Observation of a new \(\Xi_b^- \) resonance

LHCb collaboration†

Abstract

From samples of pp collision data collected by the LHCb experiment at \(\sqrt{s} = 7 \), 8 and 13 TeV, corresponding to integrated luminosities of 1.0, 2.0 and 1.5 fb\(^{-1} \), respectively, a peak in both the \(\Lambda^0_b K^- \) and \(\Xi^0_b \pi^- \) invariant mass spectra is observed. In the quark model, radially and orbitally excited \(\Xi_b^- \) resonances with quark content \(bds \) are expected. Referring to this peak as \(\Xi_b(6227)^- \), the mass and natural width are measured to be \(m_{\Xi_b(6227)^-} = 6226.9 \pm 2.0 \pm 0.3 \pm 0.2 \) MeV/c\(^2 \) and \(\Gamma_{\Xi_b(6227)^-} = 18.1 \pm 5.4 \pm 1.8 \) MeV/c\(^2 \), where the first uncertainty is statistical, the second is systematic, and the third, on \(m_{\Xi_b(6227)^-} \), is due to the knowledge of the \(\Lambda^0_b \) baryon mass. Relative production rates of the \(\Xi_b(6227)^- \to \Lambda^0_b K^- \) and \(\Xi_b(6227)^- \to \Xi^0_b \pi^- \) decays are also reported.

Published in Phys. Rev. Lett. 121 (2018) 072002

© 2018 CERN for the benefit of the LHCb collaboration, licence CC-BY-4.0

†Authors are listed at the end of this paper.
In the constituent quark model \[1,2\], baryonic states form multiplets according to the symmetry of their flavor, spin, and spatial wave functions. The masses, widths and decay modes of these states give insight into their internal structure \[3\]. The Ξ^0_b and Ξ^-_b states form an isodoublet of bsq bound states, where q is a u or d quark, respectively. Three such isodoublets, which are neither radially nor orbitally excited, should exist \[4\], and include one with spin $j_{qs} = 0$ and $J^P = (1/2)^+$ (Ξ_b^0), a second with $j_{qs} = 1$ and $J^P = (1/2)^+$ (Ξ_b^-), and a third with $j_{qs} = 1$ and $J^P = (3/2)^+$ (Ξ_b^*). Here, j_{qs} is the spin of the light diquark system qs, and J^P represents the spin and parity of the state. Three of the four $j_{qs} = 1$ states have been recently observed through their decays to $\Xi_b^0 \pi^-$ and $\Xi_b^- \pi^+$ \[5,7\].

Beyond these lowest-lying states, a spectrum of heavier states is expected \[8–23\], where there are either radial or orbital excitations amongst the constituent quarks. The only such states discovered thus far in the b-baryon sector are the $\Lambda_b(5912)^0$ and $\Lambda_b(5920)^0$ resonances \[24\], which are consistent with being orbital excitations of the Λ_b^0 baryon.

In this Letter, we report the first observation of a new state, decaying into both $\Lambda_b^0 K^-$ and $\Xi_b^0 \pi^-$, using samples of pp collision data collected with the LHCb experiment at 7, 8 and 13 TeV, corresponding to integrated luminosities of 1.0, 2.0 and 1.5 fb$^{-1}$, respectively. The observation of these decays is consistent with the strong decay of a radially or orbitally excited Ξ_b^+ baryon, hereafter referred to as $\Xi_b(6227)^+$. Charge-conjugate processes are implicitly included throughout this Letter.

The mass and width of the $\Xi_b(6227)^+$ baryon are measured using the $\Lambda_b^0 K^-$ mode, where the Λ_b^0 baryon is detected through its fully reconstructed hadronic (HAD) decay to $\Lambda_c^0 \pi^-$. Larger samples of semileptonic (SL) Λ_b^0 and Ξ_b^0 decays are used to measure the production ratios

\[
R(\Lambda_b^0 K^-) \equiv \frac{f_{\Xi_b^0(6227)^-}}{f_{\Lambda_b^0}} B(\Xi_b(6227)^- \to \Lambda_b^0 K^-),
\]

\[
R(\Xi_b^0 \pi^-) \equiv \frac{f_{\Xi_b^0(6227)^-}}{f_{\Xi_b^0}} B(\Xi_b(6227)^- \to \Xi_b^0 \pi^-),
\]

where $f_{\Xi_b(6227)^-}$, $f_{\Xi_b^0}$ and $f_{\Lambda_b^0}$ are the fragmentation fractions of a b quark into each baryon and B represents a branching fraction. Here, the Λ_b^0 and Ξ_b^0 baryons are detected using $\Lambda_b^0 \to \Lambda_c^+ \mu^- X$ and $\Xi_b^0 \to \Xi_c^+ \mu^- X$ decays, where X represents undetected particles. Throughout the text, H_b^0 (H_c^+) is used to designate either a Λ_b^0 or Ξ_b^0 (Λ_c^+ or Ξ_c^+) baryon. Owing to much larger branching fractions, the SL signal yields are about an order of magnitude larger than that of any fully hadronic final state, which enables the observation of the $\Xi_b(6227)^- \to \Xi_b^0 \pi^-$ mode. The SL decays are not used in the $\Xi_b(6227)^-$ mass or width determination, as they have larger systematic uncertainties due to modeling of the mass resolution.

The LHCb detector \[25,26\] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks \[25,26\].

The tracking system provides a measurement of the momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. Events are selected online by a trigger, which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction \[27,28\]. Simulated data samples are produced using the software packages described in Refs. \[29,35\].
Samples of A_c^0 (Ξ_c^0) are formed from $A_c^+\pi^-$ and $A_c^+\mu^-$ ($\Xi_c^+\mu^-$) combinations, where A_c^+ and Ξ_c^+ decays are reconstructed in the $pK^-\pi^+$ final state. The H_c^+ decay products must have particle identification (PID) information consistent with the given particle hypothesis, and be inconsistent with originating from a primary vertex (PV) by requiring each to have large χ^2_{IP} with respect to all PVs in the event. Here χ^2_{IP} is the difference in χ^2 of the vertex fit of a given PV when the particle (here p, K^- or π^+) is included or excluded from the fit. The H_c^+ candidate must have a fitted vertex significantly displaced from all PVs in the event and have an invariant mass within 60 MeV/c2 of the known H_c^+ mass.

The H_c^+ background is dominated by random combinations of tracks from nonsignal b-hadron decays. In the Ξ_c^+ sample, about 15% of this background is due to misidentified $D^+ \rightarrow K^-\pi^+\pi^+$, $D^+ \rightarrow K^+K^-\pi^+$, $D_s^+ \rightarrow K^+K^-\pi^+$ and $D^{*+} \rightarrow (D^0 \rightarrow K^-\pi^+)\pi^+$ decays. These cross-feed contributions are suppressed by employing tighter PID requirements on candidates that are consistent with being one of these charm mesons, with only a 1% loss of signal efficiency. These tighter requirements are not applied to the A_c^+ sample, as the cross-feed contributions are negligible.

Muon (pion) candidates with transverse momentum $p_T > 1$ GeV/c (0.5 GeV/c) and large χ^2_{IP} are combined with H_c^+ candidates to form the H_c^0 samples. Each H_c^0 decay vertex is required to be significantly displaced from all PVs in the event. For the $A_c^0 \rightarrow A_c^+\pi^-$ decay, the reconstructed A_c^0 trajectory must point back to one of the PVs in the event; only a very loose pointing requirement is imposed on the SL decay due to the momentum carried by the undetected particles. To reduce background in the SL decay samples, the z coordinates of the H_c^+ and H_c^0 decay vertices are required to satisfy $z(H_c^+) - z(H_c^0) > -0.05$ mm, where z is measured along the beam direction. Candidates that satisfy the invariant mass requirements, $5.2 < M(A_c^+\pi^-) < 6.0$ GeV/c2 or $M(H_c^+\mu^-) < 8$ GeV/c2, are retained, where M designates the invariant mass of the system of indicated particle(s).

To further suppress background in the $\Xi_c^0 \rightarrow \Xi_c^+\mu^-X$ sample, a boosted decision tree (BDT) discriminant [36,37] is used. The BDT exploits fourteen input variables: the χ^2 values of the fitted Ξ_c^+ and Ξ_c^0 decay vertices, and the momentum, p_T, χ^2_{IP} and a PID variable for each Ξ_c^+ final-state particle. Simulated signal decays and background from the Ξ_c^+ mass sidebands, $30 < |M(pK^-\pi^+) - m_{\Xi_c^+}| < 60$ MeV/c2, in data are used to train the BDT, where m refers to the known mass of the indicated particle [38]. The PID response for final-state hadrons in the signal decay is obtained from large $\Lambda \rightarrow p\pi^-$ and $D^{*+} \rightarrow (D^0 \rightarrow K^-\pi^+)\pi^+$ calibration samples in data, which is weighted to reproduce the kinematics of the signal. The chosen requirement on the BDT response provides an efficiency of about 90% (40%) on the signal (background).

Figure 1 shows the mass spectra for $A_c^0 \rightarrow A_c^+\pi^-$, $A_c^+ \rightarrow pK^-\pi^+$ (from $A_c^0 \rightarrow A_c^+\mu^-X$) and $\Xi_c^+ \rightarrow pK^-\pi^+$ (from $\Xi_c^0 \rightarrow \Xi_c^+\mu^-X$) candidates. For the $A_c^0 \rightarrow A_c^+\pi^-$ mode, a peak at the known A_c^0 mass is seen. For the SL modes, the A_c^+ and Ξ_c^+ mass peaks are used to determine the number of A_c^0 and Ξ_c^0 baryon decays, as the combinatorial background from random $H_c^+\mu^-$ combinations is at the 1% level. The mass spectra are fit with the sum of two Gaussian functions with a common mean to represent the signal component and an exponential background function. The yields are given in Table 1.

To form $\Xi_c^0(6227)^-$ candidates, a A_c^0 (Ξ_c^0) candidate is combined with a $K^-(\pi^-)$ meson that has small χ^2_{IP}, consistent with being produced in the strong decay of the $\Xi_c^0(6227)^-$ resonance. Only H_c^0 candidates satisfying $|M(A_c^+\pi^-)_{\text{HAD}} - m_{A_c^0}| < 60$ MeV/c2, $|M(pK^-\pi^+)_{\text{SL}} - m_{A_c^+}| < 15$ MeV/c2, and $|M(pK^-\pi^+)_{\text{SL}} - m_{\Xi_c^+}| < 18$ MeV/c2 are consid-
Figure 1: Invariant mass spectra for (top) $\Lambda^0_b \to \Lambda^+_c \pi^-$, (middle) Λ^+_c from $\Lambda^0_b \to \Lambda^+_c \mu^- X$, and (bottom) Ξ^+_c from $\Xi^0_b \to \Xi^+_c \mu^- X$ candidate decays. The left column is for 7, 8 TeV and the right is for 13 TeV data. Fits are overlaid, as described in the text. Here, the $\Lambda^0_b \to \Lambda^+_c \mu^- X$ mode has been prescaled by a factor of ten.

We require $p_T^{K^-} > 800$ MeV/c and $p_T^{\pi^-} > 900$ MeV/c, based on an optimization of the expected statistical uncertainty on the $\Xi^-(6227)^-$ signal yield, using simulation to model the signal and either wrong-sign ($\Lambda^0_b K^+, \Xi^0_b \pi^+$) or $\Xi^-(6227)^-$ mass sideband samples in data to model the background. After all selections the dominant source of background is due to combinations of real $\Lambda^0_b (\Xi^0_b)$ decays with a random $K^-(\pi^-)$ meson. All candidates satisfying these selections are retained.
Table 1: Uncorrected $\Xi_b(6227)^-$ and H_b^0 signal yields for 7, 8 and 13 TeV data. The H_b^0 yields are limited to the signal regions used to form $\Xi_b(6227)^-$ candidates (see text).

<table>
<thead>
<tr>
<th>$\Xi_b(6227)^-$ final state</th>
<th>7, 8 TeV</th>
<th>13 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(A_b^0)_{\text{HAD}}K^-$</td>
<td>170 ± 53</td>
<td>204.6 ± 0.5</td>
</tr>
<tr>
<td>$(A_b^0)_{\text{SL}}K^-$</td>
<td>2772 ± 325</td>
<td>3133 ± 6</td>
</tr>
<tr>
<td>$(\Xi_b^0)_{\text{SL}}\pi^-$</td>
<td>351 ± 68</td>
<td>36.6 ± 0.3</td>
</tr>
</tbody>
</table>

To improve the resolution on the $\Xi_b(6227)^-$ mass, we use the mass differences $\delta m_K \equiv M(A_b^0 K^-) - M(A_b^0)$ and $\delta m_\pi \equiv M(\Xi_b^0 \pi^-) - M(\Xi_b^0)$, for the $A_b^0 K^-$ and $\Xi_b^0 \pi^-$ final states, respectively. The $\delta m_{K(\pi)}$ resolution is obtained from simulated $\Xi_b(6227)^-$ decays, where the decay width is set to a negligible value. For the $A_b^0 \rightarrow A_b^+ \pi^-$ mode, the $\delta m_{K(\pi)}$ resolution model is approximately Gaussian with a width of 2.4 MeV/c². For the SL decays, the missing momentum, p_{miss}, is estimated by assuming it is carried by a zero-mass particle that balances the momentum transverse to the H_b^0 direction (formed from its decay vertex and PV), and satisfies the mass constraint $(p_{H_b^0}^+ + p_{H_b^0}^- + p_{\text{miss}})^2 = m_{H_b^0}^2$. Mass resolution shape parameters are obtained by fitting the $\delta m_{K(\pi)}$ spectra from simulated decays, which include contributions from excited charm baryons and final states with τ^- leptons. The core of the resolution function has a half-width at half-maximum of about 20 MeV/c², and has a tail toward larger mass (see Appendix). The obtained shape parameters are fixed in the fits to data. The $\delta m_{K(\pi)}$ spectra in data are shown in Fig. 2. The $\Xi_b(6227)^-$ mass and width are obtained from a simultaneous unbinned maximum-likelihood fit to the δm_K spectra in 7, 8 and 13 TeV data, using the $A_b^0 \rightarrow A_b^+ \pi^-$ mode. The signal shape is described by a P-wave relativistic Breit-Wigner function with a Blatt-Weisskopf barrier factor, convoluted with a Gaussian resolution function of width 2.4 MeV/c². The mass and width are common parameters in the fit. The background shape is described by a smooth threshold function with shape parameters that are freely and independently varied in the fits to the two data sets. A peak is observed in both data sets, with a mean $\delta m_K^\text{peak} = 607.3 \pm 2.0$ MeV/c² and width $\Gamma_{\Xi_b(6227)^-} = 18.1 \pm 5.4$ MeV/c². The peak has a local statistical significance of about 7.9σ for the combined fit, based on the difference in log-likelihoods between a fit with zero signal and the best fit. The signal yields are given in Table 1.

The $\Xi_b(6227)^- \rightarrow A_b^0 K^-$ decay with $A_b^0 \rightarrow A_b^+ \mu^- X$ is fit in a similar way, except for the different resolution function (see Appendix). A Gaussian constraint on the width of $\Gamma_{\Xi_b(6227)^-} = 18.1 \pm 5.4$ MeV/c² is applied, as obtained from the fit to the hadronic mode, and the mean is freely varied. A peak is observed at a mass difference of 610.8 ± 1.0 (stat) MeV/c², which is consistent with that of the hadronic mode, and it contains a yield about 15 times larger, as expected. The statistical significance of this peak is about 25σ, thus clearly establishing this peaking structure.

The $\Xi_b^0 \pi^-$ final state is investigated by examining the δm_π spectra in $\Xi_b(6227)^- \rightarrow \Xi_b^0 \pi^-$ candidate decays, as shown in the bottom row of Fig. 2. The fit is performed in an analogous way to the δm_K spectra, except for a different resolution function (see Appendix for δm_π resolution). The fitted mean of 440 ± 5 MeV/c² is consistent
The statistical significance of the peak is 9.2σ with the value expected from the hadronic mode of $\delta m_{K}^\text{peak} + m_{b} - m_{0} = 435 \pm 2 \text{MeV}/c^2$. The statistical significance of the peak is 9.2σ.
Table 2: Relative efficiencies ($\epsilon^{(l)}_{\text{rel}}$) for the SL modes. Uncertainties are due only to the finite size of the simulated samples.

<table>
<thead>
<tr>
<th>Final state</th>
<th>7, 8 TeV</th>
<th>13 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_b^0K^-$</td>
<td>0.295 ± 0.006</td>
<td>0.305 ± 0.005</td>
</tr>
<tr>
<td>$\Xi_b^0\pi^-$</td>
<td>0.236 ± 0.007</td>
<td>0.277 ± 0.006</td>
</tr>
</tbody>
</table>

The production ratios are computed using

$$R(A_b^0K^-) = \frac{N(\Xi_b(6227)^- \rightarrow A_b^0K^-)}{\epsilon_{\text{rel}}N(A_b^0)} \kappa,$$

$$R(\Xi_b^0\pi^-) = \frac{N(\Xi_b(6227)^- \rightarrow \Xi_b^0\pi^-)}{\epsilon'_{\text{rel}}N(\Xi_b^0)} \kappa',$$

where N represents the yields in Table 1 and $\epsilon^{(l)}_{\text{rel}}$ is the relative efficiency between the $\Xi_b(6227)^-$ and H_b^0 selections, reported in Table 2. The quantity $\kappa^{(l)}$ represents corrections to the $N(H_b^0)$ SL signal yields to account for (i) random $H_c^+\mu^-$ combinations, (ii) cross-feed from $\Xi_b^0 \rightarrow \Xi_c^0\mu^-X$ decays into the $\Xi_b^0 \rightarrow \Xi_c^+\mu^-$ sample, and (iii) slightly different integrated luminosities used for the $\Xi_b(6227)^-$ and H_b^0 samples. The contribution from random $H_c^+\mu^-$ combinations is estimated from a study of the wrong-sign ($H_c^+\mu^+$) and right-sign ($H_c^+\mu^-$) yields, from which a correction of 1.010 ± 0.002 to both $R(\Xi_b^0\pi^-)$ and $R(A_b^0K^-)$ is found. Cross-feeds from SL Ξ_b^0 decays, which must be subtracted from $N(\Xi_b^0)$, are inferred by adding a π^- meson to the $\Xi_c^+\mu^-$ candidate and searching for excited Ξ^0 states. Mass peaks associated with the $\Xi_c(2645)^0$ and $\Xi_c(2790)^0$ resonances are observed, although for the former about half is due to $\Xi_c(2815)^+ \rightarrow \Xi_c(2645)^0\pi^+$ decays, as determined through a study of the $\Xi_c^+\pi^+$ mass spectrum. Since the $\Xi_c(2815)^+\mu^-$ final state is predominantly from Ξ_b^0 decays, this contribution is not subtracted. After correcting for the pion detection efficiency, we estimate that $R(\Xi_b^0\pi^-)$ must be corrected by 1.11 ± 0.03. Slightly different-size data samples are used for the $\Xi_b(6227)^-$ and inclusive H_b^0 yield determinations, which amounts to corrections of less than 3%.

A number of sources of systematic uncertainty have been considered. For the mass and width, the momentum scale uncertainty of 0.03% leads to a 0.1 MeV/c^2 uncertainty on δm_K. A fit bias on the mass of 0.1 MeV/c^2 is observed in simulation, and is corrected for and a systematic uncertainty of equal size is assigned. Uncertainty due to the signal shape model is estimated by using a nonrelativistic Breit-Wigner signal shape and varying the Gaussian resolution by ±10% about its nominal value. With these variations, systematic uncertainties of 0.2 MeV/c^2 on δm_K, and 0.9 MeV/c^2 on $\Gamma_{\Xi_b(6227)^-}$ are obtained. Sensitivity to the background function is assessed by varying the fit range by 100 MeV/c^2 on both ends, from which maximum shifts of 0.2 MeV/c^2 in the mass and 1.6 MeV/c^2 in the width are observed; these values are assigned as systematic uncertainties. Adding these systematic uncertainties in quadrature, leads to a total systematic uncertainty of 0.3 MeV/c^2 on the mass and 1.8 MeV/c^2 on the width.

The systematic uncertainties affecting the production ratio measurements are listed in Table 3. The background shape affects the yield determination, and the associated systematic uncertainty is estimated by varying the fit range as described above. (Different
Table 3: Summary of systematic uncertainties on $R(A_0^b K^-)$ and $R(\Xi_0^b \pi^-)$, in units of 10^{-3}.

<table>
<thead>
<tr>
<th>Source</th>
<th>$R(A_0^b K^-)$ [10^{-3}]</th>
<th>$R(\Xi_0^b \pi^-)$ [10^{-3}]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7, 8 TeV</td>
<td>13 TeV</td>
</tr>
<tr>
<td>Background shape</td>
<td>0.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Signal shape</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>$\Xi_b(6227)^-$ p_T</td>
<td>+0.16</td>
<td>+0.9</td>
</tr>
<tr>
<td>Tracking efficiency</td>
<td>0.03</td>
<td>0.2</td>
</tr>
<tr>
<td>PID requirement</td>
<td>0.05</td>
<td>0.2</td>
</tr>
<tr>
<td>$N(H_0^b)$</td>
<td>0.01</td>
<td>0.7</td>
</tr>
<tr>
<td>Simulated sample size</td>
<td>0.07</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>0.4</td>
<td>3.3</td>
</tr>
</tbody>
</table>

background models give smaller deviations.) For the signal shape, the uncertainty is dominated by the resolution function. In an alternative fit, the resolution parameters are allowed to vary within twice the expected uncertainty and we take the difference with respect to the nominal result as the uncertainty. To assess the dependence on the kinematical properties of the $\Xi_b(6227)^-$ resonance, the p_T spectrum in simulation is weighted by $1 \pm 0.01 \times p_T^{\Xi_b(6227)^-}/(\text{GeV}/c)$, based on previous studies of the Ξ_0^b and A_0^b production spectra [43]; the relative change in efficiency is assigned as a systematic uncertainty. The charged-particle tracking efficiency, obtained using large samples of $J/\psi \rightarrow \mu^+\mu^-$ decays [44], contributes an uncertainty of 1% to $\epsilon_{\text{rel}}^{(0)}$. The systematic uncertainty of the PID requirement on the K^- or π^- from the $\Xi_b(6227)^-$ baryon is determined by comparing the PID response of kaons and pions in the $A_0^+ \rightarrow pK^-\pi^+$ decay between data and simulation, where the latter are obtained from calibration data, as described previously. The uncertainty on $N(H_0^b)$ is taken as the quadratic sum of the uncertainties on the fitted yields and the uncertainties on the $\kappa^{(0)}$ corrections. Lastly, the finite size of the simulated samples is taken into account.

In summary, we report the first observation of a new state, assumed to be an excited Ξ_b^- state, using pp collision data samples collected by LHCb at $\sqrt{s} = 7$, 8 and 13 TeV. The mass and width are measured to be

$$m_{\Xi_b(6227)^-} - m_{A_0^b} = 607.3 \pm 2.0 \text{ (stat)} \pm 0.3 \text{ (syst) \text{ MeV}/c^2,}$$

$$\Gamma_{\Xi_b(6227)^-} = 18.1 \pm 5.4 \text{ (stat)} \pm 1.8 \text{ (syst) \text{ MeV}/c^2,}$$

$$m_{\Xi_b(6227)^-} = 6226.9 \pm 2.0 \text{ (stat)} \pm 0.3 \text{ (syst)} \pm 0.2(A_0^b) \text{ MeV}/c^2,$$

where for the last result we have used $m_{A_0^b} = 5619.58 \pm 0.17 \text{ MeV}/c^2$ [38].

We have also measured the relative production rates to two final states, $A_0^b K^-$ and $\Xi_0^b \pi^-$, as summarized in Table 4. The $R(A_0^b K^-)$ values from the hadronic mode are consistent with those obtained in the SL mode, and are about an order of magnitude smaller than $R(\Xi_0^b \pi^-)$. Assuming $f_{\Xi_0^b} \simeq 0.1 f_{A_0^b}$ [45, 47], we find that the ratio of branching fractions $B(\Xi_b(6227)^- \rightarrow A_0^b K^-)/B(\Xi_b(6227)^- \rightarrow \Xi_0^b \pi^-) \simeq 1$, albeit with sizable uncertainty ($\approx \pm 0.5$) due to theoretical assumptions and the values of experimental inputs.

The mass of this structure and the observeddecay modes are consistent with ex-
Table 4: Measured ratios $R(Λ_0^0 K^-)$ and $R(Ξ_0^0 π^-)$ for 7, 8 and 13 TeV data, in units of 10^{-3}. The uncertainties are statistical (first) and systematic (second).

<table>
<thead>
<tr>
<th>Quantity $[10^{-3}]$</th>
<th>7, 8 TeV</th>
<th>13 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(Λ_0^0 K^-)$</td>
<td>3.0 ± 0.3 ± 0.4</td>
<td>3.4 ± 0.3 ± 0.4</td>
</tr>
<tr>
<td>$R(Ξ_0^0 π^-)$</td>
<td>47 ± 10 ± 7</td>
<td>22 ± 6 ± 3</td>
</tr>
</tbody>
</table>

expectations of either a $Ξ_b(1P)^-$ or $Ξ_b(2S)^-$ state [8, 23]. As there are several excited $Ξ_b^-$ states expected in this mass region, the presence of more than one of these states contributing to this peak cannot be excluded. More precise measurements of the width and the relative branching fractions to $Λ_0^0 K^-$ and $Ξ_0^0 π^-$, as well as $Ξ_b^0 π^-$ and $Ξ_b^* π^-$, could help to determine the J^P quantum numbers of this state [20].

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FASO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France), Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China), RFBR, RSF and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, the Royal Society, the English-Speaking Union and the Leverhulme Trust (United Kingdom).
Appendix

The mass resolution functions for the $\Xi_b(6227)^- \rightarrow \Lambda_b^0 K^-$ and $\Xi_b(6227)^- \rightarrow \Xi_b^0 \pi^-$ semileptonic decays are provided below.

\[
\begin{align*}
\Lambda^0_b \rightarrow \Lambda^+ \mu^- X, \\
\Xi^0_b \rightarrow \Xi^+ \mu^- X.
\end{align*}
\]

Figure 3: Distribution of (left) $M^*(\Lambda_b^0 K^-) - M^*(\Lambda_b^0)$ for simulated $\Xi_b(6227)^- \rightarrow \Lambda_b^0 K^-$ decays, where $\Lambda_b^0 \rightarrow \Lambda^+_c \mu^- X$, and (right) $M^*(\Xi_b^0 \pi^-) - M^*(\Xi_b^0)$ for simulated $\Xi_b(6227)^- \rightarrow \Xi_b^0 \pi^-$ decays, where $\Xi_b^0 \rightarrow \Xi_c^+ \mu^- X$. The symbol M^* represents the mass after the constraint $(p_{H^+} + p_{\mu^-} + p_{\text{miss}})^2 = m^2_{\Lambda_b^0}$ is applied, as described in the text. The natural width used in the simulation is set to a negligible value, so that these spectra are due entirely to the mass resolution. Fits to the sum of a nonrelativistic Breit-Wigner function and a Crystal Ball function \cite{CrystalBall} with a common mean value are overlaid.
References

[10] I. L. Grach, I. M. Narodetskii, M. A. Trusov, and A. I. Veselov, *Heavy baryon spectroscopy in the QCD string model*, in Particles and nuclei. Proceedings, 18th International Conference, PANIC08, Eilat, Israel, Nov. 9-14, 2008. arXiv:0811.2184.

11

[41] R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A389 (1997) 81. The threshold function is described by the RooDstD0Bg class within ROOT.

[45] M. Voloshin, Remarks on the measurement of the decay $\Xi_b^- \to \Lambda_b^0 \pi^-$, arXiv:1510.05568.

69 National Research Centre Kurchatov Institute, Moscow, Russia, associated to 34
70 National University of Science and Technology “MISIS”, Moscow, Russia, associated to 34
71 National Research Tomsk Polytechnic University, Tomsk, Russia, associated to 34
72 Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain, associated to 40
73 University of Michigan, Ann Arbor, United States, associated to 61
74 Los Alamos National Laboratory (LANL), Los Alamos, United States, associated to 61

a Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
b Laboratoire Leprince-Ringuet, Palaiseau, France
c P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
d Università di Bari, Bari, Italy
e Università di Bologna, Bologna, Italy
f Università di Cagliari, Cagliari, Italy
g Università di Ferrara, Ferrara, Italy
h Università di Genova, Genova, Italy
i Università di Milano Bicocca, Milano, Italy
j Università di Roma Tor Vergata, Roma, Italy
k Università di Roma La Sapienza, Roma, Italy
l AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Krakówe, Poland
m LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
n Hanoi University of Science, Hanoi, Vietnam
o Università di Padova, Padova, Italy
p Università di Pisa, Pisa, Italy
q Università degli Studi di Milano, Milano, Italy
r Università di Urbino, Urbino, Italy
s Università della Basilicata, Potenza, Italy
t Scuola Normale Superiore, Pisa, Italy
u Università di Modena e Reggio Emilia, Modena, Italy
v MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
w Novosibirsk State University, Novosibirsk, Russia
x National Research University Higher School of Economics, Moscow, Russia
y Sezione INFN di Trieste, Trieste, Italy
z Escuela Agrícola Panamericana, San Antonio de Oriente, Honduras
aa School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China
ab Physics and Micro Electronic College, Hunan University, Changsha City, China

† Deceased