The UK’s suitability for *Aedes albopictus* in current and future climates

S Metelmann1,2, C Caminade1,2, AE Jones1, JM Medlock2,3, M Baylis1,2, and AP Morse2,4

1Institute for Infection and Global Health, University of Liverpool

2NIHR Health Protection Research Unit in Emerging and Zoonotic Infections

3Medical Entomology Group, Public Health England

4School of Environmental Sciences, University of Liverpool

December 18, 2018

Abstract

The Asian tiger mosquito *Aedes albopictus* is able to transmit various pathogens to humans and animals and it has already caused minor outbreaks of dengue and chikungunya in southern Europe. Alarmingly, it is spreading northwards and its eggs have been found in the UK in 2016 and 2017. Climate-driven models can help to analyse whether this originally sub-tropical species could become established in northern Europe. But so far, these models have not considered the impact of the diurnal temperature range (DTR) experienced by mosquitoes in the field. Here, we describe a dynamical model for the life cycle of *Ae. albopictus*, taking into account the DTR, rainfall, photoperiod and human population density. We develop a new metric for habitat suitability and drive our model with different climate data sets to analyse the UK’s suitability for this species. For now, most of the UK seems to be rather unsuitable, except for some densely populated and high importation risk areas in south-east England. But this picture changes in the next 50 years: Future scenarios suggest that *Ae. albopictus* could become established over almost all of England and Wales, indicating the need for continued mosquito surveillance.
1 Introduction

About ten invasive species become established in Europe each year [1] and the UK alone spends about £1.7 billion annually to mitigate their impacts [2]. One of these species that has already invaded Europe and might now spread to the UK is the Asian tiger mosquito, *Ae. albopictus*. This mosquito spreads worldwide through its long-lasting and drought-resistant eggs that can be transported over long distances, for example in used vehicle tyres or lucky bamboo pot plants [3]. The eggs can also undergo a diapause to resist colder winter temperatures [4], allowing temperate regions significantly colder than its original niche in South East Asia to be colonised. In Europe, *Ae. albopictus* was introduced in the late 1970s to Albania [5], in 1990 to Italy [6] and more recently into greenhouses in the Netherlands [7]. Since its introduction into Italy, it has rapidly spread along the Mediterranean coast and is now expanding its northern range [8].

This is a major concern as *Ae. albopictus* is an effective disease vector. It can transmit a range of arboviruses affecting humans and animals, including chikungunya, dengue and Zika viruses [9], as well as filarial worms [10]. In Europe, it was responsible for two outbreaks of chikungunya in Italy and a few cases of dengue in Croatia and France in the last ten years [11, 12, 13]. In addition, it is a potent vector of zoonotic diseases because it feeds on mammals, birds, reptiles, and amphibians [14], although it feeds preferentially on humans in urban areas [15]. So whether or not *Ae. albopictus* will spread from continental Europe to the UK and subsequently become established is of significant public health interest. And there is evidence for recent introductions: in September 2016, eggs were found in Kent, the English county closest to France, by a surveillance team of Public Health England [16], followed by another finding of eggs and larvae in July 2017 at another site in the same county [17]. Here, gravid females have probably been carried over in cars or lorries and subsequently laid eggs when released at motorway service points.

Mechanistic and statistical niche models have been developed to analyse the UK’s climatic suitability for *Ae. albopictus*, suggesting that large parts of southern England are already suitable [18, 19, 20]. Dynamical models, better suited to capture the non-linear behaviour of the mosquito’s development, have been published more recently [21, 22, 23, 24]. While all of these models use seasonal or daily mean temperatures and rainfall as drivers, it has become clear that the diurnal temperature range (DTR) significantly affects the life cycle of insects too. The DTR is the difference between the maximum mid-day temperature and the minimum night-time temperature. Studies on *Aedes* mosquitoes show that rates for development and mortality differ substantially under constant temperature conditions compared with a realistic diurnal temperature cycle [25, 26, 27]. Models that already incorporate DTR have been developed for aphids [28], moths [29], generic insects [30] and its effect have been recently applied to a model for *Anopheles* mosquitoes [31].

Here, we describe the development of a novel dynamical model for *Ae. albopictus* that explicitly incorporates the effect of DTR on its life cycle. We use mosquito occurrence data and container index data to evaluate the model performance before analysing the suitability of the UK for this invasive mosquito under current climate conditions and under two climate projection scenarios for the future.
2 Model and methods

Based on previous studies, we chose a compartmental, climate-driven approach to model the life cycle of *Ae. albopictus* [21, 23, 24]. The model comprises five differential equations. Details on climate-dependent variables can be found in SI.1.

2.1 Dynamic life cycle model

The mosquito life cycle is described by five mosquito classes: normal, non-diapausing eggs E, juvenile aquatic stages J, immature female adults I, mature female adults A, and diapausing eggs E_d (Fig. 1). Normal, non-diapausing eggs are laid during summer by mature females. Larvae hatch after eggs complete a development period and are activated by rainfall. The four larval stages and the pupal stage are combined into a single aquatic juvenile class in the model. Assuming a sex ratio of 50:50, juveniles then develop into newly eclosed male and female adults. Newly eclosed female mosquitoes do not directly show host seeking behaviour. Instead, they first spend some time in a resting stage, only after which they take their first blood meal and start to lay eggs [32].

At the end of the season, the egg laying process depends on the photoperiod, P. When days are getting shorter, females start to lay diapausing eggs that do not hatch after a few days but overwinter. During the following spring, these eggs are ready to hatch when temperatures and photoperiod reach critical thresholds, and are eventually activated by rainfall.

All transitions from one class to another depend on temperature, T, and so do mortality rates. Because *Ae. albopictus*’ water filled breeding sites are usually small [33], we use air temperature as a proxy for water temperature.

Figure 1: Life stages of *Ae. albopictus*. Eggs E hatch and become juveniles J (larvae and pupae). They develop to newly eclosed (immature) females I and finally to mature female adults. Adult female mosquitoes lay normal eggs E in the summer months or diapausing eggs E_d at the end of the season. Diapausing eggs overwinter and are activated by a combination of longer day lengths, warmer temperatures and rainfall in spring.
With parameter definitions given in Table 1, model equations are as follows:

\[
\frac{d}{dt} E(t) = \beta (1 - \omega) A(t) - h \delta_E E(t) - \mu_E E(t) \\
\frac{d}{dt} J(t) = h \delta_E E(t) + h \sigma \gamma E_d(t) - \delta_j J(t) - \mu_j J(t) - \frac{J(t)^2}{K} \\
\frac{d}{dt} I(t) = \frac{1}{2} \delta_J J(t) - \delta_I I(t) - \mu_A I(t) \\
\frac{d}{dt} A(t) = \delta_I I(t) - \mu_A A(t) \\
\frac{d}{dt} E_d(t) = \beta \omega A(t) - h \sigma E_d(t)
\]

Table 1: Parameter definitions and values used. Derivation and references of parameters are shown in SI.1. Environmental drivers are temperature, \(T \), rainfall, \(R \), photoperiod, \(P \), latitude, \(L \) and human population density, \(H \). Please note that the egg activation by rainfall, \(h \), and the environmental carrying capacity, \(K \), are defined further down in the manuscript.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value/Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTT_5</td>
<td>Critical temperature over one week in spring (°C) 11.0^∗</td>
</tr>
<tr>
<td>CPP_5</td>
<td>Critical photoperiod in spring (hours) 11.25^∗</td>
</tr>
<tr>
<td>(σ(T, P))</td>
<td>Spring hatching rate (1/day)</td>
</tr>
<tr>
<td>(r_S = 0.1^†)</td>
<td>if (T > CTT_S) or (P > CPP_5)</td>
</tr>
<tr>
<td>(r_A = 0.5)</td>
<td>if (P < CPP_A) and (t > 183)</td>
</tr>
<tr>
<td>CPP_A(L)</td>
<td>Critical photoperiod in autumn (hours) 10.058 + 0.08965L</td>
</tr>
<tr>
<td>(ω(P))</td>
<td>Fraction of eggs going into diapause</td>
</tr>
<tr>
<td>(δ_E)</td>
<td>Normal egg development rate (1/day) 1/7.1</td>
</tr>
<tr>
<td>(δ_j(T))</td>
<td>Juvenile development rate (1/day) 1/(83.85 - 4.89T + 0.08T^2)</td>
</tr>
<tr>
<td>(δ_I(T))</td>
<td>First pre-blood meal rate (1/day) 1/(50.1 - 3.574T + 0.069T^2)</td>
</tr>
<tr>
<td>(μ_E(T))</td>
<td>Egg mortality rate (1/day) - ln(0.955 exp(-0.5(T - 18.8)^6))</td>
</tr>
<tr>
<td>(μ_J(T))</td>
<td>Juvenile mortality rate (1/day) - ln(0.977 exp(-0.5(T - 21.9)^6))</td>
</tr>
<tr>
<td>(μ_A(T_{mean}))</td>
<td>Adult mortality rate (1/day) - ln(0.677 exp(-0.5(T_{mean} - 28.9)^6)^{0.921_{mean}})</td>
</tr>
<tr>
<td>(γ(T_{DJF,min}))</td>
<td>Survival probability of diapausing eggs (1/winter) 0.93 exp(-0.5(T_{DJF,min} - 11.6)^6)</td>
</tr>
</tbody>
</table>
| \(β(T) \) | Egg laying rate (1/day) \[
\begin{cases}
33.2 \exp(-0.5(T - 21.3)^2) (38.8 - T)^{1.5} & \text{if } T \leq 38.8 \\
0 & \text{if } T > 38.8
\end{cases} \]
| \(λ \) | Carrying capacity parameter (larvae · days/hectare) 10^{6}^† |

∗ [34], † Best estimate, ‡ [22, 35]

Development rates, \(δ \), and mortality rates for eggs and juveniles, \(μ_E \) and \(μ_J \), depend on the actual oscillating diurnal temperature \(T \). The development from juvenile to immature females is halved in the equation for \(\frac{d}{dt} I(t) \), \(\frac{1}{2} δ_J \), to account for the 50:50 sex ratio. Only the mortality rate for adults is derived from field data that already include a DTR. Daily mean temperatures, \(T_{mean} \), are therefore used for \(μ_A \). \(T_7 \) is the average temperature over the recent seven days, used for the spring hatching rate.

As there is no study investigating the survival rates of eggs over periods of several months, we assume a
survival probability γ of diapausing eggs that is dependent on the minimum winter temperature experienced, $T_{DJF,\text{min}}$. The survival probability is applied when eggs are activated in spring, see SI.1 for details. Remaining diapausing eggs that have not hatched until August are removed.

Larval mortality not only depends on temperature, but also on an environmental carrying capacity, K, representing juvenile competition and predation [36]. We use the model by White et al. [37] and its extension by Erguler et al. [24] to calculate K from rainfall, R, and human population density, H:

$$K(R, H) = \lambda \frac{1 - \alpha_{\text{evap}}}{1 - \alpha_{\text{evap}}^t} \sum_{x=1}^{t} \alpha_{\text{evap}}^{+(t-x)} (\alpha_{\text{rain}} R(x) + \alpha_{\text{dens}} H(x)),$$

As we model mosquito abundance in individuals per hectare, we keep the parameters at $\alpha_{\text{evap}} = 0$, $\alpha_{\text{dens}} = 0.001 \text{ km}^2$, and $\alpha_{\text{rain}} = 0.00001 \text{ mm}^{-1}$ [24] but multiply by a scaling factor λ to reach a maximum carrying capacity ranging between 500,000 and 800,000 individuals per hectare [22, 35].

Similar to the carrying capacity, we model the hatching of eggs depending on rainfall and human population density. We use the rainfall-dependent approach by Abdelrazec and Gumel [38] and assume that up to $\epsilon_{\text{rat}} = 20\%$ of eggs can hatch in densely populated areas regardless of rainfall conditions:

$$h(R, H) = (1 - \epsilon_{\text{rat}}) \left(1 + \epsilon_0 \exp\left(-\epsilon_{\text{var}} (R(t) - \epsilon_{\text{opt}})^2\right) \exp\left(-\epsilon_{\text{var}} (R(t) - \epsilon_{\text{opt}})^2\right) + \epsilon_0\right) + \epsilon_{\text{rat}} \frac{\epsilon_{\text{dens}}}{\epsilon_{\text{dens}} + \exp(-\epsilon_{\text{fac}} H(t))}.$$

We set the optimal amount of daily rainfall to $\epsilon_{\text{opt}} = 8 \text{ mm}$, and use $\epsilon_0 = 1.5$ and $\epsilon_{\text{var}} = 0.05 \text{ mm}^{-2}$ [38]. Density dependent parameters are $\epsilon_{\text{dens}} = 0.1$ and $\epsilon_{\text{fac}} = 0.01 \text{ km}^2$, such that egg hatching is increased in areas where $H > 500$ people per km2.

Note that other studies split the juvenile stage into larvae and pupae and some also split the mature female stage into host seeking, gestating, and ovipositing stages [22, 24, 23]. We also simulated these scenarios but they did not improve model fit to presence or container index data. As there was also more parametrisation data available for a reduced model, we kept the model framework with a minimum number of equations. See SI.2 for further details.

The model is implemented in Octave v4.2.1 and Runge-Kutta 4 is used to solve ODEs. All scripts and a short example can be found in the electronic supplementary material.

Suitability index

We propose a suitability index E_0 that relates to the basic reproduction number R_0 in epidemiological studies. In epidemiology, R_0 is defined by the number of susceptibles infected by a single infectious individual in an otherwise uninfected population. Accordingly, we define our suitability index by the number of eggs that are produced at the end of a year, after placing a single (diapausing) egg at the beginning of the year into an uncolonised location. The amount by which the number of eggs has increased (suitable) or decreased (unsuitable) defines the suitability index E_i of that year i. Repeating this procedure for n consecutive years and taking the geometric mean of the yearly suitability indices gives the suitability index, E_0, for the according period,

$$E_0 = \sqrt[n]{\prod_{i=1}^{n} E_i},$$
with \(E_i = \frac{E_d \text{(day} = 365)}{E_d \text{(day} = 1)} \). Note that the crucial scaling of \(E_0 \) depends on the carrying capacity, \(K \).

With our standard settings, the model predicts about 1,200 adult female \(Ae. \) *albopictus* per hectare for August/September in Rome (Fig. 7). This is well in the range of mark-release-recapture data, with an estimated 1,400 females per hectare [39]. See SI.3 for further details.

Diurnal temperature cycle

To incorporate the DTR, we use the model by DeWit [40], which is well suited to compute realistic temperatures throughout the day from maximum and minimum temperatures [41]. Time points for temperature calculation are chosen according to the time steps for our explicit numerical solver, e.g. if \(k = \frac{1}{100} \), we calculate 100 actual temperatures throughout the day at 00:14, 00:19, ... 24:00. Temperatures during day \(i \) are calculated by

\[
T_i(h) = \begin{cases}
\frac{T_{i-1}^{\max} + T_{i-1}^{\min}}{2} + \frac{T_{i-1}^{\max} - T_{i-1}^{\min}}{2} \cos \left(\frac{h_{t} + 10}{10 + t_s} \pi \right) & \text{if } h_t < t_s \\
\frac{T_{i-1}^{\max} + T_{i-1}^{\min}}{2} - \frac{T_{i-1}^{\max} - T_{i-1}^{\min}}{2} \cos \left(\frac{h_{t} - t_s}{14 - t_s} \pi \right) & \text{if } t_s < h_t < 14 \\
\frac{T_{i-1}^{\max} + T_{i-1}^{\min}}{2} + \frac{T_{i-1}^{\max} - T_{i-1}^{\min}}{2} \cos \left(\frac{h_{t} - 14}{10 + t_s} \pi \right) & \text{else}
\end{cases}
\]

with \(T_{i-1}^{\max} / \min \) being the maximum or minimum temperature of day \(i \). The model assumes \(T_{i-1}^{\min} \) at sunrise \(t_s \) and \(T_{i-1}^{\max} \) at 14:00 local time. The time of day in hours is given by \(h_t \), and the time of sunrise, \(t_s \), is calculated using the daylight model by Forsythe *et al.* [42], depending on latitude, \(L \), and the day of year. See SI.4 for daylight model equations.

Climate and population density data

We run our model with a range of different climate data sets from historical records and future climate projections. For mosquito suitability in the UK, we compare the observed gridded climate data sets from E-OBS on a 25 km \(\times \) 25 km spatial scale (https://www.ecad.eu/download/ensembles/ensembles.php) [43] and from UKCP09 on a 5 km \(\times \) 5 km scale (https://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/download/index.html) [44]. *The E-OBS data set was also used for model validation over Europe and the ERG5 Eraclito data set (https://www.arpae.it/dettaglioDocumento.asp?id=6147&iddiavello=1528) [45] is used for the model runs in the Emilia-Romagna region.*

For future model runs across Europe, we used **25 km \(\times \) 25 km spatial scale** climate projections from NEX GDDP (https://cds.nccs.nasa.gov/nex-gddp/) [46] for two different emission scenarios, the median RCP4.5 and the extreme RCP8.5 scenario. A subset of five general circulation models from the full set of 21 was chosen to represent the full range of uncertainty, see SI.5 for details. For future changes, we focus on the period 2060 – 2069, the 2060s hereafter.

Human population density is based on the GPWv4 data set (http://sedac.ciesin.columbia.edu/data/collection/gpw-v4) [47]. For the 2060s projections, we assume the total UK population has increased from 65.5 million to 75 million [48] but has not changed in its spatial distribution.
2.2 Validation

Mosquito data

To validate the spatial distribution of suitability simulated by the model, we use *Ae. albopictus* occurrences [49], updated with data from recent literature [50, 51, 52, 16, 17, 53], and classified into established populations and one-time sightings according to the 2018 ECDC classification [8]. Occurrence points that were less than 25 km apart from one another were clustered together, resulting in a total of 234 out of 385 data points. We then checked whether each established occurrence point falls into a grid cell that is calculated to be suitable ($E_0 > 1$).

Figure 2 shows the suitability index for the period 2006 – 2016, which is highly consistent with occurrence data: 83% of the established populations fall into a suitable grid cell, 17% into unsuitable ones (excluding grid cells that are not covered by climate data). However, the model misses some points in the southern Alps, possibly because occurrences fall into warmer valleys with microclimate conditions that are not captured by the coarser climate data. Other areas that should be suitable are parts of southern Germany and the Bulgarian/Romanian Black Sea coast. The model predicts suitable conditions for these areas in most years but specific years with a very cold winter or dry summer lower the 10-year suitability index (compare Figure S7). Also, (semi-)urban areas such as southern German cities with their microclimate will slip through the coarser resolution of the climate data used.

Bigger densely populated areas, such as Madrid, Paris and London show up as suitable though; they act as heat islands further increasing mosquito development [54], and they supply mosquito breeding sites by man-made containers and irrigation.

![Figure 2: Spatial validation](image)

We also used observed container index (CI) data that is available for northern Italy to validate our model not
only in space but in time, see SI.7. While the onset and end of the yearly mosquito season is well captured by the model, it sometimes over- or underestimates peak mosquito numbers at interannual time scale. The Pearson correlation between observed and simulated egg data is $r = 0.70$ (95% CI: $0.67 \leq r \leq 0.73$, N=996).

Sensitivity analysis

To investigate the influence of each parameter on the final model output, E_0, we perform the elementary effects test (EET) [55]. The EET measures the influence of single input parameters on model outputs, as well as their degree of interaction with other parameters. Latin Hypercube Sampling is used to vary parameters in the range of ±10% of the standard setting [56]. The model is then run with the Italian climate data until convergence and the total egg number after five years is taken as reference. *Octave* scripts for these methods come from the SAFE toolbox [57].

The critical temperature threshold in spring, CTT_S, has the biggest effect on E_0, followed by parameters determining rainfall-dependencies, ϵ_{var} and α_{rain}, and egg development, δ_E (Fig. 3). Other mosquito specific parameters range in the middle. Parameters such as initial egg numbers, v_0, or other hatching rate parameters, ϵ_{dens}, ϵ_{rat}, and ϵ_{opt}, have only limited impact on the model output for the Italian climate settings. The distributions for mean and standard deviation of EEs indicate that parameters with a bigger effect on other parameters also have a bigger effect on the model output.

Figure 3: Elementary effects test. The higher the mean EEs, the more influential the parameter on model outcome. The higher the standard deviation of the EEs, the larger its degree of interactions with other parameters.
3 Results

3.1 Diurnal temperature range

To analyse the effect of the DTR on mosquito population size, we run the model for a range of temperatures ($10 ^\circ C \leq T_{\text{mean}} \leq 35 ^\circ C$), first with constant mean temperatures (DTR = 0 $^\circ C$) and afterwards with oscillating temperatures ($0 ^\circ C < \text{DTR} \leq 12 ^\circ C$), simulating the diurnal temperature cycle. We then compare absolute mosquito numbers after 365 simulated days.

Figure 4 shows that oscillating temperatures have a positive effect on the population size at lower mean temperatures, roughly for $14 ^\circ C < T_{\text{mean}} < 24 ^\circ C$. This is actually the lower bound of the mosquito’s suitable temperature niche. Equilibria and stability analyses show that mosquito populations could survive at constant temperatures between approx. 13 $^\circ C$ and 32 $^\circ C$, see SI.9. Only when temperatures are very low ($T < 13 ^\circ C$), we see a sharp decrease in numbers as mosquitoes experience high mortalities at these low temperatures. See Figure S12 for population growth over time, used to create Figure 4. DTR increases the suitability especially in northern regions compared with model runs that only use daily mean temperatures (Figure S11).

Figure 4: Influence of the diurnal temperature range on mosquito numbers Left panel: Population size of Ae. albopictus at constant temperature, with color coding as in Figure 2. Right panel: Relative population size after 365 days with diurnal temperature cycle compared to the population size experiencing constant temperatures (left panel). Values above 1 (within the red contour line) indicate where oscillating temperatures increase the population size. Mean temperature is given on the y-axis and the DTR is given on the x-axis.
3.2 Current suitability of the UK

To analyse the UK’s suitability for this mosquito, we run our model with two climate data sets for the recent period 2006 – 2016. Figure 5 shows that simulations driven by climate data sets with high and low spatial resolution agree in that the London area, the Thames estuary and parts of the southern coast are already suitable for the mosquito. Other warmer areas around the Severn estuary or in East Anglia, as well as populated northern regions such as Merseyside or around Sheffield are close to but not yet suitable. The Scottish Highlands, the Pennines and the Welsh mountains are unsuitable. Note that we are looking at a 10-year period to analyse the suitability for long-term establishment. We can also look at individual years, finding especially the most recent years more suitable already (compare Fig. S7).

![Figure 5: Suitability of the UK](image)

Comparison of UK mosquito suitability for different resolutions for the years 2006 until 2016, using E-OBS (left) and UKCP09 (right) climate data. Yellow points show spots where *Ae. albopictus* has been found in 2016 and 2017.

3.3 Future suitability of the UK

Figure 6 shows the UK’s future mosquito suitability for two emission scenarios, RCP4.5 and RCP8.5. Compared with recent UK suitability (Fig. 5), most of England will have become suitable for the establishment of *Ae. albopictus* populations in about 50 years. Parts of Wales might become suitable, depending on the emission scenario. Scotland and Northern Ireland remain mostly unaffected.

Looking at a whole year, simulations indicate that in current London, *Ae. albopictus* population sizes would be small in early summer and reach relative high number in July and August (Fig. 7). Future scenarios show an expansion of this peak into September and an overall increase in numbers. However, the length of the peak mosquito season would be short and population sizes remain low with respect to simulated values in Rome for recent climate conditions. Simulations for Figure 7 were started one year ahead of the analysed period and mosquito numbers transferred from the end of a year into the next.
Figure 6: Future suitability of the UK Suitability index for 2060–2069. (A) Geometric mean over all five model outputs for RCP4.5 (top) and RCP8.5 (bottom). (B) Suitability index shown for each climate model individually for RCP4.5 (top) and RCP8.5 (bottom). Left to right: Minimum, 25th quantile, median, 75th quantile, maximum temperature increase for the British Isles. Climate models in order from the coldest to warmest are inmcm4, MRI-CGCM3, NorESM1-M, CanESM2, MIROC-ESM-CHEM for RCP4.5, and inmcm4, CESM1-BGC, NorESM1-M, CanESM2, MIROC-ESM-CHEM for RCP8.5.

Figure 7: Mosquito season Comparing the simulated length of the mosquito season in London in the 2010s and 2060s and with Rome in the 2010s. Means of 10 years for London and Rome 2010s data, based on E-OBS climate data. Future estimates are based on the ensemble mean of five RCP4.5 projection runs for 2060s. Note the different scales for London and Rome.
4 Discussion

Numerous studies investigating the climatic dependencies of *Ae. albopictus* have been published in recent years [58, 59, 60, 61, 4, 62, 63]. Taking these new findings into account and building on other modelling studies [21, 23, 24], we developed a dynamical model for *Ae. albopictus* that explicitly simulates the effects of rainfall for egg hatching and larval development, photoperiod for diapause induction and ending, and minimum and maximum temperatures that shape mortality and development rates of aquatic and adult stages.

The full temperature range experienced by mosquitoes in the field tend to increase model development rates throughout all stages. Mosquito populations at the lower temperature range (14°C to 24°C) develop better with oscillating temperatures. Here, night-time temperatures do not affect the development rates that are quite low anyway, while higher temperatures during the day significantly increase them [31]. Conversely, when mean temperatures are already high, lower night-time temperatures decrease development rates, while even higher temperatures during the day tend to increase mortality rather than development rates [27]. Thus, the DTR can be crucial for suitability analyses and should be considered for modelling the life cycle of mosquitoes and other insects [30, 31], as it has already been done for the modelling of temperature-dependent viruses or malaria protozoans that mosquitoes can transmit [64, 65, 66].

Looking at the UK climate conditions for the past 10 years, we find large parts of the UK rather unsuitable for *Ae. albopictus*, except for some warmer and densely populated areas in the south-east of England. This suggests the mosquito has to be introduced into specific areas to enable a long-term establishment, contrary to what other modelling studies have found that predict a medium to high suitability [19, 20, 67, 24] of larger parts of England with up to five months adult mosquito activity in certain areas [18]. Our results are a bit more conservative because we included a rainfall-dependent mechanisms for egg hatching and larval mortalities in the model. Instead of constant egg hatching, we assumed that rainfall events lead to eggs being submerged under water and subsequent hatching. Similar to the finding of Tran et al. [22], the introduction of a rainfall-dependent egg hatching rate does not improve the model output fit to empirical abundance or ovitrap data. However, we found it enhances model performance in arid and unpopulated areas such as central Spain and Turkey.

We further assumed that a high human population density positively influences both the hatching of eggs and the survival of larvae because it has been shown that the mosquito is able to develop indoors [68], but also in arid but densely populated areas, where water storage and sprinkling create breeding habitats [69]. While large parts of England might not yet be suitable for a long-term establishment of this mosquito, individual years (especially the warmer recent ones) already show a higher suitability which will continue to increase in the future [70]. Looking 50 year ahead, our projections suggest that *Ae. albopictus*, if introduced, could establish itself over most of England and southern Wales during the 2060s. The mosquito could become abundant in London over future summers; but even the most catastrophic scenario suggest that population sizes would still remain small with respect to current conditions in Rome, Italy. Large uncertainties related to the selected climate model and the emission scenario are related to the large variability of rainfall and temperature projections in the multi-model ensemble.

The question whether *Ae. albopictus* is able to spread from continental Europe to England is of great importance for public health and veterinary services. This mosquito is a vector that can transmit pathogens that are present or constantly introduced into the UK, such as several arboviruses [71] and the canine
heartworm *Dirofilaria immitis* [72]. Moreover, it is a very competitive species that could replace endemic mosquito species and become a biting nuisance to the local population [73]. Finding parts of south-east England already suitable and predicting a strong increase in suitability for most of England in the future, we highly recommend stringent vector surveillance in southern UK ports and high importation risk areas along motorways [3, 74]. In addition, human and veterinary health services should get prepared to deal with pathogens transmitted by *Ae. albopictus* in warm summers [75], as it is recently happening in southern European countries.

Acknowledgement

We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). The UKCP09 data have been made available by the Department for Environment, Food and Rural Affairs (Defra) and Department for Energy and Climate Change (DECC) under licence from the Met Office, Newcastle University, University of East Anglia and Proudman Oceanographic Laboratory. These organisations accept no responsibility for any inaccuracies or omissions in the data, nor for any loss or damage directly or indirectly caused to any person or body by reason of, or arising out of, any use of this data. Future climate scenarios used were taken from the NEX-GDDP dataset, prepared by the Climate Analytics Group and NASA Ames Research Center using the NASA Earth Exchange, and distributed by the NASA Center for Climate Simulation (NCCS). The research was funded by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Emerging and Zoonotic Infections at the University of Liverpool in partnership with Public Health England (PHE) and Liverpool School of Tropical Medicine (LSTM). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the Department of Health or Public Health England.

References

[67] ECDC. The climatic suitability for dengue transmission in continental Europe; 2012.

