Komulainen, Sanna, Roukala, Juho, Zhivonitko, Vladimir V, Javed, Muhammad Asadullah, Chen, Linjiang, Holden, Daniel, Hasell, Tom ORCID: 0000-0003-4736-0604, Cooper, Andrew, Lantto, Perttu and Telkki, Ville-Veikko
(2017)
Inside information on xenon adsorption in porous organic cages by NMR.
Chemical Science, 8 (8).
pp. 5721-5727.
ISSN 2041-6520, 2041-6539
Abstract
A solid porous molecular crystal formed from an organic cage, CC3, has unprecedented performance for the separation of rare gases. Here, xenon was used as an internal reporter providing extraordinarily versatile information about the gas adsorption phenomena in the cage and window cavities of the material. 129Xe NMR measurements combined with state-of-the-art quantum chemical calculations allowed the determination of the occupancies of the cavities, binding constants, thermodynamic parameters as well as the exchange rates of Xe between the cavities. Chemical exchange saturation transfer (CEST) experiments revealed a minor window cavity site with a significantly lower exchange rate than other sites. Diffusion measurements showed significantly reduced mobility of xenon with loading. 129Xe spectra also revealed that the cage cavity sites are preferred at lower loading levels, due to more favourable binding, whereas window sites come to dominate closer to saturation because of their greater prevalence.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | 34 Chemical Sciences, 3406 Physical Chemistry |
Depositing User: | Symplectic Admin |
Date Deposited: | 13 Feb 2019 13:08 |
Last Modified: | 07 Dec 2024 08:51 |
DOI: | 10.1039/c7sc01990d |
Open Access URL: | https://pubs.rsc.org/en/Content/ArticleLanding/201... |
Related URLs: | |
URI: | https://livrepository.liverpool.ac.uk/id/eprint/3032779 |