
Parallelised Bayesian Optimisation for Deep Learning

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor of Philosophy by

Lykourgos Kekempanos

January 29, 2019

Contents

Abbreviations xi

Abstract xiii

Acknowledgements xiv

1 Introduction 1

1.1 Overview . 1

1.2 Contributions . 3

1.3 Outline . 4

2 Bayesian inference and Markov chain Monte Carlo methods 6

2.1 Introduction . 6

2.2 Bayesian inference . 6

2.3 Markov chain Monte Carlo methods . 7

2.3.1 Metropolis-Hastings . 7

2.3.2 Hamiltonian Monte Carlo . 9

2.3.3 Transitional Markov chain Monte Carlo 10

2.4 Sequential Monte Carlo methods . 13

2.4.1 Sequential Monte Carlo samplers 13

2.4.1.1 Initialisation and posterior distribution 13

2.4.1.2 Proposal distribution and importance weights 13

2.4.1.3 Degeneracy phenomenon and effective sample size 14

2.4.1.4 SMC samplers emulate MCMC 14

2.4.1.5 Estimation . 14

2.4.2 Particle filters . 15

2.4.2.1 Sequential importance resampling 15

2.5 Sampling experiments . 17

2.6 Conclusions . 18

3 Background on traditional deep learning algorithms and a new method
to train the Radial Basis Function network 20

3.1 Introduction . 20

3.2 Background on deterministic and stochastic deep learning methods 21

3.2.1 The stacked autoencoder . 22

3.2.2 The Deep Belief Network . 23

i

3.2.2.1 Restricted Boltzmann machine 23

3.2.2.2 Deep Belief Network . 26

3.2.3 Face age classification . 26

3.2.3.1 Preprocessing the FG-Net aging database 26

3.2.3.2 FG-Net aging database classification with deep learning . 29

3.3 Replacing the Metropolis-Hastings with importance sampling and resam-
pling on the Radial Basis Function network 34

3.3.1 Model description . 35

3.3.2 Bayesian aims using the hybrid MCMC 36

3.3.3 Proposed method on the RBF . 39

3.3.4 Signal detection experiments . 40

3.4 Conclusions . 43

4 Parallel sequential Monte Carlo methods 45

4.1 Introduction . 45

4.2 Review on parallel resampling . 46

4.3 MapReduce particle filtering with exact resampling and deterministic run-
time . 49

4.3.1 Introduction . 49

4.3.2 Big data processing . 50

4.3.2.1 Big data frameworks . 50

4.3.2.2 The MapReduce programming model 51

4.3.2.2.1 Hadoop . 52

4.3.2.2.2 Spark . 52

4.3.3 Parallel particle filtering . 52

4.3.3.1 Parallel instantiations of the algorithmic components of
particle filtering . 53

4.3.3.1.1 Element-wise operations 53

4.3.3.1.2 Rotation . 54

4.3.3.1.3 Sum, max and other commutative operations . . 54

4.3.3.1.4 Cumulative sum 55

4.3.3.1.5 Normalising the weights 55

4.3.3.1.6 Minimum Variance Resampling 55

4.3.3.1.7 Sorting . 56

4.3.3.1.8 Redistribution: Original version 58

4.3.3.1.9 Redistribution: Improved version 60

4.3.4 Mapping particle filtering into MapReduce 60

4.3.5 Evaluation . 61

4.3.5.1 Worst case runtime performance 62

4.3.5.1.1 Baseline redistribution algorithm 62

4.3.5.1.2 Runtime performance and variability 63

4.3.5.2 Overall profile . 67

4.3.5.3 Comparison of Hadoop and Spark 68

4.3.5.3.1 Sum and Cumulative Sum 68

4.3.5.3.2 Bitonic sort and Minimum Variance Resampling 69

4.3.5.3.3 Redistribution and overall performance 71

4.3.5.4 Impact of using multiple cores 72

ii

4.3.5.4.1 Redistribution component in isolation 72

4.3.5.4.2 Resulting overall particle filter performance . . . 74

4.3.5.5 Speedup and scalability analysis 75

4.3.5.5.1 Redistribution component in isolation 75

4.3.5.5.2 Resulting overall particle filter performance . . . 78

4.3.6 Discussion . 81

4.3.7 Summary . 82

4.4 Conclusions . 83

5 Efficient particles recycling 84

5.1 Introduction . 84

5.2 Estimation methodologies . 84

5.2.1 Basic method . 84

5.2.2 Existing method . 85

5.2.3 New method . 86

5.3 Simulations . 87

5.3.1 N -dimensional Gaussian distribution 89

5.3.2 N -dimensional Student’s t distribution 91

5.3.3 N -dimensional Ackley function . 93

5.4 Conclusions . 94

6 Selecting the forward Markov kernel 95

6.1 Introduction . 95

6.2 Langevin diffusion . 96

6.2.1 Fokker-Plank equation . 96

6.2.2 Discrete time Langevin diffusion 97

6.3 Simulations . 98

6.3.1 One dimensional static distributions 100

6.3.2 N -dimensional Gaussian distribution 102

6.3.3 N -dimensional Student’s t distribution 103

6.3.4 N -dimensional Laplace distribution 105

6.4 Conclusions . 106

7 Optimal backward kernel 107

7.1 Introduction . 107

7.2 Optimal backward Markov kernel . 107

7.3 Near optimal backward Markov kernel . 109

7.3.1 Parametric estimation of the joint density 109

7.3.2 Baseline method . 110

7.3.3 Avoiding resampling errors . 110

7.4 Simulation results . 112

7.4.1 Comparison of SMC sampler with optimal and basic backward
Markov kernels . 112

7.4.2 Comparison of the SMC sampler with optimal backward Markov
kernel with competitor methodologies 117

7.4.2.1 Comparison on a unimodal distribution 117

7.4.2.2 Comparison on a bimodal distribution 120

7.5 Conclusions . 124

iii

8 Conclusions 126

A Parallelising particle filters with deterministic runtime on distributed
memory systems 128

A.1 Introduction . 128

A.2 Distributed memory systems . 128

A.3 MPI particle filter . 129

A.3.1 MPI cumulative sum . 129

A.3.2 MPI Bitonic sort . 129

A.3.3 MPI minimum variance resampling 130

A.4 MPI redistribute . 131

A.4.1 MPI O(N) redistribute . 131

A.4.2 MPI O
(

(log2N)3
)

redistribute . 132

A.4.3 MPI O
(

(log2N)2
)

redistribute . 133

A.5 Evaluation . 138

A.5.1 Cumulative sum, bitonic sort and MVR 138

A.5.2 Redistribute . 139

A.5.3 Particle filter . 141

A.6 Conclusions and future work . 145

B Variance of an importance sampler 147

B.1 Importance sampling estimator is unbiased 147

B.2 Variance . 149

B.3 The need for heavy tails . 150

Bibliography 151

iv

Illustrations

List of Figures

2.1 Comparison of MALA, HMC, MH and TMCMC on the Gaussian distribu-

tion, N (0, 1). Each method generates 10000 samples to estimate the true

mean value. 18

3.1 Stacked Autoencoder Network . 22

3.2 Model representation of the restricted Boltzmann machine with m visible

and n hidden units. 24

3.3 (a) Age histogram and (b) number of grayscale and color images in the FG-

NET aging database (right). 27

3.4 The initial image (a) is converted to grayscale (b). The image is rotated,

but the landmarks are not changed yet (c). The new position of the land-

marks are computed based on the rotation matrix (d). The final image (e)

is cropped based on the landmarks. 28

3.5 (a) A sample of the initial images and (b) the corresponding preprocessed

images (right). 29

3.6 Example of the stacked autoencoder network 30

3.7 (a-b) Filters (or weights) the first layer learnt after the training procedure of

the stacked autoencoder. Both images are the same but with a different color. 31

3.8 Initial (a-b) and final (c-d) of the filters learnt, respectively of the deep belief

network. 32

3.9 Histogram of filters at the beginning (a) and (b) end of the training. The

mean absolute magnitude of the values is shown above each plot [106] 33

3.10 (a) The error over the number of iterations and (b) the classification error

for the training and test sets demonstrating that the model is overfitted. . . 34

3.11 The diagram describes the sequence of operations for the ith Hybrid MCMC

iteration (Algorithm 8). 39

3.12 Example of the performance of (a) the hybrid MCMC algorithm and (b) the

proposed method using the same input data. 42

3.13 Example of the performance using (a) 10 particles and (b) 1000 particles for

the same input data. 43

4.1 General MapReduce Processing Model. 51

4.2 Example of cumulative sum for N=8 numbers. Subfigures (a)-(d) describe

the sum computation, while the remaining balanced binary trees shown in

subfigures (e)-(g) describe how the backward pass culminates in calculation

of the cumulative sum of the given sequence. 56

v

4.3 Example of a bitonic sort using eight numbers. Each horizontal wire corre-

sponds to a core. The blue colour denotes that the larger value will be stored

at the lower wire after the comparison, while the green colour represents the

opposite scenario. 57

4.4 An example of the redistribution for x = [10, 9, 12, 6, 1, 3, 14, 2] and m =

[3, 2, 2, 1, 0, 0, 0, 0] using the original and improved (new) redistribute. The

original redistribution always sorts the number of copies vector (bottom vec-

tor) in descending order, while this is not required in the new redistribution

(e.g. see node no. 3). 58

4.5 Worst-case performance of Redistribution: Platform 1. 65

4.6 Worst-case performance of Redistribution: Platform 2. 66

4.8 Overall runtime profile of the particle filtering algorithm for the following

implementations: (a) Sequential; (b) Hadoop; (c) Spark with 217 particles;

(d) Spark with 220 particles. 67

4.7 Ratio of average (and minimum and maximum) run-times for worst-case and

best-case scenarios using the deterministic and näıve redistribute. 67

4.9 Summation on Spark and Hadoop. 68

4.10 Cumulative Summation on Spark and Hadoop. 69

4.11 Bitonic Sort on Spark and Hadoop. 70

4.12 Minimum variance resampling on Spark and Hadoop. 70

4.13 Redistribution on Spark and Hadoop. 71

4.14 Overall Particle Filtering on Spark and Hadoop. 72

4.15 Performance of the O(NP (log2N)2) Redistribution Component (using Spark). 73

4.16 Performance of the O(NP (log2N)3) Redistribution Component (using Spark). 73

4.17 Performance of the overall particle filter using the O(NP (log2N)2) redistri-

bution component. 74

4.18 Performance of the overall particle filter using the O(NP (log2N)3) redistri-

bution component. 75

4.19 Relative Speedup O(NP (log2N)2) variant of the Redistribution component

on Platform 1. 76

4.20 Scalability of the O(NP (log2N)2) variant of the Redistribution component on

Platform 1. 76

4.21 Relative Speedup of the O(NP (log2N)2) variant of the Redistribution com-

ponent on Platform 2. 77

4.22 Scalability of the O(NP (log2N)2) variant of the Redistribution component on

Platform 2. 77

4.23 Relative Speedup and Scalability of the overall particle filter algorithm using

the O(NP (log2N)2) variant of the Redistribution component on Platform 1.

The average is used to give some intuition based on the considered input

values. 79

vi

4.24 Relative Speedup and Scalability of the overall particle filter algorithm using

the O(NP (log2N)2) variant of the Redistribution component on Platform 2.

The average is used to give some intuition based on the considered input

values. 80

4.25 Performance of summation using Spark with a fixed total number of values

comprised of different number of keys and therefore different numbers of

values per key. 81

5.1 Exemplar of a multivariate Gaussian distribution (estimation of the mean

value) . 89

5.2 Comparison using 10000 samples (100 particles). Figure 5.1 illustrates the

target distribution. 90

5.3 Comparison on a 10-dimensional Gaussian distribution through increasing

the number of samples (estimation of the mean value). 91

5.4 (a) Exemplar of a multivariate Student’s t distribution (estimation of the

mean value), and (b) comparison with 10000 samples (100 particles). 92

5.5 Exemplar of the multivariate inverse Ackley function (estimation of the mean

value). 93

5.6 Comparison using 10000 samples (100 particles). Figure 5.5 illustrates the

target distribution. 94

6.1 Comparison of the random walk, Euler discretisation, and partially implicit

local linearisation on the Gaussian static distribution. In all cases the mean

value of the posterior is estimated. 100

6.2 Comparison of the random walk, Euler discretisation, and partially implicit

local linearisation on the Student’s t static distribution. In all cases the

mean value of the posterior is estimated. 101

6.3 Comparison of the random walk, Euler discretisation, and partially implicit

local linearisation on the Laplace static distribution. In all cases the mean

value of the posterior is estimated. 101

6.4 Comparison of the random walk and Euler discretisation without recycling

based on the log mean squared error (estimation of the mean value) 102

6.5 Comparison of the different recycling algorithms using the Euler discretisa-

tion based on the log mean squared error (estimation of the mean value). . . 103

6.6 (a) Target distribution and (b) comparison of the random walk and the Euler

discretisation based on the log mean squared error (estimation of the mean

value). 104

6.7 Target distribution. 105

6.8 Comparison of the random walk and the Euler discretisation based on the

log mean squared error (estimation of the mean value). Figure 6.7 illustrates

the target distribution . 106

7.1 Exemplar of the quantisation errors introduced in the resampling algorithm . 111

vii

7.2 Graphical presentation of the Table 7.1. Every point corresponds to the

same total number of samples from the Gaussian target distribution. 113

7.3 Graphical presentation of the Table 7.1. Every point corresponds to the

same total number of samples from the Student’s-t target distribution. . . . 114

7.4 Graphical presentation of the Table 7.1. Every point corresponds to the

same total number of samples from the Laplace target distribution. 114

7.5 Graphical presentation of the Table 7.2. Every point corresponds to the

same total number of samples from the Gaussian target distribution. 115

7.6 Graphical presentation of the Table 7.2. Every point corresponds to the

same total number of samples from the Student’s-t target distribution. . . . 116

7.7 Graphical presentation of the Table 7.2. Every point corresponds to the

same total number of samples from the Laplace target distribution. 116

7.8 Performance comparison of the four methods. We consider 1,000 samples

for the TMCMC algorithm, while for the other methods the algorithms can

continue running independently of the number of initial samples. 118

7.9 Performance comparison of the four methods generating 10000 samples from

the posterior. The step size is one in the MALA and SMC sampler algorithms.119

7.10 (a) comparison based on the SMC samplers with optimal backward Markov

kernel, (b) comparison using the “Fixed” particles method and (c) compar-

ison using the particles grouping method. 121

7.11 Exemplar of the samples generated in a single Monte Carlo run for the algo-

rithms (a) TMCMC, (b) MALA, (c-e) SMC sampler with optimal L-kernel

in the three different methodologies. See Figure 7.10 for the performance

comparison. 122

7.12 (a-c) Performance comparison of the 4 methods using different methodologies

in the SMC samplers. 123

7.13 Exemplar of the samples generated in a single Monte Carlo run for the algo-

rithms (a) TMCMC, (b) MALA, (c-e) SMC sampler with optimal L-kernel

in the three different methodologies. See Figure 7.12 for the performance

comparison. 124

A.1 O
(

(log2N)3
)

Redistribute . 132

A.2 Figures for basic algorithmic components . 135

A.3 O
(

(log2N)2
)

Redistribute . 138

A.4 O
(

(log2N)2
)

Redistribute runtimes . 139

A.5 O (N) Redistribute runtimes . 140

A.6 O
(

(log2N)3
)

Redistribute runtimes . 140

A.7 O
(

(log2N)2
)

Particle filter runtimes . 142

A.8 O (N) Particle filter runtimes . 142

A.9 O
(

(log2N)3
)

Particle filter runtimes . 143

A.10 Speedup: MPI particle filter (N = 224) . 145

viii

List of Tables

2.1 Last iteration log mean squared error (MSE) of the MALA, TMCMC, MH,

basic SMC sampler and HMC. Each method generates 10000 samples to

estimate the true mean value. 18

3.1 Root Mean Squared Error (RMSE) for Different Noise Values (N = 100 and

k = 2 RBF centers . 41

3.2 Root Mean Squared Error (RMSE) for Different Number of Particles (σ2 =

0.1 and k = 2) . 41

3.3 Root Mean Squared Error (RMSE) for Different Number of RBF Centers

(N = 100 and σ2 = 0.1) . 41

4.1 Publications grouped according to the applied parallel resampling method-

ology with its reported time complexity (TC). 49

4.2 Theoretical complexities (in terms of time, space and total data transfers

per unit time) of various algorithmic components of the Particle Filter with

N data and P processors. 53

4.3 Details of the Experimental Platform used for Evaluation. 61

5.1 Comparison of the recycling methods on the Gaussian distribution using

10000 samples (100 particles) based on the log mean squared error (estima-

tion of the mean value). 89

5.2 Comparison on a 10-dimensional Gaussian distribution through increasing

the number of samples (estimation of the mean value). 90

5.3 Comparison of the recycling methods on the Student’s t distribution (esti-

mation of the mean value) using 10000 samples (100 particles). 91

5.4 Comparison of the recycling methods on the Ackley function (estimation of

the mean value) using 10000 samples (100 particles). 93

6.1 Function Names with the Corresponding First Derivative 100

6.2 Comparison of the random walk and Euler discretisation without recycling

based on the log mean squared error (estimation of the mean value). 102

6.3 Comparison of the different recycling algorithms using the Euler discretisa-

tion. The m1, m2 and m3 denote estimations based on the basic method,

the new proposed recycling method in Chapter 5 and the method proposed

in [78], respectively. In all cases the comparison is based on the log mean

squared error (estimation of the mean value) 103

6.4 Comparison of the random walk and the Euler discretisation without recy-

cling based on the log mean squared error (estimation of the mean value). . . 103

6.5 Comparison of the random walk and the Euler discretisation without recy-

cling based on the log mean squared error (estimation of the mean value). . . 105

ix

7.1 Comparison of the two SMC samplers based on the last iteration’s log mean

squared error (estimation of the mean value). 113

7.2 Comparison of the two SMC samplers based on the last iteration’s log mean

squared error (estimation of the mean value). 115

A.1 Tables for basic algorithmic components . 135

A.2 Runtimes: Redistribute (s) . 141

A.3 Runtimes: Overall Particle Filter (s) . 144

A.4 Details of the Experimental Platform. 146

x

Abbreviations

The following abbreviations are found throughout this thesis:

API Application Programming Interface

APL Array Programming Language

ATZ All-Trailing-Zeros

EM Expectation-Maximization

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HDFS Hadoop Distributed File System

HMC Hamiltonian (or Hybrid) Monte Carlo

HPC High Performance Computing

MALA Metropolis-Adjusted Langevin Algorithm

MCMC Markov Chain Monte Carlo

MH Metropolis-Hastings

MLE Maximum Likelihood Estimation

MLP Multi-Layer Perceptrons

MPI Message Passing Interface

MSE Mean Squared Error

PDF Probability Density Function

PE Processing Element

PILL Partially Implicit Local Linearisation

PPS Particles Processed per Second

RBF Radial Basis Function

RBM Restricted Boltzmann Machine

RDD Resilient Distributed Dataset

RJMCMC Reversible Jump Markov Chain Monte Carlo

RMSE Root Mean Square Error

RNA Resampling with Nonproportional Allocation

RPA Resampling with Proportional Allocation

RWMH Random Walk Metropolis-Hastings

xi

SIR Sequential Importance Resampling

SIS Sequential Importance Sampling

SLP Single Layer Perceptron

SMC Sequential Monte Carlo

TMCMC Transitional Markov Chain Monte Carlo

VLSI Very-Large-Scale Integration

xii

Abstract

Training of deep neural networks (DNN) is an indispensable process in machine learning.

The training process of DNNs aims to optimise the parameter values of the network,

often relies on the derivative of the log-likelihoods of the underlying parameter space.

As such, it is highly probable that the optimisation process to find local optimum values

instead of the global ones. In addition to this, conventional approaches used for this

process, such as Markov chain Monte Carlo methods, not only offer suboptimal runtime

performance, but also prevent effective parallelisation due to inherent dependencies in

the process.

In this thesis, we consider an alternative approach to Markov chain Monte Carlo

(MCMC) methods, namely the Sequential Monte Carlo (SMC) sampler, which gener-

alises particle filters. More specifically, the thesis focuses on improving the performance

and accuracy of the SMC methods, particularly in the context of fully Bayesian learning.

The Radial Basis Function (RBF) network is an example of such training process

based on fully Bayesian learning. In this setting, the thesis proposes a new method to

train neural networks using the importance sampling and resampling. The initial com-

parison of the two methods reveal that the proposed methodology is worse in both terms

of accuracy and performance. This lead the research to concentrate of the performance

and accuracy improvements of the proposed approach.

The performance analysis began with application of a new proposed, parallel and

fully distributed resampling methodology, with improved time complexity than the orig-

inal approach using two MapReduce frameworks, Hadoop and Spark. Results indicate

that Spark is up to 25 times faster than Hadoop, while on Spark the new proposed

methodology is up to 10 times faster than the original method. However, it is noticed

that application of the same algorithm on Message Passing Interface (MPI) provide

significantly better runtimes and is more suitable for the proposed algorithm.

The accuracy analysis began with experiments illustrating that the basic Sequential

Monte Carlo sampler provides worse accuracy than alternative or competitor MCMC

algorithms. Three different strategies are applied on the basic Sequential Monte Carlo

sampler providing better accuracy. The analysis is extended to include competitor al-

gorithms. The exhaustive evaluation shows that the proposed approach offers superior

performance and accuracy.

xiii

Acknowledgements

I am profoundly grateful to my supervisors Prof. Simon Maskell, Dr Jeyarajan Thiya-

galingam, and Dr Yannis Goulermas for their support, guidance, and advice throughout

my PhD. During this collaboration, I appreciated their scientific approach to research

problems.

I thank my advisors Prof. Jason Ralph, Dr Tingting Mu, and Prof. Prudence Wong

for their suggestions and insights during my PhD. I appreciate the discussions and the

comments I received from Dr Peter Green. I would like to thank my viva examiners, Dr.

Francisco Alejandro Dı́az De la O and Dr. Gustaf Hendeby for their suggestions that

were very helpful in submitting this thesis.

I gratefully acknowledge the UK EPSRC Doctoral Training Award, the support of

STFC Daresbury, and STFC Hartree Centre for providing us with the computational

resources for this work.

I thank Alessandro Varsi for the discussions and collaboration. Special mention to

other members of the research group including, Alex Phillips, Chinmay Mishra, Chloe

Barrett-Pink, Chongyang Liu, Elpida Kontsioti, Flávio De Melo, James Wright, Joanna

Hajne, Josh Coates, Lee Devlin, Luydmil Vladimirov, Matteo Fasiolo, Paul Horridge,

Richard Sloane, Robert Moore, Roberta Piroddi, and Yifan Zhou.

This research contributed to the EPSRC 2.5 million (pounds) grant with the title

“Big Hypotheses: A Fully Parallelised Bayesian Inference Solution” with reference num-

ber “EP/R018537/1” and principal investigator, Simon Maskell, who was my primary

supervisor.

Η διδακτορική μου διατριβή είναι αφιερωμένη στους γονείς μου, Κωνσταντίνο και Ανασ-

τασία, και τις αδερφές μου Σοφία, Κυριακή, Αθανασία και Παναγιώτα για την άνευ όρων

αγάπη και υποστήριξη. Σας ευχαριστώ πολύ.

xiv

Chapter 1

Introduction

1.1 Overview

Deep learning and neural networks are machine learning algorithms designed to make

predictions based on extracted features or filters from a dataset. Deep learning, or

deep neural network, is an extension of neural networks by containing more than one

hidden layer. Medical image analysis [57], object classification [74], and natural language

processing [107] are a small sample of many application domains. Deep learning and

neural networks are categorised as deterministic or stochastic according to the applied

training procedure. A detailed discussion on the training process of deterministic and

stochastic deep learning methods is provided in Chapter 3.

Maximum Likelihood Estimation (MLE) (e.g., [26]) and Maximum a Posteriori (MAP)

(e.g. [104]) are two widely applicable approaches to train the network. MLE first derives

the log-likelihood of the model and then maximises it with regard to the parameters

of the model with an optimisation algorithm. Typically, stochastic gradient ascent is

the optimisation method applied. An example of MLE is the restricted Boltzmann ma-

chine using the contrastive divergence [8]. The computation of the derivative of the

log-likelihood requires the computation of expectations, which cannot be calculated an-

alytically but are approximated using sampling or Markov chain Monte Carlo (MCMC)

methods. The stochastic gradient descent with traditional MCMC methods, such as

the Metropolis-Hastings (MH) or the Gibbs sampling algorithms, can lead to poor local

minimum solutions and is challenging to tune [26]. Apart from the accuracy aspects, it

is also hard to parallelise traditional MCMC methods. For instance, MH is a sequential

algorithm constructing a Markov chain where the current sample is depended on the

exact preceding sample.

An alternative methodology is full Bayesian learning, which requires the computation

of the full posterior distribution over all possible parameter settings of which the Radial

Basis Function (RBF) network in an example [10]. This thesis aims to apply Bayesian

inference using a Sequential Monte Carlo (SMC) method (e.g., the SMC sampler) as an

alternative algorithm to the traditional MCMC methodologies, and reveal its benefits

1

Chapter 1. Introduction 2

and potential to be applied in the training process of neural networks and deep learning

algorithms.

Bayesian inference is a sophisticated statistical inference method processed through

a combination of the user-defined prior density and uncertain evidence. Bayesian statis-

tics provides a complete picture of the uncertainty in the estimation of the unknown

parameters of a model [78] and is not prone to overfitting depending on the user-defined

prior density [109].

The Sequential Monte Carlo (SMC) sampler belongs to a wider class of SMC meth-

ods. The more widely known Particle filters also belong to this class of methodologies

and are applicable in dynamic statistical inference, which refers to drawing conclusions

or estimations on time-dependent models (or time evolving models). Such models can

have non-linear and non-Gaussian characteristics. In the literature, another set of widely

known alternative methods include the Kalman filters and its extended versions. Kalman

filters are optimal to linear Gaussian systems.

SMC methods are applied in many domains and real-world problems, such as in

robotics to solve problems related with localisation and mapping [99] as well as in finance

for stochastic volatility models and estimating dynamic microeconomic models [25], [64].

Other domains are medicine [85], wildfire spread simulation [14].

The thesis begins with background knowledge for understanding the training pro-

cesses with widely applicable methods, such as the stacked autoencoder and the deep

belief network, a deterministic and stochastic deep learning algorithm, respectively. The

training procedure in the RBF network uses the MH algorithm as a core method to up-

date the centres of the RBF, while the parameters and hyperparameters of the network

are updated with Gibbs sampling. The overall method in [10] is referred to as Hybrid

MCMC. A new method is proposed where the MH is replaced with the core methods of

importance sampling and resampling used by any SMC method to improve the accuracy

and performance. Since the MH algorithm is a sequential algorithm, the replacement

with an SMC method offers great potential for enhancing overall performance due to

its appealing property that, as the number of samples increases, the ability of the sam-

ples to represent the probability density function (pdf) increases and the accuracy of

estimates derived from the particles improve. Interestingly, a benchmark comparison

of the basic SMC sampler with competitor methodologies does not perform as well as

expected, which guided this research to concentrate on delivering a more efficient SMC

sampler in terms of performance and accuracy.

Establishing a better training process for neural networks and deep learning algo-

rithms requires multiple preliminary and mandatory steps to improve the overall effi-

ciency of the basic SMC sampler. A key step is a new fully distributed resampling to

accelerate the overall performance of any SMC method. Another step is the application

of new strategies to improve the accuracy of the method, which help to outperform the

basic SMC sampler and competitor methodologies.

Chapter 1. Introduction 3

1.2 Contributions

The first novel contribution of the thesis is the replacement of the MH with steps of im-

portance sampling and resampling in the training process of the RBF network. Second,

is the application of a fully distributed resampling algorithm with better time complex-

ity than available from previous related research. Accuracy improvements of the SMC

sampler include the application of a new recycling method compared with the basic

approach and the original methodology. Third, the thesis describes the application of

alternative forward Markov kernels and a more efficient backward Markov kernel to the

traditional random walk. Finally, the proposed SMC sampler is compared with other

MCMC methods. These contributions are summarised in more detail in the following:

• A detailed description of all simulations and implementations.

• Contribution to the writing of the published and submitted articles listed below.

• In Section 3.3 the replacement of the Metropolis-Hastings algorithm to steps of

importance sampling and resampling.

• In Chapter 4 the review on the parallel resampling.

• In Chapter 5 the application of the Ackley function as a potential new benchmark

distribution for the evaluation of the Sequential Monte Carlo (SMC) sampler.

• In Chapter 6 the application of the partially implicit local linearisation method as

an alternative proposal distribution to the random walk.

• In Chapters 5, 6, 7 the evaluation procedure of the proposed strategies.

Contributions made by my supervisors or other members of the group; Contribution to

the writing of the published and submitted articles listed below by Simon Maskell and

Jeyarajan Thiyagalingam; Contribution to the writing of the published articles listed

below by Alessanrdo Varsi; In Chapter 4 the new redistribute algorithm with time com-

plexity O((logN)2) by Simon Maskell; In Chapter 4 the strategy and the evaluation

procedure for the new redistribute method by Jeyarajan Thiyagalingam; In Chapter 5

the new recycling method by Simon Maskell; In Chapter 6 the Euler discretisation by

Simon Maskell; In Chapter 7 the optimal backward kernel by Simon Maskell; Implemen-

tation of the method in the second published article listed below (#2) or the Appendix A

by Alessanrdo Varsi. These contributions are based on the following published and sub-

mitted articles:

1. “MapReduce Particle Filtering with Exact Resampling and Deterministic Run-

time”, J. Thiyagalingam, L. Kekempanos, S. Maskell. S, EURASIP Journal on

Advances in Signal Processing, 2017.

I contributed to the writing of the article and implementation of all the algorithms

on Hadoop and Spark.

Chapter 1. Introduction 4

2. “Parallelising Particle Filtering for Deterministic Runtimes on Distributed Mem-

ory Systems” A. Varsi, L. Kekempanos, J. Thiyagalingam, S. Maskell, 3rd Inter-

national Conference on Intelligent Signal Processing, 2017.

I contributed to the writing of the article, explaining and elaborating all the ideas

from MapReduce to MPI.

3. “SMC Samplers and Particle Filters on MPI: an optimised parallel algorithm with

O
(

(log2N)2
)

time complexity”, A. Varsi, L. Kekempanos, J. Thiyagalingam, S.

Maskell. In preparation for submission to the IEEE Transactions on Signal Pro-

cessing.

I contributed to the writing of the article and the sequential - benchmark - exper-

iments.

4. “Using an SMC Sampler with a Langevin Proposal as an Efficient Alternative to

MALA”, S. Maskell, L. Kekempanos, P. Green, M. Fasiolo, F. Melo, J. Thiya-

galingam. In preparation for submission to the IEEE Transactions on Signal Pro-

cessing.

I contributed to the writing of the article and to the evaluation procedure of the

proposed strategies. I proposed the Ackley function as a new benchmark for the

experiments and the partially implicit local linearisation as proposal to the SMC

sampler. I proposed new - more efficient - strategies to make estimations on bi-

modal distributions.

1.3 Outline

The thesis follows in six chapters with Chapter 2 including an introduction to Bayesian

inference. Several traditional Markov chain Monte Carlo methods and Sequential Monte

Carlo methods are discussed with comparisons. Chapter 3 discusses two existing deep

learning algorithms, a deterministic and a stochastic network, applied to a human age

prediction problem. A new methodology for training a neural network is proposed

based on importance sampling and resampling. Chapter 4 provides details on a new

proposed algorithm for parallelising the resampling algorithm with the goal to convert

the resampling into a more amenable algorithm for a distributed implementation. The

proposed method is applied in MapReduce frameworks, while a later version of the

method is applied to High Performance Computing (HPC). Chapters 5, 6, and 7 focus

on strategies to improve the accuracy of the SMC sampler.

Each chapter corresponds to a proposed strategy. In Chapter 5, all the particles of

the SMC sampler are combined to have estimates over multiple iterations. In Chapter 6,

Langevin based proposal distributions are applied with the SMC sampler to improve the

quality of the generated samples over the random walk proposal assumed in the basic

SMC sampler. In Chapter 7, the optimal backward Markov kernel is proposed with

respect to the selected forward Markov kernel. Simulations demonstrate the benefits of

Chapter 1. Introduction 5

each strategy compared to the basic SMC sampler, which is followed by its comparison

with competitor MCMC methods.

Chapter 2

Bayesian inference and Markov

chain Monte Carlo methods

2.1 Introduction

Markov chain Monte Carlo (MCMC) methods are used to estimate the posterior den-

sity function (analytical computation is intractable [100]) as computed using Bayesian

inference. This chapter provides a brief introduction on such methods beginning with a

formal explanation of Bayesian inference followed by some MCMC methods, including

the Metropolis-Hastings (MH), Hamiltonian Monte Carlo (HMC), Transitional Markov

Chain Monte Carlo (TMCMC), and Sequential Monte Carlo (SMC) methods. This

overview offers a reference for the following chapters as the methods discussed are ap-

plied in simulations and experiments.

2.2 Bayesian inference

Assuming a model with a vector of unknown parameters (hypothesis) x after obser-

vations (data or evidence) D, Bayesian inference correlates the posterior distribution,

denoted p(x|D), with the prior probability density function p(x). The conditional prob-

ability of D given x, p(D|x) is known as the likelihood probability density function and

the marginal likelihood, p(D), expresses what the observations look like given the model.

The posterior distribution indicates the uncertainty of the set of parameters after con-

sidering both the prior and the information of the data. The prior distribution expresses

the belief of an uncertain quantity before considering the data or evidence. This belief

is categorised into informative, non-informative and weakly informative prior. Infor-

mative expresses definite information about a variable , non-informative prior provides

a small or general information about a variable and weak informative expresses par-

tial information about a variable. The likelihood describes the connection of the data

or evidence with the hypothesis. The marginal distribution is the total probability of

observing all the data under all possible values of the unknown parameters. In other

words, the Bayesian inference is a methodology that combines the empirical perception

6

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 7

of a random process based on the observed data. The mathematical representation of

the Bayes’ theorem is

p(x|D) =
p(D|x)p(x)

p(D)
(2.1)

where

p(D) =

∫
p(D|x)p(x)dx (2.2)

When observing the data, the marginal likelihood is constant. Thus the posterior distri-

bution is proportional to the prior multiplied by the likelihood. This constant is required

to normalise the product of the likelihood and the prior probability density functions.

The steps of the Bayesian inference include:

1. The definition of the likelihood function, p(D|x).

2. The definition of the prior distribution, p(x)

3. The computation of the posterior distribution, p(x|D), using Bayes’ theorem.

4. Inference from the posterior distribution.

The marginal likelihood usually does not have a closed form as it is approximated. Thus,

the posterior is approximated, and this can be achieved using MCMC methods. This

generates samples to describe an approximation of the posterior distribution.

2.3 Markov chain Monte Carlo methods

MCMC methods are applied in Bayesian statistics to generate samples from a distri-

bution. These samples can be used for various purposes (e.g. computing integrals,

such as the one defined by P (D), using Monte Carlo integration). Spanning a wide

class of algorithms, MCMC methods generate samples from a probability distribution

by constructing and simulating a Markov chain until convergence to an equilibrium dis-

tribution. MCMC methods are categorised into two methodologies. One is to build a

Markov chain sequentially. When the chain converges, the generated samples represent

the estimation of interest. The random walk Metropolis-Hastings (RWMH) or other

variations of this algorithm belong to this class. The second methodology is to create

samples based on a proposed density function and assign weights to each sample accord-

ingly (i.e., importance sampling), and examples include the Transitional MCMC and

SMC methods. Algorithms from both classes are analysed in the following subsections.

2.3.1 Metropolis-Hastings

The MH algorithm is a variation of the Metropolis algorithm proposed by Metropolis et

al. in 1953 [69] used in situations where the target distribution (posterior distribution) is

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 8

intractable and thus hard to analyse. The algorithm simulates a Markov chain by start-

ing from a sample (initial position) and explore the space of interest until convergence to

stationarity. The samples are generated from a proposal distribution, q(x∗|x). The most

common proposal distribution is the random walk, where the new sample is generated

using the Gaussian distribution, with mean value the preceding sample and variance

εM , where ε is the step size and M the preconditioning matrix. The initial samples

are dependent on the first sample and removed from the overall generated samples at

the end of the simulation as burn-in, as the initial sample can be in a region with low

density. According to the proposal distribution, the algorithm proceeds by sequentially

generating a single sample during every iteration. The sample generation is supported

through an accept-reject mechanism, which is the acceptance probability that decides if

the proposed generated sample will be accepted or rejected. The proposal distribution

is a user-defined probability density function (Algorithm 1).

Algorithm 1 Metropolis-Hastings algorithm

1: Initalise x1 ∼ q(x1)
2: for i = 1 : N do
3: Propose x∗ ∼ N (x∗|εxi, εM)

4: Calculate the acceptance probability a = min{1, π(x∗)q(xi|x∗)
π(xi)q(x∗|xi) }

5: Sample r ∼ [0, 1] uniform
6: if a < r then
7: Accept the proposal, xi+1 = x∗

8: else
9: Reject the proposal, xi+1 = xi

10: end if
11: end for

Different variants for the algorithm exist, depending on the choice of the proposal

distribution. The Metropolis-adjusted Langevin algorithm (MALA) (Algorithm 2) is

a special case of the MH algorithm where the proposed candidate sample (and corre-

sponding proposal distribution) is generated via Langevin dynamics [88]. The algorithm

generates samples from the target density, π(x). For every iteration of the algorithm,

a proposed sample is generated, which includes gradient steps with inject of Gaussian

noise

x∗ = x+
ε2

2
∇x log(π(x)) + z (2.3)

where z ∼ N (0, ε2M) is the integration step size. The N (µ, σ2) denotes the Gaussian

(normal) distribution with mean value µ and variance σ2. The X ∼ N (µ, σ2) denotes

a random variable X distributed normally with mean µ and variance σ2. The proposal

density is

q(x∗|x) = N (x∗|x+
ε2

2
∇x log(π(x)), ε2M) (2.4)

and the acceptance probability [35]

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 9

min{1, π(x∗)q(x|x∗)
π(x)q(x∗|x)

} (2.5)

This acceptance probability is an important parameter with twofold importance. First,

it is a debugging tool on the MH algorithm and, second, it adapts the step size based

on the optimal acceptance rate [65]. The optimal acceptance rate in the MH algorithm

depends on the proposal distribution. If the proposal is a random walk, then the optimal

acceptance rate is 0.234, and if a MALA proposal, then the rate is 0.574 [98]. In both

cases, the step size can be adapted by comparison of the current average and optimal

acceptance rates.

The preconditioning matrix (or scalar for one-dimensional problems), denoted with

M , needs to be selected carefully as it can increase or decrease the acceptance rate of the

MH algorithm. Even in toy examples, not tuning the preconditioning matrix can lead to

poor mixing (very small step sizes leading to slow convergence) [83]. Notice this proposal

can be viewed in two ways. First, if we remove the gradient steps, then the proposal will

be a random walk. The MALA requires O(N
1
3) steps to converge to the target density,

while random walk requires O(N), where N is the number of iterations [98]. Second, if

we remove the Gaussian noise and set M to one, then the equation can be viewed as

the standard gradient ascent optimisation algorithm [89].

Algorithm 2 Metropolis-adjusted Langevin algorithm

1: Initalise x1 ∼ q(x1)
2: for i = 1 : N do
3: Propose x∗ ∼ N (x∗|xi + ε2

2 ∇xi log(π(xi)), ε
2M)

4: Calculate the acceptance probability a = min{1, π(x∗)q(xi|x∗)
π(xi)q(x∗|xi) }

5: Sample r ∼ [0, 1] uniform
6: if a < r then
7: Accept the proposal, xi+1 = x∗

8: else
9: Reject the proposal, xi+1 = xi

10: end if
11: end for

2.3.2 Hamiltonian Monte Carlo

Hamiltonian (or Hybrid) Monte Carlo (HMC) [30] is a Markov chain Monte Carlo sam-

pling algorithm which explore the target of interest more efficiently than the MH al-

gorithm and with larger acceptance rates [76, 38, 23]. In the HMC the proposal is

generated using the Hamiltonian function, H(x, r) = U(x) + K(r), where U(x), K(r)

denote the potential and kinetic energies, respectively. The physical interpretation of

the Hamiltonian function is discussed in [76] as the following. Consider a puck with

a given position, x and a momentum, r, which slides on over a frictionless surface of

varying height. The potential energy of the puck is proportional to the height of the

surface at the current position, x, and the kinetic energy is based on the momentum, r,

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 10

and the mass, M of the puck. If the puck is moving towards a rising slope, then it will

continue to slide (i.e., decreasing kinetic energy and increasing potential energy) until

the kinetic energy becomes zero. At this point, the puck will then slide in the opposite

direction (i.e., increasing kinetic energy and decreasing potential energy). The potential

and kinetic energies are defined by

U(x) = − log(π(x))

K(r) =
r>M−1r

2

(2.6)

where π(.) is the target distribution. The mass, M , is a symmetric, positive-definite

matrix, which is a typical diagonal and is often a scalar multiple of the identity ma-

trix. Based on Equations 2.6, to propose samples, the HMC simulates the Hamiltonian

dynamics as

dr

dt
= −∂U

∂x
dx

dt
= M−1r

(2.7)

The Hamiltonian Equations 2.7, describe a continuous simulation from a state at time t

to a state at time (t+ t′).The implementation of Algorithm 3 approximates the Hamilto-

nian equation based on time discretisation, which can be achieved using a modification

of the Euler and leapfrog methods [76]. As the equations are discretised, error is intro-

duced, and the MH algorithm is employed to accept or reject the proposed new state.

The HMC introducing an auxiliary momentum vector and implementing Hamiltonian

dynamics avoids the random walk behaviour, so the potential energy function is the

target density. This allows the algorithm to perform larger steps that are less correlated

and converge to stationarity faster than the random walk algorithm. This discussion

offers a summary of the HMC, and a detailed analysis is available in [76].

2.3.3 Transitional Markov chain Monte Carlo

The Transitional MCMC (TMCMC), proposed by J. Ching et al. [24], is a population-

based MCMC in cooperation with an annealing scheme. Initially, N samples are drawn

from the prior distribution. The algorithm proceeds by constructing and sampling mul-

tiple intermediate distributions, using N samples for each distribution, until the conver-

gence to the posterior distribution according to

π(x
(i)
k)︸ ︷︷ ︸

posterior

∝ π(D|x(i)
k)pi︸ ︷︷ ︸

likelihood

π(x
(i)
k)︸ ︷︷ ︸

prior

(2.8)

where i = 1, . . . ,m with 0 = p0 < p1 < . . . < pi < . . . < pm = 1 and k = 1, . . . , N

denote the TMCMC stage or iteration and the samples, respectively. In general, the

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 11

Algorithm 3 Hamiltonian Monte Carlo

1: Initialise the position x0 and the step size ε
2: for t = 1 : N do
3: Compute the momentum r ∼ N (0,M)

4: Compute the Energy function H1 = r>Mr
2 − log(π(xt))

5: Leapfrog Integration for Ls steps
6: r = r − ε

2
∂π(x)
∂x

7: for j = 1 : Ls do
8: x = x+ ε rM
9: r = r − ε

2
∂π(x)
∂x

10: end for
11: Compute the new Energy function H2 = r>Mr

2 − log(π(xt))
12: Correction via the Metropolis-Hastings
13: ru ∼ U [0, 1] uniform
14: if exp(H2 −H1) < ru then
15: Reject: xt = xt−1

16: else
17: xt = x
18: end if
19: end for

choice of intermediate distributions, which is managed from the exponent pi, should be

slow enough to guarantee the desirable smooth transition from the (i) distribution to

the (i+ 1). In every TMCMC iteration, a weight is assigned for each sample by

w(x
(i)
k) = π(D|x(i)

k)pi+1−pi (2.9)

The intermediate, p values, are selected so that the coefficient of variation, or relative

standard deviation, of the weights is equal to 100%. To obtain the samples x
(i+1)
j = xij

from the π(x
(i+1)
k), resampling is performed with the probability on the normalised

weights as

w̃
(i)
k =

w
(i)
k∑N

j=1w
(j)
k

(2.10)

The resampling step is mandatory to avoid the degeneracy phenomenon [12]. Also,

the resampling algorithm eliminates the low weighted samples and replicates them with

larger weighted samples. As a result, only a few Markov chains will grow during the

m iterations, which is undesirable as the TMCMC algorithm is initialised to use N

distinct Markov chains. The solution proposed in [24] applies the MH algorithm for

every resampling, and the proposal distribution is centred at the preceding sample with

covariance

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 12

Σi = β2
N∑

k=1

w̃
(i)
k

[
x

(i)
k −

N∑

j=1

(x
(i)
j w̃

(i)
j)
][
x

(i)
k −

N∑

j=1

(x
(i)
j w̃

(i)
j)
]T

(2.11)

where β is a scaling parameter used to control the rejection rate and it is recom-

mended [24] to be equal with 0.2.

Improved algorithmic versions of the TMCMC (Algorithm 4 or basic algorithm

in [24]) exist, which lead to more efficient exploration of the space compared to the

original. In [11], the proposal distribution is based on the Langevin forward kernel.

In [19], an adapted annealing scheme and burn-in for the sampling procedure in every

TMCMC iteration are proposed.

Algorithm 4 Use TMCMC to simulate θ
(i)
k=1:N

1: i = 1
2: Sample θ

(0)
k ∼ π(x)

3: Initialise the scaling parameter β = 0.2 and the exponent p1 = 0
4: while pi < 1 do
5: pl = p; ph = 2;
6: while ph − pl > 10−6 do
7: ptmp = pl+ph

2

8: Compute the sample weights w(θ
(i)
k) = π(D|θ(i)

k)pi+1−pi

9: Compute the coefficient of variation cvw = σw
w = standard deviation

mean
10: if cvw > 1.1 then
11: ph = pi
12: else
13: pl = pi
14: end if
15: end while
16: pi = ptmp
17: if pi > 1 then
18: break
19: end if

20: Compute the normalised weights w̃
(i)
k =

w
(i)
k∑N

j=1 w
(j)
k

21: Use the normalised weights to resample and generate the new set of samples.

22: Use the Metropolis algorithm for each new set of sample to compute θ
(i+1)
k using

the Gaussian distribution as proposal centered at the preceding (“lead”) sample
using Equation 2.11 as covariance

23: i = i+ 1
24: end while

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 13

2.4 Sequential Monte Carlo methods

Sequential Monte Carlo (SMC) samplers and Particle Filters belong to a wider class of

methods called Sequential Monte Carlo (SMC) methods and perform statistical infer-

ence. The SMC sampler generalises Particle Filters as it is applicable in both static

and dynamic distributions of interest [66]. Both methods are applicable in systems with

non-linear and non-Gaussian characteristics. In this section, a brief description of the

two methods is provided with reference to [12] and [72] for detailed descriptions.

2.4.1 Sequential Monte Carlo samplers

2.4.1.1 Initialisation and posterior distribution

In SMC samplers the target distribution is constructed by using a sequence of artificial

distributions π1(x1), π2(x2), . . . , πk(xk), where πk(xk) is the final target distribution

(distribution of interest). The algorithm begins by drawing N particles from an initial

importance probability density function using the standard importance weights with

proposal distribution q1(x1)

w1(x1) =
π1(x1)

q1(x1)
(2.12)

Beyond the first iteration, the cloud of particles are propagated by using the sequence

of artificial targets as a sequence of backward Markov kernels, Lk(xk−1|xk), as

π(x1:k) = πk(xk)
k∏

k=2

Lk(xk−1|xk) (2.13)

2.4.1.2 Proposal distribution and importance weights

Given a set of weighted particles that approximate the k − 1 artificial target, the

next artificial target, k, is approximated by sampling from the forward Markov ker-

nel, qk(xk|xk−1) such that

q(x1:k) = q(x1)
k∏

k=2

q(xk|xk−1) (2.14)

Each particle is associated with a weight by

wk(x1:k) = wk−1(x1:k)
πk(xk)

πk(xk−1)

Lk(xk−1|xk)
qk(xk|xk−1)

(2.15)

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 14

To avoid numerical issues, Equation 2.15 is expressed using a logarithmic scale, and the

importance weights are normalised as

w̃
(i)
k =

w
(i)
k∑N

j=1(wk(j))
(2.16)

where
∑

(w̃k) = 1, w̃k ∈ RN×1 and i = 1, . . . , N represent the particle index with N

total number of particles.

2.4.1.3 Degeneracy phenomenon and effective sample size

Similarly, with Particle Filters, the weighted particles may be resampled after the impor-

tance weights evaluation. This resampling step reduces the variability of the importance

weights (degeneracy phenomenon) as the negligible particles are eliminated and substi-

tuted with more important particles. Resampling is triggered according to the effective

sample size [12]

Neff =
1

∑N
i=1(w̃

(i)
k)2

(2.17)

where Neff ∈ [1, N] and i = 1, . . . , N denotes the particle index.

2.4.1.4 SMC samplers emulate MCMC

The SMC Sampler is an alternative method to Markov chain Monte Carlo (MCMC)

methods (e.g., the Metropolis-Hastings algorithm). The user-defined backward Markov

kernel can be selected to emulate MCMC as L(xk−1|xk) = qk(xk|xk−1). Further discus-

sion on the backward Markov kernel is included in Chapter 7.

2.4.1.5 Estimation

In the basic SMC Sampler, estimations are performed according to the particles in the

final iteration. The expected value is computed by multiplication of the final particles

with the corresponding weights

f =

N∑

i=1

x
(i)
K w̃

(i)
K (2.18)

In this approach only the particles, denoted with i, of the last iteration, denoted with

K, are considered for the final estimation. In Chapter 4, this process is extended and

includes an available method as well as a novel method where the final estimation is

computed using the particles during all iterations.

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 15

Algorithm 5 Basic SMC sampler

1: for i = 1 : N do
2: Sample x

(i)
1 ∼ q(x

(i)
1)

3: Calculate w
(i)
1 =

π(x
(i)
1)

q(x
(i)
1)

4: end for
5: for k = 2 : K do
6: for i = 1 : N do
7: Sample x

(i)
k ∼ q(x

(i)
k |x

(i)
k−1)

8: Calculate w
(i)
k = w

(i)
k−1

π(x
(i)
k)L(x

(i)
k−1|x

(i)
k)

π(x
(i)
k−1)q(x

(i)
k |x

(i)
k−1)

9: end for
10: Weights Normalisation w̃k = wk∑

(wk)

11: Calculate the effective sample size Neff = 1∑N
i=1(w̃

(i)
k)2

12: if Neff < NT then
13: for i = 1 : N do
14: Resampling (Alg. 7) with w̃t, to produce the new population, xt

15: Set w
(i)
k = 1

N
16: end for
17: end if
18: end for

2.4.2 Particle filters

A range of different Particle Filter methods exist, and this section provides a brief

description of the GENERIC particle filter, while a detailed analysis for this and other

methods is available in [12].

2.4.2.1 Sequential importance resampling

Particle filters assume a dynamic stream of data, where the current state, xt, is a suf-

ficient estimation of the history of the states x1:t−1 [66]. Consider a time evolving

distribution, π(xt) at time t with state transition

xt|xt−1 ∼ π(xt|xt−1) (2.19)

with an initial distribution (or prior), π(x0), and an incoming stream of measurements

(or observations)

yt|xt ∼ π(yt|xt) (2.20)

The approximation of the posterior distribution [12]

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 16

Algorithm 6 GENERIC Particle filter

1: Sample x0 ∼ π(x0)
2: Assign w0 = 1

N
3: for t = 1 : T do
4: for i = 1 : N do
5: Sample x

(i)
t ∼ q(x

(i)
k |x

(i)
k−1, y

(i)
t)

6: Calculate w
(i)
t = w

(i)
t−1

π(x
(i)
t |x

(i)
t−1)π(y

(i)
t |x

(i)
t)

q(x
(i)
t |x

(i)
t−1,y

(i)
t)

7: end for
8: Weights Normalisation, w̃t = wt∑

(wt)

9: Calculate the effective sample size, Neff (Eq. 2.17)
10: if Neff < NT then
11: for i = 1 : N do
12: Resampling (Alg. 7) with w̃t, to produce the new population, xt

13: Set w
(i)
t = 1

N
14: end for
15: end if
16: end for

Algorithm 7 Minimum Variance Resampling

Input: xt, wt, N
Output: xt, wt

1: ncopies = MVR(wt) [47]
2: (ncopies, xt) = quickSort(N,ncopies, xt)
3: xt = Redistribute(N,ncopies, xt)

π(xt|yt) =
π(yt|xt)π(xt|xt−1)

q(yt|yt−1)
(2.21)

∝ π(yt|xt)π(xt|xt−1) (2.22)

is achieved by using a set of weighted particles. Importance weights are computed,

similarly to SMC Samplers, so that each particle is assigned to a weight [12]

wt = wt−1
π(xt|xt−1)π(yt|xt)
q(xt|xt−1, yt)

(2.23)

In the SIS step, the particles are propagated according to sampling from the proposal,

q(xt|xt−1, yt), followed by the weights assignment for each particle. Resampling, equiva-

lently to SMC Samplers, is triggered according to the effective sample size. Algorithm 6

shows the pseudocode for the GENERIC Particle Filter. The algorithm relies on several

functions, which are covered in detail in Chapter 4. Briefly these functions include:

• Importance sampling using the proposal distribution, q(xt|xt−1, yt)

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 17

• ncopies = MVR(wt), where MVR stands for Minimum Variance Resampling and

determines the number of times each particle needs to be replicated. The function

takes the particles’ weights at the current time t, wt, as input.

• (ncopies, xt) = quickSort(N,ncopies, xt) calculates the permutation that would

sort vector ncopies, and applies this permutation to both inputs. While this sort is

not necessary with a single processor implementation, in Chapter 4 we will exploit

the fact that the output is sorted.

• xt = Redistribute(N,ncopies, xt) returns the new population of particles given

the old population and the number of replication each particle requires.

2.5 Sampling experiments

An initial comparison of the three Markov chain Monte Carlo (MCMC) methods and the

basic Sequential Monte Carlo sampler is discussed in this section. All methods estimate

the true mean value of the posterior distribution using 10000 samples and are evaluated

using the last log mean squared error (MSE) provided in Table 2.1. In Figure 2.1 , the

performance is expressed using the log mean squared error as well as the percentage of

computations for the MALA, HMC, TMCMC, and MH, which implies the same total

number of samples for each method. The last iteration log MSE describes the best

estimate each algorithm achieves.

The HMC method outperforms all other methods when the step size is appropriately

defined as its performance is sensitive to this value. The MALA and TMCMC have

similar performance, and the basic SMC Sampler and MH methods result in the worst

performance.

It is expected the basic SMC Sampler has a worse accuracy compared to the MALA

and TMCMC as the former method’s proposal distribution is based on the Euler dis-

cretisation, while the latter uses annealing. However, it is surprising that it is difficult

to outperform or have similar accuracy as the MH algorithm since both methods use

the same proposal distribution. A similar result is discussed in Chapter 3.

Further comparisons with these methods are discussed in the final three chapters

where our effort is concentrated on improving the accuracy of the SMC sampler.

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 18

Table 2.1: Last iteration log mean squared error (MSE) of the MALA, TMCMC,
MH, basic SMC sampler and HMC. Each method generates 10000 samples to estimate

the true mean value.

Method Log MSE

MALA -7.98

MH -7.19

TMCMC -7.83

basic SMC sampler -6.01

HMC -11.63

0 20 40 60 80 100

% computations

-12

-10

-8

-6

-4

-2

0

2

4

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison
MH
MALA
TMCMC
HMC

Figure 2.1: Comparison of MALA, HMC, MH and TMCMC on
the Gaussian distribution, N (0, 1). Each method generates 10000

samples to estimate the true mean value.

2.6 Conclusions

In this chapter, we provided the description of a variety of MCMC methods and two

SMC methods. For an initial comparison, we noticed that the HMC outperforms all

other methods, but it is challenging to tune the user-defined parameters [76]. Methods

for tuning those parameters exist, but the focus of the thesis examines and prioritises

Langevin-based proposals, while the core method is the SMC Sampler. Further analysis

and research are discussed in Chapters 6 and 7.

In Chapter 3, background on two widely-known deep learning methods is discussed,

and a new method is proposed to train the Radial Basis Function (RBF) network us-

ing steps of importance sampling and resampling (i.e., the core methods in any SMC

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 19

method) as the training method. Comparison of the proposed method with the origi-

nal algorithm (i.e., the MH algorithm) reveals similar behaviour in the results with the

sampling experiment from this chapter.

Chapter 3

Background on traditional deep

learning algorithms and a new

method to train the Radial Basis

Function network

3.1 Introduction

Machine learning is the science of getting computers to act without being explicitly pro-

grammed [1]. Artificial neural networks (or neural networks) [40] and deep learning [55]

are two machine learning tools consisting of algorithms or networks to detect features

from a given dataset for the discovery of patterns or perform a defined task. The algo-

rithms are programmed for automatic training. These training or learning procedures

are categorised as supervised, unsupervised or semi-supervised.

In supervised learning (or learning with a teacher), the algorithm is provided with

a dataset that includes the correct answers. This dataset uses labelled data in the form

(x, d), where x is the input and d is the corresponding correct answer for the given x. In

unsupervised learning (or learning without a teacher) we give the algorithm unlabelled

data (without providing the “right” answer) x, and the system is trying to classify the

given data. Other learning techniques exist such as the semi-supervised learning, a

“hybrid” approach where the dataset is partially labelled.

Many applications are based on regression, classification and other tasks [39]. An

example of a regression problem is to predict the price of new real estate given a dataset

containing related previous values [82]. A classification task considers grouping or clas-

sifying the given inputs, such as categorising the genre of art films [93].

This chapter begins in Section 3.2 with a background of the learning procedures for

two widely-applicable deep learning algorithms, the stacked autoencoder and deep belief

network. In Section 3.3, a new method is proposed to train the RBF network using,

20

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 21

as its core method, steps of importance sampling and resampling instead of the MH

algorithm. Examples are included in each section, while Section 3.4 draws conclusions.

3.2 Background on deterministic and stochastic deep learn-

ing methods

This section reviews two traditional deep learning algorithms, the stacked autoencoder

and the deep belief network. The stacked autoencoder is a deterministic network, and

the deep belief network is stochastic. Descriptions of the training processes for a de-

terministic neural network, single layer perceptron, and multiple layer perceptron are

provided in [40].

A Single Layer Neural Networks also known as Single Layer Perceptron (SLP) [40]

is a neural network with two layers, an input layer and an output layer. The input layer

units are fully connected with the output layer units. The output layer units or activation

units perform a mathematical operation. A bias is used to shift the activation function

horizontally (left or right). The default value of the bias unit is 1. The procedure of

calculating the output of the activation unit or units is called forward propagation. The

most common function used by the activation unit is the sigmoid : f(x) = 1
1+exp (−x) ,

where f(x) ∈ [0, 1]. Another example of activation unit is the hyperbolic tangent, while

a list of different choices is available in [40].

Multi Layer Neural Networks also known as Multi Layer Perceptrons (MLP) use

more that two layers, the input layer, the hidden layer or layers and the output layer.

The capacity of neural networks describe the type of problem the network can solve. A

single neuron can solve linear separable problems. This is a line that can separate the

two classes (e.g. AND-Boolean operator, OR-Boolean operator). A neural network with

a single hidden layer can solve universal approximations [48].

Neural Networks have the innovative ability to get trained and learn (or gain knowl-

edge) through the training procedure. Mathematically this is achieved via the properly

adjustment of weights and biases of the neural network in order to minimise the prede-

fined cost function. The cost function defines the difference between the network output

with the real target. There are many optimisation algorithms which can be used to

minimise the cost function. A widely used approach on solving this problem is the back

propagation algorithm [40] in conjunction with gradient descent as the optimisation

method.

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 22

3.2.1 The stacked autoencoder

x0

x1

x2

x3

x4

x5

Input
layer

h10

h11

h12

h13

h14

Hidden
layer I

W (1)

h20

h21

h22

h23

Hidden
layer II

W (2)

y1

y2

y3

Output
layer

W (3)

Figure 3.1: Stacked Autoencoder Network

The stacked autoencoder [77] [102] is a deep learning network consisting of multiple

layers of autoencoders. An autoencoder is an unsupervised learning algorithm with the

training objective to reconstruct a given input [77]. The network consists of an equal

number of neurons in the input and output layers, while an intermediate hidden layer

exists with either a smaller or larger number of neuron units. As mentioned, the basic

component of the stacked autoencoder is a single autoencoder. The training of this one

autoencoder follows the traditional approach of training a multiple layer neural network.

The learning procedure is unsupervised, which means that the correction of the weights

and biases on the network is achieved through the adjustment of each value according

to a cost function describing the difference between the given input and current output.

Training a stacked autoencoder is achieved through five stages:

1. Design the architecture of the network. This is related, for example, with the

number of layers or autoencoders the network contains.

2. Train the first autoencoder. After the training is completed, forward propagate the

first autoencoder features as an input to the second autoencoder. These features

are the result of the multiplication of the trained first autoencoder weights and

biases with the activation functions in the hidden layer.

3. Train the second autoencoder. Forward propagate the features of the trained

second autoencoder as an input to the third autoencoder.

4. Continue the above procedure until the last autoencoder of the stacked autoen-

coder is trained.

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 23

5. In the final stage, fine-tune the stacked autoencoder network for better results.

Here, back-propagation is used to improve the performance (i.e., adjusting the

weights and biases of the overall network) of the autoencoders. This process is

mandatory if we want to achieve better accuracy in the results.

3.2.2 The Deep Belief Network

3.2.2.1 Restricted Boltzmann machine

The Boltzmann machine is a stochastic network introduced in 1985 by G.E. Hinton [9]

that combines statistical mechanics and neural networks. The network is undirected

and fully connected, and the energy of the model corresponds to the network configura-

tion (i.e., all connections of the network including the biases of the hidden and visible

neurons).

E(v) = E(v;w) = −
∑

i<j

sisjwij +
∑

sibi (3.1)

where v denotes the state vector (the data), si denote the binary state assigned to unit

i, bi the bias assigned to unit i and the wij the weight connection between units i and

j. Probabilities are assigned to every possible state with

p(v) =
e−E(v)

∑
v e
−E(v)

(3.2)

The aim of the training procedure is to find weights and biases that define a Boltzmann

distribution in which the training vectors have high probability [44]. Each state vector, v,

persists long enough for the network to reach thermal equilibrium [40]. This is achieved

by differentiation of Equation 3.1 and using the fact that ∂E(v)
∂wij

= −sisj

∑

v∈data

∂log(p(v))

∂wij
= 〈sisj〉v − 〈sisj〉model (3.3)

where the 〈sisj〉v is the expected value of product of states sisj in the data distribution

(i.e. positive phase) and 〈sisj〉model is the expected value when the Boltzmann machine is

sampling state vectors from its thermal equilibrium (i.e. negative phase). This difference

of correlations is applied to update the weights of the network

∆wij ∝ 〈sisj〉v − 〈sisj〉model (3.4)

This model is impractical because the training procedure requires a very long time and

real-world applications require many neurons.

During the following years, research efforts focused on simplifying the Boltzmann ma-

chine or proposing closely-related networks. In 1992, R. Neal [75] proposed the sigmoid

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 24

belief network, which is a directed graphical model similar to a multilayer perceptron.

The network does not require the negative phase during the computation of the deriva-

tive of the log-likelihood of the visible units. The negative phase in the Boltzmann

machine is used for the computation of the global partition function with a mathe-

matical description provided for the restricted Boltzmann machine [75]. As a result,

the sigmoid belief network reduces the computation complexity and the required time

for the network to reach thermal equilibrium. The problem with this approach is a

phenomenon called “explaining away” [45], which implies that the independent latent

variables become dependent when they influence an observable unit. Other efforts, al-

ternative to MCMC, focus on using different approaches, such as variational methods,

which is also used in deep sigmoid belief networks [71]). The goal is to maximise a

lower bound of the log-likelihood of the visible units, while the training is achieved via

the expectation-maximisation (EM) algorithm. The convergence is faster than MCMC

methods but sacrifices the accuracy of the model [45].

RBM’s are special cases of the Boltzmann machines where there is no connection

between the units of the same layer, but only between the visible and hidden layers [17].

Assuming a restricted Boltzmann machine with m visible and n hidden units (Fig-

ure 3.2), the joint configuration, (v,h) of the model is given by the energy function

a1 a2 a3 am. . .

v1 v2 v3 vm

b1 b2 b3 bn. . .

h1 h2 h3 hn

wnm

Figure 3.2: Model representation of the restricted Boltzmann machine with m visible
and n hidden units.

E(v, h) = E(v, h;w) = −hᵀWv − aᵀv − bᵀ (3.5)

where the weights matrix, w, represents the connections between the visible and the

hidden units, a and b are the biases of the visible and the hidden units, and v ∈ {0, 1}m
and h ∈ {0, 1}n denote the states of the visible and hidden units, respectively. Origi-

nally, the RBM as well as the Boltzmann machine use binary units, however this is not

mandatory [33]. Probabilities are assigned to every possible visible and hidden unit with

p(v, h;w) =
e−E(v,h)

Z
(3.6)

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 25

where Z is the normalising constant or partition function

Z =
∑

v,h

e−E(v,h)

The probability that the model assigns to the visible vector v is

p(v;w) =

∑
h e
−E(v,h)

Z
=

∑
h e
−E(v,h)

∑
v,h e

−E(v,h)
(3.7)

To train an RBM (as discussed in [26] the training process can lead to poor local solu-

tions) the maximisation of the log-likelihood of the p(v) is required. Numerically, this

implies finding where the derivative of the log-likelihood with respect to the weights is

equal with zero such that

∂ log p(v;w)

∂w
= 0⇔

∂ log
∑
h e
−E(v,h)

Z

∂w
= 0⇔

∂ log
∑

h e
−E(v,h)

∂w
−
∂ log

∑
v,h e

−E(v,h)

∂w
= 0⇒

vi · p(hj = 1|v)︸ ︷︷ ︸
positive phase

− p(vi = 1, hj = 1)︸ ︷︷ ︸
negative phase

= 0 (3.8)

The derivative of the log-likelihood is the difference between the data-dependent and

the model expectations, known as the positive and negative phases, respectively. The

positive phase increases the probability of the data by reducing the energy, while the

negative phase reduces the probability of the samples generated by the model by in-

creasing the energy. The conditional distributions over the visible and the hidden units

are given by

p(vi = 1|h) = σ(ai + hᵀwi) (3.9)

p(hj = 1|v) = σ(bj + wjv) (3.10)

where i ∈ {1, ...,m}, j ∈ {1, ..., n}, wi and wj are the ith row and jth column of the

weights, wji ∈ Rn×m, respectively. The σ denotes the sigmoid function

σ(x) =
1

1 + e−x
(3.11)

The positive phase is easily computed from the conditional distributions. The negative

phase is intractable because an exponential summation over both the visible and the

hidden units is required [26]. Gradient ascent with learning rate, η, can be applied to

update the weights of the system with

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 26

∆w = η · {vi · p(hj = 1|v)− p(vi = 1, hj = 1)} (3.12)

The idea of the contrastive divergence method is to apply the Gibbs sampling to

compute the negative phase of the log-likelihood gradient (Equation 3.5) by providing

the current training example to the visible layer as the initial value of the Gibbs sampler.

The next steps of the algorithm consist of running in turns the conditional distributions

provided in Equations 3.6 and 3.7.

3.2.2.2 Deep Belief Network

The strategy for training a deep belief network is similar to the stacked autoencoder. The

basic component of a deep belief network is the restricted Boltzmann machine (RBM).

The general proposed method for training deep learning algorithms, as discussed in the

previous section, is to use a basic component trained first with a grid-layer pre-training

procedure followed by a fine-tuning step. This latter step is not mandatory but leads

to better performance. During the first step, a stack of the basic component is created

where each component is trained, while the second step views the deep network as a

single network and adjusts all weights and biases (e.g., backpropagation in the entire

network) [45].

3.2.3 Face age classification

Faces provide a significant source of information, such as the age, gender, expression,

and ethnicity. There are many applications related to face age estimation, such as

security control and human-computer interaction. To demonstrate the two-deep learning

algorithms discussed above, the benchmark Face and Gesture Recognition Research

Network (FG-Net) ageing database [80] is pre-processed and applied to the deep belief

network and the standard stacked autoencoder.

3.2.3.1 Preprocessing the FG-Net aging database

The FG-Net ageing database contains 1002 face images from 82 individuals with ages

ranging between new-born to 69 years [80]. The 72% (730) of which are new-born to 20

years (Figure 3.3). The images are separated based on the human growth curve. From

the 1002 images, 175 are grayscale, and the remaining 827 are colour images. Each

image in the dataset (with one exception) is annotated with 68 landmark points located

at key positions.

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 27

0 10 20 30 40 50 60 70

Age

0

20

40

60

80

100

120

140

160

180

200

P
o
p
u
la

ti
o
n

(a) Age Histogram

17%

82%

Gray Scale Color

(b) Number of grayscale images

Figure 3.3: (a) Age histogram and (b) number of grayscale and color images in the
FG-NET aging database (right).

The data pre-processing is a very critical step in machine learning applications. It

allows the deep structure to detect or extract meaningful features while reducing mis-

leading results based on the input. The pre-processing for FG-Net contains the grayscale

normalisation, face alignment, cropping, and resizing. Without the included landmarks,

the equivalent pre-processing procedure would require more advanced methods (e.g.,

face and eyes localisation). Figure 3.5 a sample of the pre-processed images.

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 28

(a)

 1

 2

 3

 4

 5

 6

 7

 8
 9

10

11

12

13

14

15

16

17

18
1920

21

22 23

24

25

26

27

28 29

3031

32

33

34
35

36

37

38

39
40

41

42 43
44

45

46

47

48

49

50
51

525354
55

565758

59

60 61

62636465
66

67

68

(b)

 1

 2

 3

 4

 5

 6

 7

 8
 9

10

11

12

13

14

15

16

17

18
1920

21

22 23

24

25

26

27

28 29

3031

32

33

34
35

36

37

38

39
40

41

42 43
44

45

46

47

48

49

50
51

525354
55

565758

59

60 61

62636465
66

67

68

 1

 2

 3

 4

 5

 6

 7

 8
 9

10

11

12

13

14

15

16

17

18
1920

21

22 23

24

25

26

27

28 29

3031

32

33

34
35

36

37

38

39
40

41

42 43
44

45

46

47

48

49

50
51

525354
55

565758

59

60 61

62636465
66

67

68

(c)

 1

 2

 3

 4

 5

 6

 7
 8

 9

10

11

12

13

14

15

16

1718

1920
2122

23 24

252627

28

29

30
31

32 33
34

35
36

37

38

39

40

41
42

43

44

45

46

47 48

49 5051 525354 55

56
575859

60 61 62
63646566 67

68

(d)

(e)

Figure 3.4: The initial image (a) is converted to grayscale (b). The image is rotated,
but the landmarks are not changed yet (c). The new position of the landmarks are
computed based on the rotation matrix (d). The final image (e) is cropped based on

the landmarks.

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 29

(a) Sample of initial images

(b) Preprocessed Images

Figure 3.5: (a) A sample of the initial images and (b) the corresponding preprocessed
images (right).

3.2.3.2 FG-Net aging database classification with deep learning

Our benchmark is evaluated with the standard stacked autoencoder (deterministic net-

work) and the deep belief network (stochastic network) deep learning algorithms.

In the example with the stack autoencoder, two autoencoders (784-100-50 number

of neurons for each layer) are considered followed by a softmax classifier [77]. In a

classification task, the “decoding” layers of the stacked autoencoder are removed, and

the features of the last autoencoder are connected to a softmax classifier. The procedure

begins with the training of the first autoencoder, and when completed, the features or

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 30

filters learned during the training are forward propagated to the second layer. This

procedure is followed by the next autoencoder with the difference in that the second

layer propagates to the softmax classifier. Finally, the fine-tuning procedure views the

deep structure as a single network and uses forward and back propagation to update the

weights and biases of the entire network as a standard multiple layer perceptron (MLP).

x0

x1

x2

x3

x4

x5

Input
layer

h10

h11

h12

h13

h14

Hidden
layer I

W (1)

h20

h21

h22

h23

Hidden
layer II

W (2)

y1

y2

y3

Output
layer

W (3)

Figure 3.6: Example of the stacked autoencoder network

For every step of the algorithm, the standard gradient descent is used to train the

network. Specifically, the “minFunc” library for the gradient descent is used, which is

the Limited memory-Broyden Fletcher Goldfarb Shanno (L-BFGS) optimisation algo-

rithm [58]. The final accuracy is heavily based on the number of classes and the size of

the training and testing sets. We performed two examples with the learning (or training)

procedure supported with 900 images, while the testing procedure with the remaining

from the set. The classification task groups the faces according to age using a classifier

with six classes: 0-5, 6-10, 11-15, 16-20, 21-31, and 31-69. The performance achieved

from the network is ∼ 48%. If the initial configuration includes classes with larger age

range values, then the performance improves. For example, if the goal is to group the

faces using age ranges 0− 10, 11− 20, . . . , 61− 70, then the accuracy is ∼ 73%. Finally,

the first layer filters learned is provided in Figure 3.7.

The deep belief network is applied in a three layer (784-500-500 number of neurons

for each layer) of RBM’s and 6 classes 0-5, 6-11, ..., 31+. The performance is slightly

better than the stacked autoencoder, ∼ 51%, which is compared with a k-step con-

trastive divergence with k = 5 and 10 but without significant difference. It is known

that tuning an RBM and a deep algorithm are challenging while debugging is usually

done through visualisation [106]. It is interesting that the filters the algorithm learned

for the first RBM of the deep belief network after the training procedure are not satis-

factory (Figure 3.8). In contrast, the stacked autoencoder filters of the first layer appear

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 31

better (Figure 3.7). The histogram of the filters (Figure 3.9) confirms the mean abso-

lute magnitude of the filters increases by a factor of 102 [106]. However, this does not

suggest any sign of overfitting or underfitting the dataset. Similarly, the error evolution

of the training procedure is in the correct direction (Figure 3.10) while it is apparent

from the classification error of the training and test sets that overfitting occurs. Accu-

racy improvement may be obtained through a variety of approaches, such as proposing

a better optimisation method, tuning the hyperparameters of the network [18], apply-

ing early stopping, using more data, and considering other deep learning architectures.

Exploration of these potential improvements requires further investigation.

(a)

(b)

Figure 3.7: (a-b) Filters (or weights) the first layer learnt after the training procedure
of the stacked autoencoder. Both images are the same but with a different color.

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 32

(a) (b)

(c) (d)

Figure 3.8: Initial (a-b) and final (c-d) of the filters learnt, respectively of the deep
belief network.

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 33

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

2

2.5

3
×10

4 mm = 0.0800217

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3
×10

4 mm = 0.132235

(b)

Figure 3.9: Histogram of filters at the beginning (a) and (b) end of the training. The
mean absolute magnitude of the values is shown above each plot [106] .

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 34

0 50 100 150

iteration

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

e
rr

o
r

×10
4

RBM 1

RBM 2

RBM 3

(a)

0 10 20 30 40 50 60 70 80 90 100

iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
is

s
c
la

s
s
if
ic

a
ti
o
n
 r

a
te

train

test

(b)

Figure 3.10: (a) The error over the number of iterations and (b) the classification
error for the training and test sets demonstrating that the model is overfitted.

3.3 Replacing the Metropolis-Hastings with importance

sampling and resampling on the Radial Basis Function

network

The Radial Basis Function (RBF) network is a neural network where the output of the

network is a linear combination of the activation functions of the inputs and neuron

parameters. The activation functions are radial basis functions. In this section, the

model description of the RBF is discussed following the notation described in [10], which

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 35

uses a hybrid MCMC to train the network with the core algorithms of the MH and Gibbs

sampling. A new methodology is proposed where the MH is replaced with importance

sampling and resampling and applied to the training procedure.

3.3.1 Model description

Consider the following model (provided in [10]):

M0 : yt = b+ β′xt + nt k = 0

Mk : yt =
k∑

j=1

ajφ(‖xt − µj‖) + bt + β′xt + nt k ≥ 1

or in the general form

yt = f(xt) + nt

where ‖·‖ denotes the Euclidean distance metric, µj ∈ Rd denotes the jth Radial Basis

Function (RBF) center for a model with k RBFs, aj ∈ Rc the jth RBF amplitude, b ∈ Rd,
β ∈ Rd×Rc the linear regression parameters and nt ∈ Rc is a zero mean white Gaussian

noise. The Gaussian noise is statistical noise having a probability density function equal

to the Gaussian distribution. xt ∈ Rd and yt ∈ Rd represent the group of input and

output variables, respectively. The variable t = 1, 2, 3, . . . corresponds to an index over

the data.

The learning problem involves the approximation of the function f(xt) and estima-

tion of the noise process given a set of input-output observations. The model can be

expressed in the vector-matrix form

y = D(µ1:k,1:d, x1:N,1:d)α1:1+d+k,1:c + nt (3.13)

where D represents the regression matrix, α the linear regression parameters vector and

nt ∼ N (0c×1, diag(σ2
1, ..., σ

2
c)) the zero mean white Gaussian noise.

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 36

y1,1 . . . y1,c

...

yN,1 . . . yN,c

 =

1 x1,1 . . . x1,d φ(x1, µ1) . . . φ(x1, µk)
...

...
...

1 xN,1 . . . xN,d φ(xN , µ1) . . . φ(xN , µk)

×

b1 . . . bc

β1,1 . . . β1,c

...

βd, 1 . . . βd, c

a1,1 . . . a1,c

...

ak,1 . . . ak,c

+ nt (3.14)

The following list includes different types of radial basis functions:

• Linear: φ(ρ) = ρ

• Cubic: φ(ρ) = ρ3

• Thin plate spline: φ(ρ) = ρ2 ln(ρ)

• Multiquadric: φ(ρ) =
√

(ρ2 + λ2)

• Inverse quadratic: φ(ρ) = 1
(ρ2+λ2)

• Inverse Multiquadric: φ(ρ) = 1√
(ρ2+λ2)

• Gaussian: φ(ρ) = exp(−λρ2)

where the λ is a user defined parameter. The minimum number of columns of the

regression matrix, D, is 3, corresponding to a single RBF center (each column of this

matrix apart from the first two describe the connections of the inputs with the RBF

centers).

3.3.2 Bayesian aims using the hybrid MCMC

Bayesian inference is considered for the model, and the posterior distribution is computed

using the expression (from Equation 3.3 in [10]):

p(k, µ1:k,Λ, δ|x, y) ∝
[

c∏

i=1

(1 + δ2
i)
−m/2(

γ0 + y′1:N,iPi,ky1:N

2
)(−N+υ0

2
)

]

×
[
IΩ(k, µk)

Jk

] [
Λk/k!

∑kmax
j=0 Λj/j!

][
c∏

i=1

(δ2
i)
−(αδ2+1) exp(−βδ2

δ2
i

)

]

×
[
(Λ)(ε1−1/2) exp(−ε2Λ)

]
(3.15)

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 37

where k denotes the total number of RBFs, the µ1:k the RBF centre, Λ, δ are hyperpa-

rameters, x, y are the inputs and outputs, respectively, and

M−1
i,k = Dᵀ(µ1:k, x)D(µ1:k, x) + Σ−1

i (3.16)

hi,k = Mi,kD
ᵀ(µ1:k, x)y1:N,i (3.17)

Pi,k = IN −D(µ1:k, x)Mi,kD
ᵀ(µ1:k, x) (3.18)

The likelihood is

p(y|k, θ, ψ, x) =

c∏

i=1

p(y1:N,i|k, α1:m,i, µ1:k, σ
2
i , x) (3.19)

=

c∏

i=1

(2πσ2
i)
−N/2 exp

(
− 1

2σ2
i

(y1:N,i −D(µ1:k, x)α1:m,i)
ᵀ (3.20)

× (y1:N,i −D(µ1:k,x)α1:m,i)
)

(3.21)

and the prior

p(k, a1:m, µ1:k|σ2,Λ, δ2) = p(a1:m|k, µ1:k, σ
2, δ2)p(µ1:k|k)p(k|Λ) (3.22)

=

[
c∏

i=1

|2πσ2
i Σi|−1/2exp(− 1

2σ2
i

α′1:m,iΣ
−1
i α1:m,i)

]
(3.23)

×
[
IΩ(k, µ1:k)

Jk

][
Λk/k!

∑kmax
j=0 Λj/j!

]
(3.24)

This approach aims to estimate the posterior distribution for performing statistical in-

ference using the predictive density

p(yN+1|x1:N+1, y1:N) =

∫

Θ×Ψ
p(yN+1|k, θ, ψ, xN+1)p(k, θ, ψ|x1:N , y1:N)dkdθdψ (3.25)

Estimations are performed using

E(yN+1|x1:N+1, y1:N) =

∫

Θ×Ψ
D(µ1:k, xN+1)α1:mp(k, θ, ψ|x1:N , y1:N)dkdθdψ (3.26)

These quantities cannot be computed analytically as they require the evaluation of high

dimensional integrals of nonlinear functions in the parameters.

In the equations, the k defines the number of RBFs and in our experiments it is

considered a fixed value (identically with Method 4.1 in [10]). The Λ, δ are the hyper-

parameters.

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 38

σ2
i |(k, µ1:k, δ

2, x, y) ∼ IG

(
υ0 +N

2
,
γ0 + y′1:N,iPi,ky1:N,i

2

)
(3.27)

α1:m,i|(k, µ1:k, σ
2, δ2, x, y) ∼ N(hi,k, σ

2
i ,Mi,k) (3.28)

δ2
i |(k, α1:m, µ1:k, σ

2
i , x, y) ∼ IG

(
aδ2 +

m

2
,

βδ2 +
1

2σ2
i

a′1:m,iD
′(µ1:k, x)D(µ1:k, x)α1:m,i

)
(3.29)

q(Λ∗) ∝ Λ∗(1/2+ε1+k)exp(−(1 + ε2)Λ∗) (3.30)

where IG(a, b) is the inverse Gamma distribution with mean value a and shape parameter

b. The Θ × Ψ define the overall parameter space which is described as a finite union

of subspaces Θ × Ψ = (
⋃kmax
k=0 {k} × Θ) × Ψ, where Θ0

∆
= (Rd+1)c × (R+)c and Θk =

(Rd+1+k)c × (R+)c × Ωk, for k = 1, 2, . . . , kmax, α ∈ (Rd+1+k)c, σ ∈ (R+)c and µ ∈ Ωk.

The hyperparameters include the space Ψ
∆
= (R+)c+1, with elements ψ = {Λ, δ2}.

Algorithm 8 describes the Hybrid MCMC (Method 4.1 in [10]). In every iteration of

the Hybrid MCMC, the centres are sequentially updated using the MH algorithm with

an acceptance rate

ar =
P

Pp
(3.31)

where

P =

(
c∏

i=1

(γ0 + yᵀ1:N,iPi,ky1:N,i)

)N+υ0
2

(3.32)

The denominator p refers to the proposal density and depends on the condition (see

steps 5 and 6 in Algorithm 8). The first proposal (step 5) is a random walk, which is

a Gaussian distribution with a mean value of the centre of the RBF and a user-defined

covariance, cu [10]

q1(µ∗j,1:d|µ
(i)
j,1:d) = N (µ

(i)
j,1:d, cu) (3.33)

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 39

Otherwise, the proposal (step 6) is selected with a uniform distribution in the interval

(min(x)− w,max(x) + w), where w is a user-defined parameter [10]

q2(µ∗j,1:d|µ
(i)
j,1:d) = (min(x)− w,max(x) + w) (3.34)

Algorithm 8 Hybrid MCMC on RBFs

1: Initialisation. Fix the value of k (number of RBF centres)and set (θ(0), ψ(0))
2: for i = 1 : T do
3: for j = 1 : kmax do
4: Sample u ∼ U[0,1]

5: If u > 0.5, perform an MH step admitting p(µj,1:d|x, y, µ(i)
−j,1:d) as invariant

distribution and q1(µ∗j,1:d|µ
(i)
j,1:d) as proposal distribution

6: Else perform an MH step using p(µj,1:d|x, y, µ(i)
−j,1:d) as invariant distribution

and q2(µ∗j,1:d|µ
(i)
j,1:d) as proposal distribution.

7: end for
8: Sample the nuisance parameters (α

(i)
1:m, σ

2(i)) using Equations 3.27 and 3.28.
9: Sample the hyperameters (Λ(i), δ2(i)) using Equations 3.29 and 3.30

10: end for

3.3.3 Proposed method on the RBF

As discussed the initial method proposed in [10] assumes a fixed number of RBF centers

(Algorithm 8). There are several potential approaches for using SMC samplers with this

problem, and the key consideration is to replace the MH steps with an SMC sampler.

The ith iteration of the Hybrid MCMC method (Algorithm 8) consists of a sequence

of operations (Figure 3.11) where each RBF centre is sequentially updated based on the

current RBF centres with the parameters and hyperparameters.

µ1|µ2:k µ2|µ1, µ3:k . . . µk|µ1:k−1 Λ|µ1:k, δ δ|µ1:k,Λ

Figure 3.11: The diagram describes the sequence of operations for the ith Hybrid
MCMC iteration (Algorithm 8).

The identical chain of operations is computed in the RBF using importance sampling and

resampling. Each particle represents the model and follows the operations in Figure 3.11.

In the Hybrid MCMC, the centres of the RBFs are updated using the MH method, and

there is a single regression matrix. In the proposed method, each RBF centre is instead

updated using a single SMC sampler step, and every particle uses its regression matrix.

Denoting Np as the total number of particles, each defines a separate model. There

are Dn ∈ RNp×1 total regression matrices, where n = {1, 2, . . . , Np}. Equivalently, each

particle has parameters, α(n), σ2(n)
and hyperparameters Λ(n), δ2(n)

, and is associated

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 40

Algorithm 9 ISR on RBFs

1: Initialisation. Fix the value of k (number of RBF centres) and set (θ(0)(1:N)
, ψ(0)(1:N)

)
2: for i = 2 : T do
3: for n = 1 : N do
4: for j = 1 : kmax do
5: Sample u ∼ U[0,1]

6: If u > 0.5, update the RBF centers using q1(µ∗
(i,n)

j,1:d |µ
(i,n)
j,1:d) as proposal

distribution

7: Else update the RBF centers q2(µ∗j,1:d∗(i,n)|µ(i,n)
j,1:d) as proposal distribution.

8: end for
9: end for

10: Compute importance weights using Equation 3.35
11: Compute the effective sample size and resample if needed (see Section 2.4.1)
12: for n = 1 : N do
13: Sample the nuisance parameters (α

(i,n)
1:m , σ2(i,n)

) using Equations 3.27 and 3.28.

14: Sample the hyperameters (Λ(i,n), δ2(i,n)
) using Equations 3.29 and 3.30

15: end for
16: end for

with a weight. In the weight calculation it is assumed that the backward kernel is equal

with the forward kernel and, thus, eliminated from the calculation. The pseudocode for

this method is available in Algorithm 9.

w
(n)
k =

P (n)

P
(n)
p

(3.35)

After the weights calculation using Equation 3.35 the particles are resampled so that

negligible weights are eliminated and replicated with more important weights. Essen-

tially, the new method corresponds to replacing the MH with the initial step of the SMC

sampler consisting of importance sampling and resampling steps (ISR).

3.3.4 Signal detection experiments

In this problem, data are generated from a univariate function using 50 covariance points

on [−2, 2] [10]:

y = x+ 2 exp(−16x2) + 2 exp(−16(x− 0.7)2) + n

where n ∼ N(0, σ2). The data are rescaled to make the input lie within the interval

[0, 1]. The radial basis functions are Gaussian with the same variance as the Gaussian

signal noise. Figure 3.12 shows the fits obtained for the training and test sets from

both methods, and Figure 3.13 shows the accuracy benefits of increasing the number of

particles. The results are provided by varying the variance of the noise σ2 in Table 3.1

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 41

with a comparison of the proposed method with the hybrid MCMC algorithm from [10].

In Tables 3.2 and 3.3, the new method is compared with different choices of the number

of particles and RBF centres, respectively.

In the comparison of the two methods, it can be seen that the hybrid MCMC is

better than the proposed algorithm due to the different evaluation of the importance

weights of the proposed method in contrast the basic SMC . The proposed methodology

does not consider the weights of the previous iteration, but only the identical used as

acceptance probability in the Hybrid methodology (i.e. Algorithm 8) in the Metropolis-

Hastings. Essentially, this is correlated with Chapters 2 and 7, where comparison of

the basic SMC sampler with other methodologies demonstrates worse accuracy than the

MH algorithm, while better versions of the same algorithm outperform the SMC sampler

and competitor methods. Another observation is that even on this toy example when

the number of the particles increases, the sequential computational time of the proposed

method is significantly worse compared to that in [10]. Specifically, on a non-optimised,

sequential, code the runtime is roughly three times slower than the original method.

The time difference depends on the number of particles and the total number of RBF

centres. This issue is examined in detail in Chapter 4, where a new fully distributed

algorithm for the resampling is proposed.

Table 3.1: Root Mean Squared Error (RMSE) for Different Noise Values (N = 100
and k = 2 RBF centers

σ2 Hybrid Method [10]
(RMSE)

Proposed Method
(RMSE)

0.01 0.025 0.18

0.1 0.052 0.22

1 0.25 0.39

Table 3.2: Root Mean Squared Error (RMSE) for Different Number of Particles

(σ2 = 0.1 and k = 2)

Number of Particles (N) Proposed Method (RMSE)

10 0.33

100 0.22

1000 0.12

Table 3.3: Root Mean Squared Error (RMSE) for Different Number of RBF Centers

(N = 100 and σ2 = 0.1)

RBF Centers (k) Proposed Method (RMSE)

1 0.45

2 0.22

4 0.13

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 42

0 0.2 0.4 0.6 0.8 1

Train input

-4

-2

0

2

4

T
ra

in
 o

ut
pu

t

0 0.2 0.4 0.6 0.8 1

Test input

-4

-2

0

2

4

T
es

t o
ut

pu
t

True function
Test data
Prediction

(a)

0 0.2 0.4 0.6 0.8 1

Train input

-4

-2

0

2

4

T
ra

in
 o

ut
pu

t

0 0.2 0.4 0.6 0.8 1

Test input

-4

-2

0

2

4

T
es

t o
ut

pu
t

True function
Test data
Prediction

(b)

Figure 3.12: Example of the performance of (a) the hybrid MCMC algorithm and
(b) the proposed method using the same input data.

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 43

0 0.2 0.4 0.6 0.8 1

Train input

-4

-2

0

2

4

T
ra

in
 o

ut
pu

t

0 0.2 0.4 0.6 0.8 1

Test input

-4

-2

0

2

4

T
es

t o
ut

pu
t

True function
Test data
Prediction

(a)

0 0.2 0.4 0.6 0.8 1

Train input

-5

0

5

T
ra

in
 o

ut
pu

t

0 0.2 0.4 0.6 0.8 1

Test input

-5

0

5

T
es

t o
ut

pu
t

True function
Test data
Prediction

(b)

Figure 3.13: Example of the performance using (a) 10 particles and (b) 1000 particles
for the same input data.

3.4 Conclusions

In this chapter, we overviewed two traditional deep learning algorithms including a

discussion of examples of training procedures based on stochastic and deterministic

approaches with an emphasis on stochastic networks. In the last section, our effort

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 44

focused on training a neural network using an SMC method. The proposed method

revealed issues related to its accuracy as well as the computation time required to execute

a benchmark experiment. In the following chapters, the research is concentrated on

strategies for improving the performance and accuracy of SMC methods.

Chapter 4

Parallel sequential Monte Carlo

methods

4.1 Introduction

In this chapter, a novel resampling algorithm is proposed and applied on the Sequential

Importance Resampling (SIR) particle filter, a Sequential Monte Carlo (SMC) method,

using two programming models, MapReduce and Message Passing Interface (MPI).

SMC methods have the appealing property that, as the number of samples increases,

the ability of the samples to represent the probability density function (pdf) increases

and the accuracy of estimates derived from the particles improves with an upper-bound

on the variance of the estimate scaling as O
(

1
N

)
[59]. It is, therefore, reasonable to use

as many particles as possible. The resampling component is critical for SMC methods

and non-trivial to parallelise. The aim is to make the resampling process more amenable

to a distributed implementation. A textbook implementation of this algorithm solves

the problem in O(N) operations but is not suitable for a fully balanced, multi-core

implementation. The proposed method improves the time complexity of previous work

from O((logN)3) to O((logN)2).

In Section 4.2, the parallel resampling algorithms is reviewed. Section 4.3 includes

the proposed novel parallel resampling implemented in MapReduce, and Section 4.3 is

based on [97]. The results indicate that Apache Spark provides significantly better run-

time over the Apache Hadoop implementation as it enables the random access memory

(RAM) to store the data. However, it does not yet outperform the linear time solu-

tion on MapReduce, even with a considerable degree of parallelism. The algorithm is

reformulated for distributed memory setup using MPI and is available in Appendix A

(conference publication [101]). The results indicate that MPI is more suitable than

MapReduce for this method.

45

Chapter 4. Parallel sequential Monte Carlo methods 46

4.2 Review on parallel resampling

The resampling algorithm is the solution to the degeneracy phenomenon in SMC meth-

ods (Particle filters and SMC samplers) [12] [29], which outperform the Kalman filter

(optimal for linear solutions) and extended versions of the Kalman filter in nonlinear sce-

narios [66] [54]. The resampling is the bottleneck to the parallel execution with O(N)1

sequential time complexity. Most of the publications consider parallel versions of the

resampling algorithm as part of the overall particle filter, although some exceptions exist

that focus solely on the resampling.

The parallel resampling is classified with methods intended to improve the time

complexity of the traditional algorithms (i.e., multinomial, stratified, systematic, and

residual resampling) or to propose alternative methodologies more easily parallelised,

and that remove components such as the prefix sum (e.g., MH and Rejection resam-

pling). Another category is based on the distribution of the computational workload

in centralised, partially centralised, and distributed strategies. An example of partially

centralised computation is the resampling with proportional allocation (RPA), and an

example of distributed computation is the resampling with nonproportional allocation

(RNA). A special case of distributed computation is load balancing or deterministic

methods. In [56], a detailed review classifies the resampling algorithms as sequential

or parallel/distributed, and based on parallel platforms used (e.g., VLSI, GPU, and

FPGA).

In Table 4.1, multiple publications are grouped according to the resampling method

as biased or unbiased. In biased methods, the new population of particles approximates

to the old population, and, as a result, they introduce larger error in the final estimation.

The performance and accuracy comparison of the traditional methods is analysed in [47].

The results indicate that by increasing the number of particles, all methods have identical

accuracy, while in the sequential case, the systematic resampling is fastest. In the

multinomial resampling, also known as simple random resampling [60], the particles

are selected randomly and uniformly. The stratified resampling divides the particles

into even subpopulations, named strata, and for each stratum, an offset is selected. In

the systematic resampling for all strata, a unique offset is selected. The multinomial,

stratified, and systematic resampling methods require the computation of the prefix sum

of the normalised weights. For the parallel traditional resampling methods, the reported

time complexities range from O(logN) to O(N)2 solutions. The parallel resampling is

applied with a range of platforms including hardware and software implementations.

For the MH and Rejection methods, the reported time complexity ranges from O(B)

to O(N) (B denotes the number of iterations) and O(logN) to O(N), respectively.

Further details provided by the selected publications include the maximum number of

particles in logarithmic form, the maximum state dimensionality of the application, the

reported maximum speedup including the efficiency, and the baseline for the reported

1N indicates the number of particles.
2sequential execution of the algorithm.

Chapter 4. Parallel sequential Monte Carlo methods 47

maximum speed up. Three trends are considered for the baseline, including executing

the method on a single core, single node or processing unit, and different platform. Other

information is related to the applied parallel approach for the cumulative summation [20]

and the redistributed components classified as Fully Distributed and Deterministic. The

time complexity of the fully distributed cumulative sum is O(logN). A deterministic

redistribute method implies balanced computational load with deterministic runtime

(e.g., [97] [49]), and a deterministic runtime is essential for real-time applications.

In [41], stratified resampling is used on the SIR particle filter on a GPU imple-

mentation. The time complexity of the resampling is O(logN) on a hardware imple-

mentation (rasterizer) for the particle redistribution. In [63], the redistribute method

in the systematic resampling implies the use of binary search for each particle in the

(monotonically increasing) prefix sum vector. The computational attention is focused

on the sampling stage, which appears to be the most expensive component of the par-

ticle filter. In contrast, the implementation in [36] of a fully distributed version of the

systematic resampling using a GPU implementation shows that the resampling remains

the bottleneck as well as in the parallel version. A potential explanation is that the

sampling stage considered in the benchmark in [36] is computationally trivial where the

prefix sum is parallelised using the fully distributed approach discussed in [20]. The

data dependency of the sequential redistribute algorithm is removed by introducing two

variables, a left and right boundary determined from the prefix sum computation of the

normalised weights and a uniform random number [36]. A load balancing systematic

resampling is proposed in [49] and compared to traditional systematic resampling. The

parallelisation of the prefix sum is based on non-fully distributed approach (also available

in [20]) with a separation of the weights distributions into blocks, local sum computation,

global prefix sum, and local per element sum according to the global prefix sum. In [49]

each thread block, B, uses L threads and in total there are N = LB particles where a

thread is assigned to each particle. In the traditional redistribute, each particle has a

replication index (or there is a replication index array for all particles), and each thread

generates copies according to the assigned replication index. This is inefficient because

in the worst case a single thread might have a replication index of N leading to linear

time complexity for the particles generation. The proposed methodology reduces the

complexity by creating a minimal replication index array which can recover the original

array as in the traditional algorithm. The minimal replication array forms groups of the

same indices for particles requiring multiple replications. The recovery is achieved using

a balanced binary tree with time complexity O(logL) and removes the imbalance among

the threads during the generation of the new population of particles. In the worst case,

the algorithm’ time complexity is improved from O(N) to O(NL). The results indicate

that the runtime fluctuations of the proposed method are significantly smaller than the

traditional approach. In [14], MapReduce is applied with the particle filter where the

sampling and weight normalisation steps are parallelised, while the resampling is exe-

cuted sequentially. In [101, 97, 67], the resampling is executed in a fully distributed

Chapter 4. Parallel sequential Monte Carlo methods 48

fashion. The key difference between [67] and [101, 97] is that the time complexity is

improved from O((logN)3) to O((logN)2) after including a method to eliminate the

need to sort the replicated particles in every step (or level the balanced binary tree) in

the redistribute algorithm. In [101], the MPI/HPC-based solution is shown to be better

than MapReduce [97].

The RPA/RNA methods with a centralised resampling are proposed in [21]. In

the centralised resampling, a single processing unit (called a central unit) executes the

resampling sequentially. In this category of methodologies, resampling with proportional

allocation (RPA) is the first attempt to parallelise the resampling method. The RPA is

grouped with the traditional algorithms. Comparing the same input to any traditional

resampling and the equivalent RPA, both methods yield the same output. In the RPA,

the resampling is partially executed in the central unit, which decides the replications

(number of copies) for each processing unit. Then, each processing unit is assigned the

task to create the replications for each particle. After the execution of the resampling,

single or multiple processing elements (PEs) can result in zero particle replications.

After the resampling, the particles are then exchanged among the PEs for an equivalent

distribution of particles. The worst communication scenario is a single PE for replicating

all particles. In the RNA method, each PE executes resampling locally. Comparison of

this approach with any traditional method will not yield the same output. Groups of

PEs with a predefined number of particles are formed and perform within each group

sampling and resampling. After the local (i.e., within each group) resampling step,

particles are exchanged so that all groups contain equally distributed weights. Multiple

particle routing strategies are proposed. The RPA is computationally more expensive

compared to the RNA as it is partially executed in the central unit. In the RNA, the

particle routing is deterministic and non-deterministic in the RPA. The RPA discussed

in [21] is applied in [110] with MPI. The methodologies proposed in [15] and [95] follow

a similar approach with the RPA and RNA methodologies.

Biased resampling methods (e.g., [91], [70] and [34]) provide computational and com-

munication complexity improvements, but with a cost in accuracy. In [73], the MH and

Rejection methods are proposed as alternatives to the traditional methodologies, and

a comparison highlights their numerical stability. The reported time complexity of the

Rejection resampling is logN
r , where r = mini(

1
N

∑
i w

i

wi
) ·maxi(

wi

wmax
), with i = 1, . . . , N

and O(B) for the Metropolis resampling. If the variable B in the MH is selected appro-

priately, then it is faster than the Rejection resampling. A similar analysis on using the

MH and Rejection resampling methods is conducted in [62] on FPGAs. Practically, the

time complexity of both methods is determined from the number of trials needed to draw

the new particle, which can be a function of the total number of particles (i.e. O(N)

time complexity). In [91], it is demonstrated on a widely applicable benchmark [12] that

for a small value of B, such that B � N , the distance, or error, is negligible for the final

estimation with the systematic resampling method.

Several publications on parallelising particle filters ignore the importance of the

Chapter 4. Parallel sequential Monte Carlo methods 49

resampling algorithm focusing, for instance, on parallelisation of the SIS particle filter

(e.g., [61]).

Table 4.1: Publications grouped according to the applied parallel resampling method-
ology with its reported time complexity (TC).

Paper Year Platform Method Biased TC

[101] 2017 MPI Systematic N O((logN)2)

[97] 2017 MapReduce Systematic N O((logN)2)

[63] 2015 GPU Systematic N O(logN)

[105] 2015 GPU Systematic N O(N
P

)

[62] 2014 FPGA Systematic N O(N
M

)

[49] 2013 GPU Systematic N O(N
P

)

[36] 2012 GPU Systematic N O(logN)

[14] 2012 MapReduce Systematic N O(N)

[67] 2006 Graphics (CG) Systematic N O((logN)3)

[110] 2016 MPI RPA N O(N
P

)

[95] 2012 Simulation RNA/RPA N O(N
P

)

[52] 2011 MPI RPA/RNA N O(N
P

)

[92] 2006 VLSI RPA/RNA N O(M
K

)

[21] 2005 FPGA RPA/RNA N O(N
P

)

[15] 2003 Simulation RPA/RNA N O(N
P

)

[41] 2010 GPU Stratified N O(logN)

[96] 2016 FPGA Metropolis Y O(B)

[73] 2016 GPU Metropolis Y O(B)

[91] 2015 FPGA Metropolis Y O(B)

[62] 2014 FPGA Metropolis Y O(BN
M

)

[70] 2010 FPGA Metropolis Y O(N)

[73] 2016 GPU Rejection N O(logN
r

)

[62] 2014 FPGA Rejection N O(SN
M

)

4.3 MapReduce particle filtering with exact resampling

and deterministic runtime

4.3.1 Introduction

This section describes an implementation of a particle filter using MapReduce and fo-

cuses on the resampling component, which would otherwise be a bottleneck to parallel

execution. We devise a new implementation of this component that requires no approxi-

mations, has O (N) spatial complexity, and deterministic O
(

(logN)2
)

time complexity.

The results demonstrate the utility of this new component culminating in consideration

of a particle filter with 224 particles distributed across 512 processor cores. The key

contributions include:

• An improved implementation of an exact deterministic resampling algorithm with

better temporal complexity compared to the current state of the art [67]. More

specifically, the proposed version of the parallel algorithm has the complexity of

O((log2N)2) compared to the original complexity of O((log2N)3).

• Two MapReduce variants of the new algorithm that fit with the in-memory and

out-of-core processing models, which are the processing models used by Hadoop

and Spark, respectively.

Chapter 4. Parallel sequential Monte Carlo methods 50

• A detailed performance and scalability analysis of the new algorithm in compar-

ison to the existing state of the art [67] and an implementation optimised for a

single processor core. We deliberately select an application that stresses the resam-

pling component of the particle filter so that our analysis considers the worst-case

performance.

The remainder of this chapter is organised as follows. Section 4.3.2 provides a brief

overview of Big data processing and the MapReduce programming model. Section 4.3.3.1

describes the fundamental building blocks used to construct the implementations of

the particle filtering algorithm, including, in Section 4.3.3.1.9, the new component of

the resampling algorithm. The MapReduce-based particle filtering implementation is

outlined in Section 4.3.4 followed by an evaluation of our algorithms on two important

MapReduce frameworks in Section 4.3.5.

4.3.2 Big data processing

This section focuses on the problem of using a large number of samples within a par-

ticle filter. Big data processing frameworks (e.g., Apache projects, such as Hadoop [2],

Spark [5] and Storm [6]3) are designed for handling large amounts of data and can

therefore be applied in this context4. We highlight such frameworks in conjunction with

parallel computational resources, such as clusters, to handle large volumes of data5. In

this section, we also discuss the use of such Big data frameworks in general, and, in par-

ticular, one of the programming models that underpins such frameworks, the MapReduce

programming model.

4.3.2.1 Big data frameworks

An attractive approach for scaling the problem with data is to use Big Data frameworks,

which go beyond the issue of data volume and address much wider issues covering the

augmented V’s of data, specifically volume, velocity, variety, value and veracity [90].

Big Data framework-based solutions are process-centric as the programmer describes the

algorithm in a way that enables the framework to understand (and attempt to exploit)

the potential to distribute the data and processing6. The result of this delegation of

3Including the associated ever-growing ecosystem of tools (e.g., Mahout [3] and GraphX for
Spark [94]).

4Conventional High Performance Computing (HPC) approaches use parallel computations to opti-
mise processing time. We refer the reader to [13] for a good coverage of HPC-bound approaches for
parallelising applications.

5We anticipate that the ‘heat wall’ (i.e., the inability to remove enough heat from transistors that
switch ever faster) will mean that for chip manufacturers to meet the expectation set by Moore’s law, they
will soon (If not already) be doubling the number of cores (not transistors per square inch) used in each
processor each year. In ten years’ time, if this trend continues, we would have desktop computers with
a thousand times as many cores as today. This trend motivates the authors to design implementation
strategies for particle filters that are well suited to the multi-core processors which will, we believe,
become increasingly prevalent over time.

6This contrasts HPC-based solutions, where the programmer aims to exploit intricate knowledge of
the underlying architecture to ensure that data movement and processing are jointly optimised for the
specific hardware.

Chapter 4. Parallel sequential Monte Carlo methods 51

Input Value Update Mapper

Reducer

Mapper Key Group

Value Update

Reduce

Reduce

Reduce

Reduce

Map

Map

Map

Map

Map

Map

Map

Map

(
k1,v1

)

(
k2,v2

)

(
k3,v3

)

(
k4,v4

)

(
k5,v5

)

(
k6,v6

)

(
k7,v7

)

(
k8,v8

)

(
k1,v∗1

)

(
k2,v∗2

)

(
k3,v∗3

)

(
k4,v∗4

)

(
k5,v∗5

)

(
k6,v∗6

)

(
k7,v∗7

)

(
k8,v∗8

)

Map

Map

Map

Map

Map

Map

Map

Map

(
k3,v∗1

)

(
k2,v∗2

)

(
k3,v∗3

)

(
k1,v∗4

)

(
k4,v∗5

)

(
k2,v∗6

)

(
k3,v∗7

)

(
k4,v∗8

)

(
k1,v

+
1

)

(
k2,v

+
2

)

(
k3,v

+
3

)

(
k4,v

+
4

)

Figure 4.1: General MapReduce Processing Model.

the optimisation for speed to the framework is that, while many of today’s Big Data

frameworks can handle large volumes of data, none can match the runtime performance

of conventional HPC systems [86]. There are a growing number of programming models

used to describe algorithms within Big Data frameworks, including MapReduce [28],

Stream Processing [42, 5, 6] and Query-based techniques [103, 4]. Here, we focus on

MapReduce.

4.3.2.2 The MapReduce programming model

MapReduce is a popular programming model used in many big data processing frame-

works (and even some HPC frameworks). The key idea of the MapReduce model is

to enable the framework to distribute the processing of a large dataset by expressing

algorithms in terms of map and reduce operations, via defining mappers and reducers.

Mappers, when applied to each datum, output a list of (key, value) pairs. The frame-

work then collates all the values associated with each key. Reducers are then applied to

the list of values for each key to output a single value. Both the map and reduce oper-

ations are inherently parallel across all data and keys, respectively7. To exemplify this,

consider a dataset where each datum is a sentence in a Big document (e.g., Wikipedia).

The problem of counting the total number of occurrences of each word in the document

corpus can be described as using the words as the key, a mapper that outputs a (non-

zero) count of the number of times each word occurs in each sentence8, and a reducer

that calculates the sum of the counts. For each word, the reducer’s output is the sum

over all sentences of the counts per sentence. Another example is shown in Figure 4.1

7The exact number of mapper and reducer processes on a parallel resource (for instance, a multi-node
cluster) varies depending on the configuration, but the important point is that the algorithm developer
does not need to worry about how the processes are distributed when defining the algorithm. Of course,
that does not mean that there is not utility in the developer describing algorithms using mappers and
reducers that are well suited to the problem being tackled and to the configuration being used.

8Note that the output from each sentence would only be for the words that occur in that sentence,
not every word that ever occurs in the corpus.

Chapter 4. Parallel sequential Monte Carlo methods 52

illustrating the ability to pass key-value pairs into a mapper and, thereby, use the output

of one mapper as the input into a second mapper.

Two key frameworks that support MapReduce, albeit in slightly different ways, are

Hadoop and Spark, which are considered in the following.

4.3.2.2.1 Hadoop

MapReduce and the Hadoop Distributed File System (HDFS) are the two fundamental

components of Hadoop. HDFS enables multiple computers’ disks to be accessed in

much the same way as if it was a single (Big) disk. In Hadoop, the mapper and reducer

generate files stored in HDFS, such that Hadoop implements data movement entirely

via the file system.

4.3.2.2.2 Spark

The Spark framework operates using a different principle than that of Hadoop. First,

at the Application Programming Interface (API) level, Spark provides a distributed

data structure known as a Resilient Distributed Dataset (RDD) [108]. MapReduce is

then just one of a large number of transformations that (via a rich set of APIs) can

be applied to RDDs. It is also important to realise that evaluations in Spark are lazily

executed. This means, unlike conventional processing engines (e.g., Hadoop), executions

never actually happen when transformations are defined. Instead, transformations are

used to compose a data-flow graph and execution happens when forced through actions

(i.e., when necessary). This delayed evaluation enables the Spark framework to optimise

(and plan) the execution9. The result is often significant improvements in runtime

performance. Another important property of RDDs is they can reside in memory, disk

or both. Indeed, although Spark can make use of HDFS, the data movements in Spark

are primarily via memory resulting in significant improvements in runtime performance

relative to Hadoop.

4.3.3 Parallel particle filtering

The bulk of the operations comprising the particle filter (as described in Algorithm 6) are

readily parallelised. However, it is resampling (the redistribution process, in particular)

that complicates the parallel implementation of particle filters.

Complications primarily arise because if each of the multiple processors is considering

subsets of the particles, then the data transfers that the redistribution process demands

are data-dependent. It is, therefore, non-trivial to implement a particle filter in a way

that the run-time is not data-dependent. A similar problem is encountered with sorting

algorithms10. In the subsequent sections of this chapter, we describe how to implement

9This can make it hard for a programmer to debug algorithmic implementations, particularly if the
programmer is unfamiliar with debugging software performing lazy evaluation.

10For instance, although Quicksort [46] can be parallelised, the load distributions across the processors
is dependent on the pivots used and the run-time will therefore be data-dependent.

Chapter 4. Parallel sequential Monte Carlo methods 53

the components of the particle filter in a way that run-time is deterministic instead of

data dependent.

4.3.3.1 Parallel instantiations of the algorithmic components of particle fil-

tering

Before mapping the particle filter algorithm on to a MapReduce form, it is essential to

understand how the operations used by a particle filter can be implemented in a fully

distributed form. While a detailed discussion of these operations (and others) is found

in [20], we discuss here each of the operations that constitute the algorithm described

in Algorithm 6. Table 4.2 summarises these operations and associated complexities for

the fundamental building blocks and some of the algorithmic components that can be

built. Our focus is on implementations with a time complexity that is as fast as possible

in terms of its dependence on N , the number of data. We discuss communication com-

plexity for each algorithmic component by considering a simplified memory architecture

where transferring a datum between two processors is a single data movement.

Table 4.2: Theoretical complexities (in terms of time, space and total data transfers
per unit time) of various algorithmic components of the Particle Filter with N data

and P processors.

Section Algorithmic Component Time Space Data Transfers

4.3.3.1.1 Element-wise operations O(1) O(N) O(1)
4.3.3.1.2 Rotation O(1) O(N) O(1)

4.3.3.1.3 Sum/Max/Min O(NP logN) O(N) O(P)

4.3.3.1.4 Cumulative Sum O(NP logN) O(N) O(P)

4.3.3.1.5 Normalising the Weights O(NP logN) O(N) O(P)

4.3.3.1.6 Minimum Variance Resampling O(NP logN) O(N) O(P)

4.3.3.1.7 (Bitonic) Sort O(NP (logN)2) O(N) O(P)

4.3.3.1.8 Redistribution from [67] O(NP (logN)3) O(N) O(P)

4.3.3.1.9 Improved Redistribution O(NP (logN)2) O(N) O(P)
4.3.5.1.1 Näıve Redistribution O(N) O(N) O(1)

4.3.3.1.1 Element-wise operations

Perhaps the simplest type of operation to implement in parallel involves applying an

element-wise operation11. Given a function f and a vector v, the element-wise operation

f 7→ v applies the function f on every element of the vector such that

f 7→ v = [f(v1), f(v2), . . . , f(vN)]

In our case, normalizing the weights is an example of an element-wise operation.

Another example is a vector of If operations, Vif(a,b, c) where the ith element in the

11Such operations are an example of ‘embarrassingly parallel’ operations that are arguably trivial to
parallelise.

Chapter 4. Parallel sequential Monte Carlo methods 54

output is bi if ai is true and ci otherwise. Operations involving two inputs and a single

output (e.g., element-wise sum or difference) are similarly easy to implement in parallel

and involves no data movement between processors.

4.3.3.1.2 Rotation

Another operation involves rotating (with or without wrapping, i.e., cyclic shift) the

elements of a vector by a given distance, δ, such that if the input is a and the output

is b, then after the rotation, we have b(mod (i+ δ,N)) = a(i) where mod (x, y) is x

modulus y. Once again, this algorithmic component is readily parallelised with no data

movements between processors.

We will also use partial rotations such that we have a vector of distances, ∆, and not

a single ‘global’ distance, δ. This vector, ∆, has N ′ < N elements where N ′ is a power

of two. The rotations are then implemented locally to each set of M = N
N ′ elements.

For example if the jth element of ∆ is δj then b ((j − 1)×M + mod (i+ δj ,M)) =

a ((j − 1)×M + i) for 1 ≤ i ≤M .

4.3.3.1.3 Sum, max and other commutative operations

The ‘adder-tree’ can be used to evaluate the sum of a vector of numbers, which are

associated with the leaves of the tree. By recursing up the tree, the sum of pairs of

numbers is calculated (in parallel across all pairs). The sum of all pairs of pairs of

numbers can then be calculated (in parallel across all pairs of pairs). Exemplified in

Figure 4.2(a-c), the process repeats until reaching the root node of the tree where the

sum of all the numbers is calculated by summing the sum of the two halves of the

data (see Figure 4.2(d). In fact, as known since the development of the infamous Array

Programming Language (APL) [51], this same approach can be used for any binary

operation, ⊕, that is commutative such that

((a⊕ b)⊕ c)⊕ d = (a⊕ b)⊕ (c⊕ d) (4.1)

Relevant examples of operations which can be calculated in this way include the sum,

the maximum and minimum, and the first non-zero element of a set of numbers (denoted

as First(.) in Algorithms 10 and 11). For such operations, with N processors processing

N data through a binary tree, the time-complexity is the depth of the tree, i.e., log2N .

Near the bottom of the tree, the total communication required is proportional to the

number of processors.

As should be evident, an upside-down version of the same tree can be used to im-

plement an Expand(a) operation, which involves making all elements of a vector equal

to the single value of a.

Chapter 4. Parallel sequential Monte Carlo methods 55

4.3.3.1.4 Cumulative sum

While using a tree to calculate a sum efficiently is well known, a closely related approach

to calculate a cumulative sum12 efficiently appears to be less well-known by researchers

working on particle filters. Of course, a näıve implementation involves computing the

cumulative sum by adding each element of the input to the previous element of the

output. Such an approach has a run-time of N . However, a more-efficient approach has

existed since the development of APL, if not for longer13.

To impart an intuition as to how this could be possible, the key idea is to exploit

the partial sums that are calculated in an adder-tree and to express each element of the

cumulative sum as a sum of these (efficiently calculated) partial sums. The process that

exploits this insight then involves a second tree in which the values at every level are

propagated to the level below, replacing the values that were calculated in the adder-tree.

More specifically, through the downward propagation, the value at each parent node is

propagated to its right child and left child nodes. The new value for the left child is

the difference between the values at the parent and right child nodes (as calculated

in the adder-tree). The new value for the right child is the same as the parent node.

Figures 4.2(e)-(g) provide an example. With this forward and backward pass of the tree,

a cumulative sum is obtained in 2 log2N steps.

4.3.3.1.5 Normalising the weights

Normalising the weights is an example of an operation that can be implemented using

the building blocks described above. The sum is calculated using an adder-tree (as

described in Section 4.3.3.1.3), distributed to all the data (Section 4.3.3.1.3) and an

element-wise divide (as in Section 4.3.3.1.1) used to calculate the normalised weights.

4.3.3.1.6 Minimum Variance Resampling

Resampling involves determining the number of copies of each particle that are needed.

We specifically describe minimum variance resampling, for which the number of copies

of the ith particle is

mi = bCic − bCi−1c (4.2)

where bxc is the floor14 of x, and

Ci = N
i∑

j=1

wi + ε (4.3)

12Note that the cumulative sum is sometimes referred to as a prefix sum, so there is no difference
between a prefix sum and a cumulative sum.

13APL describes an approach to calculating a sum, maximum or minimum as reduction operations.
The approach to calculating a cumulative sum is described as a scan operation and can be used to
calculate, for example, cumulative maximums and minimums. Scan operations take a binary operator
⊕ and an N -element vector a = [a1, a2, . . . , aN], and return an N -element vector a⊕ = [a1, (a1 ⊕
a2), . . . , (a1 ⊕ a2 ⊕ a3 ⊕ . . .⊕ aN)]. However, here we are only concerned with cumulative sums.

14The floor of x is the largest integer smaller than or equal to x.

Chapter 4. Parallel sequential Monte Carlo methods 56

10212914631

(a)

12

102

21

129

20

146

4

31

(b)

33

12

102

21

129

24

20

146

4

31

(c)

57

33

12

102

21

129

24

20

146

4

31

(d)

57

57

12

102

21

129

24

20

146

4

31

(e)

57

57

57

102

45

129

24

24

146

4

31

(f)

57

57

57

5747

45

4533

24

24

2410

4

41

(g)

Figure 4.2: Example of cumulative sum for N=8 numbers. Subfigures (a)-(d) describe
the sum computation, while the remaining balanced binary trees shown in subfigures
(e)-(g) describe how the backward pass culminates in calculation of the cumulative sum

of the given sequence.

is the cumulative sum and where ε ∼
[
0, 1

N

]
and C0 = 0.

Equation 4.2 uses only element-wise operations (Section 4.3.3.1.1) and a rotation (by

a single element and as described in section 4.3.3.1.2). Equation 4.3 involves a cumulative

sum (Section 4.3.3.1.4) and an addition (Section 4.3.3.1.1). Thus, the building blocks

described to this point can be used to implement Equations (4.2) and (4.3).

4.3.3.1.7 Sorting

Quicksort [46] is well known with an average time complexity of O(N log2N). However,

we focus here on the bitonic sort algorithm [16] with a time complexity of O(NP (log2N)2)

and spatial complexity of O(N). The number of data movements at each iteration is P .

The reason for this choice is that we want to guarantee the time taken to perform sorting.

While it is possible to parallelise quicksort, the ability to do so is data dependent. In

contrast, bitonic sort features deterministic time complexity with a balanced load across

(up to) N processors.

At the fundamental level, a bitonic sequence forms the basis for the bitonic sort. A

sequence a = [a1, a2, . . . , aN] is a bitonic sequence if a1 ≤ a2 ≤ . . . ≤ ak ≥ . . . ≥ aN for

some k, 1 ≤ k ≤ N or if this condition holds for any rotation of a.

For an intuition as to how the algorithm works, note that at a certain point it the

algorithm, we have N data in a bitonic sequence. The first ‘half’ of the data are sorted

in ascending order and the second half are sorted in descending order15. Consider the

ith element in the first half and the ith element in the second half. There are N
2 − 1

15A similar argument works if the first half are sorted in descending order and the second half are
sorted in ascending order.

Chapter 4. Parallel sequential Monte Carlo methods 57

data between these two elements. They must all be larger than the smallest of the two

elements which the data are between. There must therefore be at least N
2 data that are

larger than the smallest of the two elements. This smallest element must therefore be

one of the lowest N
2 data (it cannot be one of the largest N

2 data if there are at least
N
2 data larger than it). An upside-down version of the same argument makes clear that

the largest of these two elements must be one of the largest N
2 data. Finally, it also

follows that after this operation, the first N
2 data are a bitonic sequence and the second

N
2 data are a bitonic sequences. Thus, given a bitonic sequence, by comparing all pairs

of data that are a distance of N2 apart, and swapping the points if needed, we can ensure

all the larger elements are in the first N
2 data, which forms a bitonic sequence, and all

the smaller elements are in the second N
2 data, which also forms a bitonic sequence.

We can then apply the same comparison structure on each of the two bitonic (smaller)

sequences. This process can be applied recursively until pairs of points are compared,

and the data are sorted

This process is known as the ‘bitonic merge’ and requires O(log2N) steps (with

O(N) spatial complexity) to convert a bitonic sequence into a sorted sequence. To

generate the bitonic sequence needed from arbitrary input data16, we apply bitonic sort

to put the first N
2 input data into ascending order and apply bitonic sort again to put

the second N
2 input data into descending order. An analysis of this recursive use of

bitonic sort yields a bitonic sort requiring n2−n
2 iterations where n = log2N and, at

every step, the algorithm performs N
2 each involving the swapping of two data according

to a criterion defined by the position of the comparison in the network. This process can

be implemented using the building blocks described in Sections 4.3.3.1.1 and 4.3.3.1.2.

A bitonic sort with eight numbers is demonstrated in Figure 4.3.

10

2

12

9

14

6

3

1

2

10

12

9

6

14

3

1

2

9

12

10

6

14

3

1

2

9

10

12

14

6

3

1

14

9

10

12

2

6

3

1

14

12

10

9

3

6

2

1

14

12

10

9

6

3

2

1

Figure 4.3: Example of a bitonic sort using eight numbers. Each horizontal wire
corresponds to a core. The blue colour denotes that the larger value will be stored
at the lower wire after the comparison, while the green colour represents the opposite

scenario.

16This process is sometimes known as ‘bitonic build’.

Chapter 4. Parallel sequential Monte Carlo methods 58

10 9 12 6 1 3 14 2
3 2 2 1 0 0 0 0

1

12 9 6 1
2 1 1 0

3

6 9
1 1

7

9

1

15

6

1

14

12 9
2 0

6

12

1

13

12

1

12

10 9 12 6
3 1 0 0

2

10 9
1 1

5

9

1

11

10

1

10

10 9
2 0

4

10

1

9

10

1

8

10 9 12 6 1 3 14 2
3 2 2 1 0 0 0 0

1

9 12 6 2
1 2 1 0

3

6 12
1 1

7

12

1

15

6

1

14

9 12
1 1

6

12

1

13

9

1

12

10 9 12 6
3 1 0 0

2

10 9
1 1

5

9

1

11

10

1

10

10 9
2 0

4

10

1

9

10

1

8

Level 0

Level 1

Level 2

Level 3

(a) Original (b) New

Figure 4.4: An example of the redistribution for x = [10, 9, 12, 6, 1, 3, 14, 2] and m =
[3, 2, 2, 1, 0, 0, 0, 0] using the original and improved (new) redistribute. The original
redistribution always sorts the number of copies vector (bottom vector) in descending

order, while this is not required in the new redistribution (e.g. see node no. 3).

4.3.3.1.8 Redistribution: Original version

In the original version from [67], the redistribution algorithm takes two inputs, the old

population of particles x and the number of copies m, and produces the new population

of particles, x∗, as the output.

In [67], a divide-and-conquer algorithm was described for implementing the redis-

tribute. The procedure involves sorting the particles in decreasing order of the number

of copies. With N data, the sum of the elements of m must be N . The approach is then

to divide the data into two smaller datasets, each of which has N
2 elements and is such

that the corresponding elements of m are sorted and sum to N
2 . This can be achieved

by finding the pivot, which we define as leftmost element in m for which the associated

value of the cumulative sum is N
2 or greater. In general, the pivot needs to be split into

two constituent parts such that the two smaller datasets can both sum to N
2 . We refer

to these two parts as the left-pivot and right-pivot. The data to the left of the pivot and

including the left-pivot can be used to produce one of the two smaller datasets. The

right-pivot and the data to the right of the pivot can be used to produce the other of the

two smaller datasets. Both smaller datasets are then sorted17 in decreasing order of m.

For the special case when the value of the right-pivot is zero, the rotation needed is one

less than otherwise. This procedure can be intuitively considered as operating on a tree.

Applying the procedure recursively down the tree, until the leaf nodes are encountered,

completes the redistribution. Figure 4.4 illustrates this procedure.

The operation of this algorithm is not dependent on m, and, therefore, also not

dependent on the distribution of the weights. Also, the sort can change (somewhat

counter-intuitively and seemingly unnecessarily) the order of numbers in a list when

elements of the list are not unique. Finally, if no copies of a particle are to be generated,

then the identity of the corresponding particle is irrelevant to the eventual output of the

algorithm.

17The first dataset is actually already sorted, but the second dataset is, in general, not sorted.

Chapter 4. Parallel sequential Monte Carlo methods 59

The procedure, described in Algorithm 4.3.3.1.1, sum (Section 4.3.3.1.3), cumula-

tive sum (Section 4.3.3.1.4), rotations (Section 4.3.3.1.2) and sort (Section 4.3.3.1.7).

Note that the description makes use of three functions (LeftHalf(.), RightHalf(.) and

Combine(.)), which are included for clarity and to have zero computational cost. Also,

note that the implementation is described in a way that involves recursion. It is possi-

ble to ‘unwrap’ the recursive implementation such that all operations (at all stages in

the tree) are implemented on datasets of the same size, N . Doing so is conceptually

straightforward though the bookkeeping required is non-trivial.

Algorithm 10 Redistribute: O(NP (log2N)3) implementation.

1: Function x = Redistribute(m,x)
2: B m: Number of copies (sorted in descending order)
3: B x: Particles
4: if Length(m) > 1 then
5: B Calculate Cumulative Sum
6: c← CumSum(m)
7: B Identify Pivot
8: ip ← First(c ≥ N

2)
9: p← Expand(ip)

10: B Calculate Left-Pivot and Right-Pivot
11: B i simply indexes the elements of m and 0 is a vector of zeros
12: lp← Vif(i = p, c− N

2 ,0)
13: rp← Vif(i = p, N2 − Rotate(c, 1),0)
14: B Generate Smaller Datasets
15: l← LeftHalf(Vif(i < p,m, lp))
16: lx← LeftHalf(x)
17: r← Vif(i > p,m, rp)
18: B Calculate Rotation of r
19: inc← Sum(Vif(c = N

2 ,1,0))
20: r← RightHalf(Rotate(r, ip + inc))
21: rx← RightHalf(Rotate(x, ip + inc))
22: B Sort Right Half
23: r← Sort(r)
24: B Divide-and-conquer
25: lx← Redistribute(l, lx)
26: rx← Redistribute(r, rx)
27: B Combine Outputs
28: x← Combine(lx, rx)
29: end if
30: EndFunction

The time complexity of this redistribution algorithm O(NP (log2N)3) in parallel with

N processors since a (bitonic) sort (with complexity of O(NP (log2N)2)) is used at each

stage in the divide-and-conquer. This analysis contradicts the (erroneous) claim in [67]

that the time complexity of this algorithm is O(NP (log2N)2). Again, the communication

complexity is P .

Chapter 4. Parallel sequential Monte Carlo methods 60

4.3.3.1.9 Redistribution: Improved version

The redistribution algorithm described in Section 4.3.3.1.8 is a divide-and-conquer al-

gorithm that ensures that, at each node in the tree, m sums to its length, N , and is

sorted. The sorting is sufficient to ensure that rotation can be used to replace some of

the (right-most) zeros with the (right-most) non-zero elements of m that sum to N
2 .

Here, we exploit the observation that it is possible to define an alternative divide-

and-conquer strategy. More specifically, we ensure that, at each node in the tree, m

sums to its length, N , and has all its non-zero values to the left of all values that are

zero. Since such a sequence only has trailing zeros, we call it an All-Trailing-Zeros

(ATZ) sequence18. While a sort is sufficient to generate an ATZ sequence, it is easier to

generate an ATZ sequence than a sorted sequence, as we will demonstrate.

The new algorithm, at each node in the tree, starts with m, which sums to its length,

N , and is an ATZ sequence. To proceed, as previously, we find the pivot (as defined

in Section 4.3.3.1.8). As previously, the data to the left of the pivot and the left-pivot

can be used to produce one of the two smaller datasets. However, in contrast to the

approach described in Section 4.3.3.1.8, we can simply use the right-pivot and the data

to the right of the pivot to generate the second smaller dataset (without any need for

sort). Both these smaller datasets then sum to N
2 and are ATZ sequences. Note that,

as with the approach described in Section 4.3.3.1.8, there is a special case that occurs

when the value of the right-pivot is zero.

We need to generate an ATZ sequence. To achieve this, we propose to use (bitonic)

sort (once). After this initial sort, the procedure can be described using element-

wise operations (as in Section 4.3.3.1.1), sum (Section 4.3.3.1.3), cumulative sum (Sec-

tion 4.3.3.1.4) and rotations (Section 4.3.3.1.2). We emphasise that there is no need for

a sort after the initial generation of an ATZ sequence. As a result, while the algorithm

described in Section 4.3.3.1.8 has time-complexity of O(NP (log2N)3), the time complex-

ity of the algorithm described in this section is O(NP (log2N)2). Notice that the number

of data movements is still P . Algorithm 11 provides a description of this algorithm,

which has a strong similarity to Algorithm 10. Once again, it is possible to ‘unwrap’

the recursive implementation albeit with some non-trivial bookkeeping.

4.3.4 Mapping particle filtering into MapReduce

The descriptions provided in Section 4.3.3.1 describe distributed operations that can

manipulate vectors (albeit after some unwrapping of the recursive descriptions). As

discussed in Section 4.3.2.2, the fundamental notion of MapReduce is the processing

of (key, value) pairs. In the context of particle filtering, none of the properties of the

particles (weight or state) qualifies to be a key. However, we can give each particle a

unique index and use this index as the key by considering the particles as being a set

18We suspect such a sequence may have a name identified in the literature that we are not aware.
However, in this context, we adopt an intuitive name for clarity.

Chapter 4. Parallel sequential Monte Carlo methods 61

Algorithm 11 Redistribute: O(NP (log2N)2) implementation.

1: Function x = Redistribute(m,x)
2: B m: Number of copies (in an ATZ sequence)
3: B x: Particles
4: if Length(m) > 1 then
5: B Calculate Cumulative Sum
6: c← CumSum(m)
7: B Identify Pivot
8: ip ← First(c ≥ N

2))
9: p← Expand(ip)

10: B Calculate Left-Pivot and Right-Pivot
11: B i simply indexes the elements of m and 0 is a vector of zeros
12: lp← Vif(i = p, c− N

2 ,0)
13: rp← Vif(i = p, N2 − Rotate(c, 1),0)
14: B Generate Smaller Datasets
15: l← LeftHalf(Vif(i < p,m, lp))
16: lx← LeftHalf(x)
17: r← Vif(i > p,m, rp)
18: B Calculate Rotation of r
19: inc← Sum(Vif(c = N

2 ,1,0))
20: r← RightHalf(Rotate(r, ip + inc))
21: rx← RightHalf(Rotate(x, ip + inc))
22: B Divide-and-conquer
23: lx← Redistribute(l, lx)
24: rx← Redistribute(r, rx)
25: B Combine Outputs
26: x← Combine(lx, rx)
27: end if
28: EndFunction

Table 4.3: Details of the Experimental Platform used for Evaluation.

Details Single Node System Multi-Node System

Name Platform 1 Platform 2
Number of Nodes 1 28
Hardware Cores 16 512
Operating System Linux IBM Unix
Primary Memory 16GB 384GB
Spark Version 1.6.2 1.4.1
Hadoop Version 2.7.2 2.7.1

{i, xi, wi} where i ∈ {1, . . . , N} and, as previously, N is the number of particles, xi is

the state and wi is the corresponding weight of the ith particle.

4.3.5 Evaluation

An extensive evaluation of our algorithm on two different systems is provided in Ta-

ble 4.3. The evaluation process included the algorithms outlined in Section 4.3.3.1 on

Chapter 4. Parallel sequential Monte Carlo methods 62

Hadoop and Spark, the two key frameworks that support MapReduce and which were

mentioned in Section 4.3.2. We used the standard estimation problem involving a scalar

state and a computationally inexpensive proposal, likelihood, and dynamic model that is

widely used in the particle filtering community [12]. This scenario emphasises the need

for efficient resampling since, as is often the case, the likelihood, dynamics, and proposal

are computationally demanding, and the relative merits of different resampling schemes

would be less apparent. Our evaluation focuses on specific aspects of the implementation

described as follows:

1. In Section 4.3.5.1, we start by providing evidence that, in contrast to a näıve

implementation, the particle filter we developed exploits multi-core architectures

while having deterministic run-time.

2. In Section 4.3.5.2, as a precursor to a detailed evaluation and analysis, we analyse

the overall profile of the particle filtering algorithm for implementations on a single

core, using Hadoop and Spark.

3. In Section 4.3.5.3, for both the Spark and Hadoop implementations, we compare

the performance of our new algorithms relative to a single mapper and a single re-

ducer. In doing so, we compare the overall performance as well as the fundamental

building blocks of the particle filtering algorithm. This section provides a thorough

understanding of these algorithms’ performance on these two key frameworks that

support MapReduce.

4. Given that the Spark implementation (unsurprisingly) outperforms the Hadoop im-

plementation, we focus on the Spark implementation. In Section 4.3.5.4, we com-

pare the two versions of the redistribution algorithm described in Sections 4.3.3.1.8

and 4.3.3.1.9 as a function of the number of particles and cores. The intent is that

this detailed comparison provides insight into the performance that is achievable

using the original and proposed variants of the redistribution algorithm.

5. Finally, in Section 4.3.5.5, we perform a detailed analysis on the speedup and

scalability of the redistribution and the overall particle filter.

In performing these evaluations, we identified a basic parameter useful in assessing

the algorithmic performance called the Particles Processed per Second (PPS) number,

which is the capability to process large amounts of data and directly translates to the

number particles that can be processed per unit time.

4.3.5.1 Worst case runtime performance

4.3.5.1.1 Baseline redistribution algorithm

We compare performance against a näıve baseline implementation of the redistribution

component, which involves calculation (in parallel) of a cumulative sum of the number

Chapter 4. Parallel sequential Monte Carlo methods 63

of copies. Once this cumulative sum is calculated for each particle in the old population,

and each element of the sum communicated to be processed along with its neighbour,

we know the first and last indices of particles in the new population that will be copies

of this particle in the old population. Then, by performing a loop across the particles

in the old population, we populate the new generation of particles (Algorithm 12). In

MapReduce, a map function is used for the outer for loop, and within each map, we

iterate as many times as needed according to the number of copied elements.

Algorithm 12 Redistribute: O(N) implementation.

1: Function x∗ = Redistribute(m,x)
2: B m: Number of copies
3: B x: Particles
4: B x∗: New population of Particles
5: i← 0
6: for j = 0 : N do
7: for k = 0 : m[j] do
8: BNew Population of Particles
9: x∗[i]← x[j]

10: i← i + 1
11: end for
12: end for
13: EndFunction

This algorithm, when running across multiple cores, can be expected to have a

runtime complexity dependent on the data. To clarify this result, we consider the worst

case where the redistribution involves making N (denotes the number of particles) copies

of the ith particle (and zero copies of all other particles). In this case, only one core will

populate the new generation of particles.

4.3.5.1.2 Runtime performance and variability

We investigate the worst-case performance of a näıve parallel implementation of the

redistribution component and compare with our proposed implementation (using Spark).

The results are shown in Figures 4.5 and 4.6 for the worst-case where the new population

of particles are all copies of a single member from the old population. It should be

evident that as the number of cores increase, the runtime of the proposed nearly never

increases19. In contrast, while the runtime of the näıve implementation initially decreases

as the number of cores is increased, it then increases (i.e., such that it is faster in absolute

terms to use 8 not 16 cores with Platform 1 and such that it is faster to use less than 50

cores not 512 cores with Platform 2). The reason for this decrease is that the MapReduce

framework can use the extra cores to more rapidly process the (many) zeros in the vector

describing the number of copies. The subsequent increase in processing time is due to

19In subsequent sections, we will investigate how and when the decrease in runtime occurs in more
detail.

Chapter 4. Parallel sequential Monte Carlo methods 64

the additional overhead of having multiple cores becomes increasingly significant if only

one of the cores is doing the majority of the processing.

It should also be evident that the absolute runtime (on these platforms and our

current Spark implementation) of the deterministic and non-deterministic variants differ

significantly such that the näıve implementation can be approximately 20 times faster in

the context of both platforms. This is disappointing and motivates future work to refine

our initial implementation. However, we presume there are applications where a slower

but deterministic runtime is preferable to a faster but data-dependent runtime. In the

context of such applications, particularly given the scope to improve the implementation,

we perceive our algorithm, if not our current implementation, has utility.

To assess the variation in runtime we experience when considering different distri-

butions of the weights, we compare the performance in the context of the worst-case

scenario with that of the best-case scenario20. Figure 4.7 describes the average run-

time as well as the minimum and maximum runtimes over five runs. It is clear that

the fluctuations between the runs are smaller for the deterministic compared to the

näıve non-deterministic algorithm. What is less clear, but still discernible, is that the

average runtime for the deterministic redistribute is impacted less between the worst-

and best-cases than the näıve non-deterministic redistribute. We believe this modest

difference points to the runtime being dominated by considerations other than the algo-

rithmic choice, such as MapReduce’s overheads, which are common to both algorithms’

implementations.

20With N particles, the best-case involves replicating each particle exactly once.

Chapter 4. Parallel sequential Monte Carlo methods 65

0 2 4 6 8 10 12 14 16

Number of Cores

5

10

15

20

25

30

R
un

T
im

e
(s

ec
on

ds
)

Non-Deterministic

218

219

220

221

(a) Näıve implementation

0 2 4 6 8 10 12 14 16

Number of Cores

0

200

400

600

800

1000

1200

R
un

T
im

e
(s

ec
on

ds
)

Determistic

218

219

220

221

(b) Proposed approach

Figure 4.5: Worst-case performance of Redistribution: Platform 1.

Chapter 4. Parallel sequential Monte Carlo methods 66

0 100 200 300 400 500 600

Number of Cores

10

20

30

40

50

60

70

R
un

T
im

e
(s

ec
on

ds
)

Non-Deterministic

220

221

222

223

(a) Näıve implementation

0 100 200 300 400 500 600

Number of Cores

200

400

600

800

1000

1200

1400

R
un

T
im

e
(s

ec
on

ds
)

Determistic

220

221

222

223

(b) Proposed approach

Figure 4.6: Worst-case performance of Redistribution: Platform 2.

Chapter 4. Parallel sequential Monte Carlo methods 67

72%

4%
2%

22%

(a) Java (217 particles)

80%
8%

6%

6%

(b) Hadoop (217 particles)

63%
31%

4%
2%

(c) Spark (217 particles)

52%

41%

2%
5%

Redistribute

Sort

MVR

Others

(d) Spark (220 particles)

Figure 4.8: Overall runtime profile of the particle filtering algorithm for the following

implementations: (a) Sequential; (b) Hadoop; (c) Spark with 217 particles; (d) Spark

with 220 particles.

0 2 4 6 8 10 12 14 16

Number of Cores

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
Runtime Variability

Non-Deterministic
Deterministic

Figure 4.7: Ratio of average (and minimum and maximum) run-times for worst-case
and best-case scenarios using the deterministic and näıve redistribute.

4.3.5.2 Overall profile

We next compare the performance of a particle filter with the three implementations of

a sequential implementation in Java using quicksort in place of the bitonic sort, Hadoop,

and Spark. All implementations involve a single core and Platform 1. Figure 4.8 shows

the proportion of the runtime associated with redistribution, sort, Minimum Variance

Resampling (MVR), and the remaining components (e.g., sum, cumulative sum, diff,

and scaling).

As observed in Figure 4.8, most of the time is devoted to the redistribution com-

ponent. For the Spark implementation, a significant fraction of the remaining time is

spent on the sorting component and the fraction of time devoted to redistribution and

sorting increases as the number of particles increases.

Chapter 4. Parallel sequential Monte Carlo methods 68

4.3.5.3 Comparison of Hadoop and Spark

Here, we investigate how the choice of middleware impacts performance in the con-

text of the components of the algorithm and the entire particle filter algorithm. All

implementations involve a single core and Platform 1.

4.3.5.3.1 Sum and Cumulative Sum

Figures 4.9 4.10 shows the comparative performance of the sum and cumulative sum

components in the Hadoop and Spark frameworks.

217 218 219 220

Input Size

0

5

10

15

P
P

S

10 4 Summation
Hadoop
Spark

Figure 4.9: Summation on Spark and Hadoop.

Chapter 4. Parallel sequential Monte Carlo methods 69

217 218 219 220

Input Size

0

1

2

3

4

5

6

7

P
P

S

10 4 Cumulative Summation
Hadoop
Spark

Figure 4.10: Cumulative Summation on Spark and Hadoop.

With respect to the PPS parameter, the performance using Spark is superior to that

achieved using Hadoop. This stems from the issues discussed in Section 4.3.2 as Spark

uses RDDs to makes use of memory (and lazy evaluation) and Hadoop only uses the file

system (HDFS) to transfer data from the output of one operation to the input of the

next.

It is apparent in both frameworks, especially in the context of Spark, that as the

number of particles increases, the number of particles processed per second also increases.

This behaviour is because, with more particles, the overheads associated with setting

up and tearing down the mappers and reducers are increasingly offset by the parallel

operations that make use of these mappers and reducers. The limited extent to which

this effect is observed in the context of Hadoop highlights that the overheads associated

with opening files in HDFS are significant.

As explained in Section 4.3.3.1, since calculating a summation involves one adder-tree

and a cumulative sum involves two, we should expect the PPS for the cumulative sum

to be approximately half of that for the summation. A comparison of the two graphs

in Figures 4.9 4.10 makes clear that this is approximately the case for both frameworks

and all input sizes.

4.3.5.3.2 Bitonic sort and Minimum Variance Resampling

Figures 4.11 4.12 shows the performance for two independent components, bitonic sort

and minimum variance resampling. The performance of minimum variance resampling

is relatively close to the performance of the cumulative sum (see Figures 4.9 4.10). This

is expected since, as explained in Section 4.3.3.1, minimum variance resampling includes

a cumulative sum.

Chapter 4. Parallel sequential Monte Carlo methods 70

217 218 219 220

Input Size

0

200

400

600

800

1000

1200

1400

1600

1800

P
P

S

Bitonic Sort
Hadoop
Spark

Figure 4.11: Bitonic Sort on Spark and Hadoop.

217 218 219 220

Input Size

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
P

S

10 4 Minimum Variance Resampling
Hadoop
Spark

(b) Minimum Variance Resampling

Figure 4.12: Minimum variance resampling on Spark and Hadoop.

We again notice, for the same reasons discussed in Section 4.3.5.3.1, the difference in

performance between the Spark and Hadoop implementations. As before, for the min-

imum variance resampling, the PPS parameter increases with the number of particles.

However, for bitonic sort with Spark, the PPS decreases for large numbers of particles.

On investigating further, we observe the lineages used to facilitate the lazy evaluation in

Chapter 4. Parallel sequential Monte Carlo methods 71

Spark21 become very large with a large number of particles, and appears to cause Spark

to become less efficient.

4.3.5.3.3 Redistribution and overall performance

Finally, Figures 4.13 4.14 shows the comparative performance of the redistribution al-

gorithm (as described in Algorithm 11) and the overall particle filtering algorithm.

217 218 219 220

Input Size

0

200

400

600

800

1000

1200

1400

P
P

S

Redistribution
Hadoop
Spark

Figure 4.13: Redistribution on Spark and Hadoop.

21Since Hadoop does not attempt lazy evaluation or use such lineages for another purpose, the same
phenomenon is not observed in the context of Hadoop.

Chapter 4. Parallel sequential Monte Carlo methods 72

217 218 219 220

Input Size

0

100

200

300

400

500

600

700

P
P

S

Particle filter
Hadoop
Spark

Figure 4.14: Overall Particle Filtering on Spark and Hadoop.

Again, we notice the differences between Hadoop and Spark. In the context of the

overall particle filter and the largest number of particles considered, these differences are

obvious in Spark, relative to Hadoop, offering a considerable speedup of approximately

25-fold22.

The overall performance of the particle filtering algorithm, when implemented in

Spark, decreases for large numbers of particles. Again, on investigation, this appears

to be caused by large lineages associated with a large number of particles. Finally, the

bitonic sort and redistribution components appear to be limiting the number of particles

per second that can be processed by the overall particle filtering algorithm.

4.3.5.4 Impact of using multiple cores

Next, we focus on the Spark implementation (with Platform 1) and compare the per-

formance of the two variants of the redistribution component in isolation and in the

context of the overall performance of a particle filter. Specifically, we investigate how

performance scales with the number of cores and the number of particles.

4.3.5.4.1 Redistribution component in isolation

Figures 4.15 4.16 compares the performance of the two versions of the redistribution

component as a function of the number of particles and number of cores.

22In the particle filter the resampling is executed in every iteration. Thus the aforementioned figures
correspond to a worst-case speedup.

Chapter 4. Parallel sequential Monte Carlo methods 73

218 219 220 221

Input Size

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

P
P

S

Redistribution new
1c
2c
4c
8c
16c

Figure 4.15: Performance of the O(NP (log2N)2) Redistribution Component (using

Spark).

218 219 220 221

Input Size

200

400

600

800

1000

1200

1400

1600

P
P

S

Redistribution original
1c
2c
4c
8c
16c

Figure 4.16: Performance of the O(NP (log2N)3) Redistribution Component (using

Spark).

On a core-to-core basis, the O((log2N)2) redistribution component outperforms the

O((log2N)3) component across all numbers of particles by a margin of up to a factor of

approximately 4 (for 16 cores). For all numbers of particles, increasing the number of

cores improves performance for both variants of the redistribution component. However,

Chapter 4. Parallel sequential Monte Carlo methods 74

in the context of both variants, the improvement in performance when considered as a

ratio is less than the ratio of the number of cores.

In the context of the O(NP (log2N)3) variant, increasing the number of particles for

a fixed number of cores can significantly reduce the number of particles processed per

second. This is not the case for the O(NP (log2N)2) variant. Also for the O(NP (log2N)2)

variant, increasing the number of particles while keeping the number of cores constant

improves the number of particles processed per second. However, in the context of the

O(NP (log2N)3) variant, increasing the number of particles for a fixed number of cores

reduces the number of particles processed per second.

4.3.5.4.2 Resulting overall particle filter performance

Figures 4.17 4.18 compares the performance of the original particle filtering algorithm

when using the two variants of the redistribution component.

218 219 220 221

Input Size

600

800

1000

1200

1400

1600

1800

2000

2200

P
P

S

Particle filter new
1c
2c
4c
8c
16c

Figure 4.17: Performance of the overall particle filter using the O(NP (log2N)2) re-
distribution component.

Chapter 4. Parallel sequential Monte Carlo methods 75

218 219 220 221

Input Size

150

200

250

300

350

400

450

500

550

600

650

P
P

S

Particle filter original
1c
2c
4c
8c
16c

Figure 4.18: Performance of the overall particle filter using the O(NP (log2N)3) re-
distribution component.

The comparative performance observed in the context of the redistribution compo-

nent in isolation is also evident when comparing the performance of the overall particle

filter. Indeed, the use of the O(NP (log2N)2) variant of the redistribution results in ap-

proximately a fourfold increase in the number of particles processed per second. The

trends observed in the context of the redistribution component in isolation are also

apparent in the context of the overall particle filter.

4.3.5.5 Speedup and scalability analysis

We now focus on the speedup that the O(NP (log2N)2) variant of the redistribution com-

ponent offers relative to theO(NP (log2N)3) variant and the scalability of theO(NP (log2N)2)

variant, i.e., the extent to which using more cores improves performance.

We quantify speedup as the ratio of the number of particles per second for a fixed

number of particles and number of cores. We quantify scalability, in the context of a

fixed number of particles23, as the ratio of the number of particles per second with N

cores relative to the number of particles per second with a single core. We compare

performance in the context of both platforms for different numbers of particles.

4.3.5.5.1 Redistribution component in isolation

Figures 4.19 4.20 and 4.21 4.22 describe the speedup and scalability of theO(NP (log2N)2)

redistribution component in the context of platforms 1 and 2 respectively.

23Since the problem size remains fixed, we are actually quantifying strong scaling [43].

Chapter 4. Parallel sequential Monte Carlo methods 76

0 5 10 15 20

Number of cores

0.5

1

1.5

2

2.5

3

3.5

R
el

at
iv

e
S

pe
ed

up

Relative Speedup of the New Algorithm

218

219

220

221

Average

Figure 4.19: Relative Speedup O(NP (log2N)2) variant of the Redistribution compo-
nent on Platform 1.

0 5 10 15 20

Number of cores

0

2

4

6

8

10

12

14

16

S
pe

ed
up

Scalability of the New Algorithm

218

219

220

221

Ideal

Figure 4.20: Scalability of the O(NP (log2N)2) variant of the Redistribution compo-
nent on Platform 1.

Chapter 4. Parallel sequential Monte Carlo methods 77

0 100 200 300 400 500 600

Number of cores

6

8

10

12

14

16

18

20

22

24

R
el

at
iv

e
S

pe
ed

up

Relative Speedup of the New Algorithm

220

221

222

223

Average

Figure 4.21: Relative Speedup of the O(NP (log2N)2) variant of the Redistribution
component on Platform 2.

0 100 200 300 400 500 600

Number of cores

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

S
pe

ed
up

Scalability of the New Algorithm

220

221

222

223

Figure 4.22: Scalability of the O(NP (log2N)2) variant of the Redistribution compo-
nent on Platform 2.

The relative speedup of the O(NP (log2N)2) variant of the redistribution component

(relative to the O(NP (log2N)3) variant) is significant in all cases from a factor of 2

(Platform 1) and 24 (Platform 2). For both platforms, this speedup increases as the

number of particles increases. However, with Platform 1, which has a single node such

Chapter 4. Parallel sequential Monte Carlo methods 78

that all cores share memory, the speedup decreases as the number of cores increases for

a fixed number of particles. In contrast, with Platform 2, the speedup is constant for

large numbers of cores.

The scalability of the O(NP (log2N)2) variant of the redistribution component is far

from ideal as an increasing number of cores culminates in minimal (if any) improvements

in performance. This occurs because, in the context of both Platforms, it is the com-

munication, and not the computation, that limits performance. This observation also

explains why the larger number of cores in Platform 2 does not offer improved scalabil-

ity relative to Platform 1. The processors of Platform 2 are distributed across multiple

nodes and communicate across a network, whereas those on Platform 1 are all part of

the same node and communicate using shared memory.

4.3.5.5.2 Resulting overall particle filter performance

Figures 4.23 and 4.24 describe the speedup and scalability of the overall particle filter

using the O(NP (log2N)2) redistribution component in the context of Platforms 1 and 2,

respectively.

Chapter 4. Parallel sequential Monte Carlo methods 79

0 5 10 15 20

Number of cores

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

R
el

at
iv

e
S

pe
ed

up

Relative Speedup of the New Algorithm

218

219

220

221

Average

(a) Relative Speedup of O(NP (log2N)2) variant

0 5 10 15 20

Number of cores

0

2

4

6

8

10

12

14

16

S
pe

ed
up

Scalability of the New Algorithm

218

219

220

221

Ideal

(b) Scalability of the O(NP (log2N)2) variant

Figure 4.23: Relative Speedup and Scalability of the overall particle filter algorithm

using the O(NP (log2N)2) variant of the Redistribution component on Platform 1. The
average is used to give some intuition based on the considered input values.

Chapter 4. Parallel sequential Monte Carlo methods 80

0 100 200 300 400 500 600

Number of cores

6.5

7

7.5

8

8.5

9

9.5

10

R
el

at
iv

e
S

pe
ed

up

Relative Speedup of the New Algorithm

220

221

222

223

224

(a) Relative Speedup of O(NP (log2N)2) variant

0 100 200 300 400 500 600

Number of cores

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

S
pe

ed
up

Scalability of the New Algorithm

220

221

222

223

224

(b) Scalability of the O(NP (log2N)2) variant

Figure 4.24: Relative Speedup and Scalability of the overall particle filter algorithm

using the O(NP (log2N)2) variant of the Redistribution component on Platform 2. The
average is used to give some intuition based on the considered input values.

The speedup factors, as measured in the context of the overall particle filter algo-

rithm, are between 3 and 9.5. Again, for both platforms, the speedup increases with the

number of particles. Again, the scalability is far from ideal.

Chapter 4. Parallel sequential Monte Carlo methods 81

 1
 (2 20)

 2 5
 (2 15)

 2 10
 (2 10)

 2 15
 (2 5)

 2 20
 (1)

 Number of Keys
(Particles per Key)

0.5

1

1.5

2

2.5

3

3.5

4

R
un

T
im

e
(s

ec
)

Summation

Figure 4.25: Performance of summation using Spark with a fixed total number of
values comprised of different number of keys and therefore different numbers of values

per key.

4.3.6 Discussion

The goal of this research is to reduce the execution time of particle filters dramatically.

While we gained significant insights from the performance analysis described above,

the results are disappointing. Using the combination of algorithms and hardware con-

sidered, we cannot improve on the execution speed achieved by a näıve redistribute

implementation.

At one level, this is because the baseline against which we are comparing performance

is relatively simple and mature. Our corresponding implementation is therefore relatively

well optimised. In contrast, our proposed implementation is novel and has not been

significantly optimised. However, we do not see it as fruitful to optimise our current

implementation as we suggest two other issues cause these disappointing results.

The first issue is that, in our implementations, we assumed each particle has a unique

key in the MapReduce framework. There are, therefore, as many keys as there are

particles. To understand the potential benefit of having more than one value per key, we

investigate how the performance of summation, in the context of a single core in Platform

1 and 220 values, changes as a function of the number of values per key. Figure 4.25

highlights that, for the example of summation in the context of a specific hardware

configuration, a fourfold improvement in execution speed is possible by changing the

number of values per key. This implies that runtime could change significantly if other

components considered multiple particles to be associated with each key.

Chapter 4. Parallel sequential Monte Carlo methods 82

However, the primary issue limiting runtime is the MapReduce framework. As dis-

cussed in Section 4.3.2.2, before every reduce operation, the values associated with each

key are collated. This is useful in the context of applications where the number of values

associated with each key and the number of unique keys is unknown (e.g., where the task

is to count the number of occurrences of each word in a set of documents). However,

in the particle filter application, the number of unique keys is known to be the number

of particles, and the algorithms are chosen such that the number of values for each key

are pre-defined for each algorithmic component. The flexibility that MapReduce pro-

vides offers no utility for the particle filter implementation, which itself is not an issue,

but this flexibility is achieved through a “shuffle-and-sort” phase that precedes every

reduce operation. This phase, as is self-evident from its name, is single-core bound in

the versions or frameworks we utilised. This sort is demanding in terms of communica-

tion and processing. So, every time MapReduce performs even simple operations (e.g.,

cumulative sum), it is likely that the infrastructure is collating the keys and sorting

them. Given the significant quantity of simple operations involved in our particle filter

operation, we presume this overhead dominates the execution time.

This observation motivates consideration of alternative frameworks which do not pro-

vide for the same flexibility offered by MapReduce requiring such an overhead. Our re-

search efforts, therefore, consider rethinking the implementation with alternative, lower-

level frameworks.

4.3.7 Summary

In this section, we designed an improved parallel particle filtering algorithm. The core

feature is a novel redistribution component providing a deterministic runtime and time-

complexity of O(NP (logN)2) for N particles and N processors). This improves a previous

approach that achieved a time-complexity of O(NP (logN)3).

A particle filter, including the previous and new redistribution components, was

implemented using two Big Data frameworks, Hadoop and Spark. Instead of assuming

the performance of such an implementation is faster compared to a single core version,

extensive performance evaluations were conducted. Our new component outperforms

the original version in isolation and when a particle filter uses the new component in

place of the original. Our results indicate that, in the context of a particle filter, Spark’s

ability to perform calculations in memory enable it to offer a 25-fold improvement in

runtime relative to Hadoop. Using Spark and our new component, we showed that, as

the number of particles increases, so does the implementation efficiency.

This performance evaluation highlights it is not always valid to assume that porting

algorithms to Big Data frameworks will increase execution speed. Indeed, the implemen-

tation we evaluated is limited by the communications overhead necessarily associated

with giving each particle a unique key as does the MapReduce framework. As a result,

while we can achieve a speedup of 3-fold with 16 cores in a single node, with 512 cores

spread across 28 nodes, we only achieve a speedup of approximately 1.4. Furthermore,

Chapter 4. Parallel sequential Monte Carlo methods 83

our implementation is outperformed by a näıve implementation by a factor of approxi-

mately 20. In other words, using our current implementation, we cannot outperform an

optimised single processor resampling algorithm.

Of course, there will be applications where resampling is a small fraction of the to-

tal computational cost of the particle filter. In such contexts, the proposal, likelihood

or dynamic model will be computationally demanding to calculate, while these compo-

nents of the particle filter are trivial to parallelise. Our future work will broaden the

applicability of our results beyond these applications. Specifically, we plan to focus on

architectures involving a single key being related to multiple particles, explicitly min-

imising the need for data movement, and removing the large lineages that appear to be

limiting the performance possible using Spark.

Finally, our implementations are available for public access via an open source repos-

itory at GitHub as particlefilter particlefilter [7].

4.4 Conclusions

This chapter reviewed a selected number of approaches for parallel resampling methods.

A novel parallel resampling method was proposed and implemented in MapReduce.

This new method improves the time complexity of previous research, and our results

illustrated the benefits of the new methodology. Future work will extend the analysis

and benefits of the proposed method in hardware platforms, software, and hardware

optimisation and analysis using real-time applications on high-dimensional spaces.

Chapter 5

Efficient particles recycling

5.1 Introduction

The particles recycling method is a mechanism proposed in [78] as an alternative ap-

proach to making estimations on the posterior (or target) distribution in Sequential

Monte Carlo (SMC) samplers. In the basic SMC sampler (as described in Chapter 3),

estimations on the posterior distribution are computed using only the particles of the

last iteration. The particles recycling method performs estimations using the particles

from all iterations without the need to discard particles. Practically, assuming K itera-

tions and N particles, estimations in the original algorithm are achieved using the last

N generated particles, while in the particles recycling all K ·N particles are considered.

In this chapter, a novel recycling method is proposed, applied in high dimensional

static distributions, and compared with the traditional and existing estimation ap-

proaches (i.e., the method proposed in [78]) . Both recycling methods are demonstrated

to outperform the traditional algorithm by leading to faster convergence, while the pro-

posed approach is more efficient than the existing method. In Section 5.2, the traditional,

existing, and new methods are discussed followed by an evaluation in Section 5.3 and

conclusions in Section 5.4.

5.2 Estimation methodologies

Three methodologies for computing estimations in SMC samplers are discussed. The

traditional approach, the existing method from [78], and our new proposed methodology.

5.2.1 Basic method

In the basic SMC sampler, estimations of a function of interest, f(.), over the posterior

distribution, π(.), are computed using only the particles of the last iteration as

84

Chapter 5. Efficient particle recycling 85

f̄ = Eπ [f] =

∫
π (x) f (x) dx ≈

N∑

i=1

w
(i)
k f

(
x

(i)
k

)
(5.1)

or alternatively

f̄ = Eπ [f] =

∫
π (x) f (x) dx ≈

N∑

i=1

w̃
(i)
k f

(
x

(i)
k

)
(5.2)

and

N∑

i=1

w
(i)
k f

(
x

(i)
k

)

︸ ︷︷ ︸
f̂

6=
N∑

i=1

w̃
(i)
k f

(
x

(i)
k

)

︸ ︷︷ ︸
f̃

(5.3)

where w and w̃
(i)
k correspond to the importance weights and the normalised (i.e., the

particles sum to unity) importance weights. For example, the mean value of the poste-

rior distribution, π(.), is approximated by multiplication of the particles during the last

iteration, xk with the corresponding normalised weights, w̃k. As explained in the Ap-

pendix B.1, the f̂ is unbiased estimator of the posterior expectation, f̄ , of any function

f . The expectation is approximated using the normalised weights, f̃ , which is a biased

estimator of f̂ .

5.2.2 Existing method

The existing method makes estimations of the posterior distribution using the particles

generated during all the iterations of the SMC sampler. In every iteration, estimations

of the intermediate distributions are computed using Equation 5.1. The final estimation,

referring to the posterior distribution, is computed using all the intermediate estimations.

The intermediate distributions do not directly target the posterior, π(.). To correct this

issue, importance sampling identity is applied to each of the samples generated during

every iteration of the SMC sampler [78], so the estimates are determined by

f̂ =

∑K
j=1 f̂j c̃j∑K
j=1 c̃j

=

∑K
j=2 π(x

(i)
j)w̃

(i)
j w̃

(i)
j−1∑K

j=2 w̃
(i)
j−1

(5.4)

where i denotes the particle index and cj , as discussed in Appendix B.1, is the normal-

ising constant of the joint density

Chapter 5. Efficient particle recycling 86

c̃j ≈ cj =

∫
π(xj)dxj (5.5)

5.2.3 New method

Algorithm 13 Proposed Particles Recycling SMC Sampler

1: for i = 1 : N do
2: Sample x

(i)
1 ∼ q(x1)

3: Calculate w
(i)
1 =

π(x
(i)
1)

q(x
(i)
1)

4: end for
5: for k = 2 : K do
6: for i = 1 : N do
7: Sample x

(i)
k ∼ q(x

(i)
k |x

(i)
k−1)

8: Calculate w
(i)
k = w

(i)
k−1

π(x
(i)
k)L(x

(i)
k−1|x

(i)
k)

π(x
(i)
k−1)q(x

(i)
k |x

(i)
k−1)

9: end for
10: Normalising constant, c̃k =

wk−1π(xk)
q(xk|xk−1)

11: Weights Normalisation w̃k = wk∑
(wk)

12: Calculate the effective sample size Neff = 1∑N
i=1(w̃

(i)
k)2

13: if Neff < NT then
14: Resampling with w̃k, and produce new particles population, xk
15: Set wk = 1

N
16: end if
17: end for
18: Particles recycling calculation using the equation 5.10

The difference between the proposed and existing methodologies is the computa-

tion of the normalising constant of the joint density (i.e., Equation 5.5), which is

computed [78] for every iteration of the SMC sampler as c̃k =
∑K

j=2 w̃
(i)
j−1, where

i = 1, 2, . . . , N denotes the particle index with N total number of particles. For the pro-

posed particles recycling method, the normalising constant is c̃k =
∑K

j=2

π(x
(i)
j)

q(x
(i)
j |x

(i)
j−1)

w̃
(i)
j−1.

More precisely, in the new method the Equation 5.5 is computed as

Chapter 5. Efficient particle recycling 87

ck =

∫
π (xk) dxk =

∫
π (xk)

N∑

i=1

w̃
(i)
k−1

︸ ︷︷ ︸
=1

dxk (5.6)

=
N∑

i=1

∫
π
(
x

(i)
k

)
w̃

(i)
k−1

q
(
x

(i)
k |x

(i)
k−1

)

q
(
xk|xik−1

)
︸ ︷︷ ︸

=1

dxk (5.7)

≈ c̃k =

N∑

i=1

1

N ′

N ′∑

j=1

π
(
x

(j)
k

)

q
(
x

(j)
k |x

(i)
k−1

) w̃(i)
k−1 (5.8)

Consider i = j and N ′ = 1 =⇒ c̃k =

N∑

i=1

π
(
x

(i)
k

)

q
(
x

(i)
k |x

(i)
k−1

) w̃(i)
k−1 (5.9)

The N ′ denotes multiple samples per the sample of the previous iteration. In Equa-

tion B.10 it is assumed that N ′ = 1. The new algorithm estimations are computed

as

f̂ =

∑K
j=1 f̂j c̃j∑K
j=1 c̃j

=

∑K
j=2 π(x

(i)
j)w̃

(i)
j

π(x
(i)
j)w̃

(i)
j−1

q(x
(i)
j |x

(i)
j−1)

∑K
j=2

π(x
(i)
j)w̃

(i)
j−1

q(x
(i)
j |x

(i)
j−1)

(5.10)

where the i = {1, 2, . . . N} denotes the number of particles. The pseudocode of the pro-

posed particles recycling SMC sampler is available in Algorithm 13 and can be compared

with the traditional SMC sampler in Algorithm 5. The particles recycling method does

not influence the overall time complexity of the algorithm, which is O(PN (logN)2) for

the SMC sampler and particle filter according to [97]. Also, the time complexity of the

particles recycling method is equivalent to the time complexity of the sum, max, and

min algorithmic components, which is O(PN (logN)). Thus, the particles recycling is a

computationally trivial mechanism.

5.3 Simulations

In the following section, the original SMC sampler and the SMC sampler with the two

recycling methods are compared using high dimensional static distributions. The goal is

to generate samples from the static distributions and estimate the true mean value. The

results highlight the importance of the particle recycling mechanism and the efficiency

improvement of the new proposed particle recycling methodology over the traditional

and existing methods [78].

The proposal distribution is a random walk, and the backward kernel is selected

to emulate MCMC, L(xk−1|xk) = q(xk|xk−1). The estimations are computed using

Chapter 5. Efficient particle recycling 88

N = 100 particles and K = 100 iterations or N · K = 10000 samples of the target

distribution. While different configurations for the number of particles and iterations

could be examined, they are not considered in the evaluation. Every experiment corre-

sponds to an average of 100 Monte Carlo runs. In Section 5.3.1, the target (or posterior)

distribution is a zero mean N -dimensional Gaussian distribution with covariance of the

identity matrix.

π(x) =
1

(2π)
d
2 |Σ| 12

exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)

In Section 5.3.2, the target distribution is a multivariate Student’s t distribution with

seven degrees of freedom.

π(x) = −log(Γ(
ν + d

2
))− log(Γ(

ν

2
)) + (−(ν + d)

2
log(1 +

‖x‖2
ν

))− d

2
log(νπ) (5.11)

In Section 5.3.3, the target distribution is the Ackley function.

π(x) = 20exp(−0.2

√√√√1

d

d∑

i=1

x2
i) + exp(

1

d

d∑

i=1

cos(2πxi))− 20− exp(1)

where d corresponds to the input size. In Figure 5.3 the different methods are compared

by increasing the number of particles. In Figures 5.2, 5.3, 5.4, 5.6 (or Tables 5.1, 5.2, 5.3

and 5.4, respectively) we denote with:

1. Method m1: The basic estimation.

2. Method m2: The new proposed particle recycling algorithm.

3. Method m3: The existing particle recycling algorithm proposed in [78].

The basic SMC sampler perform estimations using only the last 100 particles or only the

1% of the total number of samples. When we consider the particle recycling methods,

all samples are used for the final estimation. Both recycling methods are significantly

better than the basic SMC sampler. This improvement appears to further increase

as the dimensionality of the target distribution increases. For example, this effect is

noticeable in both the Gaussian and Student’s t distributions. The different methods

are applied in a more complicated function (e.g., the Ackley function), which has a

large number of local maximum and a single global maximum, and is commonly used

in testing optimisation algorithms. The SMC sampler, in this case, appears to struggle

to converge, especially when the dimensionality increases. The new proposed method

outperforms the other two estimation methodologies. There is a potential the existing

method to outperform the new methodology (e.g. Table 5.1 and Figure 5.2) in high

dimensional posterior distributions. An explanation for this behaviour is potentially

Chapter 5. Efficient particle recycling 89

related with the assumptions considered in Equation 5.9. However, it is illustrated in

Table 5.2 and Figure 5.2 that the new method can achieve better accuracy by considering

more particles and iterations.

5.3.1 N-dimensional Gaussian distribution

Table 5.1: Comparison of the recycling methods on the Gaussian distribution using
10000 samples (100 particles) based on the log mean squared error (estimation of the

mean value).

Dimensions Basic (m1) Proposed (m2) Existing (m3)

2 -3.56 -5.64 -4.87

4 -2.63 -5.10 -4.72

6 -2.21 -4.80 -4.54

8 -1.85 -4.47 -4.36

10 -1.64 -4.26 -4.26

12 -1.50 -4.01 -4.10

-2 -1 0 1 2 3 4 5 6
-2

-1

0

1

2

3

4

5

6

Figure 5.1: Exemplar of a multivariate Gaussian distribution (es-
timation of the mean value)

Chapter 5. Efficient particle recycling 90

2 4 6 8 10 12

Dimensions

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

m
1

m
2

m
3

Figure 5.2: Comparison using 10000 samples (100 particles). Figure 5.1 illustrates
the target distribution.

Table 5.2: Comparison on a 10-dimensional Gaussian distribution through increasing
the number of samples (estimation of the mean value).

Samples Basic (m1) Proposed (m2) Existing (m3)

20000 -1.91 -4.51 -4.41

30000 -1.99 -4.55 -4.35

40000 -2.23 -4.57 -4.41

50000 -2.36 -4.79 -4.57

Chapter 5. Efficient particle recycling 91

20000
 (200)

30000
 (300)

40000
 (400)

50000
 (500)

 Number of Samples
(Number of Particles)

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

m
1

m
2

m
3

Figure 5.3: Comparison on a 10-dimensional Gaussian distribution
through increasing the number of samples (estimation of the mean

value).

5.3.2 N-dimensional Student’s t distribution

Table 5.3: Comparison of the recycling methods on the Student’s t distribution (es-
timation of the mean value) using 10000 samples (100 particles).

Dimensions Basic (m1) Proposed (m2) Existing (m3)

2 -2.97 -4.89 -4.50

4 -2.48 -4.45 -4.08

6 -1.63 -4.04 -3.81

8 -1.47 -3.81 -3.63

10 -1.35 -3.57 -3.48

Chapter 5. Efficient particle recycling 92

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

(a) Exemplar of the target distribution

2 3 4 5 6 7 8 9 10

Dimensions

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

m
1

m
2

m
3

(b) Performance Comparison

Figure 5.4: (a) Exemplar of a multivariate Student’s t distribution (estimation of the
mean value), and (b) comparison with 10000 samples (100 particles).

Chapter 5. Efficient particle recycling 93

5.3.3 N-dimensional Ackley function

Table 5.4: Comparison of the recycling methods on the Ackley function (estimation
of the mean value) using 10000 samples (100 particles).

Dimensions Basic (m1) Proposed (m2) Existing (m3)

2 -3.92 -6.19 -5.43

4 -1.71 -3.27 -2.98

6 -0.10 -1.31 -1.23

8 1.00 -0.16 -0.05

10 1.66 0.22 0.49

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 5.5: Exemplar of the multivariate inverse Ackley function
(estimation of the mean value).

Chapter 5. Efficient particle recycling 94

2 3 4 5 6 7 8 9 10

Dimensions

-7

-6

-5

-4

-3

-2

-1

0

1

2

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

m
1

m
2

m
3

(b) Performance Comparison

Figure 5.6: Comparison using 10000 samples (100 particles). Figure 5.5 illustrates
the target distribution.

5.4 Conclusions

A novel particle recycling strategy was proposed and compared with the traditional and

existing estimation methodologies for SMC samplers. The recycling methodologies are

more accurate than the basic SMC sampler where estimations are computed using the

particles during the last iterations only. The particles recycling is a computationally

trivial mechanism, where the time complexity is equivalent with the sum, max, and min

algorithmic methods of O(PN (logN)). The potential of the proposed methodology is

demonstrated with sampling from high dimensional static distributions.

Chapter 6

Selecting the forward Markov

kernel

6.1 Introduction

In the Metropolis algorithm and the Sequential Monte Carlo methods, the proposal

distribution is a user-defined probability density function. The traditional approach

uses a random walk forward transition kernel. The applicability of this approach is

relatively easy for both methodologies. In the Metropolis, algorithm the random walk

proposal suffers from a large number of rejected samples as the new proposed samples are

independent of the target distribution [31]. A high acceptance rate in the random walk

proposal implies that the convergence is very slow. This observation suggests a path of

exploration for the choice of the proposal distribution. Several publications are devoted

on considering alternative proposal distributions that are more efficient than the random

walk. These proposal distributions include the Ozaki and Euler discretisation in [27]

and [31], the partially implicit local linearisation in [22], and the Ornstein-Uhlenbeck

process and semi-implicit Euler discretisation in [32], which all focus on proposals with

better convergence characteristics to improve the efficiency of the Metropolis algorithm

by reaching stationarity faster.

In this chapter, the Euler discretisation and the partically implicit local linearisation

are applied and compared to the random walk proposal. The results demonstrate that

considering more sophisticated proposal distributions compared to the random walk can

improve the accuracy of the SMC sampler.

Section 6.2 discusses the forward kernel proposal using the Euler discretisation. In

Section 6.3, three high dimensional experiments show the benefits of considering more

efficient forward Markov kernels compared to the random walk proposal. Final thoughts

and future work are reviewed in Section 6.4.

95

Chapter 6. Selecting the forward Markov kernel 96

6.2 Langevin diffusion

6.2.1 Fokker-Plank equation

In the one-dimensional case, diffusion is a stochastic process which can be written as a

stochastic differential equation, based on Ito’s representation [50], such that

dxt = µ (xt) dt+
√
σ (xt)dwt (6.1)

where xt is a diffusion process with time index t, µ (xt) is the drift term, σ (xt) the

volatility and wt is the Wiener or Brownian process. The drift term defines the mean

velocity, the volatility is the covariance of the process, and the Wiener or Brownian

process determines the noise (i.e., randomness). A diffusion process is a set of random

variables where each is indexed with the time t. Equation 6.1 enables us to calculate

the transition probability density, which we can use to calculate the expectation value

of observables of a diffusion process [81].

The Fokker-Planck equation, also known as the Kolmogorov forward equation, is

a partial differential equation describing the time evolution of the probability density

function, π (xt). The Langevin from Equation 6.1 is reformulated [53] into the following

Fokker-Planck equation as

∂π (xt)

∂t
=

∂

∂xt
(µ (xt)π (xt)) +

1

2

∂2

∂xt
2 (σ (xt)π (xt)) (6.2)

The simplest form of a diffusion process is the standard Brownian, which is generated

by the stochastic differential equation

dxt = dwt (6.3)

where the drift term is zero, and the volatility is one. In this case, the time evolution of

the probability density function, π (xt), satisfies the Fokker-Planck equation simplifying

to

∂π (xt)

∂t
=

1

2

∂2

∂xt
2 (π (xt)) (6.4)

The Fokker-Planck equation shows the statistical behaviour of dynamical systems and

is used to solve Langevin equations. The non-linear Langevin equations are not easy to

solve, and its reformulation using Fokker-Planck provides a computationally approach-

able solution [111].

Chapter 6. Selecting the forward Markov kernel 97

6.2.2 Discrete time Langevin diffusion

Assume that the volatility in equation 6.1 is constant:

σ (xt) = σ (6.5)

and that the drift is defined as follows:

µ (xt) = −1

2
σ
∂

∂xt
log π (xt) (6.6)

For any f (x):

∂

∂x
log f (x) =

1

f (x)

∂f (x)

∂x
(6.7)

such that

µ (xt) = −1

2
σ

1

π (xt)

∂π (xt)

∂xt
(6.8)

Substituting Equations 6.8 and 6.5 into 6.2, we obtain

∂π (xt)

∂t
=

∂

∂xt

(
−1

2
σ

1

π (xt)

∂π (x)

∂xt
π (xt)

)
+

1

2

∂2

∂xt
2 (σπ (xt)) (6.9)

=
σ

2

[
− ∂

∂xt

(
∂π (xt)

∂xt

)
+
∂2π (xt)

∂xt
2

]
(6.10)

=
σ

2

[
−∂

2π (xt)

∂xt
2 +

∂2π (xt)

∂xt
2

]
(6.11)

=0 (6.12)

such that if Equations 6.8 and 6.5 are true, then simulating from (6.1) means that

π (xt) = π (x) (6.13)

such that the samples will always be samples that are from π (x). We can integrate

Equation (6.1) over time to deduce

p (xt+ε|xt) ≈ N
(
xt+ε;xt + ε

1

2
σ
∂ log π (xt)

∂xt
, εσ

)
(6.14)

where N (x;µ,Σ) is a Gaussian density for x parameterised by a mean of µ and a vari-

ance of Σ. When ε is small, (6.14) provides a high fidelity approximation. However, as

ε increases, the approximation fidelity reduces, although it is possible to consider im-

proved approximation schemes for what is described in Equation 6.14. For example, [27]

proposes to use Ozaki’s approximation method [79]) to define the Langevin Monte Carlo

Chapter 6. Selecting the forward Markov kernel 98

with Ozaki discretisation (LMCO) algorithm as an alternative to MALA. In [22] apply-

ing an implicit method for the Langevin diffusion is proposed as well as a new method

(see Equation 18) as an alternative to the random walk and Euler discretisation. In our

simulations, this method is considered with the proposal, similar to Equation 6.14. of

p (xt+ε|xt) ≈ N
(
xt+ε;xt +

(
I − 1

2

∂2 log π(xt)

∂x2
t

λε
)−1(1

2

∂ log π(xt)

∂xt
ε
)
,

ε
(
I − 1

2

∂2 log π(xt)

∂x2
t

λε
)−2
)

(6.15)

where the 0 ≤ λ ≤ 1 is the implicit parameter. The special cases λ = 0, λ = 0.5 and

λ = 1 describe the Euler discretisation, the stochastic generalisation of the trapezoidal

method, and the backward Euler method, respectively [22].

6.3 Simulations

This section demonstrated how the user-defined forward kernel influences the accuracy

of the estimation in the context of the SMC sampler as explained through sampling

from three static distributions. The first scenario examines the performance of the three

proposals (random walk, Euler discretisation, and partially implicit local linearisation)

on three one dimensional static distributions. The remaining scenarios compare the ran-

dom walk and the Euler discretisation on high dimensional static distributions. Similar

results to what will be seen here have been demonstrated in the Metropolis-adjusted

Langevin algorithm (MALA) (e.g., [32]).

In all the simulations there are K = 100 iterations and N = 100 particles or in

total the algorithm generates 10000 samples from the posterior distribution. It is worth

mentioning that computationally both proposal distributions are computationally equiv-

alent. Computationally, both proposal distributions are computationally equivalent and

could be classified as element-wise operations implying time and space computational

complexity of O(1) and O(N), respectively. These complexities are different from the

convergence complexities. In the MH algorithm, the convergence complexity with a

random walk proposal is O(d), and with a proposal based on the Euler discretisation,

the complexity improves to O(d1/3), where d defines the dimensionality of the posterior

distribution [87].

The choice of the forward kernel opens the door for further exploration in the context

of the SMC samplers. In Section 6.3.1 where the three proposals are compared on three

one dimensional static distributions, the Euler discretisation outperforms all methods.

While expected to outperform the random walk, it was not initially considered to perform

better than the partially implicit local linearisation method [22]. An explanation for

this behaviour is that all methods describe the same distribution (i.e., Gaussian) with a

different approach.

Chapter 6. Selecting the forward Markov kernel 99

In Section 6.3.2, the target (or posterior) distribution is a zero mean Gaussian dis-

tribution with covariance of the identity matrix, such that

π(x) =
1

(2π)
d
2 |Σ| 12

exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(6.16)

where µ is the mean value and Σ the covariance matrix. The computation of the first

derivative is required for the new position of each particle in the Euler discretisation

with

π′(x) =
∂π(x)

∂x
= − 1

(2π)
d
2 |Σ| 12

exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
Σ−1 (x− µ) (6.17)

In Section 6.3.3, the target distribution is a multivariate Student’s t distribution, such

that

π(x) = −log(Γ(
ν + d

2
))− log(Γ(

ν

2
)) + (−(ν + d)

2
log(1 +

‖x‖2
ν

))− d

2
log(νπ) (6.18)

The first derivative of the target distribution is

π′(x) =
∂π(x)

∂x
= −(ν + d)

2

1

ν

1

1 + ‖x‖2
ν

2|x| sgn (x)

ν
= −ν + d

ν2
· |x| sgn (x)

1 + ‖x‖2
ν

(6.19)

where Γ(.) is the Gamma distribution, ‖.‖ is the Euclidean norm, |.| is the absolute

value, sgn (.) is the sign or signum function and δ(.) is the Dirac delta function. The

parameter ν = 20 defines the degrees of freedom, and the preconditioning matrix is

the identity, which simplifies the posterior. In Section 6.3.4, the target distribution is

the N -dimensional Laplace distribution, which is also known as the double exponential

distribution.

π(x) = −‖x− µ
Σ
‖ − 2‖Σ‖ (6.20)

and the first derivative of the posterior distribution:

π′(x) =
∂π(x)

∂x
=

sgn (µ− x)

‖Σ‖ (6.21)

where µ is the mean value and the Σ the covariance. In Table 6.1, the first derivative of

some of these functions is provided.

The comparisons in Figures 6.4, 6.5, 6.6 and 6.8, with the corresponding Ta-

bles 6.2, 6.3, 6.4 and 6.5, respectively, reveal the benefits of the Euler discretisation

over the random walk using the new recycling methodology. The accuracy improve-

ment is relatively significant, and the Euler discretisation outperforms the random walk

proposal.

Chapter 6. Selecting the forward Markov kernel 100

Table 6.1: Function Names with the Corresponding First Derivative

Function Name Function, g(x) First Derivative, ∂g(x)
∂x

Absolute value |x| sgn (x)

Signum function sgn (x) 2δ(x)

Euclidean Norm ‖x‖ |x| sgn (x)
‖x‖

6.3.1 One dimensional static distributions

0 200 400 600 800 1000

Number of Particles

-9

-8

-7

-6

-5

-4

-3

-2

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance

PILL
RW
EULER

Figure 6.1: Comparison of the random walk, Euler discretisation, and partially im-
plicit local linearisation on the Gaussian static distribution. In all cases the mean value

of the posterior is estimated.

Chapter 6. Selecting the forward Markov kernel 101

0 200 400 600 800 1000

Number of Particles

-6

-5

-4

-3

-2

-1

0

1

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance

PILL
RW
EULER

Figure 6.2: Comparison of the random walk, Euler discretisation, and partially im-
plicit local linearisation on the Student’s t static distribution. In all cases the mean

value of the posterior is estimated.

0 200 400 600 800 1000

Number of Particles

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance

PILL
RW
EULER

Figure 6.3: Comparison of the random walk, Euler discretisation, and partially im-
plicit local linearisation on the Laplace static distribution. In all cases the mean value

of the posterior is estimated.

Chapter 6. Selecting the forward Markov kernel 102

6.3.2 N-dimensional Gaussian distribution

Table 6.2: Comparison of the random walk and Euler discretisation without recycling
based on the log mean squared error (estimation of the mean value).

Dimensions Random Walk Euler

1 -4.83 -5.83

2 -3.44 -5.2

4 -2.65 -4.49

6 -2.27 -4.07

8 -2.00 -3.33

10 -1.6 -3.00

1 2 3 4 5 6 7 8 9 10

Dimensions

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

RW
EULER

Figure 6.4: Comparison of the random walk and Euler discretisation without recycling
based on the log mean squared error (estimation of the mean value)

Chapter 6. Selecting the forward Markov kernel 103

Table 6.3: Comparison of the different recycling algorithms using the Euler discreti-
sation. The m1, m2 and m3 denote estimations based on the basic method, the new
proposed recycling method in Chapter 5 and the method proposed in [78], respectively.
In all cases the comparison is based on the log mean squared error (estimation of the

mean value)

Dimensions Basic (m1) Proposed (m2) Existing (m3)

1 -5.83 -10.18 -10.01

2 -5.20 -9.00 -8.78

4 -4.49 -8.61 -8.51

6 -4.07 -8.35 -8.17

8 -3.33 -7.66 -7.55

10 -3.00 -7.40 -7.37

1 2 3 4 5 6 7 8 9 10

Dimensions

-11

-10

-9

-8

-7

-6

-5

-4

-3

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison (ED)

m
1

m
2

m
3

Figure 6.5: Comparison of the different recycling algorithms using the Euler discreti-
sation based on the log mean squared error (estimation of the mean value).

6.3.3 N-dimensional Student’s t distribution

Table 6.4: Comparison of the random walk and the Euler discretisation without
recycling based on the log mean squared error (estimation of the mean value).

Dimensions Random Walk Euler

2 -5.44 -6.39

3 -5.32 -6.21

4 -5.15 -5.73

5 -4.83 -5.58

6 -4.78 -5.21

Chapter 6. Selecting the forward Markov kernel 104

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) Posterior distribution

2 2.5 3 3.5 4 4.5 5 5.5 6

Dimensions

-6.4

-6.2

-6

-5.8

-5.6

-5.4

-5.2

-5

-4.8

-4.6

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

RW
EULER

(b) Performance comparison

Figure 6.6: (a) Target distribution and (b) comparison of the random walk and the
Euler discretisation based on the log mean squared error (estimation of the mean value).

Chapter 6. Selecting the forward Markov kernel 105

6.3.4 N-dimensional Laplace distribution

Table 6.5: Comparison of the random walk and the Euler discretisation without
recycling based on the log mean squared error (estimation of the mean value).

Dimensions Random Walk Euler

1 -3.81 -5.65

2 -2.24 -4.05

4 -1.29 -2.88

6 -0.65 -2.46

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 6.7: Target distribution.

Chapter 6. Selecting the forward Markov kernel 106

1 2 3 4 5 6

Dimensions

-6

-5

-4

-3

-2

-1

0

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

RW
EULER

Figure 6.8: Comparison of the random walk and the Euler discretisation based on
the log mean squared error (estimation of the mean value). Figure 6.7 illustrates the

target distribution

6.4 Conclusions

The benefits of using the Euler discretisation in the proposal of the SMC sampler is

discussed in this chapter. Using information from the derivative in the proposal distri-

bution allows the algorithm to explore the space of interest more efficiently than the

random walk proposal, which is used in the traditional SMC sampler. The efficiency

improvement corresponds to better sampling process and as a result faster convergence

to stationarity. The motivation for this strategy is inspired from research on identifying

better proposals in the MH algorithm, such as the MALA. The results from this research

reveal that considering a more sophisticated proposal distribution than the random walk

leads to faster convergence in the context of SMC samplers while indicating a valuable

direction for future research.

Chapter 7

Optimal backward kernel

7.1 Introduction

The backward Markov kernel, similarly with the forward Markov kernel, is a user-defined

distribution. In Chapter 6, we discussed the benefits of using more sophisticated proposal

distributions and how such choices can lead to faster convergence. Both methods influ-

ence the quality of the generated samples or particles during the importance sampling

stage. In this chapter, an optimal backward Markov kernel is proposed with respect to

the selected forward Markov kernel. This proposed method allows the overall algorithm

to obtain better performance. In Section 7.2, a description of the novel optimal Markov

backward kernel is discussed, and experiments are conducted in Section 7.4 to illustrate

the benefits of the proposed method.

7.2 Optimal backward Markov kernel

In an SMC sampler, the target distribution is defined using a joint distribution param-

eterised by a backward Markov kernel, L(xk−1|xk), such that the target is a density

defined on the states x1:k as

π1:k (x1:k) = πk (xk)
k∏

i=2

L (xi−1|xi) (7.1)

where πk (xk) is the target distribution over the sequence of samples x1:k or joint distri-

bution of all the states up to the kth state. This construction has the property that

∫
π1:k (x1:k) dx1:k−1 = πk (xk) (7.2)

such that if we draw samples that target π1:k (x1:k), then the marginal distribution (for

xk) of these samples is πk (xk) [66] [37]. At the kth iteration, the ith (of N samples) is

then associated with a state, x
(i)
k , and a weight, w

(i)
k , where

107

Chapter 7. Optimal backward kernel 108

w
(i)
k = wk−1

πk (xk)

πk (xk−1)

L (xk−1|xk)
q (xk|xk−1)

(7.3)

corresponds to the importance weights and is practically expressed in logarithmic scale

to avoid numerical issues. A choice for the backward Markov kernel is to emulate

MCMC (i.e., the importance weights computation is similar to the MH ratio [72]) as

L(xk−1|xk) = q(xk|xk−1), where L(.) and q(.) denote the backward and forward Markov

kernels, respectively. Such a choice is poor or inefficient in most cases and results in

importance weights with very large or infinite variance [72]. Appendix B.3 and [68]

mention that the proposal distribution should be heavier tailed compared to the target

distribution, and π(x)
q(x) > c, where c is a positive constant. If the target distribution

is heavier tailed than the proposal, then the particle weights approach infinity (i.e., in

Equation 7.3, w
(i)
k →∞). A function of interest f̄ at the kth iteration is estimated as

f̄ ≈ f̂k =
N∑

i=1

w
(i)
k f

(
x

(i)
k

)
(7.4)

As further explained in Appendix B.1 the f̂k is an unbiased estimator of f̄ .

To understand how to choose L (xk−1|xk), we need to consider the variance of an

estimator of a function, f (xk). Based on the argument in Appendix B.2, the variance

will be dependent on

aL (L (xk−1|xk)) =

∫
π (xk)

2 L (xk−1|xk)2 f (xk)
2

q (xk|xk−1) q (xk−1)
dxkdxk−1 (7.5)

We wish to find the L (xk−1|xk) that minimises a (L (xk−1|xk)) subject to the constraint

that L (xk−1|xk) is a probability density function (pdf) for every state xk. In other

words, we wish to minimise

bL (L (xk−1|xk)) =

∫
π (xk)

2 L (xk−1|xk)2 f (xk)
2

q (xk|xk−1) q (xk−1)
dxkdxk−1−

∫
λLxk

(∫
L (xk−1|xk) dxk−1

)
dxk (7.6)

where λLxk is a Lagrangian multiplier for a specific value of xk. To minimise the function

we can differentiate bL (L (xk−1|xk)) and set to zero (unique solution)

dbL (L (xk−1|xk))
dL (xk−1|xk)

= 0 (7.7)

such that

Chapter 7. Optimal backward kernel 109

2
π (xk)

2 Lopt (xk−1|xk) f (xk)
2

q (xk|xk−1) q (xk−1)
− λLxk = 0 (7.8)

By noting that we can cater for everything that does not depend on xk−1 in the nor-

malisation constant, Equation 7.8 implies that

Lopt (xk−1|xk) ∝ q (xk|xk−1) q (xk−1) (7.9)

=←−q (xk−1|xk) (7.10)

where it is worth noting that, in general:

←−q (xk−1|xk) 6= q (xk−1|xk) (7.11)

Here q (xk−1|xk) is the probability density associated with a proposal defined at xk sam-

pling xk−1 whereas ←−q (xk−1|xk) is the probability density associated with the proposal

having been defined at xk−1 given that it resulted in sampling xk.

7.3 Near optimal backward Markov kernel

While ←−q (xk−1|xk) is, in general, difficult to calculate analytically, we can approximate

this optimal L (xk−1|xk) by exploiting the fact that we have samples from q (xk, xk−1).

Specifically, we propose to use the samples in the filter to estimate the parameters of

some parametric density (e.g., Gaussian) that approximates q (xk, xk−1). Using this

parametric approximation, we can then deduce an approximation to ←−q (xk−1|xk).

7.3.1 Parametric estimation of the joint density

For example, if we assume that q (xk, xk−1) is well approximated as Gaussian, we can

use a Kalman-filter update to estimate ←−q (xk−1|xk) as follows. If

q (xk, xk−1) ≈N
([

xk

xk−1

]
;

[
µk

µk−1

]
,

[
Σk,k Σk,k−1

Σk−1,k Σk−1,k−1

])
(7.12)

then

←−q (xk−1|xk) =N
(
xk−1;µk−1|k,Σk−1|k

)
(7.13)

where

Chapter 7. Optimal backward kernel 110

µk−1|k = µk−1 + Σk−1,k (Σk,k)
−1 (xk − µk) (7.14)

Σk−1|k = Σk−1,k−1 − Σk−1,k (Σk,k)
−1 Σk,k−1 (7.15)

7.3.2 Baseline method

One method for approximating q (xk, xk−1) would be to use the samples, x
(i)
k−1:k, directly

such that

µk1 =
1

N

N∑

i=1

x
(i)
k1

(7.16)

Σk1,k2 =
1

N − 1

N∑

i=1

(
x

(i)
k1
− µk1

)(
x

(i)
k2
− µk2

)T
(7.17)

for k1 ∈ {k − 1, k} and k2 ∈ {k − 1, k}.

7.3.3 Avoiding resampling errors

In [72], it is proposed that if resampling has occurred at the kth iteration, then we can

approximate as

q (xk−1, xk) ≈ π (xk−1) q (xk|xk−1) (7.18)

Indeed, we could use the ancestral samples of xk−1 associated with each of the current

samples of xk. However, it is well known that since even when using a variant that

minimises the variance, resampling introduces what can be thought of as quantisation

errors in the weights (i.e. after resampling the weights are always 1
N , while this is not

true before the resampling. This is illustrated in Figure 7.1).

Chapter 7. Optimal backward kernel 111

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

w
k

Weights After Resampling
Weights Before Resampling

Quantisation Error

Figure 7.1: Exemplar of the quantisation errors introduced in the resampling algo-
rithm

So, we adopt a different approach by asserting that it is preferable to use the sam-

ples of xk−1 that were available at the (k − 1)th iteration to estimate the parametric

approximation to q (xk−1, xk). Therefore, we approximate as

q (xk−1, xk) ≈
N∑

i=1

w
(i)
k−1q

(
xk|x(i)

k−1

)
δ
(
xk−1 − x(i)

k−1

)
(7.19)

We can then calculate the parameters of a Gaussian approximation to q (xk−1, xk) as

µk−1 =
N∑

i=1

w̃
(i)
k−1x

(i)
k−1 (7.20)

µk =
N∑

i=1

w̃
(i)
k−1µ

(
x

(i)
k−1

)
(7.21)

Σk−1,k−1 =
1

N?

N∑

i=1

w̃
(i)
k−1

(
x

(i)
k−1 − µk−1

)(
x

(i)
k−1 − µk−1

)T
(7.22)

Σk,k−1 =
1

N?

N∑

i=1

w̃
(i)
k−1

(
µ
(
x

(i)
k−1

)
− µk

)(
x

(i)
k−1 − µk−1

)T
(7.23)

Σk,k−1 = Σk,k−1
T (7.24)

Σk,k = Σ2
q +

1

N?

N∑

i=1

w̃
(i)
k−1

(
µ
(
x

(i)
k−1

)
− µk

)(
µ
(
x

(i)
k−1

)
− µk

)T
(7.25)

Chapter 7. Optimal backward kernel 112

where µ
(
x

(i)
k−1

)
is the mean of q(x

(i)
k |x

(i)
k−1) and q(xk|xk−1) = N (xk, µ(xk−1),Σ2

q), w̃
(i)
k−1

are the weights input to the resampling process and where (from [84])

1

N?
=

∑N
i=1 w̃

(i)
k−1(∑N

i=1 w̃
(i)
k−1

)2
−∑N

i=1

(
w̃

(i)
k−1

)2 . (7.26)

which becomes the familiar Bessel’s correction (i.e., pre-multiplication by 1
N−1 , not 1

N)

in the case where w̃jk−1 = 1
N for all i.

7.4 Simulation results

The simulations focus on sampling from one-dimensional static distributions and esti-

mating the true mean value. The first set of simulations in 7.4.1 compare the optimal

and traditional backward kernels. The second set of simulations in 7.4.2 compare the

SMC sampler using the optimal backward kernel and competitor methodologies.

7.4.1 Comparison of SMC sampler with optimal and basic backward

Markov kernels

Three static distributions are used for the experiments the Gaussian distribution with

mean value 2 and covariance 1, the Student’s t-distribution with degrees of freedom 7

and the Laplace distribution. The estimation of the true mean value is based on the

average value over 100 Monte Carlo runs. The total number of particles varies, but in

all cases there are in total 10000 samples (the multiplication of the number of iterations

in the SMC sampler and the number of particles is always equal to 10000). A list of

different scenarios are examined:

1. Comparison of the SMC sampler with optimal backward kernel and the basic SMC

sampler, where both methods use random walk proposal and without recycling.

This is the simplest scenario where the only improvement in the SMC sampler is the

backward Markov kernel. The results in Table 7.1 and Figures 7.2 7.3 7.4 indicate

that for small number particles both methods have similar behaviour, while the

best performance is performed from the optimal backward Markov kernel for 500

particles.

Chapter 7. Optimal backward kernel 113

Table 7.1: Comparison of the two SMC samplers based on the last iteration’s log
mean squared error (estimation of the mean value).

Gaussian Student’s-t Laplace

Par. × It. qL optL qL optL qL optL

10× 1000 -3.07 -3.19 -2.85 -3.34 -2.54 -2.95

20× 500 -3.96 -4.03 -3.57 -3.82 -3.27 -4.02

50× 200 -4.65 -5.25 -4.18 -4.61 -3.39 -5.06

100× 100 -4.94 -5.88 -4.11 -5.51 -4.00 -5.45

200× 50 -4.77 -6.61 -4.86 -6.26 -4.15 -5.93

500× 20 -5.78 -7.34 -3.24 -7.51 -2.46 -6.73

1000× 10 -2.46 -7.15 -0.53 -3.56 -0.78 -2.36

0 200 400 600 800 1000

Number of Particles

-8

-7

-6

-5

-4

-3

-2

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance

qL
optL

(a) Gaussian

Figure 7.2: Graphical presentation of the Table 7.1. Every point corresponds to the
same total number of samples from the Gaussian target distribution.

Chapter 7. Optimal backward kernel 114

0 200 400 600 800 1000

Number of Particles

-8

-7

-6

-5

-4

-3

-2

-1

0

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

qL
optL

(b) Student’s-t

Figure 7.3: Graphical presentation of the Table 7.1. Every point corresponds to the
same total number of samples from the Student’s-t target distribution.

0 200 400 600 800 1000

Number of Particles

-8

-7

-6

-5

-4

-3

-2

-1

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance

qL
optL

(c) Laplace

Figure 7.4: Graphical presentation of the Table 7.1. Every point corresponds to the
same total number of samples from the Laplace target distribution.

2. Comparison of the SMC sampler with optimal backward kernel and the basic

Chapter 7. Optimal backward kernel 115

SMC sampler, where both methods use random walk proposal and the basic re-

cycling method 5. This scenario is identical with the previous except for the

recycling, which is activated for both backward Markov kernels. In Table 7.2 and

Figures 7.5 7.6 7.7, the SMC sampler with optimal backward Markov kernel out-

performs in all cases with its best performance when applying a relatively small

number of particles with a larger number of iterations. It is noticeable that when

the number of particles is very small, then the accuracy might become worse as

there are not enough particles to describe the distribution. The ideal number of

particles and iterations will depend on the application or posterior distribution.

Table 7.2: Comparison of the two SMC samplers based on the last iteration’s log
mean squared error (estimation of the mean value).

Gaussian Student’s-t Laplace

Par. × It. qL optL qL optL qL optL

10× 1000 -7.94 -8.48 -7.36 -7.65 -6.22 -7.17

20× 500 -7.60 -8.76 -6.74 -7.74 -5.93 -7.37

50× 200 -6.80 -7.7 -5.35 -6.49 -4.75 -6.42

100× 100 -5.16 -6.23 -3.8 -5.06 -3.38 -4.96

200× 50 -3.35 -4.41 -1.99 -3.37 -1.78 -2.96

500× 20 -1.29 -2.31 -0.44 -1.14 -0.17 -0.96

1000× 10 0.00 -0.7 1.10 0.50 0.59 0.38

0 200 400 600 800 1000

Number of Particles

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance

qL
optL

(a) Gaussian

Figure 7.5: Graphical presentation of the Table 7.2. Every point corresponds to the
same total number of samples from the Gaussian target distribution.

Chapter 7. Optimal backward kernel 116

0 200 400 600 800 1000

Number of Particles

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

qL
optL

(b) Student’s-t

Figure 7.6: Graphical presentation of the Table 7.2. Every point corresponds to the
same total number of samples from the Student’s-t target distribution.

0 200 400 600 800 1000

Number of Particles

-8

-7

-6

-5

-4

-3

-2

-1

0

1

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance

qL
optL

(c) Laplace

Figure 7.7: Graphical presentation of the Table 7.2. Every point corresponds to the
same total number of samples from the Laplace target distribution.

Chapter 7. Optimal backward kernel 117

7.4.2 Comparison of the SMC sampler with optimal backward Markov

kernel with competitor methodologies

The second part of the evaluation is the comparison of the proposed SMC sampler with

competitor approaches, including the Metropolis adjusted Langevin algorithm (MALA),

the Transitional Markov Chain Monte Carlo (TMCMC), and the SMC sampler using the

traditional backward kernel, Euler proposal, and the recycling method. Two scenarios

of a unimodal (Gaussian) distribution and multimodal (Gaussian mixture) distribution

are examined.

7.4.2.1 Comparison on a unimodal distribution

The first argument is based on the time complexity and parallelisation of the compet-

ing methods. The SMC sampler algorithm is a fully distributed algorithm while the

TMCMC requires sequential computations. For example, in TMCMC, the annealing

schedule and chains update during every iteration is executed sequentially. The parallel

complexity of the TMCMC algorithm is O(N).

The performance of all methods depends on the total number of samples. The num-

ber of iterations in the TMCMC algorithm is fixed (i.e., not a user-defined parameter)

and depends on the simulated annealing (i.e., intermediate distributions until conver-

gence). The number of iterations on the MALA and SMC samplers is a user-defined

parameter. Theoretically, the MALA and SMC sampler using a fixed number of samples

or particles can be executed continuously. For example, consider a Gaussian distribution

with a true mean value of 5 and covariance of 1. We apply both algorithms to generate

samples for estimating the true mean value. In the first case, Figure 7.8, we consider

1000 samples for the TMCMC, while we execute the other algorithms for longer times.

In the SMC samplers, we consider 100 particles in all cases.

Chapter 7. Optimal backward kernel 118

0 20 40 60 80 100

% iterations

-10

-8

-6

-4

-2

0

2

4

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

smc-optL
smcq
mala
tmcmc

(a) TMCMC: 1000 samples, MALA/SMC samplers: 5000 samples

0 20 40 60 80 100

% iterations

-10

-8

-6

-4

-2

0

2

4

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

smc-optL
smcq
mala
tmcmc

(b) TMCMC: 1000 samples, MALA/SMC samplers: 8000 samples

Figure 7.8: Performance comparison of the four methods. We consider 1,000 samples
for the TMCMC algorithm, while for the other methods the algorithms can continue

running independently of the number of initial samples.

The performance of all methods is dependent on the initial proposal. A wider pro-

posal will affect the convergence of all methods as they require more iterations to reach

equilibrium. In such a scenario, the TMCMC algorithm requires more intermediate dis-

tributions until convergence. For instance, consider a Gaussian distribution with a mean

value of 5 and covariance of 1. For the comparison two different initialisation for the

Chapter 7. Optimal backward kernel 119

algorithms: (Case A) Uniformly distributed numbers in the interval (-20, 20), and (Case

B) Uniformly distributed numbers in the interval (2, 8). In the former case, presented in

Figure 7.9, the TMCMC converges after the creation of three intermediate distributions,

while in the later case only one.

0 20 40 60 80 100

% computations

-10

-8

-6

-4

-2

0

2

4
lo

g
m

ea
n

sq
ua

re
d

er
ro

r
(1

00
 M

C
 r

un
s)

Performance Comparison

smc-optL
smcq
mala
tmcmc

(Case A) Samples initialised uniformly in (−20, 20)

0 20 40 60 80 100

% computations

-10

-8

-6

-4

-2

0

2

4

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

smc-optL
smcq
mala
tmcmc

(Case B) Samples initialised uniformly in (2, 8)

Figure 7.9: Performance comparison of the four methods generating 10000 samples
from the posterior. The step size is one in the MALA and SMC sampler algorithms.

Chapter 7. Optimal backward kernel 120

7.4.2.2 Comparison on a bimodal distribution

This simulation runs sampling for estimating the true mean value on a Gaussian mixture.

The two scenarios considered are an equally weighted Gaussian mixture of 0.5N(20, 1)+

0.5N(50, 1) with a true mean value of 35, and a non-equally weighted Gaussian mixture

of 0.8N(20, 1) + 0.2N(50, 1) with true mean value 26. All algorithms generate 10000

samples. The SMC sampler is applied using 100 particles and 100 iterations.

If the distance between the mean values of the two modes is considerable, then the

SMC sampler will fail to converge. More precisely, an unforeseen issue is caused by the

resampling algorithm. The particles from one mode become more dominant than those

of the other mode. After a few iterations, all particles are in one of the two modes. As a

result, the algorithm samples and performs estimations only on this one mode, while the

other mode is ignored. The resampling encountering this issue cannot be avoided as it

provides the solution to the degeneracy phenomenon. Two approaches are proposed as

a solution to the problem, which focus on the proposal during the importance sampling

step of the algorithm.

1. The first approach is named “Fixed” particles (Algorithm 14) where for every

iteration, the state is “fixed” according to the initial proposal distribution. During

the importance sampling step, the particles are located in the two modes.

Algorithm 14 “Fixed” Particles

1: for k do=2:K

2: B User defined integers ε, α and β, where β > α

3: Set xk−1 uniformly in (α, β)

4: xk ∼ q(xk|x(i)
k−1) = N (x

(i)
k−1,
√
ε), with i = 1, . . . , N number of particles

5: q(xk|xk−1) = β ∈ RNx1 (i.e. flat for all particles)

6: ...

7: end for

2. The second approach is the named Particles Grouping where during its second

iteration of the algorithm, it is the same as the “fixed” particles algorithm. At

the end of the second iteration the particles are grouped using k-means. In the

following iterations, particles are generated using the centroids as the mean value

of the heavier-tailed Gaussian distributions. Half of the particles are used to create

a Gaussian with the mean value the first centroid and the other half for the second.

For both solutions, the problem is not solved but hidden. A direct solution to

the problem would require reconsideration of the computation of the resampling algo-

rithm. In Figures 7.10 and 7.12, the performance of the SMC sampler using the differ-

ent methodologies is provided and compared with the TMCMC and MALA algorithms.

Exemplars of the samples generated in the TMCMC, MALA and SMC sampler with

Chapter 7. Optimal backward kernel 121

optimal L-kernel are available in Figures 7.11 and 7.13 for the corresponding Figure 7.10

and 7.12, respectively.

% iterations

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)
Performance Comparison

(a) Initial comparison

% iterations

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

(b) “Fixed” particles method

% iterations

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

(c) Particles Grouping method

Figure 7.10: (a) comparison based on the SMC samplers with optimal backward
Markov kernel, (b) comparison using the “Fixed” particles method and (c) comparison

using the particles grouping method.

Chapter 7. Optimal backward kernel 122

0 2000 4000 6000 8000 10000

iteration

16

18

20

22

24

26

28

30

32

34

36

sa
m

pl
es

MALA

true mean

(a) MALA samples.

0 2000 4000 6000 8000 10000
15

20

25

30

35

40

45

50

55

sa
m

pl
es

TMCMC

true mean

(b) TMCMC samples.

0 20 40 60 80 100
0

10

20

30

40

50

60

sa
m

pl
es

SMC Sampler (Opt.L)

(c) Basic algorithm.

0 20 40 60 80 100
0

10

20

30

40

50

60

sa
m

pl
es

SMC Sampler (Opt.L)

(d) “Fixed” paricles method.

0 20 40 60 80 100
0

10

20

30

40

50

60

sa
m

pl
es

SMC Sampler (Opt.L)

(e) Particles grouping method.

Figure 7.11: Exemplar of the samples generated in a single Monte Carlo run for the
algorithms (a) TMCMC, (b) MALA, (c-e) SMC sampler with optimal L-kernel in the

three different methodologies. See Figure 7.10 for the performance comparison.

Chapter 7. Optimal backward kernel 123

0 20 40 60 80 100

% iterations

-6

-4

-2

0

2

4

6

8

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

smc-optL
smcq
mala
tmcmc

(a) Basic SMC sampler.

0 20 40 60 80 100

% iterations

-6

-4

-2

0

2

4

6

8

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

smc-optL
smcq
mala
tmcmc

(b) “Fixed” particles method.

0 20 40 60 80 100

% iterations

-3

-2

-1

0

1

2

3

4

5

6

7

lo
g

m
ea

n
sq

ua
re

d
er

ro
r

(1
00

 M
C

 r
un

s)

Performance Comparison

smc-optL
smcq
mala
tmcmc

(c) Particles grouping method

Figure 7.12: (a-c) Performance comparison of the 4 methods using different method-
ologies in the SMC samplers.

Chapter 7. Optimal backward kernel 124

0 2000 4000 6000 8000 10000
15

20

25

30

35

40

45

50

55

sa
m

pl
es

TMCMC

true mean

(a) TMCMC samples.

0 2000 4000 6000 8000 10000

iteration

16

17

18

19

20

21

22

23

24

25

26

sa
m

pl
es

MALA

true mean

(b) MALA samples.

0 20 40 60 80 100
0

10

20

30

40

50

60

sa
m

pl
es

SMC Sampler (Opt.L)

(c) Basic SMC sampler.

0 20 40 60 80 100
0

10

20

30

40

50

60

sa
m

pl
es

SMC Sampler (Opt.L)

(d) “Fixed” particles method.

0 20 40 60 80 100
0

10

20

30

40

50

60

sa
m

pl
es

SMC Sampler (Opt.L)

(e) Particles grouping method.

Figure 7.13: Exemplar of the samples generated in a single Monte Carlo run for the
algorithms (a) TMCMC, (b) MALA, (c-e) SMC sampler with optimal L-kernel in the

three different methodologies. See Figure 7.12 for the performance comparison.

7.5 Conclusions

A novel optimal backward kernel was proposed for the SMC sampler, and the perfor-

mance of the new method is compared with the traditional algorithm and competitor

Chapter 7. Optimal backward kernel 125

methods. These simulations demonstrate the potential of the new method and the ben-

efits it offers to the performance of the SMC sampler. Future research will include

a performance comparison on high dimensional spaces and provide methodologies to

overcome the issue in multimodal distributions.

Chapter 8

Conclusions

A new method is proposed to train the Radial Basis Function (RBF) network where the

RBF centres are updated using steps of the importance sampling and resampling. In

the original method, the core algorithm to update the RBF centres is the Metropolis-

Hastings (MH). A comparison of the two methods reveals that the proposed method

does not perform as well as the original algorithm. This result relates to the initial

comparison of the traditional Sequential Monte Carlo (SMC) and Markov chain Monte

Carlo (MCMC) methods, so it is difficult for the original SMC sampler to outperform

the MH algorithm.

Based on the above observations, the research emphasises the accuracy and perfor-

mance improvements of the SMC sampler. The proposed method is fully distributed

with better accuracy over the original SMC sampler. A fully distributed SMC method is

required for two reasons. First, increasing the number of particles leads to a better rep-

resentation of the probability density function and accuracy improvement. As a result,

it needs to use as many particles as possible. Second, increasing the number of particles

leads to increasing the computational time. A detailed analysis of the proposed dis-

tributed method is provided, and the new method was applied in Big Data frameworks

and High Performance Computing (HPC). Future research will focus on the application

of the method in hardware-based implementations.

The accuracy improvement of the original SMC sampler is based on several strate-

gies. First, a new method to combine estimates over multiple iterations (or particles

recycling) was discussed. Second, a strategy to consider more sophisticated proposal

distributions was suggested. In the original algorithm, the proposal density is a random

walk, while better accuracy can be achieved with Langevin-based proposal distributions.

It was observed from the initial comparison of the traditional SMC and MCMC methods

that the Hamiltonian Monte Carlo (HMC) algorithm outperforms all the methodologies

significantly. A future direction will concentrate on the benefits of using Hamiltonian

dynamics as the proposal in the SMC sampler. Finally, a near optimal backward Markov

kernel was applied and compared to the original SMC sampler.

126

Chapter 8. Conclusions 127

Incorporating these strategies together creates the proposed and improved SMC sam-

pler, which was compared with the original algorithm and competitor MCMC method-

ologies.

Appendix A

Parallelising particle filters with

deterministic runtime on

distributed memory systems

A.1 Introduction

In this section, we reformulate the new proposed redistribute algorithm with improved

time complexity (Chapter 4), and the rest of the particle filter components, for the

distributed memory setup. As such, we repeat the experiments from Chapter 4 to

demonstrate this environment is more suitable than MapReduce for the algorithm. In

Section A.2, we describe a distributed memory system followed by the implementation

aspects of these components on distributed memory architectures in Section A.3. Sec-

tion A.5 represents the results and analysis of the implementations with directions for

further research in Section A.6.

A.2 Distributed memory systems

A distributed memory system is constructed from multiple independent computational

nodes interconnected by a high-speed network. Each node is equipped with memory

that is only addressable by the cores or processors within that node. This arrangement

is different to a shared memory system where both computational and memory spaces

are confined to a single node. Accesses to memory spaces, and, thus, to the data by

computational units (or cores) can be local or remote. Remote access to data is facil-

itated by explicitly sending and receiving data, referred to as messages, between the

computational units owning the data. The Message Passing Interface (MPI) provides

the means for handling communication between cores on distributed memory systems

by uniquely identifying the cores through the assignment of unique identifiers, known

as ranks. Such explicit communication and computational models lead to the notion

128

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 129

of data ownership and scalability. However, the disadvantages include the cost of com-

munication and the associated data movements, which may affect the overall speedups,

especially on inefficient implementations.

A.3 MPI particle filter

In this section, we discuss the MPI implementation of the main particle filter compo-

nents. These algorithms are designed for P MPI cores working in parallel. All data

structures, such as the particles, x, the weights, w, and the array of the number of

copies, nCopies, have N elements and are equally distributed over the MPI cores. In

other words, each MPI core is allowed to access n = N
P elements.

A.3.1 MPI cumulative sum

Modern MPI libraries provide a built-in function, called MPI Scan, to perform the

cumulative sum. However, if the number of MPI cores P < N , then each core must

perform a local sequential sum before calling the MPI Scan and the series of subsequent

subtractions.

Pseudocode of the parallel MPI Cumulative Sum is described by Algorithm 15.

We can infer that the time complexity is equal to O
(
N
P + log2 P

)
which converges to

O (log2N) when P = N .

Algorithm 15 MPI Cumulative Sum

Input: N , P , x

Output: y

1: n← N
P

2: local sum← 0

3: for i← 0; i < n; i← i+ 1 do

4: local sum← local sum+ xi

5: end for

6: MPI Scan(local sum, ...)

7: for i← n− 1; i ≥ 0; i← i− 1 do

8: temp← xi

9: yi ← local sum

10: local sum← local sum− temp
11: end for

A.3.2 MPI Bitonic sort

Bitonic sort is one of the fastest parallel sorting algorithms. The achieved time complex-

ity is O
(
N (log2N)2

)
for a single core implementation and O

(
(log2N)2

)
with P = N

processors working in parallel [16]. For our purposes, we need a modified version of

Bitonic sort because, while we sort nCopies, the particles will consequently move.

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 130

The pseudocode for a possible MPI implementation is described by Algorithm 16.

As can be seen, each MPI process selects a new partner during each iteration. Next, the

partners send each other both nCopies and particles as well as locally call the Bitonic

Merge. This means that the number of sent messages is equal to O
(

(log2 P)2
)

.

Algorithm 16 MPI Bitonic Sort

Input: nCopies, x, N , P , rank

Output: nCopies, x

1: n← N
P

2: Serial Bitonic Sort(nCopies, x, n)

3: for i← 2; i ≤ P ; i← 2 · i do

4: up← Direction(rank, i)

5: for j ← 0; j < log2 i; j ← j + 1 do

6: partner ← Partner Calc(rank, i, j)

7: MPI Sendrecv(nCopies, ...)

8: MPI Sendrecv(x, ...)

9: Bitonic Merge(nCopies, x, ..., up, n)

10: end for

11: end for

A.3.3 MPI minimum variance resampling

MVR is the first step of the Multinomial resampling and aims to minimise the ergodic

variance of the new population of particles [67]. To do this, we first calculate the

cumulative sum of the weights in a similar way as described in Section A.3.1. Each

nCopiesi is then calculated independently with a for loop whose iteration space gets

smaller when the number of cores P increases. The overall time complexity is then

equal to O (log2N) when P = N .

Algorithm 17 MPI MVR

Input: N , P , rank, w

Output: nCopies

1: n← N
P

2: if rank == 0 then

3: c0 ← 0

4: end if

5: [c1, ..., cN]← MPI Cumulative Sum(N,P,w)

6: for i← 0; i < n; i← i+ 1 do

7: nCopiesi ← floor
(
ci+1

)
− floor

(
ci
)

8: end for

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 131

A.4 MPI redistribute

In this section, we discuss how to implement on MPI the three Redistribute algorithms

previously considered throughout this thesis.

A.4.1 MPI O(N) redistribute

Algorithm 18 describes a possible implementation of the Redistribute algorithm, which

is called naive implementation in [97].

Since nCopies satisfies the following property:

N−1∑

i=0

nCopiesi = N (A.1)

Algorithm 18 O (N) Redistribute

Input: N , nCopies, x

Output: xnew

1: for j ← 0; j < N ; j ← j + 1 do

2: for k ← 0; k < nCopiesj ; k ← k + 1 do

3: xinew ← xi

4: i← i+ 1

5: end for

6: end for

it can be inferred that Algorithm 18 achieves O (N) time complexity. Although this

algorithm has a very low time constant and is very fast on a single core, it is notoriously

difficult to obtain an efficient parallel implementation. This is because the workload

solely depends on the contents of nCopies, which is runtime dependent. As such, the

workload can become extremely unbalanced depending on the contents of nCopies. On

distributed memory architectures, parallelisation is further complicated by the parti-

tioned memory spaces are. Although MPI-specific techniques, such as all-to-all commu-

nication routines, can be used to provide easier data access across partitions, the time

complexity would still be O (N) even with P = N cores. Furthermore, the runtime

is likely to be worse than a single core implementation with the added communication

costs.

The proposed MPI implementation for this algorithm addressing these issues is de-

scribed in Algorithm 19 and then re-distributes the particles to the other cores. All-to-

one and one-to-all communication routines are necessary to gather and distribute the

particles.

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 132

Algorithm 19 MPI O (N) Redistribute

Input: N , rank, nCopies, x

Output: x

1: MPI Gather(...)

2: if rank == 0 then

3: temp x← O (N) Redistribute(N,nCopies, x)

4: end if

5: MPI Scatter(x, ..., temp x)

A.4.2 MPI O
(
(log2 N)3) redistribute

x0

0

x1

5

x2

0

x3

0

x4

3

x5

0

x6

0

x7

0

x0

0

x2

0

x3

0

x5

0

x6

0

x7

0

x4

3

x1

5

x0

0

x2

0

x1

1

x4

3

x6

0

x7

0

x4

0

x1

4

x1

1

x4

1

x1

0

x4

2

x6

0

x1

2

x4

0

x1

2

x1

1

x4

1

x4

1

x4

1

x1

1

x1

1

x1

1

x1

1

Figure A.1: O
(

(log2N)3
)

Redistribute

Figure A.1 shows an example of the O
(

(log2N)3
)

Redistribute, whose pseudocode is

described by Algorithm 20. Bitonic sort is the first task of every stage of the binary tree.

This step is necessary to divide the workload deterministically since the particles would

be randomly distributed otherwise. The cumulative sum is then performed to calculate

the position of the pivot, which is circled in red in Figure A.1.

The function Distribute splits and distributes the particles on either side of the pivot.

Each core is coupled with another core of the same node. One core acts as a sender,

and its partner acts as a receiver, so that the particles move from the right side to the

left of the node. If nCopies is not sorted, each sender-receiver pair cannot be calculated

deterministically, and this step would take more than O (1) operations.

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 133

In the last step, we call MPI Comm split to generate as many new communicators

as the number of nodes we have in the following stage of the binary tree. This recursive

routine stops when the size of the root node N = n. At this point, each MPI core calls

the O (N) Redistribute locally.

Algorithm 20 MPI O
(

(log2N)3
)

Redistribute

Input: Node = [nCopies, x], N , P , n, rank

Output: x

1: if N == n then

2: x← O (N) Redistribute(n, rank, nCopies, x)

3: return x

4: end if

5: MPI Bitonic Sort(Node,N, P, rank)

6: csum← MPI Cumulative Sum(N,P, nCopies)

7: pivot← Pivot Calc(nCopies, csum)

8: (Leafl, Leafr)← Distribute(Node, csum, pivot)

9: P ← P
2

10: N ← N
2

11: colour ← (int)(rankP)

12: MPI Comm split(..., colour, rank, ...)

13: MPI Comm size(...)

14: MPI Comm rank(...)

15: O
(

(log2N)3
)
Redistribute(Leafl, N, P, n, rank)

16: O
(

(log2N)3
)
Redistribute(Leafr, N, P, n, rank)

A.4.3 MPI O
(
(log2 N)2) redistribute

Figure A.3 shows an example of the O
(

(log2N)2
)

Redistribution applied to the same

of example of Figure A.1 and Algorithm 21 describes the pseudocode.

As stated in previous sections, we only need to sort the particles once before the

algorithm descends the binary tree. In the binary tree phase, Bitonic sort is replaced by

rotational shifts to ensure the workload is still distributed deterministically.

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 134

0 20 40 60 80 100 120 140
#cores

0

5

10

15

20

25

30

35

40

sp
e
e
d
u
p

MPI Bitonic sort - speedup

N= 221

N= 222

N= 223

N= 224

(a) Speedup: MPI-Cumulative Sum

0 20 40 60 80 100 120 140
#cores

0

10

20

30

40

50

60

sp
e
e
d
u
p

MPI Cumulative Sum - speedup

N= 221

N= 222

N= 223

N= 224

(b) Speedup: MPI Bitonic Sort

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 135

0 20 40 60 80 100 120 140
#cores

0

10

20

30

40

50

60

70

80

90

sp
e
e
d
u
p

MPI MVR - speedup

N= 221

N= 222

N= 223

N= 224

(c) Speedup: MPI MVR

Figure A.2: Figures for basic algorithmic components

Table A.1: Tables for basic algorithmic components

(a) Runtimes:

MPI-Cumulative Sum (ms)

P

N

221 222 223 224

1 4.99 10.33 20.97 42.15

2 2.47 5.235 10.78 21.17

4 1.288 2.68 5.426 10.55

8 0.68 1.64 2.636 7.367

16 0.469 0.699 1.421 3.585

32 0.297 0.417 0.828 1.74

64 0.248 0.366 0.547 0.924

128 0.226 0.335 0.47 0.759

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 136

(b) Runtimes: Bitonic Sort

(s)

P

N

221 222 223 224

1 0.854 1.6 3.486 7.573

2 0.432 0.808 1.743 3.728

4 0.284 0.415 0.925 1.994

8 0.171 0.374 0.605 1.28

16 0.073 0.245 0.34 0.721

32 0.038 0.166 0.305 0.457

64 0.032 0.099 0.188 0.374

128 0.022 0.056 0.104 0.357

(c) Runtimes: MVR (s)

P

N

221 222 223 224

1 0.2 0.401 0.802 1.616

2 0.141 0.284 0.572 1.135

4 0.071 0.144 0.283 0.565

8 0.036 0.076 0.142 0.283

16 0.018 0.036 0.08 0.151

32 0.01 0.02 0.048 0.072

64 0.005 0.009 0.02 0.038

128 0.003 0.005 0.01 0.0266

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 137

Algorithm 21 MPI O
(

(log2N)2
)

Redistribute

Input: Node = [nCopies, x], N , P , n, rank

Output: x

1: MPI Bitonic Sort(Node,N, P, rank)

1: procedure BinaryTree(Node,N, P, n, rank)

2: if N == n then

3: x← O (N) Redistribute(n, rank,

nCopies, x)

4: return x

5: end if

6: csum←MPI Cumulative Sum(N,P, nCopies)

7: local pivot← Pivot Calc(nCopies, csum)

8: pivot← MPI Allreduce(P, local pivot, 1, ...)

9: r ← pivot−
(
N
2 − 1

)

10: (Leafl, Leafr)← Rot Shifts(Node, r)

11: P ← P
2

12: N ← N
2

13: colour ← (int)(rankP)

14: MPI Comm split(..., colour, rank, ...)

15: MPI Comm size(...)

16: MPI Comm rank(...)

17: BinaryTree(Leafl, N, P, n, rank)

18: BinaryTree(Leafr, N, P, n, rank)

19: end procedure

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 138

x0

0

x1

5

x2

0

x3

0

x4

3

x5

0

x6

0

x7

0

x0

0

x2

0

x3

0

x5

0

x6

0

x7

0

x4

3

x1

5

x0

0

x2

0

x4

3

x1

1

x6

0

x7

0

x4

0

x1

4

x0

0

x4

2

x4

1

x1

1

x6

0

x1

2

x4

0

x1

2

x4

1

x4

1

x4

1

x1

1

x1

1

x1

1

x1

1

x1

1

Figure A.3: O
(

(log2N)2
)

Redistribute

In the binary tree phase, cumulative sum is still performed stage-by-stage to calculate

the position of the pivot. In this algorithm, it is necessary that all cores know the exact

position of the pivot to calculate the number of rotations, r, that must be performed.

Since the pivot could be located anywhere, we cannot use standard MPI communication

routines, such as MPI Bcast, to broadcast the position of the pivot. We use MPI

Allreduce instead. All cores but one will set the pivot to 0 and the MPI core owning the

actual pivot will add the correct value. Once again, the communicators are split stage-

by-stage until N = n, and each core will perform to linear time for the Redistribute

described by Algorithm 18. Therefore, the binary tree step achieves O
(

(log2N)2
)

time

complexity when P = N .

A.5 Evaluation

These MPI algorithms are tested for N = 221, 222, 223, 224 particles and for up to P = 128

MPI cores (see Table A.4 for the details of the system). All data structures, such as x,

w and nCopies, are equally distributed all over the MPI cores, which means that each

core owns n = N
P particles. We provide results for runtime and speedup for P cores.

A.5.1 Cumulative sum, bitonic sort and MVR

Table A.1 and Figures A.2 show runtimes and speedups for Cumulative sum, Bitonic sort

and MVR respectively. Cumulative Sum has been tested on random arrays of integers.

MVR has been tested on random arrays of normalised floating point numbers which

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 139

represented w. In order to test Bitonic sort, we used a random generator of arrays of

integers which follow Equation A.1 and a random generator of arrays of floating point

numbers to represent nCopies and x respectively. However, the efficiency for P = 128

for Bitonic sort considerably decreases when N goes up, which is probably due to the

higher percentage of cache misses.

A.5.2 Redistribute

Table A.2 and Figures A.7, A.8, A.9 show the results for all the three Redistribute

algorithms we described in Section A.4. These algorithms are tested for the same ran-

dom input. As can be seen, the O (N). Redistribute is very fast for a few cores, but

progressively becomes slower when P increases due to the increasing cost of communica-

tion. The runtimes for both the O
(

(log2N)2
)

and O
(

(log2N)3
)

Redistribute increase

rapidly for P = 2 MPI cores, because neither Bitonic sort nor the binary tree phase

are needed when P = 1. When the number of MPI cores goes up, we can see that

the O
(

(log2N)2
)

Redistribute improves more quickly than the O
(

(log2N)3
)

and it

eventually outperforms the linear time distribution for P = 64 or P = 128 MPI cores,

depending on the dataset size.

Table A.2 indicates that many of the speedups are less than 1, which are not discussed

here. Instead, more relevant results about the overall speedup for the particle filter are

discussed in the following section.

#cores

lo
ga

rit
hm

ic
 r

un
tim

es

Figure A.4: O
(

(log2N)2
)

Redistribute runtimes

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 140

#cores

lo
ga

rit
hm

ic
 r

un
tim

es

Figure A.5: O (N) Redistribute runtimes

#cores

lo
ga

rit
hm

ic
 r

un
tim

es

Figure A.6: O
(

(log2N)3
)

Redistribute runtimes

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 141

Table A.2: Runtimes: Redistribute (s)

N

221 222 223 224

P

1

O
(

(log2N)2
)

0.037 0.076 0.149 0.301

O (N) 0.051 0.106 0.212 0.421

O
(

(log2N)3
)

0.04 0.075 0.154 0.378

2

O
(

(log2N)2
)

0.394 0.891 1.952 4.114

O (N) 0.052 0.107 0.215 0.426

O
(

(log2N)3
)

0.376 0.83 1.765 3.86

4

O
(

(log2N)2
)

0.237 0.528 1.149 2.409

O (N) 0.052 0.108 0.208 0.42

O
(

(log2N)3
)

0.318 0.711 1.579 3.49

8

O
(

(log2N)2
)

0.161 0.373 0.796 1.419

O (N) 0.053 0.106 0.215 0.413

O
(

(log2N)3
)

0.246 0.597 1.175 2.63

16

O
(

(log2N)2
)

0.093 0.214 0.433 0.883

O (N) 0.053 0.107 0.216 0.411

O
(

(log2N)3
)

0.169 0.381 0.812 1.781

32

O
(

(log2N)2
)

0.06 0.198 0.26 0.505

O (N) 0.054 0.105 0.202 0.411

O
(

(log2N)3
)

0.123 0.258 0.546 1.335

64

O
(

(log2N)2
)

0.051 0.082 0.168 0.377

O (N) 0.072 0.122 0.244 0.425

O
(

(log2N)3
)

0.094 0.18 0.376 0.811

128

O
(

(log2N)2
)

0.046 0.064 0.125 0.254

O (N) 0.088 0.138 0.251 0.44

O
(

(log2N)3
)

0.089 0.165 0.324 0.65

A.5.3 Particle filter

In this section, we show the results for three versions of the SIR particle filters on MPI.

Each runtime is taken for ten consecutive time steps, and to compare the algorithms

accurately, we forced the worst case occurring when Redistribute is needed at every time

step. A random Gaussian generator creates the array representing the state x.

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 142

#cores

lo
ga

rit
hm

ic
 r

un
tim

es

Figure A.7: O
(

(log2N)2
)

Particle filter runtimes

#cores

lo
ga

rit
hm

ic
 r

un
tim

es

Figure A.8: O (N) Particle filter runtimes

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 143

#cores

lo
ga

rit
hm

ic
 r

un
tim

es

Figure A.9: O
(

(log2N)3
)

Particle filter runtimes

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 144

Table A.3: Runtimes: Overall Particle Filter (s)

N

221 222 223 224

P

1

O
(

(log2N)2
)

7.617 15.3 30.86 62.57

O (N) 7.733 15.66 32.05 64.64

O
(

(log2N)3
)

7.664 15.35 30.63 61.63

2

O
(

(log2N)2
)

7.456 15.51 33.44 67.9

O (N) 4.468 8.967 18.17 37.7

O
(

(log2N)3
)

7.56 15.28 32.5 71.54

4

O
(

(log2N)2
)

4.234 8.389 17.93 44.2

O (N) 2.422 4.957 9.848 19.35

O
(

(log2N)3
)

10.29 11.05 24.29 50.2

8

O
(

(log2N)2
)

2.304 4.985 10.35 21.62

O (N) 1.422 2.858 5.495 11.23

O
(

(log2N)3
)

6.846 7.319 15.81 34.21

16

O
(

(log2N)2
)

1.369 2.954 6.093 12.78

O (N) 0.903 1.787 3.562 7.295

O
(

(log2N)3
)

4.27 5.192 10.29 21.39

32

O
(

(log2N)2
)

0.765 1.765 4.209 6.946

O (N) 0.755 1.44 2.618 6.513

O
(

(log2N)3
)

1.496 3.154 6.733 13.69

64

O
(

(log2N)2
)

0.619 1.61 2.577 4.269

O (N) 0.749 1.202 2.598 4.204

O
(

(log2N)3
)

1.166 2.166 4.292 9.212

128

O
(

(log2N)2
)

0.46 1.239 1.887 2.829

O (N) 0.876 1.576 2.376 4.429

O
(

(log2N)3
)

1.053 2.106 4.224 8.186

Figures A.4 A.5, A.6 show the runtimes for each methodology on the overall particle

filter. Table A.3 shows the speed of O (N) particle filter improves for a limited number of

cores. This behaviour is because the O (N) Redistribute is faster than other tasks, such

as MVR, when P is low. However, when P is high enough all tasks become faster than

the O (N) Redistribute. At this point, the O (N) Redistribute emerges as the bottleneck

and then the O (N) Particle Filter stops scaling. On the other hand, the O
(

(log2N)2
)

and the O
(

(log2N)3
)

particle filter scale progressively for P > 2 cores. However, the

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 145

most interesting result is that the O
(

(log2N)2
)

Particle Filter is not only faster than

the O
(

(log2N)3
)

Particle Filter but, most importantly, it also outperforms the O (N)

particle filter for P = 64, 128, depending on N . These results prove that MPI is a better

environment than MapReduce for the O
(

(log2N)2
)

Particle Filter. More precisely, the

O
(

(log2N)2
)

particle filter is almost twice as fast as the O (N) particle filter on MPI

for P = 128 cores, while on MapReduce it was much slower for P = 512 cores.

Figure A.10 shows the speedups of the three particle filters for N = 224. The results

for N < 224 are deducible from Table A.3 and are omitted for brevity. Figure A.10

underlines that the O
(

(log2N)2
)

particle filter for P = 128 is up to 22 times faster

than each implementation of the particle filter for 1 core, as the three particle filter

algorithms are equivalent when P = 1.

#cores

sp
ee

du
p

MPI particle filter speedup comparison

Figure A.10: Speedup: MPI particle filter (N = 224)

A.6 Conclusions and future work

In this appendix, we reformulated the particle filter algorithm outlined in [97] for the dis-

tributed memory setup. Our results suggest that a distributed implementation provides

substantial speedups over basic and serial versions. Moreover, speedups and runtimes for

the distributed memory setup are several times better than the results reported for the

MapReduce platform in [97]. This enhancement is because the O
(

(log2N)2
)

particle

filter is better than the O
(

(log2N)3
)

variant, and it can outperform the O (N) variant

for a relatively small number of cores, which does not occur on MapReduce.

The findings presented here are very encouraging. However, the overall particle

filter algorithm, and the components therein can be improved in several ways. One key

Appendix A. Parallelising particle filters with detarministic runtime on distributed
memory systems 146

observation is that the current implementation includes the notion that all processors

or cores are purely distributed. In practice, this scenario is not the case. Instead, cores

are grouped inside a node with node-memory to provide some locality to the cores and

become distributed in space. Such an architectural arrangement can be exploited by

using the shared-memory parallelism within nodes and distributed memory parallelism

across nodes. Another avenue of exploration is to guarantee the performance behaviours

of sorting algorithms. For instance, the Serial Bitonic sort in Algorithm 16 can be

replaced by a better single core sorting algorithm, such as Merge Sort. Another approach

is to engineer these algorithms on novel and upcoming architectures, such as vector

processors and FPGAs.

Table A.4: Details of the Experimental Platform.

OS Linux

Number of Nodes 8

Cores per node 16

RAM 64GB

CPU Core Xeon(R) CPU E5-2660

Clock 2.2GHz

L2 20MB

MPI Version OpenMPI-1.5.3

Interconnect Infiniband – 40Gbps

Appendix B

Variance of an importance

sampler

While derivations of the unbiased nature of importance sampling and its variance ex-

ist, we provide an articulation of a step-by-step argument accessible to an engineering

audience who might otherwise find the statistics somewhat unfamiliar.

B.1 Importance sampling estimator is unbiased

Assume we draw N samples of x from q (x) such that the joint density of the N samples

is q
(
x1:N

)
. We show that f̂ is an unbiased estimate of f̄ , where:

f̄ =

∫
f (x)π (x) dx (B.1)

f̂ =
1

N

N∑

i=1

π
(
xi
)

q(xi)
f(xi) (B.2)

147

Appendix B. Variance of an importance sampler 148

Consider an expectation of f̂ over the density of the samples

Eq(x1:N)

[
f̂
]

= Eq(x1:N)

[
1

N

N∑

i=1

π
(
xi
)

q(xi)
f(xi)

]
(B.3)

=

∫ (
1

N

N∑

i=1

π
(
xi
)

q(xi)
f
(
xi
)
)
q(x1:N)dx1:N (B.4)

=

∫ (
1

N

N∑

i=1

π
(
xi
)

q(xi)
f
(
xi
)
)

N∏

i=1

q
(
xi
)
dx1:N (B.5)

=
1

N

N∑

i=1

∫
π(xi)

q(xi)
f(xi)q(xi)dxi

︸ ︷︷ ︸
=f̄

×

(∫ ∏N
j=1 q(x

j)

q(xi)
dx1 . . . dxi−1dxi+1 . . . dxN

)

︸ ︷︷ ︸
=1

(B.6)

= f̄ (B.7)

We can calculate the normalising constant for the joint density as

c1:k =

∫
π1:k (x1:k) dx1:k =

∫
π1:k (x1:k)

q (x1:k)

q (x1:k)︸ ︷︷ ︸
=1

dx1:k (B.8)

≈
N∑

i=1

π1:k

(
x

(i)
1:k

)

q
(
x

(i)
1:k

) (B.9)

=
N∑

i=1

w
(i)
k (B.10)

which we note is the same as using (5.1) with f (x) = 1. Using (B.10), we can then

define w̃
(i)
k , a normalised weight, as

w̃
(i)
k =

w
(i)
k∑N

j=1w
(j)
k

(B.11)

An estimate based on the normalised weights will, in general, be biased although with

often lower variance than f̂k such that

f̃ =

N∑

i=1

w̃
(i)
k f

(
x

(i)
k

)
6= f̂k (B.12)

Appendix B. Variance of an importance sampler 149

B.2 Variance

We use a similar approach to derive an expression for the variance, σ2, of the estimate

(i.e. the variance associated with f̂) as

σ2 = Eq(x1:N)

[(
f̄ − f̂

)2
]

(B.13)

= Eq(x1:N)

[
f̄2 − 2f̂ f̄ + f̂2

]
(B.14)

= f̄2 − 2Eq(x1:N)

[
f̂
]
f̄ + Eq(x1:N)

[
f̂2
]

(B.15)

= f̄2 − 2f̄2 + Eq(x1:N)

[
f̂2
]

(B.16)

= Eq(x1:N)

[
f̂2
]
− f̄2 (B.17)

=

∫ (
1

N

N∑

i=1

π
(
xi
)

q(xi)
f(xi)

)2

q(x1:N)dx1:N − f̄2 (B.18)

=

∫ (
1

N

N∑

i=1

π
(
xi
)

q(xi)
f(xi)

)2 N∏

i=1

q
(
xi
)
dx1:N − f̄2 (B.19)

=

∫
1

N

N∑

i=1,i 6=j

N∑

j=1

π
(
xi
)

q(xi)
f(xi)

π
(
xi
)

q(xj)
f(xj) +

N∑

i=1

π
(
xi
)2

q(xi)2
f(xi)2

N∏

i=1

q
(
xi
)
dx1:N − f̄2 (B.20)

=
1

N2

N∑

i=1,i 6=j

N∑

j=1

∫
π(xi)

q(xi)
f(xi)q(xi)dxi

︸ ︷︷ ︸
=f̄

∫
π(xj)

q(xj)
f(xj)q(xj)dxj

︸ ︷︷ ︸
=f̄

+

N∑

i=1

∫
π(xi)2

q(xi)2
f(xi)2q(xi)dxi

− f̄2 (B.21)

=
1

N2

(
(
N2 −N

)
f̄2 +

N∑

i=1

∫
π
(
xi
)2

q(xi)
f(xi)2dxi

)
− f̄2 (B.22)

=
1

N2

(
N∑

i=1

[∫
π
(
xi
)2

q(xi)
f(xi)2dxi − f̄2

])
(B.23)

This derivation illustrates that any freedom to define π (x) and q (x) can be used to

reduce the variance, σ2.

Appendix B. Variance of an importance sampler 150

B.3 The need for heavy tails

Indeed, we can go further with this derivation by considering

σ2 <
1

N2

N∑

i=1

∫
cπ
(
xi
)
f(xi)2dxi

︸ ︷︷ ︸
cE[f(x)2]

(B.24)

=
c

N
E
[
f (x)2

]
(B.25)

where we assume that π(x)
q(x) > c. This argument explains why the variance of the impor-

tance sampling estimator scales as 1
N for whatever dimensionality of the space x lives.

However, the need to define c means that we need to ensure that, for all values of x

it hold that π(x)
q(x) > c. Considering what happens as x tends to ∞, it is clear that for

c to be finite, we need π (x) to approach zero quicker than q (x). This behaviour will

only occur if q (x) is heavier tailed than π (x). Hence, the bound on the variance (ie the

accuracy) of an estimate derived from using importance sampling will only get better

with larger N if the proposal, q (x), is heavier tailed than the target, π (x).

Bibliography

[1] A. Y. Ng, https://www.coursera.org/learn/machine-learning, 2012, [Online;

accessed 29-Jan.-2019].

[2] Apache Hadoop, http://hadoop.apache.org, 2016, [Online; accessed 19-Mar.-

2018].

[3] Apache Mahout, http://mahout.apache.org, 2016, [Online; accessed 19-Mar.-

2018].

[4] Apache Pig and Latin, http://pig.apache.org, 2016, [Online; accessed 19-Mar.-

2018].

[5] Apache Spark, http://spark.apache.org, 2016, [Online; accessed 19-Mar.-2018].

[6] Apache Storm, http://storm.apache.org, 2016, [Online; accessed 19-Mar.-2018].

[7] Particle Filter Repository, https://github.com/particlefilter/mrpf, 2017,

[Online; accessed 19-Mar.-2018].

[8] M. A. Carreira-Perpinan and G. E. Hinton, On contrastive divergence learning, 01

2005.

[9] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, A learning algorithm for Boltz-

mann machines, Cognitive Science 9 (1985), no. 1, 147 – 169.

[10] C. Andrieu, N. de Freitas, and A. Doucet, Robust Full Bayesian Learning for

Radial Basis Networks, Neural computation 13 10 (2001), 2359–407.

[11] G. Arampatzis, D. Wälchli, P. Angelikopoulos, S. Wu, and P. Koumoutsakos,

Langevin Diffusion Transitional Markov Chain Monte Carlo with an Application

to Pharmacodynamics, arXiv:1610.05660 (2016).

[12] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutorial on particle

filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Transactions

on Signal Processing 50 (2002), no. 2, 174–188.

[13] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,

N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, A View

151

https://www.coursera.org/learn/machine-learning
http://hadoop.apache.org
http://mahout.apache.org
http://pig.apache.org
http://spark.apache.org
http://storm.apache.org
https://github.com/particlefilter/mrpf

Bibliography 152

of the Parallel Computing Landscape, Communications of the ACM 52 (2009),

no. 10, 56–67.

[14] F. Bai and X. Hu, Cloud MapReduce for particle filter-based data assimilation for

wildfire spread simulation, Simulation Series 45 (2013).

[15] A. S. Bashi, V. P. Jilkov, X. R. Li, and H. Chen, Distributed implementations

of particle filters, Sixth International Conference of Information Fusion 2 (2003),

1164–1171.

[16] K. E. Batcher, Sorting Networks and Their Applications, Proceedings of the Spring

Joint Computer Conference, AFIPS ’68 (Spring), ACM, 1968, pp. 307–314.

[17] Y. Bengio, Learning Deep Architectures for AI, Found. Trends Mach. Learn. 2

(2009), no. 1, 1–127.

[18] J. Bergstra and Y. Bengio, Random Search for Hyper-parameter Optimization, J.

Mach. Learn. Res. 13 (2012), 281–305.

[19] W. Betz, I. Papaioannou, and D. Straub, Transitional Markov Chain Monte Carlo:

Observations and Improvements, Journal of Engineering Mechanics 142 (2016),

no. 5, 04016016.

[20] G. E. Blelloch, Prefix Sums and Their Applications, (1990), no. CMU-CS-90-190.

[21] M. Bolic, P. M. Djuric, and S. Hong, Resampling Algorithms and Architectures for

Distributed particle Filters, IEEE Transactions on Signal Processing 53 (2005),

no. 7, 2442–2450.

[22] B. Casella, G. Roberts, and O. Stramer, Stability of Partially Implicit Langevin

Schemes and Their MCMC Variants, Methodology and Computing in Applied

Probability 13 (2011), no. 4, 835–854.

[23] T. Chen, E. B. Fox, and C. Guestrin, Stochastic gradient Hamiltonian Monte

Carlo, 31st International Conference on Machine Learning, ICML 2014 5 (2014),

3663–3676.

[24] J. Ching and Y. Chen, Transitional Markov Chain Monte Carlo Method for

Bayesian Model Updating, Model Class Selection, and Model Averaging, Journal

of Engineering Mechanics 133 (2007), no. 7, 816–832.

[25] D. Creal, A Survey of Sequential Monte Carlo Methods for Economics and Finance,

Econometric Reviews 31 (2012), no. 3, 245–296.

[26] G. Dahl, H. Larochelle, and R. P. Adams, Training Restricted Boltzmann Ma-

chines on Word Observations, Proceedings of the 29th International Conference

on Machine Learning (ICML-12) (2012), 679–686.

Bibliography 153

[27] A. S. Dalalyan, Theoretical guarantees for approximate sampling from smooth and

log-concave densities, Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 79 (2017), no. 3, 651–676.

[28] J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on Large Clus-

ters, Communications of the ACM 51 (2008), no. 1, 107–113.

[29] P. Del Moral, A. Doucet, and A. Jasra, Sequential Monte Carlo samplers, Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 68 (2006),

no. 3, 411–436.

[30] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid Monte Carlo,

Physics Letters B 195 (1987), no. 2, 216 – 222.

[31] A. Durmus, G. O. Roberts, G. Vilmart, and K. C. Zygalakis, Fast Langevin based

algorithm for MCMC in high dimensions, Annals of Applied Probability 27 (2017),

no. 4, 2195–2237.

[32] A. Eberle, Error bounds for Metropolis–Hastings algorithms applied to perturba-

tions of Gaussian measures in high dimensions, The Annals of Applied Probability

24 (2014), no. 1, 337–377.

[33] A. Fischer and C. Igel, An Introduction to Restricted Boltzmann Machines,

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Appli-

cations: 17th Iberoamerican Congress, CIARP (2012), 14–36.

[34] J. Geweke and G. Durham, Massively Parallel Sequential Monte Carlo for

Bayesian Inference, SSRN Electronic Journal (2011).

[35] M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian

Monte Carlo methods, Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 73 (2011), no. 2, 123–214.

[36] P. Gong, Y. O. Basciftci, and F. Ozguner, A Parallel Resampling Algorithm for

particle Filtering on Shared-Memory Architectures, IEEE 26th International Par-

allel and Distributed Processing Symposium Workshops PhD Forum (2012), 1477–

1483.

[37] P. L. Green and S. Maskell, Estimating the parameters of dynamical systems from

Big Data using Sequential Monte Carlo samplers, Mechanical Systems and Signal

Processing 93 (2017), 379 – 396.

[38] P. L. Green and K. Worden, Bayesian and Markov chain Monte Carlo methods for

identifying nonlinear systems in the presence of uncertainty, Philosophical Trans-

actions Of The Royal Society A - Mathematical Physical And Engineering Sciences

373 (2015), no. 2051.

Bibliography 154

[39] W. G. Hatcher and W. Yu, A survey of deep learning: Platforms, applications and

emerging research trends, IEEE Access 6 (2018), 24411–24432.

[40] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall PTR

(1998).

[41] G. Hendeby, R. Karlsson, and F. Gustafsson, Particle Filtering: The Need for

Speed, EURASIP Journal of Advances in Signal Processing 2010 (2010), 1–9.

[42] C. Herath and B. Plale, Streamflow Programming Model for Data Streaming in

Scientific Workflows, CCGRID, IEEE Computer Society, 2010, pp. 302–311.

[43] M. D. Hill, What is Scalability?, SIGARCH Comp. Arch. News 18 (1990), no. 4,

18–21.

[44] G. E. Hinton, Boltzmann Machines, Scholarpedia (2007).

[45] G. E. Hinton, S. Osindero, and Y. Teh, A Fast Learning Algorithm for Deep Belief

Nets, Neural Comput. 18 (2006), no. 7, 1527–1554.

[46] C. A. R. Hoare, Algorithm 64: Quicksort, Communications of the ACM 4 (1961),

no. 7, 321.

[47] J. D. Hol, T. B. Schon, and F. Gustafsson, On Resampling Algorithms for particle

Filters, IEEE Nonlinear Statistical Signal Processing Workshop (2006), 79–82.

[48] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural

Networks 4 (1991), no. 2, 251 – 257.

[49] K. Hwang and W. Sung, Load Balanced Resampling for Real-Time particle Filter-

ing on Graphics Processing Units, Transactions in Signal Processing 61 (2013),

no. 2, 411–419.

[50] K. Ito, D. W. Stroock, and S. R. S. Varadhan, Kiyosi Ito selected papers / edited by

Daniel W. Stroock, S. R. S. Varadhan, SERBIULA (sistema Librum 2.0) (2017).

[51] K. E. Iverson, A Programming Language, John Wiley & Sons, Inc., New York,

NY, USA, 1962.

[52] V. P. Jilkov and J. Wu, Implementation and performance of a parallel multitarget

tracking particle filter, 14th International Conference on Information Fusion, July

2011, pp. 1–8.

[53] Sharon Khan and Andy M. Reynolds, Derivation of a fokker–planck equation for

generalized langevin dynamics, Physica A: Statistical Mechanics and its Applica-

tions 350 (2005), no. 2, 183 – 188.

[54] J. H. Kotecha and P. M. Djuric, Gaussian particle filtering, IEEE Transactions on

Signal Processing 51 (2003), no. 10, 2592–2601.

Bibliography 155

[55] Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature (2015), no. 7553.

[56] T. Li, M. Bolic, and P. M. Djuric, Resampling Methods for particle Filtering:

Classification, implementation, and strategies, IEEE Signal Processing Magazine

32 (2015), no. 3, 70–86.

[57] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian,

J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sánchez, A survey on deep

learning in medical image analysis, Medical Image Analysis 42 (2017), 60 – 88.

[58] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale

optimization, Mathematical Programming 45 (1989), no. 1, 503–528.

[59] J. S. Liu, Metropolized independent sampling with comparisons to rejection sam-

pling and importance sampling, Statistics and Computing 6 (1996), no. 2, 113–119.

[60] J. S. Liu and R. Chen, Sequential Monte Carlo Methods for Dynamic Systems,

Journal of the American Statistical Association 93 (1998), no. 443, 1032–1044.

[61] K. Liu, L. Tang, S. Li, L. Wang, and W. Liu, Parallel particle filter algorithm

in face tracking, IEEE International Conference on Multimedia and Expo (2009),

1817–1820.

[62] S. Liu, G. Mingas, and C. S. Bouganis, Parallel resampling for particle filters

on FPGAs, International Conference on Field-Programmable Technology (FPT)

(2014), 191–198.

[63] F. Lopez, L. Zhang, A. Mok, and J. Beaman, particle filtering on GPU archi-

tectures for manufacturing applications, Computers in Industry 71 (2015), 116 –

127.

[64] T. Lux, Estimation of agent-based models using sequential Monte Carlo methods,

Journal of Economic Dynamics and Control (2017), no. 2017-07.

[65] T. Marshall and G. Roberts, An Adaptive Approach to Langevin MCMC, Statistics

and Computing 22 (2012), no. 5, 1041–1057.

[66] S. Maskell, An application of Sequential Monte Carlo samplers: An alternative to

particle filters for non-linear non-Gaussian sequential inference with zero process

noise, 9th IET Data Fusion Target Tracking Conference: Algorithms Applications

(2012), 1–8.

[67] S. Maskell, B. Alun-Jones, and M. Macleod, A Single Instruction Multiple Data

particle Filter, IEEE Nonlinear Statistical Signal Processing Workshop (2006),

51–54.

Bibliography 156

[68] S. Maskell and S. Julier, Optimised proposals for improved propagation of multi-

modal distributions in particle filters, Proceedings of the 16th International Con-

ference on Information Fusion (2013), 296–303.

[69] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

Equation of State Calculations by Fast Computing Machines, The Journal of

Chemical Physics 21 (1953), no. 6, 1087–1092.

[70] L. Miao, J. J. Zhang, C. Chakrabarti, and A. Papandreou-Suppappola, A new

parallel implementation for particle filters and its application to adaptive waveform

design, IEEE Workshop On Signal Processing Systems (2010), 19–24.

[71] A. Mnih and K. Gregor, Neural Variational Inference and Learning in Belief Net-

works, Proceedings of the 31st International Conference on International Confer-

ence on Machine Learning - Volume 32 (2014), II–1791–II–1799.

[72] P. Del Moral, A. Doucet, and A. Jasra, Sequential Monte Carlo samplers, Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 68 (2006),

no. 3, 411–436.

[73] L. M. Murray, A. Lee, and P. E. Jacob, Parallel resampling in the particle filter,

Journal of Computational and Graphical Statistics 25 (2016), no. 3, 789–805.

[74] V. Nair and G. E. Hinton, 3D Object Recognition with Deep Belief Nets, Advances

in Neural Information Processing Systems 22 (Y. Bengio, D. Schuurmans, J. D.

Lafferty, C. K. I. Williams, and A. Culotta, eds.), Curran Associates, Inc., 2009,

pp. 1339–1347.

[75] R. M. Neal, Connectionist Learning of Belief Networks, Artif. Intell. 56 (1992),

no. 1, 71–113.

[76] R. M. Neal, MCMC Using Hamiltonian Dynamics, Handbook of Markov Chain

Monte Carlo 54 (2010), no. 3, 113–162.

[77] A. Ng, J. Ngiam, C. Y. Foo, Y. Mai, and C. Suen, UFLDL Tutorial, (2010).

[78] T. L. T. Nguyen, F. Septier, G. W. Peters, and Y. Delignon, Efficient Sequen-

tial Monte-Carlo Samplers for Bayesian Inference, IEEE Transactions on Signal

Processing 64 (2016), no. 5, 1305–1319.

[79] T. Ozaki, A bridge between nonlinear time series models and nonlinear stochastic

dynamical systems: a local linearization approach, Statistica Sinica (1992), 113–

135.

[80] G. Panis and A. Lanitis, An Overview of Research Activities in Facial Age Estima-

tion Using the FG-NET Aging Database, Computer Vision - ECCV 2014 Work-

shops: Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part II

(2014), 737–750.

Bibliography 157

[81] G. Pavliotis, Stochastic Processes and Applications: Diffusion Processes, the

Fokker-Planck and Langevin Equations, (2014), 87–137.

[82] J. E. Pow, N. and L. Liu, Applied Machine Learning Project for Prediction of real

estate property prices in Montreal, (2014).

[83] Matthew T. Pratola, Efficient metropolis–hastings proposal mechanisms for

bayesian regression tree models, Bayesian Anal. 11 (2016), no. 3, 885–911.

[84] G. R. Price, Extension of covariance selection mathematics, Annals of human

genetics 35 (1972), no. 4, 485–490.

[85] A. A. A. Rahni, E. Lewis, M. J. Guy, B. Goswami, and K. Wells, Performance eval-

uation of a particle filter framework for respiratory motion estimation in Nuclear

Medicine imaging, IEEE Nuclear Science Symposium Medical Imaging Conference

(2010), 2676–2680.

[86] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, Big Data Analytics in the Cloud:

Spark on Hadoop vs MPI/OpenMP on Beowulf, Procedia Computer Science 53

(2015), 121–130.

[87] G. O. Roberts and J. S. Rosenthal, Complexity bounds for Markov chain Monte

Carlo algorithms via diffusion limits, Journal of Applied Probability 53 (2016),

no. 2, 410–420.

[88] Gareth O. Roberts and Richard L. Tweedie, Exponential convergence of langevin

distributions and their discrete approximations, Bernoulli 2 (1996), no. 4, 341–363.

[89] Sebastian Ruder, An overview of gradient descent optimization algorithms., CoRR

abs/1609.04747 (2016).

[90] M. Schroeck, R. Shockley, J. Smart, D. Romero-Morales, and P. Tufano, Analytics:

The Real-world Use of Big data, IBM Institute for Business Value, IBM Institute

for Business Value - Executive Report (2012).

[91] F. Schwiegelshohn, E. Ossovski, and M. Hübner, A Fully Parallel particle Filter

Architecture for FPGAs, pp. 91–102, Springer, 2015.

[92] M. Shabany and P. G. Gulak, An efficient architecture for distributed resampling

for high-speed particle filtering, 2006 IEEE International Symposium on Circuits

and Systems (2006), 4 pp.–3425.

[93] G. S. Simões, J. Wehrmann, R. C. Barros, and D. D. Ruiz, Movie genre classi-

fication with Convolutional Neural Networks, International Joint Conference on

Neural Networks (IJCNN) (2016), 259–266.

[94] D. Singh and C. K. Reddy, A survey on platforms for big data analytics, Journal

of Big Data 2 (2014), no. 1, 1–20.

Bibliography 158

[95] S. Sutharsan, T. Kirubarajan, T. Lang, and M. McDonald, An optimization-based

parallel particle filter for multitarget tracking, IEEE Transactions on Aerospace

and Electronic Systems 48 (2012), no. 2, 1601–1618, cited By 25.

[96] A. Tahara, Y. Hayashida, T. T. Thu, Y. Shibata, and K. Oguri, FPGA-based Real-

Time Object Tracking Using a particle Filter with Stream Architecture, 2016 Fourth

International Symposium on Computing and Networking (CANDAR) (2016), 422–

428.

[97] J. Thiyagalingam, L. Kekempanos, and S. Maskell, MapReduce particle filtering

with exact resampling and deterministic runtime, EURASIP Journal on Advances

in Signal Processing 2017 (2017), no. 1, 71.

[98] A. H. Thiéry, A. M. Stuart, and N. S. Pillai, Optimal scaling and diffusion limits

for the Langevin algorithm in high dimensions, The Annals of Applied Probability

22 (2012), no. 6, 2320–2356.

[99] S. Thrun, Particle Filters in Robotics, Proceedings of the Eighteenth Conference

on Uncertainty in Artificial Intelligence, UAI’02, 2002, pp. 511–518.

[100] Don van Ravenzwaaij, Pete Cassey, and Scott D. Brown, A simple introduction to

Markov Chain Monte–Carlo sampling, Psychonomic Bulletin & Review 25 (2018),

no. 1, 143–154.

[101] A. Varsi, L. Kekempanos, J. Thiyagalingam, and S. Maskell, Parallelising particle

Filtering for Deterministic Runtimes on Distributed Memory Systems, IET 3rd

International Conference on Intelligent Signal Processing (ISP) (2017).

[102] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol, Stacked De-

noising Autoencoders: Learning Useful Representations in a Deep Network with a

Local Denoising Criterion, J. Mach. Learn. Res. 11 (2010), 3371–3408.

[103] H. Wang, X. Qin, X. Zhou, F. Li, Z. Qin, Q. Zhu, and S. Wang, Efficient Query

Processing Framework for Big data Warehouse: An Almost Join-Free Approach,

Frontiers of Computer Science 9 (2015), no. 2, 224–236.

[104] M. Welling and Y. Teh, Bayesian Learning via Stochastic Gradient Langevin Dy-

namics, (2011), 681–688.

[105] Y. Wu, J. Wang, and Y. Cao, Particle filter based on iterated importance density

function and parallel resampling, Journal of Central South University 22 (2015),

no. 9, 3427–3439.

[106] J. Yosinski and H. Lipson, Visually Debugging Restricted Boltzmann Machine

Training with a 3D Example, (2012).

[107] T. Young, D. Hazarika, S. Poria, and E. Cambria, Recent Trends in Deep Learning

Based Natural Language Processing, CoRR abs/1708.02709 (2017).

Bibliography 159

[108] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin,

S. Shenker, and I. Stoica, Resilient Distributed Datasets: A Fault-tolerant Abstrac-

tion for In-memory Cluster Computing, Ninth USENIX Symposium on Networked

Systems Design and Implementation (NSDI 12) (San Jose, CA), USENIX, 2012,

pp. 15–28.

[109] J. Zhu, J. Chen, W. Hu, and B. Zhang, Big Learning with Bayesian methods,

National Science Review 4 (2017), no. 4, 627–651.

[110] R. Zhu, Y. Long, Y. Zeng, and W. An, Parallel particle PHD filter implemented

on multicore and cluster systems, Signal Processing 127 (2016), 206 – 216.

[111] R. Zwanzig, Nonequilibrium statistical mechanics , (2001) (English), Includes

index.

	Abbreviations
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Overview
	1.2 Contributions
	1.3 Outline

	2 Bayesian inference and Markov chain Monte Carlo methods
	2.1 Introduction
	2.2 Bayesian inference
	2.3 Markov chain Monte Carlo methods
	2.3.1 Metropolis-Hastings
	2.3.2 Hamiltonian Monte Carlo
	2.3.3 Transitional Markov chain Monte Carlo

	2.4 Sequential Monte Carlo methods
	2.4.1 Sequential Monte Carlo samplers
	2.4.1.1 Initialisation and posterior distribution
	2.4.1.2 Proposal distribution and importance weights
	2.4.1.3 Degeneracy phenomenon and effective sample size
	2.4.1.4 SMC samplers emulate MCMC
	2.4.1.5 Estimation

	2.4.2 Particle filters
	2.4.2.1 Sequential importance resampling

	2.5 Sampling experiments
	2.6 Conclusions

	3 Background on traditional deep learning algorithms and a new method to train the Radial Basis Function network
	3.1 Introduction
	3.2 Background on deterministic and stochastic deep learning methods
	3.2.1 The stacked autoencoder
	3.2.2 The Deep Belief Network
	3.2.2.1 Restricted Boltzmann machine
	3.2.2.2 Deep Belief Network

	3.2.3 Face age classification
	3.2.3.1 Preprocessing the FG-Net aging database
	3.2.3.2 FG-Net aging database classification with deep learning

	3.3 Replacing the Metropolis-Hastings with importance sampling and resampling on the Radial Basis Function network
	3.3.1 Model description
	3.3.2 Bayesian aims using the hybrid MCMC
	3.3.3 Proposed method on the RBF
	3.3.4 Signal detection experiments

	3.4 Conclusions

	4 Parallel sequential Monte Carlo methods
	4.1 Introduction
	4.2 Review on parallel resampling
	4.3 MapReduce particle filtering with exact resampling and deterministic runtime
	4.3.1 Introduction
	4.3.2 Big data processing
	4.3.2.1 Big data frameworks
	4.3.2.2 The MapReduce programming model
	4.3.2.2.1 Hadoop
	4.3.2.2.2 Spark

	4.3.3 Parallel particle filtering
	4.3.3.1 Parallel instantiations of the algorithmic components of particle filtering
	4.3.3.1.1 Element-wise operations
	4.3.3.1.2 Rotation
	4.3.3.1.3 Sum, max and other commutative operations
	4.3.3.1.4 Cumulative sum
	4.3.3.1.5 Normalising the weights
	4.3.3.1.6 Minimum Variance Resampling
	4.3.3.1.7 Sorting
	4.3.3.1.8 Redistribution: Original version
	4.3.3.1.9 Redistribution: Improved version

	4.3.4 Mapping particle filtering into MapReduce
	4.3.5 Evaluation
	4.3.5.1 Worst case runtime performance
	4.3.5.1.1 Baseline redistribution algorithm
	4.3.5.1.2 Runtime performance and variability

	4.3.5.2 Overall profile
	4.3.5.3 Comparison of Hadoop and Spark
	4.3.5.3.1 Sum and Cumulative Sum
	4.3.5.3.2 Bitonic sort and Minimum Variance Resampling
	4.3.5.3.3 Redistribution and overall performance

	4.3.5.4 Impact of using multiple cores
	4.3.5.4.1 Redistribution component in isolation
	4.3.5.4.2 Resulting overall particle filter performance

	4.3.5.5 Speedup and scalability analysis
	4.3.5.5.1 Redistribution component in isolation
	4.3.5.5.2 Resulting overall particle filter performance

	4.3.6 Discussion
	4.3.7 Summary

	4.4 Conclusions

	5 Efficient particles recycling
	5.1 Introduction
	5.2 Estimation methodologies
	5.2.1 Basic method
	5.2.2 Existing method
	5.2.3 New method

	5.3 Simulations
	5.3.1 N-dimensional Gaussian distribution
	5.3.2 N-dimensional Student's t distribution
	5.3.3 N-dimensional Ackley function

	5.4 Conclusions

	6 Selecting the forward Markov kernel
	6.1 Introduction
	6.2 Langevin diffusion
	6.2.1 Fokker-Plank equation
	6.2.2 Discrete time Langevin diffusion

	6.3 Simulations
	6.3.1 One dimensional static distributions
	6.3.2 N-dimensional Gaussian distribution
	6.3.3 N-dimensional Student's t distribution
	6.3.4 N-dimensional Laplace distribution

	6.4 Conclusions

	7 Optimal backward kernel
	7.1 Introduction
	7.2 Optimal backward Markov kernel
	7.3 Near optimal backward Markov kernel
	7.3.1 Parametric estimation of the joint density
	7.3.2 Baseline method
	7.3.3 Avoiding resampling errors

	7.4 Simulation results
	7.4.1 Comparison of SMC sampler with optimal and basic backward Markov kernels
	7.4.2 Comparison of the SMC sampler with optimal backward Markov kernel with competitor methodologies
	7.4.2.1 Comparison on a unimodal distribution
	7.4.2.2 Comparison on a bimodal distribution

	7.5 Conclusions

	8 Conclusions
	A Parallelising particle filters with deterministic runtime on distributed memory systems
	A.1 Introduction
	A.2 Distributed memory systems
	A.3 MPI particle filter
	A.3.1 MPI cumulative sum
	A.3.2 MPI Bitonic sort
	A.3.3 MPI minimum variance resampling

	A.4 MPI redistribute
	A.4.1 MPI O(N) redistribute
	A.4.2 MPI O((log2N)3) redistribute
	A.4.3 MPI O((log2N)2) redistribute

	A.5 Evaluation
	A.5.1 Cumulative sum, bitonic sort and MVR
	A.5.2 Redistribute
	A.5.3 Particle filter

	A.6 Conclusions and future work

	B Variance of an importance sampler
	B.1 Importance sampling estimator is unbiased
	B.2 Variance
	B.3 The need for heavy tails

	Bibliography

