ARTICLE TITLE
Dendritic cells potently purge latent HIV-1 in TCR-activated cells via the PI3K-Akt-mTOR pathway: implications for "shock and kill" strategies and reservoir analysis

AUTHOR LIST
Thijs van Montfort, Renée van der Sluis, Gilles Darcis, Doyle Beaty, Kevin Groen, Alexander O. Pasternak, Georgios Pollakis, Moniek Vink, Ellen M. Westerhout, Mohamed Hamdi, Margreet Bakker, Boas van der Putten, Suzanne Jurriaans, Jan Prins, Rienk Jeeninga, Adri A.M. Thomas, Dave Speijer, Ben Berkhout

ARTICLE TYPE
Research Article

ABSTRACT
The latent HIV-1 reservoir in treated patients primarily consists of resting memory CD4+ T cells. Stimulating the T-cell receptor (TCR), which facilitates transition of resting into effector T cells, is the most effective strategy to purge these latently infected cells. Here we demonstrate that TCR-stimulated effector T cells still frequently harbor latent HIV-1. Renewed TCR-stimulation or subsequent activation with latency reversing agents (LRAs) did not overcome latency. However, interaction of infected effector cells with dendritic cells (DCs) triggered further activation of latent HIV-1. When compared to TCR-stimulation only, CD4+ T cells from aviremic patients receiving TCR+DC-stimulation reversed latency more frequently. Such a “one-two punch” strategy seems ideal for purging the reservoir. We determined that DC contact activates the PI3K-Akt-mTOR pathway in CD4+ T cells. This insight could facilitate the development of a novel class of potent LRAs that purge latent HIV beyond levels reached by T-cell activation.
Dendritic cells potently purge latent HIV-1 in TCR-activated cells via the PI3K-Akt-mTOR pathway: implications for “shock and kill” strategies and reservoir analysis

Thijs van Montfort¹, Renée van der Sluis¹, Gilles Darcis¹,², Doyle Beaty¹, Kevin Groen¹, Alexander O. Pasternak¹, Georgios Pollakis⁶, Moniek Vink¹, Ellen M. Westerhout², Mohamed Hamdi², Margreet Bakker¹, Boas van der Putten¹, Suzanne Jurriaans¹, Jan Prins³, Rienk Jeeninga¹, Adri A.M. Thomas⁵, Dave Speijer⁴ and Ben Berkhout¹

¹Laboratory of Experimental Virology, Department of Medical Microbiology, ²Department of Oncogenomics, ³Department of Internal Medicine, ⁴Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam, the Netherlands
⁵Department Developmental Biology, Faculty Beta-science, Padualaan 8, Utrecht, the Netherlands
⁶Department of Clinical Infection, Microbiology and Immunology (CIMI), University of Liverpool, 8 West Derby Street, Liverpool, United Kingdom
⁷Department of Infectious Diseases, Liege University Hospital, Belgium

*Correspondence to Thijs van Montfort, Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 15, Amsterdam, the Netherlands
Tel: +31 20 56 67831; fax: +31 20 69 16 531; e-mail: t.vanmontfort@amc.uva.nl
Abstract

The latent HIV-1 reservoir in treated patients primarily consists of resting memory CD4\(^+\) T cells. Stimulating the T-cell receptor (TCR), which facilitates transition of resting into effector T cells, is the most effective strategy to purge these latently infected cells. Here we demonstrate that TCR-stimulated effector T cells still frequently harbor latent HIV-1. Renewed TCR-stimulation or subsequent activation with latency reversing agents (LRAs) did not overcome latency. However, interaction of infected effector cells with dendritic cells (DCs) triggered further activation of latent HIV-1. When compared to TCR-stimulation only, CD4\(^+\) T cells from aviremic patients receiving TCR+DC-stimulation reversed latency more frequently. Such a “one-two punch” strategy seems ideal for purging the reservoir. We determined that DC contact activates the PI3K-Akt-mTOR pathway in CD4\(^+\) T cells. This insight could facilitate the development of a novel class of potent LRAs that purge latent HIV beyond levels reached by T-cell activation.
Introduction

Early on in HIV infection, cellular reservoirs containing latent HIV-1 are formed (Bruner et al., 2016). These cells contain a stably integrated and complete viral genome, but do not express sufficient amounts of viral proteins to drive virus production and to be recognized by the immune system. Resting memory CD4+ T cells are the main cell type harboring latent HIV-1 in patients after prolonged therapy (Perelson et al., 1996; Wei et al., 1995), but T cells with shorter half-lives, such as effector T cells, can also harbor latent HIV-1 (Chavez et al., 2015; van der Sluis et al., 2013). Latency is established and maintained through multiple mechanisms that act at transcriptional and post-transcriptional levels (Darcis et al., 2017). At the transcriptional level, accessibility of the HIV-1 LTR promoter could be blocked in repressive chromatin structures (which can be overcome with histone deacetylase (HDAC) inhibitors) or by the sequestration of transcription initiation factors such as NF-kB/NFAT/AP-1. Other blocks to HIV-1 transcription include inefficient elongation due to the lack of elongation factors such as P-TEFb or the presence of negative elongation factors (NELFs). These elongation factors influence the RNA polymerase complex and determine whether transcription is prematurely aborted after synthesis of the trans-activation response (TAR) region or extended towards the formation of full-length HIV-1 RNA transcripts. Yukl et al. recently described that HIV latency at the transcriptional level occurs mainly due to inefficient RNA elongation accompanied by a lack of splicing and polyadenylation factors rather than the absence of transcription initiation factors (Yukl et al., 2018). Inefficient export of viral RNA from the nucleus may also contribute to HIV-1 latency, either due to low levels of Rev protein (Huang et al., 2007; Zolotukhin et al., 2003) or cellular co-factors like Matrin-3 or PTB that assist in the nuclear RNA export (Kula et al., 2013; Yedavalli and Jeang, 2011).

One of the proposed strategies to exhaust the reservoir is a “shock and kill” treatment in which latency-reversing agents (LRAs) purge HIV-1 from latency, while uninfected cells are protected against virus infection with antiretroviral therapy. Virus-induced cell death or cytotoxic T-cell killing
of virus-producing cells was proposed to eliminate the reactivated cells. Stimulation of the T-cell receptor (TCR) to induce the transition of resting into effector T cells is currently the most effective strategy to purge latent HIV. Ex vivo stimulation of the TCR with PHA or CD3-CD28 antibodies can purge approximately 1 cell per million resting memory T cells (= 1 IUPM) as determined with the gold standard quantitative viral outgrowth assay (qVOA) (Ho et al., 2014). Repeated TCR-stimulation can increase this number 2-3 fold (Hosmane et al., 2017), but based on full-genome sequencing it has been estimated that the intact HIV-1 reservoir size is around 30 cells per million resting T cells in treated patients (Ho et al., 2014). This implies that T-cell activation can only purge a fraction of the HIV reservoir and that additional stimuli are required to purge larger portions of latently infected cells. We previously developed an HIV-1 latency assay for effector T cells and showed that stimulation by DC contact efficiently purged latency (van der Sluis et al., 2013). We now show that DC contact stimulates the PI3K-Akt-mTOR pathway in effector T cells. Importantly, we demonstrate that stimulation of T cells from treated aviremic patients with PHA and DCs strongly increased the frequency of HIV-1 release from latently infected cells (9 out of 9 patients) compared to PHA alone (4 out of 9). This “one-two punch” strategy (PHA + DCs) can purge the reservoir more potently than PHA treatment alone (figure 1). These findings could direct the development of novel LRA treatments that also strongly stimulate the PI3K-Akt-mTor pathway. The new insights could also be used for the design of a new sensitive culture-based assay to measure the intact HIV-1 reservoir.

Results

Dendritic cells purge residual latent HIV-1 from PHA-activated T cells

To investigate the effectiveness of DCs or LRAs in reversing latency in effector T cells, we designed an innovative primary T-cell model. Resting T cells from healthy donors were activated with PHA for 2 days. CD8+ T cells were removed and CD4+ T cells were cultured for three days before infection for 4
hours with HIV-1. New rounds of infection and virus replication were then blocked by addition of the T1249 entry inhibitor. Cells were maintained in culture for 24 hours to allow completion of reverse transcription and DNA integration was allowed to proceed for 24 hours. Subsequently, the infected CD4+ T cells were co-cultured for 48 hours with or without DCs and in the presence or absence of LRAs (Figure 2A). As shown before, the percentage of virus-producing T cells increased from 7.5% to 28.2% by DC co-culturing (Figure 2B). Reversion of latency, expressed as "fold activation" by calculating the percentages of CA-p24 positive DC-treated T cells divided by control untreated T cells from three independent infections, was ~3.5-fold (Figure 2C). Importantly, this means that for each virus-producing effector T cell, 2 to 3 additional HIV-infected cells could be purged from latency by DCs. Thus, a bigger part of the reservoir could be purged using DCs as an extra stimulation. The observed rate of reversion of HIV-1 latency by DCs is not due to increased viral transmission or integration as extending the period before addition of DCs or use of the integrase inhibitor raltegravir did not change the fold activation (van der Sluis et al., 2013).

Successive stimulation of the T-cell receptor (TCR) has been shown to increasingly revert the level/efficiency of HIV latency in activated T cells (Hosmane et al., 2017). The heterologous DCs used in this latency assay might also have non-specifically stimulated the TCR. Re-stimulating the TCR with phytohaemagglutinin (PHA) or CD3/CD28 antibodies, however, did not purge latency, demonstrating that DC-purging is not triggered via the TCR (Figure 2D). Other LRAs such as the HDAC inhibitor romidespin (Figure 2E), the PKC activator prostratin (Figure 2F), and the inflammatory cytokine TNFα (Figure 2G) were also unable to revert additional latent HIV-1, illustrating that reversion of HIV-1 triggered by DCs is different from the LRAs tested.

Tetraspanins are involved in DC-triggered HIV-1 activation in PHA-activated T cells

DCs interact with T cells via immunological synapses where antigen is presented for TCR recognition. Tetraspanins CD9, CD63, CD81, and CD151 play an important role in this process by stabilizing
recruited protein complexes in tetraspanin-enriched microdomains (TEMs) (Rocha-Perugini et al., 2014, 2016). To investigate whether the tetraspanins are involved in DC-mediated HIV-1 latency reversal in T cells, tetraspanin-specific antibodies (Ab) were added. Blocking of CD9 and CD63 abrogated HIV-1 latency reversal in effector T cells by DCs (Figure 3A). A modest reduction (by ~38 %) in DC-mediated purging was observed when a CD81 Ab was used while the CD151 Ab had no effect on DC-purging (Figure 3A). These data suggest that the RAS signaling pathway is targeted by DCs, because the three responsive tetraspanins (CD9, CD63 and CD81) activate this pathway, whereas the non-responsive CD151 tetraspanin inhibits it (Figure 3B, model adapted from Hemler et. al. (Hemler, 2005).

DC-mediated HIV-1 latency reversal depends on the PI3K-Akt-mTOR pathway

Active GTP-bound RAS can activate the extracellular signal-regulated kinase (Raf-MEK/ERK), phosphoinositide kinase 3 (PI3K-Akt-mTOR) and the phospholipase C (PLC)/PKC pathway (Figure 4A). As shown above, stimulation of the TCR or the PKC pathway with prostratin did not purge latent HIV-1 in effector T cells, illustrating that the PLC-PKC pathway is not involved in DC-purging (Figure 2D and 2F). Inhibiting the Raf-MEK/ERK pathway with increasing concentrations of the MEK1/2 inhibitor U0126 (up to 100 nM) also did not block HIV-1 purging (Figure 4B) and cell death was observed at 300 nM. In contrast, inhibition of the PI3K route with 100 nM pictilisib (GDC-0941) potently inhibited DC purging (Figure 4C).

To confirm the involvement of the PI3K pathway, we indirectly activated this pathway by inhibiting PTEN with SF1670 (Figure 4A and 4D). In accordance with the suggested role of the PI3K-Akt-mTOR pathway in latency reversal, inhibition of PTEN in the T-cell culture reversed HIV-1 latency by 1.7-fold. In contrast, inhibition of PTEN increased the DC-purging activity only minimally (and only at high concentrations of SF1670), suggesting that the PI3K-Akt pathway was already active.

Analysis of DC-mediated signaling downstream of the Akt pathway
To confirm involvement of the PI3K-Akt-mTOR pathway, we tested additional inhibitors that block specific steps of this pathway (Figure 5A). The inhibitor GSK2126548 that blocks the activation of PI3K, mTORC1 and mTORC2, the mTOR-inhibitor AZD8055 that blocks activation of mTORC1 and mTORC2, and the Akt-inhibitor MK2206 all inhibited DC-mediated HIV-purging in a dose-dependent manner (Figure 5B-D). These inhibitors had no effect on HIV-1 production in T-cell only cultures. We used the inhibitor temsirolimus to specifically inhibit mTORC1, which inhibited DC-mediated reversion of latent HIV-1 by 70% at concentrations as low as 10 nM, without any cell toxicity (Figure 5E). Inhibiting the IκB kinase (IκK) complex, another signaling branch downstream of Akt with bardoxolone also blocked HIV-1 reactivation, but only at high concentrations above 100 nM (Figure 5F). In summary, although the PLC, PKC, MEK/ERK and PI3K/Akt pathways are activated in PHA-activated T cells, a further stimulation of the PI3K/Akt pathway by DC contact purged latent HIV-1 beyond the level of TCR activation.

DC contact does not increase availability of nuclear NF-κB or cJun/cFos (hetero/homo) dimers

The IκK pathway is involved in activation of the transcription factor NF-κB. To explore whether the purging effect mediated by DCs is dependent on increased transcription initiation, we blocked nuclear translocation of NF-κB with JSH-23 (Shin et al., 2004), which marginally reduced DC-induced HIV-1 production by ~33% at 300 nM (Figure 6A). Blocking c-Jun (Figure 6B) or c-Fos (Figure 6C), transcription factors that bind to AP-1 and SP1 sites in the HIV-1 LTR promoter, did not affect DC-mediated purging. Thus, the availability of transcription factors that are important for HIV-1 gene expression in activated effector T cells is sufficient and is not changed upon DC addition.

DCs trigger (de)phosphorylation of proteins downstream of the Akt signaling pathway

To explore which pathways become activated by DCs in effector T cells, we also studied the phosphorylation status of 43 proteins from different signaling cascades. Seven proteins that belong
to the Akt signaling pathway became phosphorylated upon 2.5 hr DC contact (p38alpha, JNK1/2/3, GSK-3AB, p53, CREB, c-Jun and WNK-1) (Figure 7A and 7C). Surprisingly, two other proteins that are also associated with Akt signaling, p27 and p70S6K, became dephosphorylated. It could be that these kinases were dephosphorylated to prevent over-activation of the mTOR pathway via negative feedback loops. Apart from the over-all activation of the Akt pathway, we also observed STAT5/6 proteins being less frequently phosphorylated after DC contact. We also analyzed the phosphorylation status after an extended (21 hrs) DC contact. Three proteins (CREB, WNK-1 and c-Jun) downstream the Akt pathway still showed an increased phosphorylation status (Figure 7B). Thus, part of the PI3K-Akt-mTOR pathway in T cells remains active upon prolonged DC contact.

Overall, these results demonstrate that DCs activate the PI3K-Akt-mTOR pathway in T cells, thus purging latent HIV-1 proviruses.

DCs purge latent HIV-1 in TCR activated CD4 cells from aviremic patients

Since DCs activate the PI3K-Akt-mTor pathway and purge latent HIV-1 in activated T cells, we examined whether they can also purge latent HIV-1 beyond PHA-mediated activation in CD4+ T cells from aviremic HIV-infected patients. CD4+ T cells were isolated from 9 aviremic ART-treated patients and stimulated with PHA or mock-treated in the absence or presence of heterologous DCs for 72 hrs. Purging of HIV-1 latency was assessed by the detection of extracellular HIV-1 virion RNA released into the cell culture supernatant. In mock-stimulated CD4+ T cells, HIV-1 RNA could be detected for 4 out of 9 patients (Figure 8A). PHA treatment did not increase the detectability of HIV-1 RNA compared to mock-stimulated CD4+ T cells, while DC contact slightly decreased the HIV+ scores. However, importantly, a combined PHA + DC treatment made HIV-1 RNA detectable for 9 out of 9 patients. The analyses showed the purging efficiency to be significantly higher in the double treatment (when compared to PHA alone) (Figure 8B).
Next, we tested the “double treatment” with the quantitative virological outgrowth assay (qVOA), the golden standard to measure reversion of latency. Again the combination proved superior. With a limited number of patient cells available for this assay (7 patients in total), we could detect an increased number of replicating infectious HIV-1 units per million (IUPM) CD4 T cells upon DC addition for patient 11 and 12. Moreover, for patient 10 and 15 detectable IUPMs were only observed after DC-stimulation (Figure 8C and 8D). Collectively, we conclude that DCs can purge HIV-1 latency beyond levels achieved by PHA activation.
Discussion

The latent HIV-1 reservoir in patients under suppressive ART consists predominantly of long-lived resting memory CD4+ T cells (Zhang et al., 1999). A major proportion of the reservoir contains replication-incompetent proviral DNA that lacks gene fragments, is hypermutated, or is epigenetically silenced (Kieffer et al., 2005) (Sanchez et al., 1997). However, based on sequencing, approximately 30 resting T cells per million still contain infectious replication-competent HIV-1 genomes (Ho et al., 2014). TCR activation that converts resting T cells into effector T cells can only purge HIV-1 in approximately 1 resting T cell per million (Bullen et al., 2014; Ho et al., 2014). Sequential stimulation with several TCR-based LRAs can increase the purging efficiency 2-3 fold (Hosmane et al., 2017).

Thus, full T-cell activation allows latency to persist in most cells. To study if more complete purging can be achieved, we developed an HIV-1 latency model with (TCR pre-stimulated) primary effector T cells. We demonstrated that DC contact can efficiently purge latent HIV in these T cells, something not achieved by a second round of T-cell activation or treatment with other LRAs (Figure 2). Thus, the one-two punch consisting of TCR activation and subsequent stimulus with DCs can reach a significantly larger portion of the reservoir than other purging methods.

Using CD4+ T cells isolated from ART-treated aviremic patients, we confirmed results obtained with our in vitro latency model by showing that ex vivo TCR-stimulation combined with DC contact induced the release of HIV-1 RNA into the supernatant in a significantly larger proportion of patients compared with TCR stimulation alone, which is indicative for purging of latent HIV-1 (Laird et al., 2015). Although RNA could be detected for all patients with the double treatment, the levels of RNA released were not increased. This could be caused by efficient capture and degradation of free HIV-1 by DCs which will limit the amount of HIV-1 RNA to be detected in supernatant (van Montfort et al., 2015). In agreement with this hypothesis, treatment of patient cells with DCs alone without PHA activation also decreased the amount of RNA released in supernatant compared to untreated cells.

To understand why DCs increase the purging efficiency we dissected the molecular mechanisms
induced in T cells pretreated with PHA. Our data illustrate that formation of tetraspanin-enriched microdomains (TEMs) between DCs and T cells is important for the purging ability of DCs (Figure 3A) (Berditchevski et al., 1997; Lin and Fan, 2016; Mittelbrunn et al., 2002; Rocha-Perugini et al., 2016). These TEMs recruit PI4K to the membrane to locally produce phosphoinositols, such as phosphatidylinositol-4,5 bisphosphate (PtdIns(4,5)P2), which activate RAS via Shc proteins (Hemler, 2005; Pawson and Scott, 1997). Active RAS can activate the MEK-ERK, PLC-PKC and the PI3K-Akt-mTOR pathway. The DC-mediated HIV-1 purging in T cells, however was predominantly caused by activation of the PI3K-Akt-mTOR pathway, which is associated with improved RNA elongation, ribosomal activity, protein synthesis and cell survival (Darcis et al., 2015). Thus, activation of the PI3K-Akt-mTOR probably overcomes post-transcriptional blocks to form infectious viral particles. Whether activation of this pathway is strictly regulated via RAS activation or via other DC-T cell mediated interactions needs to be explored in future research.

We hypothesize that phosphoinositols, especially the availability of PtdIns(4,5)P2, determines HIV-1 latency at various levels (Figure 9). First, transcription factors such as NF-κB or c-Jun/c-Fos are required for HIV-1 transcription initiation (Bullen et al., 2014; Darcis et al., 2015; Laird et al., 2015). These factors are upregulated via the MEK-ERK and PLC-PKC pathway, where PtdIns(4,5)P2 is converted by PLC into IP3 and DIAG (Mendoza et al., 2011). This can be achieved by TCR stimulation or PKC activators. Second, PI3K-Akt-mTor pathway activation is required to allow transcriptional elongation and protein synthesis. DCs can initiate this pathway by PtdIns(4,5)P2 production in TEMs via PI4K activation and subsequent phosphorylation into PtdIns(3,4,5)P3 by PI3K. Since the PI3K-Akt-mTOR and PLC-PKC pathway either phosphorylate or dephosphorylate PtdIns(4,5)P2, strong activation of either one of these pathways will directly inhibit the activation of the other pathway. Thus, a fine balance between these pathways should be pursued to purge latent HIV-1, or both pathways should be activated sequentially as achieved for instance with our “one-two punch” strategy, in which, after transcription initiation, RNA elongation and protein translation should follow.
In this light it is not surprising that TCR stimulation, which can trigger sub-optimally the PLC-PKC and PI3K-Akt-mTOR pathway, has some HIV-1 purging ability, leading to outgrowth of infectious particles, whereas solely activating the transcription initiation route does not (Bullen et al., 2014). Interestingly, a recent study discovered the importance of the mTOR pathway in purging latent HIV-1 in resting cells (Besnard et al., 2016). Specifically blocking the mTOR pathway after TCR stimulation negated reversal of latency in patient cells, illustrating that TCR-stimulation can sub-optimally activate this pathway. Our results extend those data by showing that DCs activate this PI3K-Akt-mTOR pathway stronger than TCR stimulation, leading to increased purging efficiency.

Blocking multiple targets in the PI3K-Akt-mTOR pathway, for instance with GSK2126458, inhibited DC-specific activation of the PI3K-Akt-mTOR pathway better than the mTORC1 inhibitor temsirolimus. This is in agreement with a study from Martin et al., who reported that the mTORC1 inhibitor rapamycin (Calne et al., 1989; Ernst et al., 1989) did not block purging of latency HIV-1, but could reduce the toxic side effect of CD3/CD28 T cell activation without affecting CTL-mediated killing (Martin et al., 2017).

DC contact may influence HIV-1 reactivation in T cells by additional means. Ren et al. showed that mature DCs are capable of releasing TNFα upon contact with infected Jurkat T cells, leading to reversion of latency in this cell line (Ren et al., 2017).

Since DCs strongly revert HIV-1 latency, it would be an option to use DCs as a natural cell source to revert HIV-1 latency in HIV-infected patients. We previously observed that primary DC homing to different lymphoid organs have substantially different latency-purging capacities. Monocyte-derived DCs cultured under conditions towards a gut DC phenotype efficiently purged latent HIV-1, whereas no, or only modest, reversal of latency was achieved with DCs representing the subtype homing to the genital tract. Myeloid DCs that have been matured with different toll-like receptor agonists, representing lymph node derived DCs, efficiently purge HIV-1 from latency (van der Sluis et al., 2015).
The fact that monocyte-derived DCs can purge HIV-1 from patient-derived latently infected cells suggests that DCs might control the size of the viral reservoir in patients in particular tissues. This could happen especially when T cells are activated due to secondary infection, or in the acute phase of disease when T cells are activated to fight the HIV-1 infection (van der Sluis et al., 2013). DC-mediated HIV-1 reversion however, is not to be expected in peripheral blood (van der Sluis et al., 2015), as the frequency of myeloid DCs is ~7000 per million CD4 T cells in healthy donors, with even lower numbers in HIV-1 infected individuals (~2300 per million) (Donaghy et al., 2012). But, DC:T contact might be more efficient in tissues, which could result in the observed low levels of ongoing virus production, even in the presence of therapy (Lorenzo-Redondo et al., 2016; Pasternak et al., 2012; Sigal et al., 2011).

Interestingly, Gramatica and colleagues already raised the possibility that latency reversal might be more effective in lymphoid tissues where contact of T cells with DCs is more prominent than in blood (Gramatica, A; Greene, WC; Montano, 2015). The lack of efficacy of clinical trials using LRAs aimed at decreasing the HIV-1 reservoir size might therefore be caused by the fact that the reservoir was analysed only in the peripheral blood and not in tissues, where preferential DC-mediated purging could occur (Archin et al., 2012; Gutiérrez et al., 2016; Rasmussen et al., 2018; Søgaard et al., 2015; Spivak et al., 2014). One approach to use DCs to increase the LRA purging efficiency in patients might be the combination of an LRA with a specific TLR agonist that will direct DCs to tissues, where latent reservoirs are maintained. The use of DCs as a natural mechanism to revert HIV-1 latency has limited side effects (Palucka and Banchereau, 2013), as compared to T cell receptor agonists (Prins et al., 1999).

Our results have important implications. Firstly, the potent capacity of DCs to reactivate HIV-1 proviruses which were not purged despite PHA stimulation could be used to design a more sensitive culture-based assay to measure the replication-competent reservoir, for instance by adapting the promising TZM-bl based assay (Sanyal et al., 2017). Secondly, the role of DCs in HIV-1 persistence
highlights the need to look at tissue reservoirs when possible, since cell-to-cell contact appears to be a major factor controlling HIV-1 latency. Finally, our results further support the importance of the PI3K-Akt-mTOR pathway in HIV-1 latency. These novel insights could be used to develop more efficient LRA strategies in the quest to get rid of the latent HIV-1 reservoir.

Materials and methods

Reagents. The fusion inhibitor T1249 was obtained from Pepscan (Therapeutics BV, Lelystad, The Netherlands) and used at a final concentration of 0.1 μg/ml. Antibodies against CD9, CD63, CD81, CD83, CD86, CD151, CD45RO, CD45RA, were purchased from Biolegend (San Diego, CA, USA). Other antibodies are directed against CA-p24 (clone KC-57RD1) (Beckman Coulter, Brea, CA, USA) and CD3-APC (BD Pharmingen, Breda, the Netherlands).

Cells. Human peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats (Central Laboratory Blood Bank, Amsterdam, The Netherlands) by use of a Ficoll gradient and frozen in multiple vials. When required, PBMCs were thawed, activated with phytohaemagglutinin (PHA, Remel, 2 μg/ml) and cultured in RPMI medium supplemented with 10% FCS and recombinant human IL-2 (rhIL-2, Novartis, 100 U/ml). On day 2 of culture, CD8+ T lymphocytes were depleted using CD8 immunomagnetic beads (Dynal, Invitrogen, Carlsbad, CA, USA) and the CD4+ enriched T lymphocytes were cultured for 3 more days. SupT1 CCR5 expressing T cells, a kind gift of prof. J. Hoxie (Del Prete et al., 2009), were cultured in RPMI 1640 medium containing 10% FCS.

Monocytes were isolated from PBMCs with CD14 magnetic beads from Miltenyi Biotec (GmbH, Bergisch Gladbach, Germany) according to the manufacturer’s protocol. Purified monocytes were cultured in RPMI 1640 medium containing 10% FCS and differentiated into monocyte-derived DCs by stimulation with 45 ng/ml interleukin-4 (rIL-4; Biosource, Nivelles, Belgium) and 500 U/ml
granulocyte macrophage colony-stimulating factor (GM-CSF; Schering-Plough, Brussels, Belgium) on day 0 and 2, and used on day 6 (van Montfort et al., 2008).

HEK 293T cells were grown as a monolayer in Dulbecco’s minimal essential medium (Gibco, BRL, Gaithersburg, MD) supplemented with 10% (v/v) fetal calf serum (FCS), 40 U/ml penicillin, 40 μg/ml streptomycin at 37°C and 5% CO₂.

SupT1 CCR5 expressing T cells, a kind gift of prof. J. Hoxie (Means et al., 2001), were cultured in RPMI 1640 medium containing 10% FCS.

Virus. Plasmid DNA encoding the CXCR4-using HIV-1 LAI primary isolate was transiently transfected in HEK293T cells with the lipofectamin 2000 reagent according to manufacturer’s protocol (Fisher Scientific, Landsmeer, NL). Virus supernatant was harvested 2 days after transfection, passed through a 0.2 μm filter and stored in aliquots at -80°C. The concentration of the virus stocks was determined by CA-p24 ELISA.

HIV-1 latency assay. HIV-1 infected cells were used in the latency assay as described previously. In short, PHA-activated CD4⁺ T lymphocytes (1.5 × 10⁶ or 2.0 × 10⁶ cells) were infected with HIV-1 for 4 hours (20 ng CA-p24). To establish infection over a 4 hr window, excess virus was diluted with three washes and cells were incubated with 100 ng/ml T1249 fusion inhibitor to prevent late fusion events and new rounds of virus replication. Cells were incubated for 24 hr to allow HIV-1 proviral integration. Subsequently, cells were treated with or without DCs (ratio 1:3), with or without 20 μg/ml CD9/CD63/CD81/CD151 antibody, or in the presence or absence of drugs for 48 hr in the continued presence of T1249. Single cells were analysed for the presence of the CD3 T cell receptor and expression of intracellular CA-p24 by flow cytometry (van der Sluis et al., 2013, 2015). The percentage of CA-p24 positive CD3-positive cells in the treated culture was divided by the percentage
of CA-p24 cells in the mock treated culture and reported as fold activation (a measure of HIV-1 latency reversion).

Intracellular CA-p24 analysis. Cells were fixed in 4% formaldehyde at room temperature for 20 min and subsequently washed with 2% FACS buffer (PBS supplemented with 2% FCS). The cells were permeabilised with BD Perm/Wash™ buffer (BD Pharmingen) and antibody staining was performed in BD Perm/Wash™ at room temperature for 1 hr. HIV-1 was intracellularly stained with an CA-p24 antibody and T lymphocytes were discriminated from DCs using the T cell receptor CD3 antibody. Unbound antibody was removed and the cells were analysed on a BD Canto II flow cytometer with BD FACSDiva Software v6.1.2 (BD biosciences, San Jose, CA) in FACS buffer. The T lymphocyte population was defined based on forward/sideward scatter and CD3 expression. Virus production on the gated T lymphocyte population was determined by measuring the intracellular viral CA-p24 protein level.

Human phospho kinase array. PHA-activated CD4⁺ T lymphocytes (3.0 x 10⁷) were infected according to the HIV-1 latency assay protocol. Infected PBMCs were incubated with 7.0 x 10⁶ DCs or without DCs for 2.5 hr. To disrupt the DC-T cell interaction, which was observed after 1 hr incubation, cell cultures were resuspended and washed twice in cold PBS supplemented with 2 mM EDTA and 0.5% FCS. CD4⁺ T lymphocytes were isolated at 4°C using the human CD4⁺ T lymphocytes isolation kit from Miltenyi Biotec according to the manufacturer’s protocol. Approximately 1.0 x 10⁷ CD4⁺ T lymphocytes were obtained after the isolation protocol. Cells were pelleted and treated according to the manufacturer’s protocol from the human phospho-kinase antibody array kit (R&D systems).

Patient material. PBMCs were isolated from aviremic ART-treated HIV-infected patients. Informed written consent was obtained from all participants of this study, and the study was approved by the Medical Ethical Committee of the Academic Medical Center, Amsterdam. All procedures followed were in accordance with the ethical standards of the responsible committee on human
experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000.

<table>
<thead>
<tr>
<th>Patient</th>
<th>age (years)</th>
<th>load copies/ml</th>
<th>current treatment</th>
<th>CD4</th>
<th>duration UVL (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>< 40</td>
<td>TDF/FTC/EFV</td>
<td>ND</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>81</td>
<td>< 40</td>
<td>TDF/FTC/EFV</td>
<td>0.46</td>
<td>5.2</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>< 40</td>
<td>DTG/3TC/ABC</td>
<td>0.38</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>< 40</td>
<td>EVG/c/ TAF/FTC</td>
<td>ND</td>
<td>1.2</td>
</tr>
<tr>
<td>5</td>
<td>54</td>
<td>< 40</td>
<td>NVP/TDF/FTC</td>
<td>ND</td>
<td>12.9</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
<td>< 40</td>
<td>EVG/c/ TAF/FTC</td>
<td>0.90</td>
<td>3.9</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>< 40</td>
<td>EFV/3TC/ABC</td>
<td>ND</td>
<td>>= 4</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>< 40</td>
<td>DTG/3TC/ABC</td>
<td>0.80</td>
<td>5.9</td>
</tr>
<tr>
<td>9</td>
<td>56</td>
<td>< 40</td>
<td>LPV/r/TDF/FTC</td>
<td>ND</td>
<td>12.7</td>
</tr>
<tr>
<td>10</td>
<td>52</td>
<td>< 40</td>
<td>NVP/3TC/ABC</td>
<td>0.49</td>
<td>13.2</td>
</tr>
<tr>
<td>11</td>
<td>61</td>
<td>< 40</td>
<td>RAL/DRV/r/TDF/FTC</td>
<td>0.38</td>
<td>8.6</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
<td>< 40</td>
<td>EVG/c/ TDF/FTC</td>
<td>ND</td>
<td>12.9</td>
</tr>
<tr>
<td>13</td>
<td>55</td>
<td>< 40</td>
<td>TDF/FTC/EFV</td>
<td>0.73</td>
<td>2.3</td>
</tr>
<tr>
<td>14</td>
<td>69</td>
<td>< 40</td>
<td>NVP/TDF/FTC</td>
<td>ND</td>
<td>11.5</td>
</tr>
<tr>
<td>15</td>
<td>24</td>
<td>< 40</td>
<td>ATZ/r/3TC/ABC</td>
<td>ND</td>
<td>>= 1</td>
</tr>
<tr>
<td>16</td>
<td>41</td>
<td>< 40</td>
<td>NVP/TDF/FTC</td>
<td>0.92</td>
<td>13.1</td>
</tr>
</tbody>
</table>

Table I: HIV-1 patient history

ND = Not determined, UDV = undetectable viral load

TDF: tenofovir disoproxil fumarate; FTC: emtricitabine; EFV: efavirenz; DTG: dolutegravir; 3TC: lamivudine; ABC: abacavir; EVG/c: elvitegravir cobicistat; TAF: tenofovir alafenamide; NVP: Nevirapine; LPV/r: lopinavir ritonavir; RAL: raltegravir; DRV/r: darunavir ritonavir, ATZ/r: atazanavir ritonavir

Quantification of HIV-1 release into culture supernatant. Patient-derived CD4⁺ T cells were isolated using the human CD4⁺ T-lymphocyte isolation kit (Miltenyi Biotec) according to the manufacturer’s
protocol. ~1.4-2.0 x 10^6 cells were treated with 2 µg/ml PHA, heterologous monocyte-derived DCs in a 1:3 ratio (DC:T), PHA combined with DCs (1:3 ratio) or left untreated for 72 hrs in RPMI1640 medium containing rhIL-2 and 80 ng/ml sanquinavir. Cell-free supernatant was collected by centrifugation for 5 min at 500 rcf. Extracellular HIV-1 RNA was isolated from 300 microliters of the supernatant using the Boom isolation method (Boom et al., 1990) with the addition of 2 micrograms of carrier RNA (poly A RNA, Qiagen, Venlo, The Netherlands) and processed for reverse transcription and first PCR using QIAGEN® OneStep RT-PCR kit (Qiagen, Venlo, The Netherlands) according to the manufacturer's instructions. The primers used were TAR-F (5'-GGGTCTCTCTGGTAGACCAG-3') and HIV-FOR (Malnati et al., 2008). The PCR settings were as follows: 94°C for 3 min, followed by 15 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for 1 min, followed by 72°C for 10 min. Two microliters of the first PCR product were subsequently used as a template in the second, semi-nested, real-time, PCR amplification, performed using the primers and a TaqMan probe described by Malnati et al. (Malnati et al., 2008).

qVOA with 1) PHA, 2) DC one-two punch

Isolated CD4 T cells from aviremic patients were activated with 2 µg/ml PHA for 72 hrs in RPMI1640 medium containing rhIL-2 and 100 ng/ml entry inhibitor T1249. Cells were washed three times and cultured in 96-well plate with a cell density of 2.0 x 10^5 CD4 T cells/well with or without 8.3 x 10^5 DCs (1:3 DC:T cell ratio) in fresh RPMI1640 containing rhIL-2. HIV-1 susceptible SupT1 CCR5 cells (5.0 x 10^5) were added to the microcultures to disseminate and sustain HIV-1 replication (Fun et al., 2017). After 7, 14 and 21 days of culturing half of the culture was used to determine HIV-1 CA-p24 by ELISA (van der Sluis et al., 2013) and fresh RPMI 1640 media was added to sustain T cell growth and virus replication. The number of infectious units per million (IUPM) was determined on the number of HIV-1 CA-p24 positive microcultures for each condition per million patient-derived CD4 T cells on day 21.
Statistical analysis. Significance of differences between groups or pairs was determined by one-way ANOVA and Student’s t-tests. For patient-derived samples, Fisher’s exact tests were used to compare the detectability of HIV-1 extracellular RNA between different conditions. Significance levels: *: p<0.05; **: p<0.01; ***: p<0.001. All tests were two-sided and were performed using GraphPad Prism, version 7.

Acknowledgments

We would like to thank George Leslie and Jim A. Hoxie for providing us with the SupT1 CCR5 T cell line (Del Prete et al., 2009).

Funding

RvdS, TvM, AOP, BB and REJ were supported by the Dutch Aidsfonds (Project numbers 2007028, 2008014, 2011020, 2012025, 2013021 and P-22602; http://www.aidsfonds.nl/about/organisation).

REFERENCES

Besnard, E., Hakre, S., Kampmann, M., Lim, H.W., Hosmane, N.N., Martin, A., Bassik, M.C.,

patients with HIV-1 infection correlates with HIV-1 RNA virus load Brief report Loss of blood CD11c+ myeloid and CD11c− plasmacytoid dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. 98, 2574–2576.

latency in isolated patient CD4$^+$ T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Sci. Transl. Med. 10.

Figure Legends

Figure 1: Purging latent HIV-1 according to the “one-two punch” strategy. First, resting T cells are activated by stimulating the T cell receptor. Activated effector T cells are subsequently brought into contact with DCs to increase the purging efficiency of latent HIV-1.

Figure 2: Purging of latent HIV-1 in *in vitro* infected primary activated T cells with classical LRAs or DCs.

A) Time-line of the HIV-1 latency assay. Primary PHA-activated T cells are infected *in vitro* with HIV-1 for 4 hr. Residual virus cell-fusion events and replication are blocked with the T1249 entry inhibitor. Proviral integration is allowed for 24 hr prior to applying various stimuli for another 48 hr. B) Representative dot plot of CA-p24 and CD3 stained CD4-enriched T cells stimulated with or without DCs. C) Results shown as percentage of virus producing cells and fold activation. Data shown as average of three independent experiments with standard error of the mean. D) Activation of latent HIV-1 with T cell receptor agonist phytohaemagglutinin (PHA) and CD3/CD28 antibodies. E) Using 26
different concentrations of the HDAC inhibitor romidepsin. F) Using different concentrations of the PKC activator prostratin or TNFα (G). Representative data are shown with standard error of the mean of at least three independent experiments. Drug toxicity is indicated with .

Figure 3: Reversion of latency depends on specific tetraspanin enriched microdomains formed between DCs and T cells.

A) Fold activation from latency of infected primary T cells cultured with or without DCs in the presence of CD9, CD63, CD81 and CD151 antibodies targeting specific tetraspanin enriched microdomains (TEMs). B) Inhibition of DC-mediated HIV-1 reversion with antibodies against the co-stimulatory molecule CD86 and DC-activation marker CD83. C) Schematic overview, adapted from Hemler et al. (Hemler, 2005), regarding the role of the tetraspanins targeted in activating the RAS signaling cascade. Phosphatidylinositol 4-kinase is recruited to the membrane in CD9, CD63, CD81 TEMs and phosphoinositides, such as phosphatidylinositol-4,5-bisphosphate (Pi(4,5)P₂) are produced. This causes activation of Shc, resulting in the activation of the RAS signaling pathway. CD151 negatively influences the RAS activation pathway (Hemler, 2005). Representative data are plotted as the average fold activation with standard error of the mean of at least three independent experiments.

Figure 4: Purging of latent HIV-1 mediated by DCs depends on PI3K, not MEK-ERK signaling. A) Schematic overview of inhibitors targeting specific signaling pathways. B) Infected primary T cells were cultured with or without DC in the presence of the MEK inhibitor U0126, or C) the PI3K inhibitor pictilisib, or D) the PTEN inhibitor SF1670. Drug toxicity is indicated with .

Figure 5: Effects of targeting the PI3K-Akt-mTOR signaling transduction cascade on latency reversal.

A) Schematic overview of inhibitors targeting the PI3K-Akt-mTOR signaling pathway. B) Fold activation from latency of infected primary T cells cultured with or without DCs in the presence of the PI3K/mTORC2/mTORC1 inhibitor GSK2126548, C) PI3K/mTORC1 inhibitor AZD8055, D) Akt inhibitor
MK2206, E) mTorc1 inhibitor temsirolimus, or F) inhibitor of nuclear factor kappa-B kinase (IKK) antagonist bardoxolone. Representative data are plotted as the average fold activation with standard error of the mean at the different indicated concentrations of inhibitor from three independent cultures. Drug toxicity is indicated with ⬤.

Figure 6: Transcription factors binding NF-κB and SP1 target sites in the LTR promoter do not seem to be involved in DC-dependent latency reversal. A) Fold activation of infected primary T cells cultured with or without DCs in the presence of JSH-23, inhibiting activation of the transcription factor NF-κB, B) in the presence of AP-1 JNK inhibitor JNKV C) in the presence of SP600125 inhibiting dimerization of c-Jun transcription factors binding SP1 motifs, or D) the inhibitor T5224 inhibiting c-Fos-c-Jun dimerization. Representative data are plotted as the average fold activation with standard error of the mean at the different indicated concentrations of inhibitor from three independent cultures. Of note, blocking activation of transcription factors beyond the indicated concentrations of JSH-23 and SP600125 was toxic for T cells regardless of whether they were co-cultured with DCs (results not shown)

Figure 7: Characterization of phosphorylated protein kinases in infected primary CD4⁺ T cells upon coculturing with DCs. Phosphorylation of a selected panel of kinase proteins (as indicated) using the human-phospho kinase array from R&D systems was determined in isolated CD4⁺ T cells cocultured with DCs, for A) 2 hr or B) 21 hr. Of the 43 kinases analyzed, only differentially phosphorylated kinases with more than 25% up- or downregulation compared to untreated cells are shown. C) Activating and inhibitory signaling cascades with corresponding phosphorylation status of kinases for the Akt, MEK-ERK signaling pathway are shown schematically (Bunney and Katan, 2010; Downward, 2003).

Figure 8: Purging of latent HIV-1 from patient-derived resting primary T cells with DCs.
Isolated CD4+ cells (1.4-2.0 x 10^6) from aviremic HIV-1 patients were cultured with or without PHA in presence or absence of DCs (ratio 1:3 DC:T cell) for 72 hrs. A) Copy numbers of HIV-1 extracellular RNA released into cell culture supernatant, as determined by RT-qPCR. Median values are represented by horizontal lines. The dotted line represents the detection limit of the assay. The undetectable values were plotted as 50% of the detection limit. B) Percentage plot of detectable versus undetectable HIV-1 RNA. C) Outgrowth of replication competent HIV-1 from 7 patient-derived CD4+ T cells activated with PHA followed by addition of DCs on day 3. Reversal of latency is depicted as infectious units per million cells (IUPM) based on the number of CA-p24 negative and positive microcultures. Median values are represented by horizontal lines. D) Percentage plot of detectable versus undetectable replication competent HIV-1 after differential stimulation for these patient samples.

Figure 9: Reversion of HIV-1 latency regulated by DCs. Binding of DCs to T cells is facilitated by tetraspanin membrane molecules that recruit interacting DC-T cell proteins in tetraspanin enriched microdomains (TEMs) to induce multiple signaling events. Recruitment of PI4K to CD9/CD63/CD81 TEM leads to local production of PI(4,5)P2. DC-dependent activation of PI3K further phosphorylates PI(4,5)P2 into PI(3,4,5)P3, which activates PDK1 to induce recruitment of Akt to the membrane. Akt docking to PI(3,4,5)P3 triggers activation followed by activation of downstream signaling cascades such as mTORC1 or IKK that promote transcription and protein synthesis reactivating latent HIV-1 in active proliferating cells. The signaling cascade that is responsible for DC-mediated reversion of latent HIV-1 independent of T cell receptor activation is indicated with bold arrows.

Author contributions:
TvM, wrote the original manuscript draft; TvM, GJD, RvdS, MV, KG, AOP and BvdP carried out the investigation; MB, SJ dealt with project administration; GP, EMW, MH and JP provided resources; RJ, GD, AOP, AAMT, DS and BB helped with writing, reviewing and editing.
resting T cells

HIV-1 latently infected cell

activated T cells

1. TCR-stimulation
 (PHA, CD3/CD28)

Virus producing cell

2. Dendritic cells

Figure 1
Figure 2

2A

- **T-cell activation (PHA/rhIL2)**
- **CD8-depletion**
- **HIV-1 Infection**
- **Entry inhibitor**

2B

- **T cells**
 - CD3 (T cell)
 - CA-p24 (HIV-1)
- **Dendritic cells**
 - Tact

2C

- **CAp24 positive cells (%)**
 - **Fold activation**
 - **T cells**
 - **DCs**

2D

- **Fold activation**
 - Control
 - PHA
 - CD3/CD28

2E

- **Romidepsin (HDAC inhibitor)**
 - 10 pM
 - 30 pM
 - 100 pM
 - 300 pM
 - 1 nM
 - 3 nM
 - 10 nM

2F

- **Prostratin PKC activator**
- **Fold activation**
 - T cells
 - 100 pg/ml
 - 300 pg/ml
 - 1 ng/ml
 - 3 ng/ml
 - 10 ng/ml
 - 30 ng/ml
 - 100 ng/ml

2G

- **TNFα**
- **Fold activation**
 - T cells
 - 3 ng/ml
 - 10 ng/ml
 - 30 ng/ml
 - 100 ng/ml
 - 300 ng/ml

Figure 2
Figure 3

3A

3B

CD151, PI(4,5)P2

CD9, CD63, CD81

Shc, PI4k

RAS
Figure 4

Figure 4A: Graphical representation of the signaling pathway involving Pictilisib and SF1670, with various concentrations of U0126 and their effects on T cells and DCs.

Figure 4B: Bar graph showing the fold activation of U0126 at different concentrations in T cells and DCs.

Figure 4C: Graph illustrating the effects of Pictilisib on T cells and DCs at various concentrations, with statistical significance indicated.

Figure 4D: Graph showing the effects of SF1670 on T cells and DCs at different concentrations, highlighting significant differences.

Legend:
- PLC: Phospholipase C
- RAS: RAS protein
- P38: P38 kinase
- MEK1/2: Mitogen-activated protein kinase
- Raf: Ras-related protein
- ERK: Extracellular signal-regulated kinase
- PI3K: Phosphoinositide 3-kinase
- PTEN: Phosphatase and tensin homolog
- AKT: V-Akt murine thymoma viral oncogene
- mTOR: Mammalian target of rapamycin
- PKC/CA2+: Protein kinase C/Calcium
- IKK: I kappa B kinase
- NF-kappa B: Nuclear factor kappa B
- CD3/CD28: T cell receptor complex
- NFkB: Nuclear factor kappa B
- PKC/CA2+: Protein kinase C/Calcium
- IKK: I kappa B kinase
- NF-kappa B: Nuclear factor kappa B
- CD3/CD28: T cell receptor complex
- Prostratin: Protein kinase C/Calcium
- PHA: Phytohemagglutinin
- CD3/CD28: T cell receptor complex
- Pictilisib: Small molecule inhibitor
- SF1670: Small molecule inhibitor
- U0126: Small molecule inhibitor

Statistical notations:
- *: P < 0.05
- **: P < 0.01
- ***: P < 0.001
- †: Trend towards significance

Legend symbols:
- 4A: Diagram of signaling pathway
- 4B: Bar graph of U0126 effect
- 4C: Graph of Pictilisib effect
- 4D: Graph of SF1670 effect

Figure 4
Figure 5

5A

5B

5C

5D

5E

5F

Figure 5
Figure 6

6A JSH-23 (NFkB/AP-1 inhibitor)

6B SP600125 (JNK inhibitor)

6D T-5224 (c-Fos inhibitor)
Figure 7

Figure 7A

- **Graphs**
 - Relative phosphorylation (mean pixel intensity)
 - **Columns**
 - T cells only (white)
 - DC-T cell (gray)
 - **Proteins**
 - p38 alpha
 - JNK 1/2/3
 - GSK-3A/B
 - p53 (S392)
 - CREB
 - c-Jun
 - WNK-1

Figure 7B

- **Graphs**
 - Relative phosphorylation (mean pixel intensity)
 - **Columns**
 - T cells only (white)
 - DC-T cell (gray)
 - **Proteins**
 - STAT5a
 - STAT5b
 - STAT5p
 - p70S6K (T421/S424)
 - p27
 - Hsp60

Figure 7C

- **Diagram**
 - **Proteins**
 - MEK1/2
 - ERKp38
 - AKT
 - mTORC1
 - p70S6K
 - JNK1/2/3
 - GSK-3A/B
 - MDM2
 - p27
 - CREB
 - WNK-1
 - p53
 - C-Jun

Legend
- **P** indicates phosphorylation status.
HIV RNA in supernatant, copies/ml

Figure 8
Figure 9

The diagram illustrates the signaling pathways in dendritic cells, including the PI4K, RAS, PI3K, PTEN, PDK1, mTORC2, PI(4,5)P₂, PI(3,4,5)P₃, NFκB, and AKT pathways. The pathways are involved in transcription, protein synthesis, and activating latent HIV-1.