
Parallelised Bayesian Optimisation for Deep Learning

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor of Philosophy by

Lykourgos Kekempanos

January 29, 2019

Contents

Abbreviations xi

Abstract xiii

Acknowledgements xiv

1 Introduction 1

1.1 Overview . 1

1.2 Contributions . 3

1.3 Outline . 4

2 Bayesian inference and Markov chain Monte Carlo methods 6

2.1 Introduction . 6

2.2 Bayesian inference . 6

2.3 Markov chain Monte Carlo methods . 7

2.3.1 Metropolis-Hastings . 7

2.3.2 Hamiltonian Monte Carlo . 9

2.3.3 Transitional Markov chain Monte Carlo 10

2.4 Sequential Monte Carlo methods . 13

2.4.1 Sequential Monte Carlo samplers 13

2.4.1.1 Initialisation and posterior distribution 13

2.4.1.2 Proposal distribution and importance weights 13

2.4.1.3 Degeneracy phenomenon and e�ective sample size 14

2.4.1.4 SMC samplers emulate MCMC 14

2.4.1.5 Estimation . 14

2.4.2 Particle �lters . 15

2.4.2.1 Sequential importance resampling 15

2.5 Sampling experiments . 17

2.6 Conclusions . 18

3 Background on traditional deep learning algorithms and a new method
to train the Radial Basis Function network 20

3.1 Introduction . 20

3.2 Background on deterministic and stochastic deep learning methods 21

3.2.1 The stacked autoencoder . 22

3.2.2 The Deep Belief Network . 23

i

3.2.2.1 Restricted Boltzmann machine 23

3.2.2.2 Deep Belief Network . 26

3.2.3 Face age classi�cation . 26

3.2.3.1 Preprocessing the FG-Net aging database 26

3.2.3.2 FG-Net aging database classi�cation with deep learning . 29

3.3 Replacing the Metropolis-Hastings with importance sampling and resam-
pling on the Radial Basis Function network 34

3.3.1 Model description . 35

3.3.2 Bayesian aims using the hybrid MCMC 36

3.3.3 Proposed method on the RBF . 39

3.3.4 Signal detection experiments . 40

3.4 Conclusions . 43

4 Parallel sequential Monte Carlo methods 45

4.1 Introduction . 45

4.2 Review on parallel resampling . 46

4.3 MapReduce particle �ltering with exact resampling and deterministic run-
time . 49

4.3.1 Introduction . 49

4.3.2 Big data processing . 50

4.3.2.1 Big data frameworks . 50

4.3.2.2 The MapReduce programming model 51

4.3.2.2.1 Hadoop . 52

4.3.2.2.2 Spark . 52

4.3.3 Parallel particle �ltering . 52

4.3.3.1 Parallel instantiations of the algorithmic components of
particle �ltering . 53

4.3.3.1.1 Element-wise operations 53

4.3.3.1.2 Rotation . 54

4.3.3.1.3 Sum, max and other commutative operations . . 54

4.3.3.1.4 Cumulative sum 55

4.3.3.1.5 Normalising the weights 55

4.3.3.1.6 Minimum Variance Resampling 55

4.3.3.1.7 Sorting . 56

4.3.3.1.8 Redistribution: Original version 58

4.3.3.1.9 Redistribution: Improved version 60

4.3.4 Mapping particle �ltering into MapReduce 60

4.3.5 Evaluation . 61

4.3.5.1 Worst case runtime performance 62

4.3.5.1.1 Baseline redistribution algorithm 62

4.3.5.1.2 Runtime performance and variability 63

4.3.5.2 Overall pro�le . 67

4.3.5.3 Comparison of Hadoop and Spark 68

4.3.5.3.1 Sum and Cumulative Sum 68

4.3.5.3.2 Bitonic sort and Minimum Variance Resampling 69

4.3.5.3.3 Redistribution and overall performance 71

4.3.5.4 Impact of using multiple cores 72

ii

4.3.5.4.1 Redistribution component in isolation 72
4.3.5.4.2 Resulting overall particle �lter performance . . . 74

4.3.5.5 Speedup and scalability analysis 75
4.3.5.5.1 Redistribution component in isolation 75
4.3.5.5.2 Resulting overall particle �lter performance . . . 78

4.3.6 Discussion . 81
4.3.7 Summary . 82

4.4 Conclusions . 83

5 E�cient particles recycling 84
5.1 Introduction . 84
5.2 Estimation methodologies . 84

5.2.1 Basic method . 84
5.2.2 Existing method . 85
5.2.3 New method . 86

5.3 Simulations . 87
5.3.1 N -dimensional Gaussian distribution 89
5.3.2 N -dimensional Student's t distribution 91
5.3.3 N -dimensional Ackley function . 93

5.4 Conclusions . 94

6 Selecting the forward Markov kernel 95
6.1 Introduction . 95
6.2 Langevin di�usion . 96

6.2.1 Fokker-Plank equation . 96
6.2.2 Discrete time Langevin di�usion 97

6.3 Simulations . 98
6.3.1 One dimensional static distributions 100
6.3.2 N -dimensional Gaussian distribution 102
6.3.3 N -dimensional Student's t distribution 103
6.3.4 N -dimensional Laplace distribution 105

6.4 Conclusions . 106

7 Optimal backward kernel 107
7.1 Introduction . 107
7.2 Optimal backward Markov kernel . 107
7.3 Near optimal backward Markov kernel . 109

7.3.1 Parametric estimation of the joint density 109
7.3.2 Baseline method . 110
7.3.3 Avoiding resampling errors . 110

7.4 Simulation results . 112
7.4.1 Comparison of SMC sampler with optimal and basic backward

Markov kernels . 112
7.4.2 Comparison of the SMC sampler with optimal backward Markov

kernel with competitor methodologies 117
7.4.2.1 Comparison on a unimodal distribution 117
7.4.2.2 Comparison on a bimodal distribution 120

7.5 Conclusions . 124

iii

8 Conclusions 126

A Parallelising particle �lters with deterministic runtime on distributed
memory systems 128
A.1 Introduction . 128
A.2 Distributed memory systems . 128
A.3 MPI particle �lter . 129

A.3.1 MPI cumulative sum . 129
A.3.2 MPI Bitonic sort . 129
A.3.3 MPI minimum variance resampling 130

A.4 MPI redistribute . 131
A.4.1 MPI O(N) redistribute . 131

A.4.2 MPI O
�

(log2 N)3
�

redistribute . 132

A.4.3 MPI O
�

(log2 N)2
�

redistribute . 133

A.5 Evaluation . 138
A.5.1 Cumulative sum, bitonic sort and MVR 138
A.5.2 Redistribute . 139
A.5.3 Particle �lter . 141

A.6 Conclusions and future work . 145

B Variance of an importance sampler 147
B.1 Importance sampling estimator is unbiased 147
B.2 Variance . 149
B.3 The need for heavy tails . 150

Bibliography 151

iv

Illustrations

List of Figures

2.1 Comparison of MALA, HMC, MH and TMCMC on the Gaussian distribu-

tion, N (0; 1). Each method generates 10000 samples to estimate the true

mean value. 18

3.1 Stacked Autoencoder Network . 22

3.2 Model representation of the restricted Boltzmann machine with m visible

and n hidden units. 24

3.3 (a) Age histogram and (b) number of grayscale and color images in the FG-

NET aging database (right). 27

3.4 The initial image (a) is converted to grayscale (b). The image is rotated,

but the landmarks are not changed yet (c). The new position of the land-

marks are computed based on the rotation matrix (d). The �nal image (e)

is cropped based on the landmarks. 28

3.5 (a) A sample of the initial images and (b) the corresponding preprocessed

images (right). 29

3.6 Example of the stacked autoencoder network 30

3.7 (a-b) Filters (or weights) the �rst layer learnt after the training procedure of

the stacked autoencoder. Both images are the same but with a di�erent color. 31

3.8 Initial (a-b) and �nal (c-d) of the �lters learnt, respectively of the deep belief

network. 32

3.9 Histogram of �lters at the beginning (a) and (b) end of the training. The

mean absolute magnitude of the values is shown above each plot [106] 33

3.10 (a) The error over the number of iterations and (b) the classi�cation error

for the training and test sets demonstrating that the model is over�tted. . . 34

3.11 The diagram describes the sequence of operations for theith Hybrid MCMC

iteration (Algorithm 8). 39

3.12 Example of the performance of (a) the hybrid MCMC algorithm and (b) the

proposed method using the same input data. 42

3.13 Example of the performance using (a) 10 particles and (b) 1000 particles for

the same input data. 43

4.1 General MapReduce Processing Model. 51

4.2 Example of cumulative sum for N=8 numbers. Sub�gures (a)-(d) describe

the sum computation, while the remaining balanced binary trees shown in

sub�gures (e)-(g) describe how the backward pass culminates in calculation

of the cumulative sum of the given sequence. 56

v

4.3 Example of a bitonic sort using eight numbers. Each horizontal wire corre-

sponds to a core. The blue colour denotes that the larger value will be stored

at the lower wire after the comparison, while the green colour represents the

opposite scenario. 57

4.4 An example of the redistribution for x = [10; 9; 12; 6; 1; 3; 14; 2] and m =

[3; 2; 2; 1; 0; 0; 0; 0] using the original and improved (new) redistribute. The

original redistribution always sorts the number of copies vector (bottom vec-

tor) in descending order, while this is not required in the new redistribution

(e.g. see node no. 3). 58

4.5 Worst-case performance of Redistribution: Platform 1. 65

4.6 Worst-case performance of Redistribution: Platform 2. 66

4.8 Overall runtime pro�le of the particle �ltering algorithm for the following

implementations: (a) Sequential; (b) Hadoop; (c) Spark with 217 particles;

(d) Spark with 2 20 particles. 67

4.7 Ratio of average (and minimum and maximum) run-times for worst-case and

best-case scenarios using the deterministic and na•�ve redistribute. 67

4.9 Summation on Spark and Hadoop. 68

4.10 Cumulative Summation on Spark and Hadoop. 69

4.11 Bitonic Sort on Spark and Hadoop. 70

4.12 Minimum variance resampling on Spark and Hadoop. 70

4.13 Redistribution on Spark and Hadoop. 71

4.14 Overall Particle Filtering on Spark and Hadoop. 72

4.15 Performance of theO(N
P (log2 N)2) Redistribution Component (using Spark). 73

4.16 Performance of theO(N
P (log2 N)3) Redistribution Component (using Spark). 73

4.17 Performance of the overall particle �lter using the O(N
P (log2 N)2) redistri-

bution component. 74

4.18 Performance of the overall particle �lter using the O(N
P (log2 N)3) redistri-

bution component. 75

4.19 Relative SpeedupO(N
P (log2 N)2) variant of the Redistribution component

on Platform 1. 76

4.20 Scalability of the O(N
P (log2 N)2) variant of the Redistribution component on

Platform 1. 76

4.21 Relative Speedup of theO(N
P (log2 N)2) variant of the Redistribution com-

ponent on Platform 2. 77

4.22 Scalability of the O(N
P (log2 N)2) variant of the Redistribution component on

Platform 2. 77

4.23 Relative Speedup and Scalability of the overall particle �lter algorithm using

the O(N
P (log2 N)2) variant of the Redistribution component on Platform 1.

The average is used to give some intuition based on the considered input

values. 79

vi

4.24 Relative Speedup and Scalability of the overall particle �lter algorithm using

the O(N
P (log2 N)2) variant of the Redistribution component on Platform 2.

The average is used to give some intuition based on the considered input

values. 80

4.25 Performance of summation using Spark with a �xed total number of values

comprised of di�erent number of keys and therefore di�erent numbers of

values per key. 81

5.1 Exemplar of a multivariate Gaussian distribution (estimation of the mean

value) . 89

5.2 Comparison using 10000 samples (100 particles). Figure 5.1 illustrates the

target distribution. 90

5.3 Comparison on a 10-dimensional Gaussian distribution through increasing

the number of samples (estimation of the mean value). 91

5.4 (a) Exemplar of a multivariate Student's t distribution (estimation of the

mean value), and (b) comparison with 10000 samples (100 particles). 92

5.5 Exemplar of the multivariate inverse Ackley function (estimation of the mean

value). 93

5.6 Comparison using 10000 samples (100 particles). Figure 5.5 illustrates the

target distribution. 94

6.1 Comparison of the random walk, Euler discretisation, and partially implicit

local linearisation on the Gaussian static distribution. In all cases the mean

value of the posterior is estimated. 100

6.2 Comparison of the random walk, Euler discretisation, and partially implicit

local linearisation on the Student's t static distribution. In all cases the

mean value of the posterior is estimated. 101

6.3 Comparison of the random walk, Euler discretisation, and partially implicit

local linearisation on the Laplace static distribution. In all cases the mean

value of the posterior is estimated. 101

6.4 Comparison of the random walk and Euler discretisation without recycling

based on the log mean squared error (estimation of the mean value) 102

6.5 Comparison of the di�erent recycling algorithms using the Euler discretisa-

tion based on the log mean squared error (estimation of the mean value). . . 103

6.6 (a) Target distribution and (b) comparison of the random walk and the Euler

discretisation based on the log mean squared error (estimation of the mean

value). 104

6.7 Target distribution. 105

6.8 Comparison of the random walk and the Euler discretisation based on the

log mean squared error (estimation of the mean value). Figure 6.7 illustrates

the target distribution . 106

7.1 Exemplar of the quantisation errors introduced in the resampling algorithm . 111

vii

7.2 Graphical presentation of the Table 7.1. Every point corresponds to the

same total number of samples from the Gaussian target distribution. 113

7.3 Graphical presentation of the Table 7.1. Every point corresponds to the

same total number of samples from the Student's-t target distribution. . . . 114

7.4 Graphical presentation of the Table 7.1. Every point corresponds to the

same total number of samples from the Laplace target distribution. 114

7.5 Graphical presentation of the Table 7.2. Every point corresponds to the

same total number of samples from the Gaussian target distribution. 115

7.6 Graphical presentation of the Table 7.2. Every point corresponds to the

same total number of samples from the Student's-t target distribution. . . . 116

7.7 Graphical presentation of the Table 7.2. Every point corresponds to the

same total number of samples from the Laplace target distribution. 116

7.8 Performance comparison of the four methods. We consider 1,000 samples

for the TMCMC algorithm, while for the other methods the algorithms can

continue running independently of the number of initial samples. 118

7.9 Performance comparison of the four methods generating 10000 samples from

the posterior. The step size is one in the MALA and SMC sampler algorithms.119

7.10 (a) comparison based on the SMC samplers with optimal backward Markov

kernel, (b) comparison using the \Fixed" particles method and (c) compar-

ison using the particles grouping method. 121

7.11 Exemplar of the samples generated in a single Monte Carlo run for the algo-

rithms (a) TMCMC, (b) MALA, (c-e) SMC sampler with optimal L-kernel

in the three di�erent methodologies. See Figure 7.10 for the performance

comparison. 122

7.12 (a-c) Performance comparison of the 4 methods using di�erent methodologies

in the SMC samplers. 123

7.13 Exemplar of the samples generated in a single Monte Carlo run for the algo-

rithms (a) TMCMC, (b) MALA, (c-e) SMC sampler with optimal L-kernel

in the three di�erent methodologies. See Figure 7.12 for the performance

comparison. 124

A.1 O
�

(log2 N)3
�

Redistribute . 132

A.2 Figures for basic algorithmic components . 135

A.3 O
�

(log2 N)2
�

Redistribute . 138

A.4 O
�

(log2 N)2
�

Redistribute runtimes . 139

A.5 O (N) Redistribute runtimes . 140

A.6 O
�

(log2 N)3
�

Redistribute runtimes . 140

A.7 O
�

(log2 N)2
�

Particle �lter runtimes . 142

A.8 O (N) Particle �lter runtimes . 142

A.9 O
�

(log2 N)3
�

Particle �lter runtimes . 143

A.10 Speedup: MPI particle �lter (N = 2 24) . 145

viii

List of Tables

2.1 Last iteration log mean squared error (MSE) of the MALA, TMCMC, MH,

basic SMC sampler and HMC. Each method generates 10000 samples to

estimate the true mean value. 18

3.1 Root Mean Squared Error (RMSE) for Di�erent Noise Values (N = 100 and

k = 2 RBF centers . 41

3.2 Root Mean Squared Error (RMSE) for Di�erent Number of Particles (� 2 =

0:1 and k = 2) . 41

3.3 Root Mean Squared Error (RMSE) for Di�erent Number of RBF Centers

(N = 100 and � 2 = 0 :1) . 41

4.1 Publications grouped according to the applied parallel resampling method-

ology with its reported time complexity (TC). 49

4.2 Theoretical complexities (in terms of time, space and total data transfers

per unit time) of various algorithmic components of the Particle Filter with

N data and P processors. 53

4.3 Details of the Experimental Platform used for Evaluation. 61

5.1 Comparison of the recycling methods on the Gaussian distribution using

10000 samples (100 particles) based on the log mean squared error (estima-

tion of the mean value). 89

5.2 Comparison on a 10-dimensional Gaussian distribution through increasing

the number of samples (estimation of the mean value). 90

5.3 Comparison of the recycling methods on the Student's t distribution (esti-

mation of the mean value) using 10000 samples (100 particles). 91

5.4 Comparison of the recycling methods on the Ackley function (estimation of

the mean value) using 10000 samples (100 particles). 93

6.1 Function Names with the Corresponding First Derivative 100

6.2 Comparison of the random walk and Euler discretisation without recycling

based on the log mean squared error (estimation of the mean value). 102

6.3 Comparison of the di�erent recycling algorithms using the Euler discretisa-

tion. The m1, m2 and m3 denote estimations based on the basic method,

the new proposed recycling method in Chapter 5 and the method proposed

in [78], respectively. In all cases the comparison is based on the log mean

squared error (estimation of the mean value) 103

6.4 Comparison of the random walk and the Euler discretisation without recy-

cling based on the log mean squared error (estimation of the mean value). . . 103

6.5 Comparison of the random walk and the Euler discretisation without recy-

cling based on the log mean squared error (estimation of the mean value). . . 105

ix

7.1 Comparison of the two SMC samplers based on the last iteration's log mean

squared error (estimation of the mean value). 113

7.2 Comparison of the two SMC samplers based on the last iteration's log mean

squared error (estimation of the mean value). 115

A.1 Tables for basic algorithmic components . 135

A.2 Runtimes: Redistribute (s) . 141

A.3 Runtimes: Overall Particle Filter (s) . 144

A.4 Details of the Experimental Platform. 146

x

Abbreviations

The following abbreviations are found throughout this thesis:

API Application Programming Interface

APL Array Programming Language

ATZ All-Trailing-Zeros

EM Expectation-Maximization

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HDFS Hadoop Distributed File System

HMC Hamiltonian (or Hybrid) Monte Carlo

HPC High Performance Computing

MALA Metropolis-Adjusted Langevin Algorithm

MCMC Markov Chain Monte Carlo

MH Metropolis-Hastings

MLE Maximum Likelihood Estimation

MLP Multi-Layer Perceptrons

MPI Message Passing Interface

MSE Mean Squared Error

PDF Probability Density Function

PE Processing Element

PILL Partially Implicit Local Linearisation

PPS Particles Processed per Second

RBF Radial Basis Function

RBM Restricted Boltzmann Machine

RDD Resilient Distributed Dataset

RJMCMC Reversible Jump Markov Chain Monte Carlo

RMSE Root Mean Square Error

RNA Resampling with Nonproportional Allocation

RPA Resampling with Proportional Allocation

RWMH Random Walk Metropolis-Hastings

xi

SIR Sequential Importance Resampling

SIS Sequential Importance Sampling

SLP Single Layer Perceptron

SMC Sequential Monte Carlo

TMCMC Transitional Markov Chain Monte Carlo

VLSI Very-Large-Scale Integration

xii

Abstract

Training of deep neural networks (DNN) is an indispensable process in machine learning.

The training process of DNNs aims to optimise the parameter values of the network,

often relies on the derivative of the log-likelihoods of the underlying parameter space.

As such, it is highly probable that the optimisation process to �nd local optimum values

instead of the global ones. In addition to this, conventional approaches used for this

process, such as Markov chain Monte Carlo methods, not only o�er suboptimal runtime

performance, but also prevent e�ective parallelisation due to inherent dependencies in

the process.

In this thesis, we consider an alternative approach to Markov chain Monte Carlo

(MCMC) methods, namely the Sequential Monte Carlo (SMC) sampler, which gener-

alises particle �lters. More speci�cally, the thesis focuses on improving the performance

and accuracy of the SMC methods, particularly in the context of fully Bayesian learning.

The Radial Basis Function (RBF) network is an example of such training process

based on fully Bayesian learning. In this setting, the thesis proposes a new method to

train neural networks using the importance sampling and resampling. The initial com-

parison of the two methods reveal that the proposed methodology is worse in both terms

of accuracy and performance. This lead the research to concentrate of the performance

and accuracy improvements of the proposed approach.

The performance analysis began with application of a new proposed, parallel and

fully distributed resampling methodology, with improved time complexity than the orig-

inal approach using two MapReduce frameworks, Hadoop and Spark. Results indicate

that Spark is up to 25 times faster than Hadoop, while on Spark the new proposed

methodology is up to 10 times faster than the original method. However, it is noticed

that application of the same algorithm on Message Passing Interface (MPI) provide

signi�cantly better runtimes and is more suitable for the proposed algorithm.

The accuracy analysis began with experiments illustrating that the basic Sequential

Monte Carlo sampler provides worse accuracy than alternative or competitor MCMC

algorithms. Three di�erent strategies are applied on the basic Sequential Monte Carlo

sampler providing better accuracy. The analysis is extended to include competitor al-

gorithms. The exhaustive evaluation shows that the proposed approach o�ers superior

performance and accuracy.

xiii

Acknowledgements

I am profoundly grateful to my supervisors Prof. Simon Maskell, Dr Jeyarajan Thiya-

galingam, and Dr Yannis Goulermas for their support, guidance, and advice throughout

my PhD. During this collaboration, I appreciated their scienti�c approach to research

problems.

I thank my advisors Prof. Jason Ralph, Dr Tingting Mu, and Prof. Prudence Wong

for their suggestions and insights during my PhD. I appreciate the discussions and the

comments I received from Dr Peter Green. I would like to thank my viva examiners, Dr.

Francisco Alejandro D��az De la O and Dr. Gustaf Hendeby for their suggestions that

were very helpful in submitting this thesis.

I gratefully acknowledge the UK EPSRC Doctoral Training Award, the support of

STFC Daresbury, and STFC Hartree Centre for providing us with the computational

resources for this work.

I thank Alessandro Varsi for the discussions and collaboration. Special mention to

other members of the research group including, Alex Phillips, Chinmay Mishra, Chloe

Barrett-Pink, Chongyang Liu, Elpida Kontsioti, Fl�avio De Melo, James Wright, Joanna

Hajne, Josh Coates, Lee Devlin, Luydmil Vladimirov, Matteo Fasiolo, Paul Horridge,

Richard Sloane, Robert Moore, Roberta Piroddi, and Yifan Zhou.

This research contributed to the EPSRC 2.5 million (pounds) grant with the title

\Big Hypotheses: A Fully Parallelised Bayesian Inference Solution" with reference num-

ber \EP/R018537/1" and principal investigator, Simon Maskell, who was my primary

supervisor.

H didaktorik mou diatrib eÐnai afierwmènh stouc goneÐc mou, KwnstantÐno kai Anas-

tasÐa, kai tic aderfèc mou SofÐa, Kuriak , AjanasÐa kai Panagi¸ta gia thn ˆneu ìrwn

agˆph kai upost rixh. Sac euqarist¸ polÔ.

xiv

Chapter 1

Introduction

1.1 Overview

Deep learning and neural networks are machine learning algorithms designed to make

predictions based on extracted features or �lters from a dataset. Deep learning, or

deep neural network, is an extension of neural networks by containing more than one

hidden layer. Medical image analysis [57], object classi�cation [74], and natural language

processing [107] are a small sample of many application domains. Deep learning and

neural networks are categorised as deterministic or stochastic according to the applied

training procedure. A detailed discussion on the training process of deterministic and

stochastic deep learning methods is provided in Chapter 3.

Maximum Likelihood Estimation (MLE) (e.g., [26]) and Maximum a Posteriori (MAP)

(e.g. [104]) are two widely applicable approaches to train the network. MLE �rst derives

the log-likelihood of the model and then maximises it with regard to the parameters

of the model with an optimisation algorithm. Typically, stochastic gradient ascent is

the optimisation method applied. An example of MLE is the restricted Boltzmann ma-

chine using the contrastive divergence [8]. The computation of the derivative of the

log-likelihood requires the computation of expectations, which cannot be calculated an-

alytically but are approximated using sampling or Markov chain Monte Carlo (MCMC)

methods. The stochastic gradient descent with traditional MCMC methods, such as

the Metropolis-Hastings (MH) or the Gibbs sampling algorithms, can lead to poor local

minimum solutions and is challenging to tune [26]. Apart from the accuracy aspects, it

is also hard to parallelise traditional MCMC methods. For instance, MH is a sequential

algorithm constructing a Markov chain where the current sample is depended on the

exact preceding sample.

An alternative methodology is full Bayesian learning, which requires the computation

of the full posterior distribution over all possible parameter settings of which the Radial

Basis Function (RBF) network in an example [10]. This thesis aims to apply Bayesian

inference using a Sequential Monte Carlo (SMC) method (e.g., the SMC sampler) as an

alternative algorithm to the traditional MCMC methodologies, and reveal its bene�ts

1

Chapter 1. Introduction 2

and potential to be applied in the training process of neural networks and deep learning

algorithms.

Bayesian inference is a sophisticated statistical inference method processed through

a combination of the user-de�ned prior density and uncertain evidence. Bayesian statis-

tics provides a complete picture of the uncertainty in the estimation of the unknown

parameters of a model [78] and is not prone to over�tting depending on the user-de�ned

prior density [109].

The Sequential Monte Carlo (SMC) sampler belongs to a wider class of SMC meth-

ods. The more widely known Particle �lters also belong to this class of methodologies

and are applicable in dynamic statistical inference, which refers to drawing conclusions

or estimations on time-dependent models (or time evolving models). Such models can

have non-linear and non-Gaussian characteristics. In the literature, another set of widely

known alternative methods include the Kalman �lters and its extended versions. Kalman

�lters are optimal to linear Gaussian systems.

SMC methods are applied in many domains and real-world problems, such as in

robotics to solve problems related with localisation and mapping [99] as well as in �nance

for stochastic volatility models and estimating dynamic microeconomic models [25], [64].

Other domains are medicine [85], wild�re spread simulation [14].

The thesis begins with background knowledge for understanding the training pro-

cesses with widely applicable methods, such as the stacked autoencoder and the deep

belief network, a deterministic and stochastic deep learning algorithm, respectively. The

training procedure in the RBF network uses the MH algorithm as a core method to up-

date the centres of the RBF, while the parameters and hyperparameters of the network

are updated with Gibbs sampling. The overall method in [10] is referred to as Hybrid

MCMC. A new method is proposed where the MH is replaced with the core methods of

importance sampling and resampling used by any SMC method to improve the accuracy

and performance. Since the MH algorithm is a sequential algorithm, the replacement

with an SMC method o�ers great potential for enhancing overall performance due to

its appealing property that, as the number of samples increases, the ability of the sam-

ples to represent the probability density function (pdf) increases and the accuracy of

estimates derived from the particles improve. Interestingly, a benchmark comparison

of the basic SMC sampler with competitor methodologies does not perform as well as

expected, which guided this research to concentrate on delivering a more e�cient SMC

sampler in terms of performance and accuracy.

Establishing a better training process for neural networks and deep learning algo-

rithms requires multiple preliminary and mandatory steps to improve the overall e�-

ciency of the basic SMC sampler. A key step is a new fully distributed resampling to

accelerate the overall performance of any SMC method. Another step is the application

of new strategies to improve the accuracy of the method, which help to outperform the

basic SMC sampler and competitor methodologies.

Chapter 1. Introduction 3

1.2 Contributions

The �rst novel contribution of the thesis is the replacement of the MH with steps of im-

portance sampling and resampling in the training process of the RBF network. Second,

is the application of a fully distributed resampling algorithm with better time complex-

ity than available from previous related research. Accuracy improvements of the SMC

sampler include the application of a new recycling method compared with the basic

approach and the original methodology. Third, the thesis describes the application of

alternative forward Markov kernels and a more e�cient backward Markov kernel to the

traditional random walk. Finally, the proposed SMC sampler is compared with other

MCMC methods. These contributions are summarised in more detail in the following:

� A detailed description of all simulations and implementations.

� Contribution to the writing of the published and submitted articles listed below.

� In Section 3.3 the replacement of the Metropolis-Hastings algorithm to steps of

importance sampling and resampling.

� In Chapter 4 the review on the parallel resampling.

� In Chapter 5 the application of the Ackley function as a potential new benchmark

distribution for the evaluation of the Sequential Monte Carlo (SMC) sampler.

� In Chapter 6 the application of the partially implicit local linearisation method as

an alternative proposal distribution to the random walk.

� In Chapters 5, 6, 7 the evaluation procedure of the proposed strategies.

Contributions made by my supervisors or other members of the group; Contribution to

the writing of the published and submitted articles listed below by Simon Maskell and

Jeyarajan Thiyagalingam; Contribution to the writing of the published articles listed

below by Alessanrdo Varsi; In Chapter 4 the new redistribute algorithm with time com-

plexity O((logN)2) by Simon Maskell; In Chapter 4 the strategy and the evaluation

procedure for the new redistribute method by Jeyarajan Thiyagalingam; In Chapter 5

the new recycling method by Simon Maskell; In Chapter 6 the Euler discretisation by

Simon Maskell; In Chapter 7 the optimal backward kernel by Simon Maskell; Implemen-

tation of the method in the second published article listed below (#2) or the Appendix A

by Alessanrdo Varsi. These contributions are based on the following published and sub-

mitted articles:

1. \MapReduce Particle Filtering with Exact Resampling and Deterministic Run-

time", J. Thiyagalingam, L. Kekempanos, S. Maskell. S, EURASIP Journal on

Advances in Signal Processing, 2017.

I contributed to the writing of the article and implementation of all the algorithms

on Hadoop and Spark.

Chapter 1. Introduction 4

2. \Parallelising Particle Filtering for Deterministic Runtimes on Distributed Mem-

ory Systems" A. Varsi, L. Kekempanos, J. Thiyagalingam, S. Maskell, 3rd Inter-

national Conference on Intelligent Signal Processing, 2017.

I contributed to the writing of the article, explaining and elaborating all the ideas

from MapReduce to MPI.

3. \SMC Samplers and Particle Filters on MPI: an optimised parallel algorithm with

O
�

(log2 N)2
�

time complexity", A. Varsi, L. Kekempanos, J. Thiyagalingam, S.

Maskell. In preparation for submission to the IEEE Transactions on Signal Pro-

cessing.

I contributed to the writing of the article and the sequential - benchmark - exper-

iments.

4. \Using an SMC Sampler with a Langevin Proposal as an E�cient Alternative to

MALA", S. Maskell, L. Kekempanos, P. Green, M. Fasiolo, F. Melo, J. Thiya-

galingam. In preparation for submission to the IEEE Transactions on Signal Pro-

cessing.

I contributed to the writing of the article and to the evaluation procedure of the

proposed strategies. I proposed the Ackley function as a new benchmark for the

experiments and the partially implicit local linearisation as proposal to the SMC

sampler. I proposed new - more e�cient - strategies to make estimations on bi-

modal distributions.

1.3 Outline

The thesis follows in six chapters with Chapter 2 including an introduction to Bayesian

inference. Several traditional Markov chain Monte Carlo methods and Sequential Monte

Carlo methods are discussed with comparisons. Chapter 3 discusses two existing deep

learning algorithms, a deterministic and a stochastic network, applied to a human age

prediction problem. A new methodology for training a neural network is proposed

based on importance sampling and resampling. Chapter 4 provides details on a new

proposed algorithm for parallelising the resampling algorithm with the goal to convert

the resampling into a more amenable algorithm for a distributed implementation. The

proposed method is applied in MapReduce frameworks, while a later version of the

method is applied to High Performance Computing (HPC). Chapters 5, 6, and 7 focus

on strategies to improve the accuracy of the SMC sampler.

Each chapter corresponds to a proposed strategy. In Chapter 5, all the particles of

the SMC sampler are combined to have estimates over multiple iterations. In Chapter 6,

Langevin based proposal distributions are applied with the SMC sampler to improve the

quality of the generated samples over the random walk proposal assumed in the basic

SMC sampler. In Chapter 7, the optimal backward Markov kernel is proposed with

respect to the selected forward Markov kernel. Simulations demonstrate the bene�ts of

Chapter 1. Introduction 5

each strategy compared to the basic SMC sampler, which is followed by its comparison

with competitor MCMC methods.

Chapter 2

Bayesian inference and Markov

chain Monte Carlo methods

2.1 Introduction

Markov chain Monte Carlo (MCMC) methods are used to estimate the posterior den-

sity function (analytical computation is intractable [100]) as computed using Bayesian

inference. This chapter provides a brief introduction on such methods beginning with a

formal explanation of Bayesian inference followed by some MCMC methods, including

the Metropolis-Hastings (MH), Hamiltonian Monte Carlo (HMC), Transitional Markov

Chain Monte Carlo (TMCMC), and Sequential Monte Carlo (SMC) methods. This

overview o�ers a reference for the following chapters as the methods discussed are ap-

plied in simulations and experiments.

2.2 Bayesian inference

Assuming a model with a vector of unknown parameters (hypothesis)x after obser-

vations (data or evidence) D , Bayesian inference correlates the posterior distribution,

denotedp(xjD), with the prior probability density function p(x). The conditional prob-

ability of D given x, p(D jx) is known as the likelihood probability density function and

the marginal likelihood, p(D), expresses what the observations look like given the model.

The posterior distribution indicates the uncertainty of the set of parameters after con-

sidering both the prior and the information of the data. The prior distribution expresses

the belief of an uncertain quantity before considering the data or evidence. This belief

is categorised into informative, non-informative and weakly informative prior. Infor-

mative expresses de�nite information about a variable , non-informative prior provides

a small or general information about a variable and weak informative expresses par-

tial information about a variable. The likelihood describes the connection of the data

or evidence with the hypothesis. The marginal distribution is the total probability of

observing all the data under all possible values of the unknown parameters. In other

words, the Bayesian inference is a methodology that combines the empirical perception

6

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 7

of a random process based on the observed data. The mathematical representation of

the Bayes' theorem is

p(xjD) =
p(D jx)p(x)

p(D)
(2.1)

where

p(D) =
Z

p(D jx)p(x)dx (2.2)

When observing the data, the marginal likelihood is constant. Thus the posterior distri-

bution is proportional to the prior multiplied by the likelihood. This constant is required

to normalise the product of the likelihood and the prior probability density functions.

The steps of the Bayesian inference include:

1. The de�nition of the likelihood function, p(D jx).

2. The de�nition of the prior distribution, p(x)

3. The computation of the posterior distribution, p(xjD), using Bayes' theorem.

4. Inference from the posterior distribution.

The marginal likelihood usually does not have a closed form as it is approximated. Thus,

the posterior is approximated, and this can be achieved using MCMC methods. This

generates samples to describe an approximation of the posterior distribution.

2.3 Markov chain Monte Carlo methods

MCMC methods are applied in Bayesian statistics to generate samples from a distri-

bution. These samples can be used for various purposes (e.g. computing integrals,

such as the one de�ned byP(D), using Monte Carlo integration). Spanning a wide

class of algorithms, MCMC methods generate samples from a probability distribution

by constructing and simulating a Markov chain until convergence to an equilibrium dis-

tribution. MCMC methods are categorised into two methodologies. One is to build a

Markov chain sequentially. When the chain converges, the generated samples represent

the estimation of interest. The random walk Metropolis-Hastings (RWMH) or other

variations of this algorithm belong to this class. The second methodology is to create

samples based on a proposed density function and assign weights to each sample accord-

ingly (i.e., importance sampling), and examples include the Transitional MCMC and

SMC methods. Algorithms from both classes are analysed in the following subsections.

2.3.1 Metropolis-Hastings

The MH algorithm is a variation of the Metropolis algorithm proposed by Metropolis et

al. in 1953 [69] used in situations where the target distribution (posterior distribution) is

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 8

intractable and thus hard to analyse. The algorithm simulates a Markov chain by start-

ing from a sample (initial position) and explore the space of interest until convergence to

stationarity. The samples are generated from a proposal distribution,q(x � jx). The most

common proposal distribution is the random walk, where the new sample is generated

using the Gaussian distribution, with mean value the preceding sample and variance

�M , where � is the step size andM the preconditioning matrix. The initial samples

are dependent on the �rst sample and removed from the overall generated samples at

the end of the simulation as burn-in, as the initial sample can be in a region with low

density. According to the proposal distribution, the algorithm proceeds by sequentially

generating a single sample during every iteration. The sample generation is supported

through an accept-reject mechanism, which is the acceptance probability that decides if

the proposed generated sample will be accepted or rejected. The proposal distribution

is a user-de�ned probability density function (Algorithm 1).

Algorithm 1 Metropolis-Hastings algorithm

1: Initalise x1 � q(x1)
2: for i = 1 : N do
3: Proposex � � N (x � j�x i ; �M)
4: Calculate the acceptance probabilitya = min f 1; � (x �)q(x i jx �)

� (x i)q(x � jx i)
g

5: Sampler � [0; 1] uniform
6: if a < r then
7: Accept the proposal, x i +1 = x �

8: else
9: Reject the proposal,x i +1 = x i

10: end if
11: end for

Di�erent variants for the algorithm exist, depending on the choice of the proposal

distribution. The Metropolis-adjusted Langevin algorithm (MALA) (Algorithm 2) is

a special case of the MH algorithm where the proposed candidate sample (and corre-

sponding proposal distribution) is generated via Langevin dynamics [88]. The algorithm

generates samples from the target density,� (x). For every iteration of the algorithm,

a proposed sample is generated, which includes gradient steps with inject of Gaussian

noise

x � = x +
� 2

2
r x log(� (x)) + z (2.3)

where z � N (0; � 2M) is the integration step size. The N (�; � 2) denotes the Gaussian

(normal) distribution with mean value � and variance � 2. The X � N (�; � 2) denotes

a random variable X distributed normally with mean � and variance � 2. The proposal

density is

q(x � jx) = N (x � jx +
� 2

2
r x log(� (x)) ; � 2M) (2.4)

and the acceptance probability [35]

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 9

minf 1;
� (x �)q(xjx �)
� (x)q(x � jx)

g (2.5)

This acceptance probability is an important parameter with twofold importance. First,

it is a debugging tool on the MH algorithm and, second, it adapts the step size based

on the optimal acceptance rate [65]. The optimal acceptance rate in the MH algorithm

depends on the proposal distribution. If the proposal is a random walk, then the optimal

acceptance rate is 0.234, and if a MALA proposal, then the rate is 0.574 [98]. In both

cases, the step size can be adapted by comparison of the current average and optimal

acceptance rates.

The preconditioning matrix (or scalar for one-dimensional problems), denoted with

M , needs to be selected carefully as it can increase or decrease the acceptance rate of the

MH algorithm. Even in toy examples, not tuning the preconditioning matrix can lead to

poor mixing (very small step sizes leading to slow convergence) [83]. Notice this proposal

can be viewed in two ways. First, if we remove the gradient steps, then the proposal will

be a random walk. The MALA requires O(N
1
3) steps to converge to the target density,

while random walk requiresO(N), where N is the number of iterations [98]. Second, if

we remove the Gaussian noise and setM to one, then the equation can be viewed as

the standard gradient ascent optimisation algorithm [89].

Algorithm 2 Metropolis-adjusted Langevin algorithm

1: Initalise x1 � q(x1)
2: for i = 1 : N do
3: Proposex � � N (x � jx i + � 2

2 r x i log(� (x i)) ; � 2M)

4: Calculate the acceptance probabilitya = min f 1; � (x �)q(x i jx �)
� (x i)q(x � jx i)

g
5: Sampler � [0; 1] uniform
6: if a < r then
7: Accept the proposal, x i +1 = x �

8: else
9: Reject the proposal,x i +1 = x i

10: end if
11: end for

2.3.2 Hamiltonian Monte Carlo

Hamiltonian (or Hybrid) Monte Carlo (HMC) [30] is a Markov chain Monte Carlo sam-

pling algorithm which explore the target of interest more e�ciently than the MH al-

gorithm and with larger acceptance rates [76, 38, 23]. In the HMC the proposal is

generated using the Hamiltonian function, H (x; r) = U(x) + K (r), where U(x), K (r)

denote the potential and kinetic energies, respectively. The physical interpretation of

the Hamiltonian function is discussed in [76] as the following. Consider a puck with

a given position, x and a momentum, r, which slides on over a frictionless surface of

varying height. The potential energy of the puck is proportional to the height of the

surface at the current position, x, and the kinetic energy is based on the momentum, r,

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 10

and the mass,M of the puck. If the puck is moving towards a rising slope, then it will

continue to slide (i.e., decreasing kinetic energy and increasing potential energy) until

the kinetic energy becomes zero. At this point, the puck will then slide in the opposite

direction (i.e., increasing kinetic energy and decreasing potential energy). The potential

and kinetic energies are de�ned by

U(x) = � log(� (x))

K (r) =
r > M � 1r

2

(2.6)

where � (:) is the target distribution. The mass, M , is a symmetric, positive-de�nite

matrix, which is a typical diagonal and is often a scalar multiple of the identity ma-

trix. Based on Equations 2.6, to propose samples, the HMC simulates the Hamiltonian

dynamics as

dr
dt

= �
@U
@x

dx
dt

= M � 1r
(2.7)

The Hamiltonian Equations 2.7, describe a continuous simulation from a state at timet

to a state at time (t + t0).The implementation of Algorithm 3 approximates the Hamilto-

nian equation based on time discretisation, which can be achieved using a modi�cation

of the Euler and leapfrog methods [76]. As the equations are discretised, error is intro-

duced, and the MH algorithm is employed to accept or reject the proposed new state.

The HMC introducing an auxiliary momentum vector and implementing Hamiltonian

dynamics avoids the random walk behaviour, so the potential energy function is the

target density. This allows the algorithm to perform larger steps that are less correlated

and converge to stationarity faster than the random walk algorithm. This discussion

o�ers a summary of the HMC, and a detailed analysis is available in [76].

2.3.3 Transitional Markov chain Monte Carlo

The Transitional MCMC (TMCMC), proposed by J. Ching et al. [24], is a population-

based MCMC in cooperation with an annealing scheme. Initially,N samples are drawn

from the prior distribution. The algorithm proceeds by constructing and sampling mul-

tiple intermediate distributions, using N samples for each distribution, until the conver-

gence to the posterior distribution according to

� (x(i)
k)

| {z }
posterior

/ � (D jx(i)
k)pi

| {z }
likelihood

� (x(i)
k)

| {z }
prior

(2.8)

where i = 1 ; : : : ; m with 0 = p0 < p 1 < : : : < p i < : : : < p m = 1 and k = 1 ; : : : ; N

denote the TMCMC stage or iteration and the samples, respectively. In general, the

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 11

Algorithm 3 Hamiltonian Monte Carlo

1: Initialise the position x0 and the step size�
2: for t = 1 : N do
3: Compute the momentum r � N (0; M)
4: Compute the Energy function H1 = r > Mr

2 � log(� (x t))
5: Leapfrog Integration for L s steps
6: r = r � �

2
@�(x)

@x
7: for j = 1 : L s do
8: x = x + � r

M

9: r = r � �
2

@�(x)
@x

10: end for
11: Compute the new Energy function H2 = r > Mr

2 � log(� (x t))
12: Correction via the Metropolis-Hastings
13: ru � U[0; 1] uniform
14: if exp(H2 � H1) < r u then
15: Reject: x t = x t � 1

16: else
17: x t = x
18: end if
19: end for

choice of intermediate distributions, which is managed from the exponentpi , should be

slow enough to guarantee the desirable smooth transition from the (i) distribution to

the (i + 1). In every TMCMC iteration, a weight is assigned for each sample by

w(x(i)
k) = � (D jx(i)

k)pi +1 � pi (2.9)

The intermediate, p values, are selected so that the coe�cient of variation, or relative

standard deviation, of the weights is equal to 100%. To obtain the samplesx(i +1)
j = x i

j

from the � (x(i +1)
k), resampling is performed with the probability on the normalised

weights as

~w(i)
k =

w(i)
k

P N
j =1 w(j)

k

(2.10)

The resampling step is mandatory to avoid the degeneracy phenomenon [12]. Also,

the resampling algorithm eliminates the low weighted samples and replicates them with

larger weighted samples. As a result, only a few Markov chains will grow during the

m iterations, which is undesirable as the TMCMC algorithm is initialised to use N

distinct Markov chains. The solution proposed in [24] applies the MH algorithm for

every resampling, and the proposal distribution is centred at the preceding sample with

covariance

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 12

� i = � 2
NX

k=1

~w(i)
k

�
x(i)

k �
NX

j =1

(x(i)
j ~w(i)

j)
��

x(i)
k �

NX

j =1

(x(i)
j ~w(i)

j)
� T (2.11)

where � is a scaling parameter used to control the rejection rate and it is recom-

mended [24] to be equal with 0.2.

Improved algorithmic versions of the TMCMC (Algorithm 4 or basic algorithm

in [24]) exist, which lead to more e�cient exploration of the space compared to the

original. In [11], the proposal distribution is based on the Langevin forward kernel.

In [19], an adapted annealing scheme and burn-in for the sampling procedure in every

TMCMC iteration are proposed.

Algorithm 4 Use TMCMC to simulate � (i)
k=1: N

1: i = 1
2: Sample� (0)

k � � (x)
3: Initialise the scaling parameter � = 0 :2 and the exponentp1 = 0
4: while pi < 1 do
5: pl = p; ph = 2;
6: while ph � pl > 10� 6 do
7: ptmp = pl + ph

2

8: Compute the sample weightsw(� (i)
k) = � (D j� (i)

k)pi +1 � pi

9: Compute the coe�cient of variation cvw = � w
w = standard deviation

mean
10: if cvw > 1:1 then
11: ph = pi

12: else
13: pl = pi

14: end if
15: end while
16: pi = ptmp

17: if pi > 1 then
18: break
19: end if

20: Compute the normalised weights ~w(i)
k = w(i)

kP N
j =1 w(j)

k

21: Use the normalised weights to resample and generate the new set of samples.
22: Use the Metropolis algorithm for each new set of sample to compute� (i +1)

k using
the Gaussian distribution as proposal centered at the preceding (\lead") sample
using Equation 2.11 as covariance

23: i = i + 1
24: end while

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 13

2.4 Sequential Monte Carlo methods

Sequential Monte Carlo (SMC) samplers and Particle Filters belong to a wider class of

methods called Sequential Monte Carlo (SMC) methods and perform statistical infer-

ence. The SMC sampler generalises Particle Filters as it is applicable in both static

and dynamic distributions of interest [66]. Both methods are applicable in systems with

non-linear and non-Gaussian characteristics. In this section, a brief description of the

two methods is provided with reference to [12] and [72] for detailed descriptions.

2.4.1 Sequential Monte Carlo samplers

2.4.1.1 Initialisation and posterior distribution

In SMC samplers the target distribution is constructed by using a sequence of arti�cial

distributions � 1(x1), � 2(x2), . . . , � k (xk), where � k (xk) is the �nal target distribution

(distribution of interest). The algorithm begins by drawing N particles from an initial

importance probability density function using the standard importance weights with

proposal distribution q1(x1)

w1(x1) =
� 1(x1)
q1(x1)

(2.12)

Beyond the �rst iteration, the cloud of particles are propagated by using the sequence

of arti�cial targets as a sequence of backward Markov kernels,L k (xk� 1jxk), as

� (x1:k) = � k (xk)
kY

k=2

L k (xk� 1jxk) (2.13)

2.4.1.2 Proposal distribution and importance weights

Given a set of weighted particles that approximate the k � 1 arti�cial target, the

next arti�cial target, k, is approximated by sampling from the forward Markov ker-

nel, qk (xk jxk� 1) such that

q(x1:k) = q(x1)
kY

k=2

q(xk jxk� 1) (2.14)

Each particle is associated with a weight by

wk (x1:k) = wk� 1(x1:k)
� k (xk)

� k (xk� 1)
L k (xk� 1jxk)
qk (xk jxk� 1)

(2.15)

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 14

To avoid numerical issues, Equation 2.15 is expressed using a logarithmic scale, and the

importance weights are normalised as

~w(i)
k =

w(i)
kP N

j =1 (wk
(j))

(2.16)

where
P

(~wk) = 1, ~wk 2 RN � 1 and i = 1 ; : : : ; N represent the particle index with N

total number of particles.

2.4.1.3 Degeneracy phenomenon and e�ective sample size

Similarly, with Particle Filters, the weighted particles may be resampled after the impor-

tance weights evaluation. This resampling step reduces the variability of the importance

weights (degeneracy phenomenon) as the negligible particles are eliminated and substi-

tuted with more important particles. Resampling is triggered according to the e�ective

sample size [12]

Nef f =
1

P N
i =1 (~w(i)

k)2
(2.17)

where Nef f 2 [1; N] and i = 1 ; : : : ; N denotes the particle index.

2.4.1.4 SMC samplers emulate MCMC

The SMC Sampler is an alternative method to Markov chain Monte Carlo (MCMC)

methods (e.g., the Metropolis-Hastings algorithm). The user-de�ned backward Markov

kernel can be selected to emulate MCMC asL(xk� 1jxk) = qk (xk jxk� 1). Further discus-

sion on the backward Markov kernel is included in Chapter 7.

2.4.1.5 Estimation

In the basic SMC Sampler, estimations are performed according to the particles in the

�nal iteration. The expected value is computed by multiplication of the �nal particles

with the corresponding weights

f =
NX

i =1

x(i)
K ~w(i)

K (2.18)

In this approach only the particles, denoted with i , of the last iteration, denoted with

K , are considered for the �nal estimation. In Chapter 4, this process is extended and

includes an available method as well as a novel method where the �nal estimation is

computed using the particles during all iterations.

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 15

Algorithm 5 Basic SMC sampler

1: for i = 1 : N do
2: Samplex(i)

1 � q(x(i)
1)

3: Calculate w(i)
1 = � (x (i)

1)

q(x (i)
1)

4: end for
5: for k = 2 : K do
6: for i = 1 : N do
7: Samplex(i)

k � q(x(i)
k jx(i)

k� 1)

8: Calculate w(i)
k = w(i)

k� 1
� (x (i)

k)L (x (i)
k � 1 jx (i)

k)

� (x (i)
k � 1)q(x (i)

k jx (i)
k � 1)

9: end for
10: Weights Normalisation ~wk = wkP

(wk)

11: Calculate the e�ective sample sizeNef f = 1
P N

i =1 (~w(i)
k)2

12: if Nef f < N T then
13: for i = 1 : N do
14: Resampling (Alg. 7) with ~wt , to produce the new population, x t

15: Set w(i)
k = 1

N
16: end for
17: end if
18: end for

2.4.2 Particle �lters

A range of di�erent Particle Filter methods exist, and this section provides a brief

description of the GENERIC particle �lter, while a detailed analysis for this and other

methods is available in [12].

2.4.2.1 Sequential importance resampling

Particle �lters assume a dynamic stream of data, where the current state,x t , is a suf-

�cient estimation of the history of the states x1:t � 1 [66]. Consider a time evolving

distribution, � (x t) at time t with state transition

x t jx t � 1 � � (x t jx t � 1) (2.19)

with an initial distribution (or prior), � (x0), and an incoming stream of measurements

(or observations)

yt jx t � � (yt jx t) (2.20)

The approximation of the posterior distribution [12]

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 16

Algorithm 6 GENERIC Particle �lter

1: Samplex0 � � (x0)
2: Assign w0 = 1

N
3: for t = 1 : T do
4: for i = 1 : N do
5: Samplex(i)

t � q(x(i)
k jx(i)

k� 1; y(i)
t)

6: Calculate w(i)
t = w(i)

t � 1
� (x (i)

t jx (i)
t � 1)� (y(i)

t jx (i)
t)

q(x (i)
t jx (i)

t � 1 ;y (i)
t)

7: end for
8: Weights Normalisation, ~wt = wtP

(wt)
9: Calculate the e�ective sample size,Nef f (Eq. 2.17)

10: if Nef f < N T then
11: for i = 1 : N do
12: Resampling (Alg. 7) with ~wt , to produce the new population, x t

13: Set w(i)
t = 1

N
14: end for
15: end if
16: end for

Algorithm 7 Minimum Variance Resampling
Input: x t ; wt ; N
Output: x t ; wt

1: ncopies= MVR(wt) [47]
2: (ncopies; xt) = quickSort (N; ncopies; xt)
3: x t = Redistribute (N; ncopies; xt)

� (x t jyt) =
� (yt jx t)� (x t jx t � 1)

q(yt jyt � 1)
(2.21)

/ � (yt jx t)� (x t jx t � 1) (2.22)

is achieved by using a set of weighted particles. Importance weights are computed,

similarly to SMC Samplers, so that each particle is assigned to a weight [12]

wt = wt � 1
� (x t jx t � 1)� (yt jx t)

q(x t jx t � 1; yt)
(2.23)

In the SIS step, the particles are propagated according to sampling from the proposal,

q(x t jx t � 1; yt), followed by the weights assignment for each particle. Resampling, equiva-

lently to SMC Samplers, is triggered according to the e�ective sample size. Algorithm 6

shows the pseudocode for the GENERIC Particle Filter. The algorithm relies on several

functions, which are covered in detail in Chapter 4. Brie
y these functions include:

� Importance sampling using the proposal distribution, q(x t jx t � 1; yt)

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 17

� ncopies = MVR(wt), where MVR stands for Minimum Variance Resampling and

determines the number of times each particle needs to be replicated. The function

takes the particles' weights at the current time t, wt , as input.

� (ncopies; xt) = quickSort (N; ncopies; xt) calculates the permutation that would

sort vector ncopies, and applies this permutation to both inputs. While this sort is

not necessary with a single processor implementation, in Chapter 4 we will exploit

the fact that the output is sorted.

� x t = Redistribute (N; ncopies; xt) returns the new population of particles given

the old population and the number of replication each particle requires.

2.5 Sampling experiments

An initial comparison of the three Markov chain Monte Carlo (MCMC) methods and the

basic Sequential Monte Carlo sampler is discussed in this section. All methods estimate

the true mean value of the posterior distribution using 10000 samples and are evaluated

using the last log mean squared error (MSE) provided in Table 2.1. In Figure 2.1 , the

performance is expressed using the log mean squared error as well as the percentage of

computations for the MALA, HMC, TMCMC, and MH, which implies the same total

number of samples for each method. The last iteration log MSE describes the best

estimate each algorithm achieves.

The HMC method outperforms all other methods when the step size is appropriately

de�ned as its performance is sensitive to this value. The MALA and TMCMC have

similar performance, and the basic SMC Sampler and MH methods result in the worst

performance.

It is expected the basic SMC Sampler has a worse accuracy compared to the MALA

and TMCMC as the former method's proposal distribution is based on the Euler dis-

cretisation, while the latter uses annealing. However, it is surprising that it is di�cult

to outperform or have similar accuracy as the MH algorithm since both methods use

the same proposal distribution. A similar result is discussed in Chapter 3.

Further comparisons with these methods are discussed in the �nal three chapters

where our e�ort is concentrated on improving the accuracy of the SMC sampler.

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 18

Table 2.1: Last iteration log mean squared error (MSE) of the MALA, TMCMC,
MH, basic SMC sampler and HMC. Each method generates 10000 samples to estimate

the true mean value.

Method Log MSE

MALA -7.98

MH -7.19

TMCMC -7.83

basic SMC sampler -6.01

HMC -11.63

Figure 2.1: Comparison of MALA, HMC, MH and TMCMC on
the Gaussian distribution, N (0; 1). Each method generates 10000

samples to estimate the true mean value.

2.6 Conclusions

In this chapter, we provided the description of a variety of MCMC methods and two

SMC methods. For an initial comparison, we noticed that the HMC outperforms all

other methods, but it is challenging to tune the user-de�ned parameters [76]. Methods

for tuning those parameters exist, but the focus of the thesis examines and prioritises

Langevin-based proposals, while the core method is the SMC Sampler. Further analysis

and research are discussed in Chapters 6 and 7.

In Chapter 3, background on two widely-known deep learning methods is discussed,

and a new method is proposed to train the Radial Basis Function (RBF) network us-

ing steps of importance sampling and resampling (i.e., the core methods in any SMC

Chapter 2. Bayesian inference and Markov chain Monte Carlo methods 19

method) as the training method. Comparison of the proposed method with the origi-

nal algorithm (i.e., the MH algorithm) reveals similar behaviour in the results with the

sampling experiment from this chapter.

Chapter 3

Background on traditional deep

learning algorithms and a new

method to train the Radial Basis

Function network

3.1 Introduction

Machine learning is the science of getting computers to act without being explicitly pro-

grammed [1]. Arti�cial neural networks (or neural networks) [40] and deep learning [55]

are two machine learning tools consisting of algorithms or networks to detect features

from a given dataset for the discovery of patterns or perform a de�ned task. The algo-

rithms are programmed for automatic training. These training or learning procedures

are categorised as supervised, unsupervised or semi-supervised.

In supervised learning (or learning with a teacher), the algorithm is provided with

a dataset that includes the correct answers. This dataset uses labelled data in the form

(x; d), where x is the input and d is the corresponding correct answer for the givenx. In

unsupervised learning (or learning without a teacher) we give the algorithm unlabelled

data (without providing the \right" answer) x, and the system is trying to classify the

given data. Other learning techniques exist such as the semi-supervised learning, a

\hybrid" approach where the dataset is partially labelled.

Many applications are based on regression, classi�cation and other tasks [39]. An

example of a regression problem is to predict the price of new real estate given a dataset

containing related previous values [82]. A classi�cation task considers grouping or clas-

sifying the given inputs, such as categorising the genre of art �lms [93].

This chapter begins in Section 3.2 with a background of the learning procedures for

two widely-applicable deep learning algorithms, the stacked autoencoder and deep belief

network. In Section 3.3, a new method is proposed to train the RBF network using,

20

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 21

as its core method, steps of importance sampling and resampling instead of the MH

algorithm. Examples are included in each section, while Section 3.4 draws conclusions.

3.2 Background on deterministic and stochastic deep learn-

ing methods

This section reviews two traditional deep learning algorithms, the stacked autoencoder

and the deep belief network. The stacked autoencoder is a deterministic network, and

the deep belief network is stochastic. Descriptions of the training processes for a de-

terministic neural network, single layer perceptron, and multiple layer perceptron are

provided in [40].

A Single Layer Neural Networks also known as Single Layer Perceptron (SLP) [40]

is a neural network with two layers, an input layer and an output layer. The input layer

units are fully connected with the output layer units. The output layer units or activation

units perform a mathematical operation. A bias is used to shift the activation function

horizontally (left or right). The default value of the bias unit is 1. The procedure of

calculating the output of the activation unit or units is called forward propagation. The

most common function used by the activation unit is the sigmoid : f (x) = 1
1+exp (� x) ,

where f (x) 2 [0; 1]: Another example of activation unit is the hyperbolic tangent, while

a list of di�erent choices is available in [40].

Multi Layer Neural Networks also known as Multi Layer Perceptrons (MLP) use

more that two layers, the input layer, the hidden layer or layers and the output layer.

The capacity of neural networks describe the type of problem the network can solve. A

single neuron can solve linear separable problems. This is a line that can separate the

two classes (e.g. AND-Boolean operator, OR-Boolean operator). A neural network with

a single hidden layer can solve universal approximations [48].

Neural Networks have the innovative ability to get trained and learn (or gain knowl-

edge) through the training procedure. Mathematically this is achieved via the properly

adjustment of weights and biases of the neural network in order to minimise the prede-

�ned cost function. The cost function de�nes the di�erence between the network output

with the real target. There are many optimisation algorithms which can be used to

minimise the cost function. A widely used approach on solving this problem is the back

propagation algorithm [40] in conjunction with gradient descent as the optimisation

method.

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 22

3.2.1 The stacked autoencoder

Figure 3.1: Stacked Autoencoder Network

The stacked autoencoder [77] [102] is a deep learning network consisting of multiple

layers of autoencoders. An autoencoder is an unsupervised learning algorithm with the

training objective to reconstruct a given input [77]. The network consists of an equal

number of neurons in the input and output layers, while an intermediate hidden layer

exists with either a smaller or larger number of neuron units. As mentioned, the basic

component of the stacked autoencoder is a single autoencoder. The training of this one

autoencoder follows the traditional approach of training a multiple layer neural network.

The learning procedure is unsupervised, which means that the correction of the weights

and biases on the network is achieved through the adjustment of each value according

to a cost function describing the di�erence between the given input and current output.

Training a stacked autoencoder is achieved through �ve stages:

1. Design the architecture of the network. This is related, for example, with the

number of layers or autoencoders the network contains.

2. Train the �rst autoencoder. After the training is completed, forward propagate the

�rst autoencoder features as an input to the second autoencoder. These features

are the result of the multiplication of the trained �rst autoencoder weights and

biases with the activation functions in the hidden layer.

3. Train the second autoencoder. Forward propagate the features of the trained

second autoencoder as an input to the third autoencoder.

4. Continue the above procedure until the last autoencoder of the stacked autoen-

coder is trained.

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 23

5. In the �nal stage, �ne-tune the stacked autoencoder network for better results.

Here, back-propagation is used to improve the performance (i.e., adjusting the

weights and biases of the overall network) of the autoencoders. This process is

mandatory if we want to achieve better accuracy in the results.

3.2.2 The Deep Belief Network

3.2.2.1 Restricted Boltzmann machine

The Boltzmann machine is a stochastic network introduced in 1985 by G.E. Hinton [9]

that combines statistical mechanics and neural networks. The network is undirected

and fully connected, and the energy of the model corresponds to the network con�gura-

tion (i.e., all connections of the network including the biases of the hidden and visible

neurons).

E (v) = E(v; w) = �
X

i<j

si sj wij +
X

si bi (3.1)

where v denotes the state vector (the data),si denote the binary state assigned to unit

i , bi the bias assigned to unit i and the wij the weight connection between unitsi and

j . Probabilities are assigned to every possible state with

p(v) =
e� E (v)

P
v e� E (v)

(3.2)

The aim of the training procedure is to �nd weights and biases that de�ne a Boltzmann

distribution in which the training vectors have high probability [44]. Each state vector, v,

persists long enough for the network to reach thermal equilibrium [40]. This is achieved

by di�erentiation of Equation 3.1 and using the fact that @E(v)
@wij

= � si sj

X

v2 data

@log(p(v))
@wij

= hsi sj i v � h si sj i model (3.3)

where the hsi sj i v is the expected value of product of statessi sj in the data distribution

(i.e. positive phase) andhsi sj i model is the expected value when the Boltzmann machine is

sampling state vectors from its thermal equilibrium (i.e. negative phase). This di�erence

of correlations is applied to update the weights of the network

� wij / h si sj i v � h si sj i model (3.4)

This model is impractical because the training procedure requires a very long time and

real-world applications require many neurons.

During the following years, research e�orts focused on simplifying the Boltzmann ma-

chine or proposing closely-related networks. In 1992, R. Neal [75] proposed the sigmoid

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 24

belief network, which is a directed graphical model similar to a multilayer perceptron.

The network does not require the negative phase during the computation of the deriva-

tive of the log-likelihood of the visible units. The negative phase in the Boltzmann

machine is used for the computation of the global partition function with a mathe-

matical description provided for the restricted Boltzmann machine [75]. As a result,

the sigmoid belief network reduces the computation complexity and the required time

for the network to reach thermal equilibrium. The problem with this approach is a

phenomenon called \explaining away" [45], which implies that the independent latent

variables become dependent when they in
uence an observable unit. Other e�orts, al-

ternative to MCMC, focus on using di�erent approaches, such as variational methods,

which is also used in deep sigmoid belief networks [71]). The goal is to maximise a

lower bound of the log-likelihood of the visible units, while the training is achieved via

the expectation-maximisation (EM) algorithm. The convergence is faster than MCMC

methods but sacri�ces the accuracy of the model [45].

RBM's are special cases of the Boltzmann machines where there is no connection

between the units of the same layer, but only between the visible and hidden layers [17].

Assuming a restricted Boltzmann machine with m visible and n hidden units (Fig-

ure 3.2), the joint con�guration, (v,h) of the model is given by the energy function

Figure 3.2: Model representation of the restricted Boltzmann machine withm visible
and n hidden units.

E(v; h) = E(v; h; w) = � h| Wv � a| v � b| (3.5)

where the weights matrix, w, represents the connections between the visible and the

hidden units, a and b are the biases of the visible and the hidden units, andv 2 f 0; 1gm

and h 2 f 0; 1gn denote the states of the visible and hidden units, respectively. Origi-

nally, the RBM as well as the Boltzmann machine use binary units, however this is not

mandatory [33]. Probabilities are assigned to every possible visible and hidden unit with

p(v; h; w) =
e� E (v;h)

Z
(3.6)

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 25

where Z is the normalising constant or partition function

Z =
X

v;h

e� E (v;h)

The probability that the model assigns to the visible vector v is

p(v; w) =
P

h e� E (v;h)

Z
=

P
h e� E (v;h)

P
v;h e� E (v;h)

(3.7)

To train an RBM (as discussed in [26] the training process can lead to poor local solu-

tions) the maximisation of the log-likelihood of the p(v) is required. Numerically, this

implies �nding where the derivative of the log-likelihood with respect to the weights is

equal with zero such that

@logp(v; w)
@w

= 0 ,

@log
P

h e� E (v;h)

Z

@w
= 0 ,

@log
P

h e� E (v;h)

@w
�

@log
P

v;h e� E (v;h)

@w
= 0)

vi � p(hj = 1 jv)
| {z }

positive phase

� p(vi = 1 ; hj = 1)
| {z }

negative phase

= 0 (3.8)

The derivative of the log-likelihood is the di�erence between the data-dependent and

the model expectations, known as the positive and negative phases, respectively. The

positive phase increases the probability of the data by reducing the energy, while the

negative phase reduces the probability of the samples generated by the model by in-

creasing the energy. The conditional distributions over the visible and the hidden units

are given by

p(vi = 1 jh) = � (ai + h| wi) (3.9)

p(hj = 1 jv) = � (bj + wj v) (3.10)

where i 2 f 1; :::; mg, j 2 f 1; :::; ng, wi and wj are the i th row and j th column of the

weights, wji 2 Rn� m , respectively. The � denotes the sigmoid function

� (x) =
1

1 + e� x (3.11)

The positive phase is easily computed from the conditional distributions. The negative

phase is intractable because an exponential summation over both the visible and the

hidden units is required [26]. Gradient ascent with learning rate, � , can be applied to

update the weights of the system with

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 26

� w = � � f vi � p(hj = 1 jv) � p(vi = 1 ; hj = 1) g (3.12)

The idea of the contrastive divergence method is to apply the Gibbs sampling to

compute the negative phase of the log-likelihood gradient (Equation 3.5) by providing

the current training example to the visible layer as the initial value of the Gibbs sampler.

The next steps of the algorithm consist of running in turns the conditional distributions

provided in Equations 3.6 and 3.7.

3.2.2.2 Deep Belief Network

The strategy for training a deep belief network is similar to the stacked autoencoder. The

basic component of a deep belief network is the restricted Boltzmann machine (RBM).

The general proposed method for training deep learning algorithms, as discussed in the

previous section, is to use a basic component trained �rst with a grid-layer pre-training

procedure followed by a �ne-tuning step. This latter step is not mandatory but leads

to better performance. During the �rst step, a stack of the basic component is created

where each component is trained, while the second step views the deep network as a

single network and adjusts all weights and biases (e.g., backpropagation in the entire

network) [45].

3.2.3 Face age classi�cation

Faces provide a signi�cant source of information, such as the age, gender, expression,

and ethnicity. There are many applications related to face age estimation, such as

security control and human-computer interaction. To demonstrate the two-deep learning

algorithms discussed above, the benchmark Face and Gesture Recognition Research

Network (FG-Net) ageing database [80] is pre-processed and applied to the deep belief

network and the standard stacked autoencoder.

3.2.3.1 Preprocessing the FG-Net aging database

The FG-Net ageing database contains 1002 face images from 82 individuals with ages

ranging between new-born to 69 years [80]. The 72% (730) of which are new-born to 20

years (Figure 3.3). The images are separated based on the human growth curve. From

the 1002 images, 175 are grayscale, and the remaining 827 are colour images. Each

image in the dataset (with one exception) is annotated with 68 landmark points located

at key positions.

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 27

(a) Age Histogram

(b) Number of grayscale images

Figure 3.3: (a) Age histogram and (b) number of grayscale and color images in the
FG-NET aging database (right).

The data pre-processing is a very critical step in machine learning applications. It

allows the deep structure to detect or extract meaningful features while reducing mis-

leading results based on the input. The pre-processing for FG-Net contains the grayscale

normalisation, face alignment, cropping, and resizing. Without the included landmarks,

the equivalent pre-processing procedure would require more advanced methods (e.g.,

face and eyes localisation). Figure 3.5 a sample of the pre-processed images.

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 28

(a) (b)

(c) (d)

(e)

Figure 3.4: The initial image (a) is converted to grayscale (b). The image is rotated,
but the landmarks are not changed yet (c). The new position of the landmarks are
computed based on the rotation matrix (d). The �nal image (e) is cropped based on

the landmarks.

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 29

(a) Sample of initial images

(b) Preprocessed Images

Figure 3.5: (a) A sample of the initial images and (b) the corresponding preprocessed
images (right).

3.2.3.2 FG-Net aging database classi�cation with deep learning

Our benchmark is evaluated with the standard stacked autoencoder (deterministic net-

work) and the deep belief network (stochastic network) deep learning algorithms.

In the example with the stack autoencoder, two autoencoders (784-100-50 number

of neurons for each layer) are considered followed by a softmax classi�er [77]. In a

classi�cation task, the \decoding" layers of the stacked autoencoder are removed, and

the features of the last autoencoder are connected to a softmax classi�er. The procedure

begins with the training of the �rst autoencoder, and when completed, the features or

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 30

�lters learned during the training are forward propagated to the second layer. This

procedure is followed by the next autoencoder with the di�erence in that the second

layer propagates to the softmax classi�er. Finally, the �ne-tuning procedure views the

deep structure as a single network and uses forward and back propagation to update the

weights and biases of the entire network as a standard multiple layer perceptron (MLP).

Figure 3.6: Example of the stacked autoencoder network

For every step of the algorithm, the standard gradient descent is used to train the

network. Speci�cally, the \minFunc" library for the gradient descent is used, which is

the Limited memory-Broyden Fletcher Goldfarb Shanno (L-BFGS) optimisation algo-

rithm [58]. The �nal accuracy is heavily based on the number of classes and the size of

the training and testing sets. We performed two examples with the learning (or training)

procedure supported with 900 images, while the testing procedure with the remaining

from the set. The classi�cation task groups the faces according to age using a classi�er

with six classes: 0-5, 6-10, 11-15, 16-20, 21-31, and 31-69. The performance achieved

from the network is � 48%. If the initial con�guration includes classes with larger age

range values, then the performance improves. For example, if the goal is to group the

faces using age ranges 0� 10; 11� 20; : : : ; 61� 70, then the accuracy is� 73%. Finally,

the �rst layer �lters learned is provided in Figure 3.7.

The deep belief network is applied in a three layer (784-500-500 number of neurons

for each layer) of RBM's and 6 classes 0-5, 6-11, ..., 31+. The performance is slightly

better than the stacked autoencoder, � 51%, which is compared with ak-step con-

trastive divergence with k = 5 and 10 but without signi�cant di�erence. It is known

that tuning an RBM and a deep algorithm are challenging while debugging is usually

done through visualisation [106]. It is interesting that the �lters the algorithm learned

for the �rst RBM of the deep belief network after the training procedure are not satis-

factory (Figure 3.8). In contrast, the stacked autoencoder �lters of the �rst layer appear

Chapter 3. Background on traditional deep learning algorithms and a new method to
train the Radial Basis Function network 31

better (Figure 3.7). The histogram of the �lters (Figure 3.9) con�rms the mean abso-

lute magnitude of the �lters increases by a factor of 102 [106]. However, this does not

suggest any sign of over�tting or under�tting the dataset. Similarly, the error evolution

of the training procedure is in the correct direction (Figure 3.10) while it is apparent

from the classi�cation error of the training and test sets that over�tting occurs. Accu-

racy improvement may be obtained through a variety of approaches, such as proposing

a better optimisation method, tuning the hyperparameters of the network [18], apply-

ing early stopping, using more data, and considering other deep learning architectures.

Exploration of these potential improvements requires further investigation.

(a)

(b)

Figure 3.7: (a-b) Filters (or weights) the �rst layer learnt after the training procedure
of the stacked autoencoder. Both images are the same but with a di�erent color.

	Abbreviations
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Overview
	1.2 Contributions
	1.3 Outline

	2 Bayesian inference and Markov chain Monte Carlo methods
	2.1 Introduction
	2.2 Bayesian inference
	2.3 Markov chain Monte Carlo methods
	2.3.1 Metropolis-Hastings
	2.3.2 Hamiltonian Monte Carlo
	2.3.3 Transitional Markov chain Monte Carlo

	2.4 Sequential Monte Carlo methods
	2.4.1 Sequential Monte Carlo samplers
	2.4.1.1 Initialisation and posterior distribution
	2.4.1.2 Proposal distribution and importance weights
	2.4.1.3 Degeneracy phenomenon and effective sample size
	2.4.1.4 SMC samplers emulate MCMC
	2.4.1.5 Estimation

	2.4.2 Particle filters
	2.4.2.1 Sequential importance resampling

	2.5 Sampling experiments
	2.6 Conclusions

	3 Background on traditional deep learning algorithms and a new method to train the Radial Basis Function network
	3.1 Introduction
	3.2 Background on deterministic and stochastic deep learning methods
	3.2.1 The stacked autoencoder
	3.2.2 The Deep Belief Network
	3.2.2.1 Restricted Boltzmann machine
	3.2.2.2 Deep Belief Network

	3.2.3 Face age classification
	3.2.3.1 Preprocessing the FG-Net aging database
	3.2.3.2 FG-Net aging database classification with deep learning

	3.3 Replacing the Metropolis-Hastings with importance sampling and resampling on the Radial Basis Function network
	3.3.1 Model description
	3.3.2 Bayesian aims using the hybrid MCMC
	3.3.3 Proposed method on the RBF
	3.3.4 Signal detection experiments

	3.4 Conclusions

	4 Parallel sequential Monte Carlo methods
	4.1 Introduction
	4.2 Review on parallel resampling
	4.3 MapReduce particle filtering with exact resampling and deterministic runtime
	4.3.1 Introduction
	4.3.2 Big data processing
	4.3.2.1 Big data frameworks
	4.3.2.2 The MapReduce programming model
	4.3.2.2.1 Hadoop
	4.3.2.2.2 Spark

	4.3.3 Parallel particle filtering
	4.3.3.1 Parallel instantiations of the algorithmic components of particle filtering
	4.3.3.1.1 Element-wise operations
	4.3.3.1.2 Rotation
	4.3.3.1.3 Sum, max and other commutative operations
	4.3.3.1.4 Cumulative sum
	4.3.3.1.5 Normalising the weights
	4.3.3.1.6 Minimum Variance Resampling
	4.3.3.1.7 Sorting
	4.3.3.1.8 Redistribution: Original version
	4.3.3.1.9 Redistribution: Improved version

	4.3.4 Mapping particle filtering into MapReduce
	4.3.5 Evaluation
	4.3.5.1 Worst case runtime performance
	4.3.5.1.1 Baseline redistribution algorithm
	4.3.5.1.2 Runtime performance and variability

	4.3.5.2 Overall profile
	4.3.5.3 Comparison of Hadoop and Spark
	4.3.5.3.1 Sum and Cumulative Sum
	4.3.5.3.2 Bitonic sort and Minimum Variance Resampling
	4.3.5.3.3 Redistribution and overall performance

	4.3.5.4 Impact of using multiple cores
	4.3.5.4.1 Redistribution component in isolation
	4.3.5.4.2 Resulting overall particle filter performance

	4.3.5.5 Speedup and scalability analysis
	4.3.5.5.1 Redistribution component in isolation
	4.3.5.5.2 Resulting overall particle filter performance

	4.3.6 Discussion
	4.3.7 Summary

	4.4 Conclusions

	5 Efficient particles recycling
	5.1 Introduction
	5.2 Estimation methodologies
	5.2.1 Basic method
	5.2.2 Existing method
	5.2.3 New method

	5.3 Simulations
	5.3.1 N-dimensional Gaussian distribution
	5.3.2 N-dimensional Student's t distribution
	5.3.3 N-dimensional Ackley function

	5.4 Conclusions

	6 Selecting the forward Markov kernel
	6.1 Introduction
	6.2 Langevin diffusion
	6.2.1 Fokker-Plank equation
	6.2.2 Discrete time Langevin diffusion

	6.3 Simulations
	6.3.1 One dimensional static distributions
	6.3.2 N-dimensional Gaussian distribution
	6.3.3 N-dimensional Student's t distribution
	6.3.4 N-dimensional Laplace distribution

	6.4 Conclusions

	7 Optimal backward kernel
	7.1 Introduction
	7.2 Optimal backward Markov kernel
	7.3 Near optimal backward Markov kernel
	7.3.1 Parametric estimation of the joint density
	7.3.2 Baseline method
	7.3.3 Avoiding resampling errors

	7.4 Simulation results
	7.4.1 Comparison of SMC sampler with optimal and basic backward Markov kernels
	7.4.2 Comparison of the SMC sampler with optimal backward Markov kernel with competitor methodologies
	7.4.2.1 Comparison on a unimodal distribution
	7.4.2.2 Comparison on a bimodal distribution

	7.5 Conclusions

	8 Conclusions
	A Parallelising particle filters with deterministic runtime on distributed memory systems
	A.1 Introduction
	A.2 Distributed memory systems
	A.3 MPI particle filter
	A.3.1 MPI cumulative sum
	A.3.2 MPI Bitonic sort
	A.3.3 MPI minimum variance resampling

	A.4 MPI redistribute
	A.4.1 MPI O(N) redistribute
	A.4.2 MPI O((log2N)3) redistribute
	A.4.3 MPI O((log2N)2) redistribute

	A.5 Evaluation
	A.5.1 Cumulative sum, bitonic sort and MVR
	A.5.2 Redistribute
	A.5.3 Particle filter

	A.6 Conclusions and future work

	B Variance of an importance sampler
	B.1 Importance sampling estimator is unbiased
	B.2 Variance
	B.3 The need for heavy tails

	Bibliography

