinear system, which operates at
time-varying and wide-range operation points, due to time-varying wind speed. Therefore, the VC-MPPT designed
and tuned based on one operation point is not capable of providing global optimal performance for varying operation
points, which stimulates lots of research efforts on the tuning of the VC with PI loops.

To improve the performance of the VC-MPPT, a feedback linearizing control (FLC) based MPPT (FLC-MPPT)
is designed for the PMSG-WT to extract the maximum wind power [27]. The FLC strategy has been widely ap-
plied in power electronics [28, 29], permanent magnet synchronous motor [30], and low voltage ride-through of the
PMSG-based WECS [31]. The FLC provides nonlinear systems with better dynamic performances than the controllers
designed based on an approximated linear model and linear technique. In [27], the PMSG-WT system is transformed
into an equivalent linear system via nonlinear feedback control and state transformation. Then, the closed-loop me-
chanical rotation speed controller and current controllers are designed via linear control method. The FLC-MPPT
can fully decouple the original PMSG-WT system and provide a global optimal controller crossing a wide region
and varying operation points. The maximum wind power can be extracted with satisfactory dynamic performances
when wind speed varies. However, the design of the FLC-MPPT requires full state feedback and accurate PMSG-WT
system model to calculate full system nonlinearities, and this always results in a complex control law and has weak
robustness against parameter uncertainties and external disturbances [32].

In the real system operation, some parameters, such as stator resistance, inductance, field flux and other parame-
ters of electrical machine, are affected by operating conditions and manufacturing tolerance, which would deteriorate
performance of the FLC [33, 34, 35]. To remedy these shortcomings of the FLC, a high gain perturbation observer
based nonlinear adaptive control (HGPONAC) was proposed in the authors’ previous work [36], which can improve
the robustness of the FLC and remove the dependance of the detailed model of the FLC. Recently, the authors have
applied this idea to successfully enhance the fault ride-through capability of the PMSG-WT [37]. It can be expected
to improve the MPPT performance of the PMSG-WT operating under time-varying wind speed, parameter uncer-
tainties, and external disturbance conditions by replacing the FLC-MPPT of [27] with the HGPONAC based MPPT
(HGPONAC-MPPT).

In this paper, an HGPONAC is developed for the MPPT of the PMSG-WT, aiming to not only improve energy
conversion efficiency under time-varying wind power inputs and inaccurate parameters of the WECS, but also provide
high robustness against system parameter uncertainties and external disturbances. By defining a lumped perturbation
term to present coupling nonlinear dynamics, parameter uncertainties, and other unknown disturbances, a perturbation
observer is designed to estimate the lumped perturbation, which then is used to compensate the real perturbation and
realize an adaptive linearizing of the original nonlinear system. The HGPONAC-MPPT can fully take into account
of all PMSG-WT system nonlinearities and unknown dynamics, and external disturbances caused by tower shadow
and time-varying wind speed, without requiring the accurate system model and full state measurements, compared
with the FLC-MPPT. The effectiveness of the proposed control scheme is verified through both simulation studies and
experimental tests.

The main contributions of this paper are summarized as follows:

• A robust maximum power point tracking (MPPT) control scheme is proposed for a grid-connected PMSG-WT
using perturbation observation based nonlinear adaptive control to increases energy conversion efficiency under
time-varying wind.

• The high-gain observer is incorporated into original FLC to design the proposed MPPT control scheme, which
can fully take into account of all PMSG-WT system nonlinearities and unknown dynamics, and external distur-
bances, without requiring the accurate system model. Therefore, the proposed approach is robust to generator
parameter uncertainties, tower shadow and pitch angle variation.

• Since the high-gain observer can estimate all the system full states accurately, only the input signals are required
and full state measurements are not required for the proposed MPPT control scheme. Hence, the proposed
control scheme is an output feedback controller, which is easily implemented for a practical system.
The effectiveness of the proposed control scheme has been verified through both simulation studies and experimental tests.

The remainder of this paper is organized as follows. In Section 2, the model of PMSG-WT and problem formulation are briefly recalled. The design of the HGPONAC-MPPT control scheme, together with an FLC-MPPT, and the stability analysis of the whole closed-loop system are presented in Section 3. In Section 4, simulation studies are conducted to verify the performances of the proposed HGPONAC-MPPT, compared with the VC-MPPT and the FLC-MPPT. Experimental validations are carried out in Section 5. Finally, conclusions are drawn in Section 6.

2. Dynamic Model and Problem Formulation

The configuration of a gearless WECS equipped with a PMSG-WT is shown in Fig. 1, in which wind energy extracted by the wind turbine is transmitted to the PMSG, and the electrical power from the PMSG is then supplied to the power grid through a machine-side converter and a grid-side inverter. The DC voltage link between the converter and the inverter decouples the dynamic and control of the PMSG-WT and the power grid [28]. Two converters are controlled for regulating the output power of the PMSG and delivering active power to the grid, respectively. The MPPT problem concerned in this paper is achieved by controlling mechanical rotation speed via the machine-side converter. Therefore, the dynamic models of the wind turbine and the PMSG controlled by the machine-side converter are given in this section.

![Configuration of PMSG based wind turbine](image)

Figure 1: Configuration of PMSG based wind turbine
2.1. Model of the PMSG-WT

2.1.1. Wind turbine

The kinetic power extracted by the wind turbine is given as [38]:

\[ P_w = \frac{1}{2} \rho \pi R^2 V^3 C_p(\beta, \lambda) \]  

(1)

where, \( \rho \) is the air density, \( R \) is the blade radius, \( V \) is the wind speed, \( C_p \) is the power coefficient, \( \beta \) is the pitch angle, and \( \lambda \) is the tip speed ratio (TSR) given by

\[ \lambda = \frac{R \omega_m}{V} \]  

(2)

with \( \omega_m \) being the mechanical rotation speed.

The \( C_p \) is a function of \( \beta \) and \( \lambda \), and the following one recalled from [38] is used in this paper:

\[ C_p(\beta, \lambda) = 0.22 \left( \frac{116}{\lambda_t^2} - 0.4\beta - 5 \right) e^{\frac{-\beta}{2}} \]  

(3)

where

\[ \frac{1}{\lambda_t} = \frac{1}{\lambda + 0.08\beta} - \frac{0.035}{\beta^3 + 1} \]  

(4)

2.1.2. PMSG

The voltage and torque equations of the PMSG in the \( d-q \) reference frames are given by [39]

\[ V_d = R_s i_d + L_d \frac{di_d}{dt} - \omega_e L_q i_q \]  

(5)

\[ V_q = R_s i_q + L_q \frac{di_q}{dt} + \omega_e L_d i_d + \omega_e K_e \]  

(6)

\[ T_e = p [(L_d - L_q) i_d i_q + i_q K_e] \]  

(7)

where, \( V_d \) and \( V_q \) are the stator voltages in the \( d-q \) axis, \( i_d \) and \( i_q \) are the stator currents in the \( d-q \) axis, \( R_s \) is the stator resistance, \( L_d \) and \( L_q \) are the inductances in the \( d-q \) axis, \( \omega_e (= p \omega_m) \) is the electrical generator rotation speed with \( p \) being the number of pole pairs, \( K_e \) is the field flux, and \( T_e \) is the electromagnetic torque. The motion equation of the PMSG is given as

\[ J \frac{d\omega_m}{dt} = T_e - T_m \]  

(8)

where, \( J \) is the total inertia of the drive train equaling to the summation of wind turbine inertia and generator inertia, and \( T_m \) is the wind turbine mechanical torque and calculated by

\[ T_m = \frac{\rho \pi R^2 V^3 C_p}{2 \omega_m} \]  

(9)
2.2. MPPT technique based on tip speed ratio (TSR) control

The paper aims to increase the efficiency of the WECS during the wind turbine working in region 2. Region 2 is the moderate-speed region that is bounded by the cut-in speed at which the wind turbine starts working, and the rated speed at which the wind turbine produces its rated power. In this region, the wind turbine is controlled to extract the maximum power from wind power [21, 40]. To extract the maximum wind power, the power coefficient $C_p(\beta, \lambda)$ should maintain its maximum value $C_{p_{\text{max}}}$ at any wind speed within the operating range. $C_{p_{\text{max}}}$ is achieved by maintaining $\lambda$ at its optimal value $\lambda_{\text{opt}}$. From (3) and (4), $C_{p_{\text{max}}}$ is achieved by maintaining TSR $\lambda$ at its optimal value $\lambda_{\text{opt}}$, i.e.,

$$C_{p_{\text{max}}} = C_p(\lambda_{\text{opt}})$$  \hspace{1cm} (10)

The $\lambda_{\text{opt}}$ for a given wind turbine is constant regardless of wind speed under a constant pitch angle. TSR control directly regulates the mechanical rotation speed $\omega_m$ to keep $\lambda$ at its optimal value $\lambda_{\text{opt}}$ by measuring wind speed and mechanical rotation speed [21, 40, 41]. It requires the mechanical rotation speed $\omega_m$ to track its optimal reference $\omega_m^{\text{mr}}$ from (2):

$$\omega_m^{\text{mr}} = \frac{\lambda_{\text{opt}} R V}{\rho}$$  \hspace{1cm} (11)

The WECS can extract maximum wind energy if mechanical rotation speed $\omega_m$ can track its optimal reference $\omega_m^{\text{mr}}$. Therefore, this control method seeks to force the WECS to remain at this point by comparing $\omega_m^{\text{mr}}$ with the actual value $\omega_m$ and feeding this difference to the controller. The block diagram of MPPT technique based on TSR control is shown in Fig. 2.

![Block diagram of the MPPT technique based on TSR control](image)

In this paper, the function of $C_p$ given in [38] is used, in which the optimal TSR is $\lambda_{\text{opt}} = 7.3089$ and $C_{p_{\text{max}}} = 0.402$.

Note that the accurate power coefficient is very important to design control scheme for wind energy conversion system, especially maximum power controller. For a practical wind turbine, the estimated methods proposed in [42, 43, 44] can be used for obtaining the accurate power coefficient.
Several factors, such as time-varying wind speed, parameter uncertainties, and external disturbances, will make the PMSG-WT out of its maximal efficiency condition. Therefore, the purpose of this paper is to develop an adaptive MPPT control scheme based on TSR control, which controls the real time mechanical rotation speed to match its optimal reference $\omega_{mr}$ as much as possible, so as to extract maximum wind power in consideration of those uncertainties and disturbances.

3. High Gain Perturbation Observation Based MPPT Control Scheme

This section extends a high gain perturbation observer based nonlinear adaptive control (HGPONAC) to the MPPT problem of the PMSG-WT. The design procedure of the HGPONAC is briefly recalled from our previous work [36]. Then, the detailed MPPT control scheme based on the HGPONAC is presented. Finally, the stability of PMSG-WT with the proposed control scheme is proved.

3.1. High gain perturbation observer based nonlinear adaptive control

The main idea of this control strategy is that a perturbation term is firstly defined to include subsystem nonlinearities, interactions between subsystems, and uncertainties appearing in the input/output linearized system. Its estimated value obtained via an observer is then used to compensate the real perturbation and implement an adaptive linearizing and decoupling control of the original nonlinear system. One can refer to [36] for the detailed theoretical analysis.

Here the key design steps for control design are summarized as follows:

**Step 1: Model construction.** Construct the following standard multi-input multi-output (MIMO) nonlinear system based on the dynamic characteristic of the system:

$$\begin{align*}
\dot{x} &= f(x) + g(x)u \\
y &= h(x)
\end{align*}$$

where $x \in \mathbb{R}^n$ is the state vector, $u \in \mathbb{R}^m$ is the control input vector, $y \in \mathbb{R}^m$ is the output vector, and $f(x)$, $g(x)$ and $h(x)$ are some smooth vector functions.

**Step 2: Input-output linearization.** Differentiating each output $y_i$ of the system until the input $u_j$ appears yields the following input-output relationship:

$$\begin{align*}
\begin{bmatrix}
y_1^{(r_1)} \\
\vdots \\
y_m^{(r_m)}
\end{bmatrix} &= \begin{bmatrix}
L_{r_1}^{(r_1)} h_1 \\
\vdots \\
L_{r_m}^{(r_m)} h_m
\end{bmatrix} \begin{bmatrix}
u_1 \\
\vdots \\
u_m
\end{bmatrix}
\end{align*}$$
with

\[
B(x) = \begin{bmatrix}
L_{g1} L_{r1} h_1 & \cdots & L_{g_n} L_{r1} h_1 \\
\vdots & \vdots & \vdots \\
L_{g1} L_{r m} h_m & \cdots & L_{g_n} L_{r m} h_m
\end{bmatrix}
\]  

(14)

where, \( y_i^{(r)} \) is the \( r \)th-order derivative of \( y_i \), \( r_i \) is the smallest integer so that at least one of the inputs explicitly appears in \( y_i^{(r)} \), i.e., \( L_{gj} L_{r1}^{-1} h_j(x) \neq 0 \) for at least one \( j \), and \( B(x) \) is an \( m \times m \) control gain matrix.

**Step 3: Perturbation definition and system reconfiguration.** Assume all nonlinearities of system (13) are unknown, and define perturbation terms as

\[
\begin{bmatrix}
\Psi_1(x) \\
\vdots \\
\Psi_m(x)
\end{bmatrix}
= \begin{bmatrix}
L_{r1} h_1 \\
\vdots \\
L_{r m} h_m
\end{bmatrix}
+ (B(x) - B_0) \begin{bmatrix}
u_1 \\
\vdots \\
u_m
\end{bmatrix}
\]

(15)

where \( \Psi_i(x) \) is the perturbation term, and \( B_0 = B(x)|_{x=x(0)} \) is the nominal control gain. Then system (13) is rewritten as

\[
\begin{bmatrix}
y_1^{(r_i)} \\
\vdots \\
y_m^{(r_i)}
\end{bmatrix}
= \begin{bmatrix}
\Psi_1(x) \\
\vdots \\
\Psi_m(x)
\end{bmatrix}
+ \begin{bmatrix}
u_1 \\
\vdots \\
u_m
\end{bmatrix}
\]

(16)

For the \( i \)th subsystem, by defining state variables as \( z_{i1} = y_i, \cdots, z_{ir_i} = y_i^{(r_i-1)} \) and a virtual state to represent the perturbation \( z_{i(r_i+1)} = \Psi_i(x) \), the \( i \)th subsystem of (12) can be represented as

\[
\begin{cases}
\dot{z}_{i1} = z_{i2} \\
\vdots \\
\dot{z}_{ir_i} = z_{i(r_i+1)} + B_{0i} u \\
\dot{z}_{i(r_i+1)} = \Psi_i(x)
\end{cases}
\]

(17)

where, \( B_{0i} \) is the \( i \)th row of the \( B_0 \), and \( B_{0ij} \) is the \( i \)th row \( j \)th column element of the \( B_0 \).

For system(17), several types of perturbation observers, such as high gain observer, sliding mode observer and linear Luenberger observer, have been proposed [36, 46].

**Step 4: High gain perturbation observer (HGPO) design.** High gain observer is applied in this paper. For subsystem (17), the output \( y_i = z_{i1} \) is measurable, then the following \( (r_i + 1) \)th-order states and perturbation observer
(SPO) can be designed to estimate the system states and perturbation:

\[
\begin{align*}
\dot{\hat{z}}_{i1} &= \hat{z}_{i2} + l_{i1}(z_{i1} - \hat{z}_{i1}) \\
&\quad \cdots \\
\dot{\hat{z}}_{ir_i} &= \hat{z}_{i(r_i+1)} + l_{ir_i}(z_{i1} - \hat{z}_{i1}) + B_0 u \\
\dot{\hat{z}}_{i(r_i+1)} &= l_{i(r_i+1)}(z_{i1} - \hat{z}_{i1}),
\end{align*}
\]

(18)

where, \(\hat{z}_{ij}\) is the estimations of \(z_{ij}\), and \(l_{ij}\) are gains of the high gain observer and designed by

\[
l_{ij} = \frac{\alpha_{ij}}{\epsilon_j}
\]

(19)

and \(\epsilon_j\) is a scalar chosen to be within \((0,1)\) for representing times of the time-dynamics between the observer and the real system, and parameters \(\alpha_{ij}, j = 1, \cdots, r_i + 1\), are chosen so that the roots of

\[
s^{r_i+1} + \alpha_{i1}s^r + \cdots + \alpha_{ir_i}s + \alpha_{i(r_i+1)} = 0
\]

(20)

are in the open left-half complex plane.

Step 5: Perturbation compensation and linear system control. The actual perturbation \(\Psi_i(x)\) of system (16) is compensated by using the estimate of perturbation \(\hat{\Psi}_i(x) = \hat{z}_{i(r_i+1)}\) and the following HGPONAC:

\[
u_{nac} = B_0^{-1} \begin{bmatrix} -\hat{\Psi}_1(x) \\ \vdots \\ -\hat{\Psi}_m(x) \end{bmatrix} + \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix}
\]

(21)

where, \(v_i = -K_i\hat{z}_i\) is an output feedback when SPO is designed. \(K_i = [k_{i1}, \cdots, k_{i(r_i-1)}]^T\) is linear control gains which are determined via linear system method.

In addition, from input/output linearization system (13), the standard feedback linearizing control (FLC) to be compared in this paper is obtained as

\[
u_{flc} = B(x)^{-1} \begin{bmatrix} -L_1^{ji} h_1 \\ \vdots \\ -L_m^{ji} h_m \end{bmatrix} + \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix}
\]

(22)

where, \(v_i\) is designed the same to the one in (21).

The control law \(u_{flc}\) is very sensitive to the system parameters and requires system measurements, thus both the parameter uncertainties and disturbance lead to incomplete compensation of perturbation and further degrade the
control performance. On the contrary, due to the usage of the perturbation observer, which compensates the actual perturbation, the proposed HGPONAC, $u_{\text{pcon}}$, only requires a few measured outputs and the nominal values of the parameters to provide well robustness.

3.2. HGPONAC based MPPT scheme

An adaptive MPPT scheme is designed for the PMSG-WT by following the procedure given in previous. By choosing measurable signal $i_d$ and $\omega_m$ as outputs, and $V_d$ and $V_q$ as control inputs, the model given by (5)-(8) can be rewritten as the following state-space system in the form of (12):

$$
\begin{bmatrix}
  i_d \\
  i_q \\
  \omega_m \\
  y_1 \\
  y_2
\end{bmatrix} =
\begin{bmatrix}
  -\frac{R}{L_d} i_d + \frac{\omega L_m}{L_d} i_q \\
  -\frac{R}{L_q} i_q - \frac{1}{L_m} \omega_m (L_d i_d + K_r) \\
  \frac{1}{J} [p (L_d - L_q) i_d i_q + i_q K_r] - T_m \\
  i_d \\
  \omega_m
\end{bmatrix} +
\begin{bmatrix}
  \frac{1}{L_d} \\
  0 \\
  0 \\
  u_1 \\
  u_2
\end{bmatrix}
\begin{bmatrix}
  V_d \\
  V_q
\end{bmatrix}
$$

where

$$
F_1(x) = \frac{1}{L_d} (-i_d R_d + \omega L_q i_q) 
$$

$$
F_2(x) = -\frac{p}{J L_q} [K_r + (L_d - L_q) i_d] L_d \omega_m i_d - \frac{p}{J L_q} [K_r + (L_d - L_q) i_d] (R_d i_d + \omega K_r) 
$$

$$
+ \frac{p i_d}{J L_d} (L_d - L_q) (-R_d i_d + L_q \omega_m i_q) - \frac{1}{J} \frac{d T_m}{dt} 
$$

$$
B(x) = \begin{bmatrix}
  B_1(x) \\
  B_2(x)
\end{bmatrix} =
\begin{bmatrix}
  \frac{1}{L_d} & 0 \\
  \frac{p_i (L_d - L_q)}{J L_d} & \frac{p (K_r + (L_d - L_q) i_d)}{J L_n}
\end{bmatrix}
$$

and the relative degree is $r_i = [1, 2]$; and $B(x)$ is nonsingular for all nominal operation points since $\det[B(x)] = \frac{p (K_r + (L_d - L_q) i_d)}{J L_n} \neq 0$ as $K_r \neq 0$.

Based on (15) and (24)-(27), the perturbation terms, $\Psi_i(x), i = 1, 2$, are defined as

$$
P_{\Psi_i} : \begin{cases}
\Psi_1(x) = F_1(x) + (B_1(x) - B_0) u_1 \\
B_0 = \begin{bmatrix}
  \frac{1}{L_n} \\
  0
\end{bmatrix}
\end{cases}
$$

(28)
\[ P_{\Psi 2} : \begin{cases}
\Psi_2(x) = F_2(x) + (B_2(x) - B_{02}) \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \\
B_{02} = \begin{bmatrix}
\frac{\mu(q_L q_p - L_0 q_p)}{J_0 q_p} \\
\frac{\mu(q_L q_p + L_0 q_p)}{J_0 q_p}
\end{bmatrix}
\end{cases} \] (29)

where \( L_{d0}, L_{q0}, J_0, K_{e0}, B_{01}, \) and \( B_{02} \) are respectively the nominal values of \( L_d, L_q, J, K_e, B_1(x), \) and \( B_2(x) \).

Based on (16), (28) and (29) can be rewritten as

\[
\begin{bmatrix}
y_1 \\
y_2 \\
z_1 \\
z_2
\end{bmatrix} =
\begin{bmatrix}
\Psi_1(x) + B_01 \begin{bmatrix} V_d \\ V_q \end{bmatrix} \\
\Psi_2(x) + B_02 \begin{bmatrix} V_d \\ V_q \end{bmatrix}
\end{bmatrix}
\] (30)

where

\[
B_0 = \begin{bmatrix}
B_{01} \\
B_{02}
\end{bmatrix}
\] (31)

Based on (16) and (17), by defining new state vectors \( z_{11} = i_d, z_{12} = \Psi_1(x); z_{21} = \omega_m, z_{22} = \dot{\omega}_m, z_{23} = \Psi_2(x), \) system (24) can be divided into the following two subsystems

\[
S_1 : \begin{cases}
z_{11} = \dot{z}_{11} + \begin{bmatrix} V_d \\ V_q \end{bmatrix} \\
z_{12} = \dot{z}_{12} \\
z_{11} = y_1 \\
z_{21} = \dot{z}_{21} \dot{z}_{22} \\
z_{22} = \dot{z}_{22} + \begin{bmatrix} V_d \\ V_q \end{bmatrix} \\
z_{23} = \dot{z}_{23} \\
z_{21} = y_2
\end{cases}
\] (32)

\[
S_2 : \begin{cases}
z_{11} = \dot{z}_{11} + \begin{bmatrix} V_d \\ V_q \end{bmatrix} \\
z_{12} = \dot{z}_{12} \\
z_{11} = y_1 \\
z_{21} = \dot{z}_{21} \dot{z}_{22} \\
z_{22} = \dot{z}_{22} + \begin{bmatrix} V_d \\ V_q \end{bmatrix} \\
z_{23} = \dot{z}_{23} \\
z_{21} = y_2
\end{cases}
\] (33)

Based on (18), the following two observers are designed, respectively, to estimate the perturbation \( \dot{z}_{12} = \dot{\Psi}_1(x) \)

and estimate the \( \dot{z}_{22} \) and perturbation \( \dot{z}_{23} = \dot{\Psi}_2(x) \):

\[
S_1 : \begin{cases}
\hat{z}_{11} = \dot{\hat{z}}_{11} + l_{11} (i_d - \hat{z}_{11}) + B_{01} \begin{bmatrix} V_d \\ V_q \end{bmatrix} \\
\hat{z}_{12} = l_{12} (i_d - \hat{z}_{11})
\end{cases}
\] (34)
where the gains, \( i_{ij} = \frac{\alpha_j}{e_i}, i = 1, 2, j = 1, r, 1, \) are designed based on (19). By using the estimated perturbations to compensate the actual perturbations, the HGPO-NAC-based control laws for subsystems \( S_1 \) and \( S_2 \) are obtained from (21) as follows:

\[
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix} =
\begin{bmatrix}
V_d \\
V_q
\end{bmatrix} = B_0^{-1} \begin{bmatrix} v_1 - \hat{\omega}_{12} \\
v_2 - \hat{\omega}_{23}
\end{bmatrix}
\] (36)

In order to achieve MPPT, the real time mechanical rotation speed, \( y_2 = \omega_m \), should track its optimal reference \( y_{2r} = \omega_{mopt} \). In addition, the current \( y_1 = i_d \) is controlled to track its reference \( y_{1r} = i_{dr} = 0 \). Thus, the \( v_{1,2} \) is defined as the following form to control the track errors to be zero:

\[
\begin{align*}
\dot{e}_1 + k_{11}e_1 &= 0 \\
\dot{e}_2 + k_{22}e_2 + k_{21}e_1 &= 0
\end{align*}
\] (37)

By defining track errors \( e_1 = y_{1r} - y_1 \) and \( e_2 = y_{2r} - y_2 \), the error dynamics as the following track error system is obtained:

\[
\begin{align*}
\dot{e}_1 + k_{11}e_1 &= 0 \\
\dot{e}_2 + k_{22}e_2 + k_{21}e_1 &= 0
\end{align*}
\] (38)

\[
\dot{e}_2 + k_{22}e_2 + k_{21}e_1 = 0
\] (39)

where, the linear control gains, \( k_{11}, k_{21}, k_{22} \), are tuned via pole-placement technique.

Finally, the HGPO-NAC-MPPT control law represented by physical variables, such as currents, inductance, total inertia, field flux and mechanical rotation speed, are summarized as follows:

\[
\begin{align*}
V_d &= L_{d0}[k_{11}(i_{dr} - i_d) + \hat{i}_{dr} - \hat{\omega}_{12}] \\
V_q &= -\frac{i_{q0}(L_{q0} - L_{q})}{L_{q} + (L_{q} - L_{q0})} [k_{11}(i_{dr} - i_d) + \hat{i}_{dr} - \hat{\omega}_{12}] \\
&\quad + \frac{1}{p[k_{m0} + (L_{m} - L_{m0})]} [k_{21}(\omega_{mu} - \omega_m) + k_{22}(\omega_{mu} - \hat{\omega}_{22}) + \dot{\omega}_{mu} - \hat{\omega}_{23}]
\end{align*}
\] (40)

On the other hand, based on (22) and (24), the standard FLC scheme is obtained as

\[
\begin{bmatrix}
V_d \\
V_q
\end{bmatrix} = \begin{bmatrix}
B(x)^{-1} & \begin{bmatrix} v_1 - F_1(x) \\
v_2 - F_2(x)
\end{bmatrix}
\end{bmatrix} \begin{bmatrix}
0 \\
\frac{L_d}{i_{q0}(L_{d} - L_{q})} \frac{J_{d}}{k_{m0} + (L_{m} - L_{m0})}
\end{bmatrix} \begin{bmatrix} v_1 - F_1(x) \\
v_2 - F_2(x)
\end{bmatrix}
\] (41)
and its physical variables based form is given as

\[
\begin{align*}
V_d &= L_d[k_1(i_{dr} - i_d) + i_{dr} - F_1(x)] \\
V_q &= -i_{qr}L_q[k_1(i_{dr} - i_d) + i_{dr} - F_1(x)] \\
&\quad + \frac{u_d}{k_1(i_{dr} - i_d)}[k_21(\omega_{mr} - \omega_m) + k_22(\omega_{mr} - \omega_m) + \dot{\omega}_{mr} - F_2(x)]
\end{align*}
\] (42)

The FLC-MPPT control law (42) requires real values of system parameters and the measurements of wind speed, currents, \(\omega_m\) and \(\frac{\partial \tau_m}{\partial x}\). On the contrary, the proposed HGPONAC-MPPT control law (40) only requires the nominal values \(L_{d0}, L_{q0}, K_{e0}\) and \(J_0\), and the measurements of wind speed, currents and \(w_m\). It clearly shows the advantages of the proposed control law, including better robustness and easy realization.

To clearly illustrate the principle of the proposed HGPONAC-MPPT, the block diagram of the proposed HGPONAC-MPPT is depicted in Fig. 3.

### 3.3. Stability analysis of closed-loop system

This section analyzes the stability of the closed-loop system equipped with the HGPONAC-MPPT designed in the previous section.

At first, both the estimation error system and the tracking error system are obtained. On one hand, by defining estimation errors \(\varepsilon_{11} = z_{11} - \hat{z}_{11}, \varepsilon_{12} = z_{12} - \hat{z}_{12}, \varepsilon_{21} = z_{21} - \hat{z}_{21}, \varepsilon_{22} = z_{22} - \hat{z}_{22}, \varepsilon_{23} = z_{23} - \hat{z}_{23}\), subtracting (32) from (33) and subtracting (35) from (33), the following estimation error system yields:

\[
\dot{\varepsilon}_i = A_i \varepsilon_i + \eta_i
\] (43)

where

\[
\varepsilon_i = \begin{bmatrix}
\varepsilon_{11} \\
\varepsilon_{12} \\
\varepsilon_{21} \\
\varepsilon_{22} \\
\varepsilon_{23}
\end{bmatrix}, \quad A_i = \begin{bmatrix}
-l_{11} & 1 & 0 & 0 & 0 \\
-l_{12} & 0 & 0 & 0 & 1 \\
0 & 0 & -l_{21} & 1 & 0 \\
0 & 0 & -l_{22} & 0 & 1 \\
0 & 0 & -l_{23} & 0 & 0
\end{bmatrix}, \quad \eta_i = \begin{bmatrix}
0 \\
\Psi_1 \\
0 \\
0 \\
\Psi_2
\end{bmatrix}
\] (44)

On the other hand, define the tracking errors as \(e_{11} = y_{r1} - z_{11}, e_{21} = y_{r2} - z_{21}\) and \(e_{22} = y_{r2} - z_{22}\). It follows from (33) that \(\dot{e}_{21} = e_{22}\).

And, it follows from (30), (36) and (37) that

\[
\begin{bmatrix}
\dot{e}_{11} \\
\dot{e}_{22}
\end{bmatrix} = -\begin{bmatrix}
k_1(e_{11} + e_{12}) + e_{12} \\
k_21(e_{21} + e_{21}) + k_22(e_{22} + e_{22}) + e_{23}
\end{bmatrix}
\] (45)
Thus, the tracking error system can be summarized as

$$\dot{e}_i = M_i e_i + \vartheta_i$$  \hspace{1cm} (46)$$

where

$$e_i = \begin{bmatrix} e_{11} \\ e_{21} \\ e_{22} \end{bmatrix}, \quad M_i = \begin{bmatrix} -k_{11} & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -k_{21} & -k_{22} \end{bmatrix}, \quad \vartheta_i = \begin{bmatrix} -\xi_1 \\ 0 \\ -\xi_2 \end{bmatrix}$$  \hspace{1cm} (47)$$

with $\xi_1 = \varepsilon_{12}$ and $\xi_2 = k_{21} e_{21} + k_{22} e_{22} + e_{23}$ being the lumped estimation error.

The stability analysis of the closed-loop control system is transformed into globally uniformly ultimately bounded
Theorem 1. Consider the PMSG-WT system (24) equipped the proposed HGPONAC (40) with two POs (28) and (29). If the real perturbation $\Psi_i(x,t)$ defined in (28) and (29) satisfies

$$\|\Psi_i(x,t)\| \leq \gamma_1$$  \hspace{1cm} (48)

then both the estimation error system (43) and the tracking error system (46) are GUUB, i.e.,

$$\|e_i(t)\| \leq 2\gamma_1\|P_i\|, \|e_i(t)\| \leq 4\gamma_1\|K_i\|\|P_1\|\|P_2\|, \forall t \geq T$$  \hspace{1cm} (49)

where $P_i, i = 1, 2$ are respectively the feasible solutions of Riccati equations $A_i^TP_1 + P_1A_i = -I$ and $M_i^TP_2 + P_2M_i = -I$; and $\|K_i\|$ is a constant related to $k_{11}, k_{21}$ and $k_{22}$.

Proof. For the estimation error system (43), consider the following Lyapunov function:

$$V_{i1}(e_i) = e_i^TP_1e_i$$  \hspace{1cm} (50)

The high gains of POs (34) and (35) are determined by requiring (20) holds, which means $A_i$ is Hurwitz. One can find a feasible positive definite solution, $P_1$, of Riccati equation $A_i^TP_1 + P_1A_i = -I$. Calculating the derivative of $V_{i1}(e_i)$ along the solution of system (43) and using (48) to yield

$$\dot{V}_{i1}(e_i) = e_i^T(A_i^TP_1 + P_1A_i)e_i + \eta_i^TP_1e_i + e_i^TP_1\eta_i$$

$$\leq -\|e_i\|^2 + 2\|e_i\| \cdot \|\eta_i\| \cdot \|P_1\|$$

$$\leq -\|e_i\|(\|e_i\| - 2\gamma_1\|P_1\|)$$  \hspace{1cm} (51)

Then $\dot{V}_{i1}(e_i) \leq 0$ when $\|e_i\| \geq 2\gamma_1\|P_1\|$. Thus there exists $T_1 > 0$, which can lead to

$$\|e_i(t)\| \leq \gamma_2 = 2\gamma_1\|P_1\|, \forall t \geq T_1$$  \hspace{1cm} (52)

For tracking error system (46), one can find that $\|\theta_i\| \leq \|K_i\|\gamma_2$ with $\|K_i\|$ based on $\|e_i(t)\| \leq \gamma_2$. Consider the Lyapunov function $V_{i2}(e_i) = e_i^TP_2e_i$. Similarly, one can prove that, there exists an instant, $T_1$, the following holds

$$\|e_i(t)\| \leq 2\|K_i\|\gamma_2\|P_2\| \leq 4\gamma_1\|K_i\|\|P_1\|\|P_2\|, \forall t \geq T_1$$  \hspace{1cm} (53)

Using (52) and (53) and setting $T = \max\{T_1, T_1\}$ lead to (49).
Moreover, if $W_i$ is locally Lipschitz in its arguments, it will guarantee the exponential convergence of the observation error [46] and closed-loop tracking error into

$$\lim_{t \to \infty} e_i(t) = 0 \quad \text{and} \quad \lim_{t \to \infty} e_o(t) = 0$$

(54)

After the states $\omega_m$ and $i_d$ and their derivatives are stable that controlled by HGPONAC. The parameter variation is considered in the error system in (43) and (46), and the error system is proved as converged to zero in (54). This guarantees that the estimated perturbations track the extended states defined in (28) and (29), which includes the uncertainties affected by the parameter variations and disturbances, and compensated the control input in (36). Then the linearized subsystems in (32) and (33) are independent of the parameters and disturbances.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade radius $R$</td>
<td>39</td>
<td>m</td>
</tr>
<tr>
<td>Air density $\rho$</td>
<td>1.205</td>
<td>kg/m$^3$</td>
</tr>
<tr>
<td>Rated wind speed $V_r$</td>
<td>12</td>
<td>m/s</td>
</tr>
<tr>
<td>Rated output power $P_g$</td>
<td>2</td>
<td>MW</td>
</tr>
<tr>
<td>Pitch angle $\beta$</td>
<td>2</td>
<td>°</td>
</tr>
<tr>
<td>Stator resistance $R_s$</td>
<td>50</td>
<td>$\mu$Ω</td>
</tr>
<tr>
<td>Inductance in $d$-axis $L_d$</td>
<td>0.0055</td>
<td>H</td>
</tr>
<tr>
<td>Inductance in $q$-axis $L_q$</td>
<td>0.00375</td>
<td>H</td>
</tr>
<tr>
<td>Number of poles $p$</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Field flux $K_e$</td>
<td>136.25</td>
<td>V⋅s/rad</td>
</tr>
<tr>
<td>Total inertia $J$</td>
<td>10,000</td>
<td>kg⋅m$^2$</td>
</tr>
</tbody>
</table>

4. Simulation Validation

Simulation studies are carried out to verify the performance of the proposed HGPONAC-MPPT scheme in comparing with the VC-MPPT and FLC-MPPT. A 2 MW PMSG-WT discussed in [38] is used and its parameters are listed in Table 1. Moreover, the control parameters designed in this paper and reported in [37, 45] are summarized.
### Table 2: Parameters of MPPT control schemes for simulation study

<table>
<thead>
<tr>
<th>Parameters of the HGPONAC-MPPT (40)</th>
<th>Parameters of the FLC-MPPT (42)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Gains of observer (34)</strong></td>
<td></td>
</tr>
<tr>
<td>Pole: $\alpha = 160, \alpha_{11} = 2 \times 160 = 320, \alpha_{12} = 160^2$</td>
<td></td>
</tr>
<tr>
<td>Pole: $\alpha_{21} = 3 \times 500 = 1.5 \times 10^3, \alpha_{22} = 3 \times 500^2 = 7.5 \times 10^5, \alpha_{23} = 500^3 = 1.25 \times 10^8$</td>
<td></td>
</tr>
<tr>
<td>Pole: $\alpha_{3} = \frac{\alpha_{23}}{\alpha_{21} \alpha_{22}} = 1.875 \times 10^9, \alpha_{4} = \frac{\alpha_{23}}{\alpha_{21} \alpha_{22}} = 1.5625 \times 10^{13}$</td>
<td></td>
</tr>
<tr>
<td>$\epsilon_1 = 0.02, l_{11} = \frac{\epsilon_1}{\epsilon_1} = 1.6 \times 10^4, l_{12} = \frac{\epsilon_1}{\epsilon_2} = 6.4 \times 10^7$</td>
<td></td>
</tr>
<tr>
<td>$\epsilon_2 = 0.02, l_{21} = \frac{\epsilon_1}{\epsilon_2} = 7.5 \times 10^4, l_{22} = \frac{\epsilon_1}{\epsilon_2} = 1.875 \times 10^9, l_{23} = \frac{\epsilon_1}{\epsilon_2} = 1.5625 \times 10^{13}$</td>
<td></td>
</tr>
<tr>
<td>$k_{11} = 16, k_{21} = 2500, k_{22} = 100$</td>
<td></td>
</tr>
<tr>
<td><strong>Gains of linear controller (37)</strong></td>
<td></td>
</tr>
<tr>
<td>$k_{11} = 16, k_{21} = 2500, k_{22} = 100$</td>
<td></td>
</tr>
</tbody>
</table>

in Table 2. Four scenarios, including random wind speed, parameter uncertainties, tower shadow, and pitch angle variation are used to illustrate the advantages of the proposed HGPONAC-MPPT.

### 4.1. Operation under random wind speed condition

#### 4.1.1. Comparison of VC-MPPT, FLC-MPPT, and HGPONAC-MPPT

The PMSG-WT operating under random wind speed condition depicted in Fig. 4 (a) is tested at first. The wind speed is lower than the rated speed of wind turbine, 12m/s, thus the wind turbine is working in region 2 and is controlled to extract the maximum power. The responses of the PMSG-WT are illustrated in Fig. 4(b)-(f).

Fig. 4(b) and (c) shows the performance of real-time mechanical rotation speed $\omega_m$ tracking its optimal value, $\omega_{mor}$. It can be seen that the proposed HGPONAC-MPPT provides the best tracking performance in comparing with both the VC-MPPT and the FLC-MPPT. The relative errors between $\omega_m$ and its optimal value (calculated by $\frac{\omega_m - \omega_{mor}}{\omega_{mor}} \times 100\%$) are respectively within $\pm 1\%$ for the HGPONAC-MPPT, $\pm 3\%$ for the FLC-MPPT, and $10\%$ for the VC-MPPT. The maximum relative error is up to $10\%$ under the VC-MPPT. This is because the VC-MPPT is designed based on one specific operation point of the system and cannot ensure a satisfied dynamic behavior for time-varying wind speed case. Compared with the HGPONAC-MPPT, the decrease of tracking performance provided by the FLC-MPPT is caused by the fact that the FLC-MPPT requires full state measurements, while the $\frac{d\omega_m}{dt}$ in FLC-MPPT control law is unknown.

Basing on (10) and (11), the power extracting coefficient $C_p$ is dependent on the tracking performance of $\omega_m$. 

17
Figure 4: Responses to random wind speed. (a) Wind speed; (b) Mechanical rotation speed; (c) Relative error of mechanical rotation speed; (d) Power coefficient; (e) Stator currents $i_{d,q}$; and (f) Stator voltages $V_{d,q}$. 

18
Figure 5: Responses to random wind speed under different observer based control methods. (a) Wind speed; (b) Mechanical rotation speed; (c) Relative error of mechanical rotation speed; and (d) Relative error of power coefficient.

Such relationship is indicated from the results of Fig. 4(d), in which the power coefficient $C_{p_{max}}$ is always quite close to its maximum value under the HGPONAC-MPPT, and has only a few small deviation for the FLC-MPPT, while it decreases obviously, up to 1%, away from its optimal value for the VC-MPPT. That means for a time-varying wind speed (smaller than rated speed) operation condition, the wind turbine equipped with the proposed HGPONAC-MPPT has potential to extract the most wind power, compared with that with the FLC-MPPT or the VC-MPPT. The stator current and voltage waveforms are given in Fig. 4(e) and (f), respectively.
4.1.2. Comparison of different observer based control methods

To compare with different observer based control methods, sliding-mode perturbation observer based NAC (SM-PONAC) in [46] and nonlinear perturbation observer based active disturbance rejection control (ADRC) [47] are used for comparison in this section. The different perturbation observers are used to estimate the perturbation of system (12) under random wind speed condition shown in Fig. 5(a). The mechanical speed response controlled by different controllers is shown in Fig. 5(b) and (c). Fig. 5(d) shows the power coefficient response. It can be found from Fig. 6 that, the control performance of the HGPONAC-MPPT is better than that of the SMPONAC and ADRC in terms of the maximum regulation error and integral of the time multiplied by the absolute error (ITAE). In addition, the HGPONAC-MPPT is simple in structure, gain tuning and stability analysis.

Among the VC-MPPT, FLC-MPPT, and observer-based control methods (such as HGPONAC-MPPT), the VC-MPPT is relatively computationally faster, and observer-based control methods has relatively more computation burden due to observation of states and perturbations, but the acceleration of microprocessor computation speed makes it easier for the controller to realize the proposed control scheme [33].

4.2. Operation under parameter uncertainty condition

4.2.1. Comparison of FLC-MPPT and HGPONAC-MPPT

For a practically equipped PMSG-WT, especially after working for a quite long time, there may possibly exist a gap between its currently actual parameters and the nominal ones given by the manufacturer and used for control design. The control performance of the proposed HGPONAC-MPPT and the standard FLC-MPPT is tested under...
Figure 7: Responses to field flux $K_e$ variation. (a) Deviation of field flux; (b) Mechanical rotation speed; (c) Power coefficient; and (d) Active power.

This parameter mismatch operation condition. Note that wind speed $V$ keeps at 8 m/s during the simulation tests. The mismatch of various parameters are simulated, the results for the mismatch of field flux $K_e$ decreasing from its nominal value to 90% of nominal value, shown in Fig. 7(a), are given. Only the results under the HGPONAC-MPPT and the FLC-MPPT are given since the advantage of the HGPONAC-MPPT in compared with the VC-MPPT is clearly found in the previous part.

From Fig. 7(b), it can be found that the mechanical rotation speed $\omega_m$ well tracks its optimal value under the HGPONAC-MPPT, while under the FLC-MPPT, it begins to deviate from its optimal value after the decreasing of the field flux parameter at 1s and the deviation value is approximately up to the 60% of the optimal value. Such large deviation obviously leads to the decreasing of the power coefficient $C_p$, as clearly shown in Fig. 7(c), in which the
coefficient $C_p$ for the HGPONAC-MPPT is always well maintained at its maximum value while that for the FLC-MPPT is greatly smaller than maximum value during the field flux changing period. Therefore, the power extracted by the PMSG equipped with FLC-MPPT has an approximate 40% decrement of maximum power that extracted by the one equipped with HGPONAC-MPPT, as shown in Fig. 7(d). The decreasing of the performance of the FLC-MPPT following the deviation of field flux $K_e$ is caused by the fact that the control effort produced by the FLC-MPPT scheme (42) is not desired due to the usage of inaccurate field flux. On the contrary, benefit of waiving the requirement of accurately current values of parameters, the proposed HGPONAC-MPPT almost always provides satisfactory performances.

In Fig. 8, a series of plant-model mismatches of stator resistance $R_s$ and inductance $L_{d,q}$ with ±40% variations around their nominal value are undertaken, in which a 2 m/s wind speed step increase from 10 m/s is applied. The peak value of active power $|P_e|$ is recorded for a clear comparison. Fig. 8 shows that the variation of $|P_e|$ obtained by FLC-MPPT and HGPONAC-MPPT is around 46.3% and 0.11%, respectively. This can be explained as follows, the proposed HGPONAC-MPPT estimates all uncertainties and does not need the accurate system model and thus has better robustness than FLC-MPPT which requires an accurate system model.
4.2.2. Comparison of different observer based control methods

The HGSPONAC-MPPT, SMPONAC and ADRC are used for comparison of control performance under field flux variation shown in Fig. 9(a). Fig. 9(b)-(d) shows the mechanical rotation speed response and power coefficient response, respectively. Fig. 10 shows performance of different observer based control methods through the maximum regulation error and ITAE. The results show that all different observer based control methods provide high robustness against parameter uncertainty. Moreover, it can also be found that the control performance of the HGSPONAC-MPPT is better than that of the SMPONAC and ADRC in terms of both the maximum regulation error and ITAE.

Figure 9: Responses to field flux $K_e$ variation under different observer based control methods. (a) Deviation of field flux; (b) Mechanical rotation speed; (c) Relative error of mechanical rotation speed; and (d) Relative error of power coefficient.
4.3. Operation under tower shadow condition

Tower shadow, describing the redirection of wind due to the presence of the tower, is an inherent characteristic of wind turbines, and it would produce a periodic pulse reduction in torque when each blade passes by the tower and further leads to periodic fluctuations in electrical power output of a wind turbine generator [48]. Assume the wind turbine with three blades, the simulation tests in consideration of the tower shadow are discussed.

During the simulation study, the optimal reference mechanical rotation speed, \( \omega_{mr} \), is calculated by (2) using the measured wind speed from anemometer (Assume the measured wind speed is fixed to 8m/s). As reported in [48], the wind turbine operating under such constant wind speed and considering the effect of tower shadow is equivalent to the wind turbine without considering the effect of tower shadow and operating under an equivalent wind speed, shown in Fig. 11(a), which is reduced by 3% from measurement wind speed as a blade passes in front of the tower, and the duration time of the blade passes the tower is represented by an arc of 40\(^\circ\) in one cycle [48]. Based on Eq. (9), the mechanical torque \( T_m \) will decrease as a blade passes in front of the tower, as shown in Fig. 11(b). The results of Fig. 11(c) and (d) show that the mechanical rotation speed cannot be well tracked under the FLC-MPPT, and the maximum relative error (\( \frac{\omega_m - \omega_{mr}}{\omega_{mr}} \times 100\% \)) is up to 0.5%. This is because that the torque variation \( \frac{dT_m}{dt} \) caused by the tower shadow is unmeasurable in FLC-MPPT (42). That is, the FLC-MPPT cannot provide the robustness against some external disturbances like tower shadow. On the contrary, the HGPONAC-MPPT scheme can still provide a desirable tracking performance of \( \omega_m \) under the period of torque drop due to no torque measurement required by HGPONAC-MPPT (40).
4.4. Pitch angle variation

When a pitch angle decreases from 2 degree to 0 degree in 0.3 s under a constant wind speed 12 m/s, the performance of the system with different MPPT control scheme is shown in Fig. 12. It is obvious that the mechanical rotation speed $\omega_m$ of VC-MPPT achieves the worst performance with longest time to reach steady state, when operation point shifts from the normal operation condition. The FLC-MPPT and HGPONAC-MPPT can reach the new steady state at the much faster rate than the VC-MPPT. Moreover, compared with the FLC-MPPT, the HGONAC-MPPT provides better tracking performance of $\omega_m$ since the $\frac{dT_m}{dt}$ caused by the pitch angle variation is unmeasurable in FLC-MPPT (42).
5. Experimental Validation

In this section, a simple experimental test is studied to show the performance of the proposed HGPONAC-MPPT. As mentioned in previous section, the FLC-MPPT requires accurate system parameters to test its performance. However, some parameters of the motor used in the experiment setup are not completely in accordance with the ones given on motor nameplate. Therefore, the comparison between the traditional VC-MPPT and the proposed HGPONAC-MPPT is given in this section. Moreover, it is not easy to simulate the operation conditions under parameter uncertainties and under tower shadow, therefore, only the operation under time-varying wind speed is tested.
5.1. Experimental platform

The experimental setup depicted in Fig. 13 consists of a PMSG bench, a power electronic converter unit, a DS1104 controller with interface board, MATLAB/Simulink and dSPACE control desk. The PMSG bench includes a DC motor and a PMSG, in which the DC motor is used to emulate wind turbine. The controlled DC motor is usually used to emulate the behaviour of a wind turbine [15, 49, 50, 51, 52]. In this paper, the wind turbine is emulated using a DC motor with torque control. In the prototype, a 250 W, 4000 r/min DC motor was used. The wind turbine torque is calculated through wind input file and taking into account wind turbine rotational speed, wind

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade radius $R$</td>
<td>0.671</td>
<td>m</td>
</tr>
<tr>
<td>Air density $\rho$</td>
<td>1.205</td>
<td>$kg/m^3$</td>
</tr>
<tr>
<td>Rated wind speed $V_r$</td>
<td>9</td>
<td>$m/s$</td>
</tr>
<tr>
<td>Rated output power $P_g$</td>
<td>250</td>
<td>W</td>
</tr>
<tr>
<td>Stator resistance $R_s$</td>
<td>0.19</td>
<td>$\mu\Omega$</td>
</tr>
<tr>
<td>Inductance in $d$-axis $L_d$</td>
<td>0.00049</td>
<td>H</td>
</tr>
<tr>
<td>Inductance in $q$-axis $L_q$</td>
<td>0.00049</td>
<td>H</td>
</tr>
<tr>
<td>Number of pole pairs $p$</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Field flux $K_e$</td>
<td>0.0151</td>
<td>$V \cdot s/rad$</td>
</tr>
<tr>
<td>Total inertia $J$</td>
<td>$1.23 \times 10^{-3}$</td>
<td>$kg \cdot m^2$</td>
</tr>
</tbody>
</table>

5.1. Experimental platform

The experimental setup depicted in Fig. 13 consists of a PMSG bench, a power electronic converter unit, a DS1104 controller with interface board, MATLAB/Simulink and dSPACE control desk. The PMSG bench includes a DC motor and a PMSG, in which the DC motor is used to emulate wind turbine. The controlled DC motor is usually used to emulate the behaviour of a wind turbine [15, 49, 50, 51, 52]. In this paper, the wind turbine is emulated using a DC motor with torque control. In the prototype, a 250 W, 4000 r/min DC motor was used. The wind turbine torque is calculated through wind input file and taking into account wind turbine rotational speed, wind

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade radius $R$</td>
<td>0.671</td>
<td>m</td>
</tr>
<tr>
<td>Air density $\rho$</td>
<td>1.205</td>
<td>$kg/m^3$</td>
</tr>
<tr>
<td>Rated wind speed $V_r$</td>
<td>9</td>
<td>$m/s$</td>
</tr>
<tr>
<td>Rated output power $P_g$</td>
<td>250</td>
<td>W</td>
</tr>
<tr>
<td>Stator resistance $R_s$</td>
<td>0.19</td>
<td>$\mu\Omega$</td>
</tr>
<tr>
<td>Inductance in $d$-axis $L_d$</td>
<td>0.00049</td>
<td>H</td>
</tr>
<tr>
<td>Inductance in $q$-axis $L_q$</td>
<td>0.00049</td>
<td>H</td>
</tr>
<tr>
<td>Number of pole pairs $p$</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Field flux $K_e$</td>
<td>0.0151</td>
<td>$V \cdot s/rad$</td>
</tr>
<tr>
<td>Total inertia $J$</td>
<td>$1.23 \times 10^{-3}$</td>
<td>$kg \cdot m^2$</td>
</tr>
</tbody>
</table>

5.1. Experimental platform

The experimental setup depicted in Fig. 13 consists of a PMSG bench, a power electronic converter unit, a DS1104 controller with interface board, MATLAB/Simulink and dSPACE control desk. The PMSG bench includes a DC motor and a PMSG, in which the DC motor is used to emulate wind turbine. The controlled DC motor is usually used to emulate the behaviour of a wind turbine [15, 49, 50, 51, 52]. In this paper, the wind turbine is emulated using a DC motor with torque control. In the prototype, a 250 W, 4000 r/min DC motor was used. The wind turbine torque is calculated through wind input file and taking into account wind turbine rotational speed, wind

Table 3: Parameters of PMSG-WT for experimental study

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade radius $R$</td>
<td>0.671</td>
<td>m</td>
</tr>
<tr>
<td>Air density $\rho$</td>
<td>1.205</td>
<td>$kg/m^3$</td>
</tr>
<tr>
<td>Rated wind speed $V_r$</td>
<td>9</td>
<td>$m/s$</td>
</tr>
<tr>
<td>Rated output power $P_g$</td>
<td>250</td>
<td>W</td>
</tr>
<tr>
<td>Stator resistance $R_s$</td>
<td>0.19</td>
<td>$\mu\Omega$</td>
</tr>
<tr>
<td>Inductance in $d$-axis $L_d$</td>
<td>0.00049</td>
<td>H</td>
</tr>
<tr>
<td>Inductance in $q$-axis $L_q$</td>
<td>0.00049</td>
<td>H</td>
</tr>
<tr>
<td>Number of pole pairs $p$</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Field flux $K_e$</td>
<td>0.0151</td>
<td>$V \cdot s/rad$</td>
</tr>
<tr>
<td>Total inertia $J$</td>
<td>$1.23 \times 10^{-3}$</td>
<td>$kg \cdot m^2$</td>
</tr>
</tbody>
</table>

5.1. Experimental platform

The experimental setup depicted in Fig. 13 consists of a PMSG bench, a power electronic converter unit, a DS1104 controller with interface board, MATLAB/Simulink and dSPACE control desk. The PMSG bench includes a DC motor and a PMSG, in which the DC motor is used to emulate wind turbine. The controlled DC motor is usually used to emulate the behaviour of a wind turbine [15, 49, 50, 51, 52]. In this paper, the wind turbine is emulated using a DC motor with torque control. In the prototype, a 250 W, 4000 r/min DC motor was used. The wind turbine torque is calculated through wind input file and taking into account wind turbine rotational speed, wind

Table 3: Parameters of PMSG-WT for experimental study

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade radius $R$</td>
<td>0.671</td>
<td>m</td>
</tr>
<tr>
<td>Air density $\rho$</td>
<td>1.205</td>
<td>$kg/m^3$</td>
</tr>
<tr>
<td>Rated wind speed $V_r$</td>
<td>9</td>
<td>$m/s$</td>
</tr>
<tr>
<td>Rated output power $P_g$</td>
<td>250</td>
<td>W</td>
</tr>
<tr>
<td>Stator resistance $R_s$</td>
<td>0.19</td>
<td>$\mu\Omega$</td>
</tr>
<tr>
<td>Inductance in $d$-axis $L_d$</td>
<td>0.00049</td>
<td>H</td>
</tr>
<tr>
<td>Inductance in $q$-axis $L_q$</td>
<td>0.00049</td>
<td>H</td>
</tr>
<tr>
<td>Number of pole pairs $p$</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Field flux $K_e$</td>
<td>0.0151</td>
<td>$V \cdot s/rad$</td>
</tr>
<tr>
<td>Total inertia $J$</td>
<td>$1.23 \times 10^{-3}$</td>
<td>$kg \cdot m^2$</td>
</tr>
</tbody>
</table>

5.1. Experimental platform

The experimental setup depicted in Fig. 13 consists of a PMSG bench, a power electronic converter unit, a DS1104 controller with interface board, MATLAB/Simulink and dSPACE control desk. The PMSG bench includes a DC motor and a PMSG, in which the DC motor is used to emulate wind turbine. The controlled DC motor is usually used to emulate the behaviour of a wind turbine [15, 49, 50, 51, 52]. In this paper, the wind turbine is emulated using a DC motor with torque control. In the prototype, a 250 W, 4000 r/min DC motor was used. The wind turbine torque is calculated through wind input file and taking into account wind turbine rotational speed, wind

Table 4: Parameters of MPPT control schemes for simulation study

<table>
<thead>
<tr>
<th>Parameters of the HGPONAC-MPPT (40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gains of observer (34)</td>
</tr>
<tr>
<td>(20) $pole = 100, \alpha_{11} = 2 \times 100 = 200, \alpha_{12} = 100^2$</td>
</tr>
<tr>
<td>(19) $\epsilon_1 = 0.05, l_{11} = \frac{\alpha_{11}}{\epsilon_1} = 4 \times 10^3, l_{12} = \frac{\alpha_{12}}{\epsilon_1} = 4 \times 10^6$</td>
</tr>
<tr>
<td>Gains of observer (35)</td>
</tr>
<tr>
<td>(20) $pole = 160, \alpha_{21} = 3 \times 160 = 480, \alpha_{22} = 3 \times 160^2 = 7.68 \times 10^4, \alpha_{23} = 160^3 = 4.096 \times 10^6$</td>
</tr>
<tr>
<td>(19) $\epsilon_2 = 0.05, l_{21} = \frac{\alpha_{21}}{\epsilon_2} = 9.6 \times 10^3, l_{22} = \frac{\alpha_{22}}{\epsilon_2} = 3.072 \times 10^7, l_{23} = \frac{\alpha_{23}}{\epsilon_2} = 3.2768 \times 10^{10}$</td>
</tr>
<tr>
<td>Gains of linear controller (37)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

k_{11} = 10, k_{21} = 256, k_{22} = 32
velocity, and wind turbine power coefficient curve (a lookup table in the computer was used). The obtained wind
turbine torque is used as the torque reference of DC motor. The torque control is realized through the designed PI
controller. The corresponding control system block diagram is depicted in Fig. 14. The parameters of the PMSG-
WT are listed in Table 3. The control algorithms constructed in the Simulink platform are compiled to C-code via
MATLAB/Simulink real-time workshop and then downloaded to the DS1104 dSPACE processor board, which in turn
provides the PWM signal to control the IGBT-based electronic converter for driving the PMSG and the DC motor. The
dSPACE processor board is also used to receive the mechanical speed and position measured by an incremental optical
1000-line encoder, which is synchronized with the motor shaft. The measured results of motor states are displayed
on the dSPACE control desk, and both the reference control targets and the controller parameters can be adjusted in
real time. The control parameters of the PONAC are given in Table 4. This paper mainly focuses on validating the
effectiveness of the proposed control scheme through the emulated wind turbine experiment platform, which does not
focus on wind turbine emulation. Therefore, the difference of power coefficient $C_p$ function for different wind turbine
is not considered in experimental validation. In this paper, the wind turbine is directly connected to the generator,
which means that the gear ratio $n_g = 1$. Therefore, the total inertia of the drive train shown in (8) equals to the
summation of wind turbine inertia and generator inertia [2, 38]. In the test rig, a controlled DC motor is used to
emulate the behaviour of a wind turbine and directly connected to the PMSG. Hence, the total inertia of the drive train
equals to the summation of DC motor inertia and PMSG inertia at the test rig. It can be found from Figs. 15 and 17
that the desired emulator performance can be basically consistent with the practical wind turbine. In addition, since
this paper mainly focuses on validating the effectiveness of the proposed robust MPPT controller for grid-connected
PMSG-based wind turbine via the emulated rig test, the emulator performance in this paper is enough for this purpose.

5.2. Operation under ramp-change wind

The responses of the PMSG-WT to ramp-change wind are shown in Fig. 15. It can be found from Fig. 15 (b) and
(c) that the proposed HGPONAC-MPPT can provide a satisfactory tracking performance of the mechanical rotation
speed $\omega_m$ as wind speed varies. However, when the wind speed is fixed to be 2m/s after the great drop from 4m/s to
2m/s around 30s, the mechanical rotation speed of the PMSG-WT equipped with the VC-MPPT still has small period
drop, instead of quickly switching to its optimal value, and the maximum tracking error reaches approximately 25%.
Hence, the power coefficient $C_p$ cannot always maintain at maximum value under VC-MPPT, shown in Fig. 15 (d).
The main reason is that in the experiment test, the VC-MPPT is not only affected by the change of wind speed, but
also the system parameter uncertainties and unknown disturbances will further affect the controller performance. As mentioned in previous section, the main advantage of the proposed HGPONAC-MPPT is achieved by estimating the defined perturbation terms, (28) and (29), through the perturbation observers. The real value of perturbations and the estimated value provided by observers are compared in Fig. 16, in which the results show that the observers provide great estimations. When the observation error is within a certain range, the performance of the proposed controller can achieve satisfactory performances. It can be seen from Fig. 15 that, the mechanical rotation speed can be well
Figure 15: Responses for the case of ramp-change wind. (a) Wind speed $V$; (b) Mechanical rotation speed $\omega_m$; (c) Relative error of mechanical rotation speed $\omega_m$; and (d) Power coefficient $C_p$.

5.3. Operation under random wind

The responses of the PMSG-WT to random wind are shown in Fig. 17. It is obvious that the HGPONAC-MPPT provides better performance compared with the VC-MPPT. With the change of wind speed, the mechanical rotation speed of the PMSG equipped with the HGPONAC-MPPT can be well tracked with an acceptable error (smaller than 5% for most cases, shown in Fig. 17 (c)), which further makes the PMSG-WT work in a highly effective condition ($C_p > 0.4$ for most cases, shown in Fig. 17 (d)). However, for the one with the VC-MPPT, the mechanical rotation speed cannot quickly switch to its optimal value after the great wind speed drop (For example, around 25s).
It can be seen from Figs. 15 and 17 that the mechanical rotation speed $\omega_m$ can keep at its optimal reference $\omega_{mr}$.

According to (9), the optimal $T_m$ can be provided by the wind turbine, which means the DC motor can provide the expected torque for the PMSG under PI control.

5.4. Error analysis

For the error analysis of the experiments, the difference of the results obtained from the experiments compared with that of the simulation are mainly listed in the following four aspects,

- Measurement disturbances unavoidably exist in the experiment test. However, these disturbances has not taken into account in the simulation.
In the experiment test, the vector control is not only affected by the change of wind speed, but also the system parameter uncertainties. Moreover, unknown disturbances will further affect the controller performance.

Compared with the continuous control used in the simulation, the discretization of controller in the experiments and sampling holding may introduce an additional amount of error.

The real-time controller in the experiment test exists time delay, whose exact value is unlikely to obtain in practice. However, a time delay $T_s = 2$ ms is assumed in the simulation.
6. Conclusions

This paper proposes a HGPONAC-based MPPT control scheme for the PMSG-WT to improve the energy conversion efficiency. The HGPOs are designed to estimate the system states and a lumped perturbation, which includes all possibly unknown and time-varying dynamics of the PMSG-WT, such as parameter uncertainties and nonlinearities, and disturbances. Therefore, a nonlinear adaptive controller with the estimates of the HGPOs and a linear output feedback control law is applied to compensate the actual perturbation of the PMSG-WT and achieve the MPPT. Compared with the VC-MPPT tuned around a specific operation point, the HGPONAC-MPPT can provide global optimal performance across the whole operation region. Due to no requirement of accurate model and full-state measurements, the HGPONAC-MPPT has a relatively simpler controller and much better robustness than the VC-MPPT and model based FLC-MPPT. Both simulation studies and experimental tests are carried out for the comparison of the MPPT performance provided by the proposed HGPONAC-MPPT, the VC-MPPT, and the FLC-MPPT under different operation conditions. The results show that, compared with both the VC-MPPT and the FLC-MPPT, the proposed HGPONAC-MPPT can always provide the highest energy conversion efficiency and best robustness against the time-varying wind speed, parameter uncertainties, as well as other external disturbances like the effect of tower shadow. In addition, the control performance of the HGPONAC-MPPT is better than that of the other observer-based control schemes (SMPONAC-MPPT and ADRC-MPPT) in terms of the maximum regulation error and ITAE. In further work, wind speed sensorless control scheme will be developed, as the wind speed cannot always be precisely measured in reality and anemometers increase the total cost of the system. The effective wind speed can be estimated by using the wind turbine itself as a measurement device, which can be applied in optimal TSR control scheme or pitch angle control scheme. Meanwhile, control schemes like perturbation and observation control without knowing maximum power coefficient will also be included in future work.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 51577075.

References

450 based on PMSGs with MPPT capability, Renewable Energy 2016; 87: 532-543.
451 [5] Liao SW, Yao W, Han XN, Wen JY, Cheng SJ. Chronological operation simulation framework for regional power system under high
459 [9] Karakasis NE, Mademlis CA. High efficiency control strategy in a wind energy conversion system with doubly fed induction generator,
464 [12] Li S, Li J. Output Predictor-based active disturbance rejection control for a wind energy conversion system with PMSG, IEEE Access 2017,
465 5:5205-5214.
470 [15] Chinchilla M, Arnaltes S, Burgos JC. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to
473 371-380.
474 [17] Xie D, Lu YP, Sun JB, Gu CH. Small signal stability analysis for different types of PMSGs connected to the grid, Renewable Energy 2017;
475 106: 149-164.
478 [19] Yang B, Yu T, Shu HC, Dong J, Jiang L. Robust sliding-mode control of wind energy conversion systems for optimal power extraction via


[27] Chen J, Jiang L, Yao W, Wu QH. A feedback linearization control strategy for maximum power point tracking of a PMSG based wind turbine. In: 2th International conference on renewable energy research and applications (ICRERA13), Madrid, Spain; 79-84 October 2013.


