An Efficient Multi-Objective Optimization Method for Use in the Design of Marine Protected Area Networks

Fox, Alan D, Corne, David W, Adame, C Gabriela Mayorga, Polton, Jeff A ORCID: 0000-0003-0131-5250, Henry, Lea-Anne and Roberts, J Murray
(2019) An Efficient Multi-Objective Optimization Method for Use in the Design of Marine Protected Area Networks. FRONTIERS IN MARINE SCIENCE, 6 (FEB). 17-.

Access the full-text of this item by clicking on the Open Access link.


An efficient connectivity-based method for multi-objective optimization applicable to the design of marine protected area networks is described. Multi-objective network optimization highlighted previously unreported step changes in the structure of optimal subnetworks for protection associated with minimal changes in cost or benefit functions. This emphasizes the desirability of performing a full, unconstrained, multi-objective optimization for marine spatial planning. Brute force methods, examining all possible combinations of protected and unprotected sites for a network of sites, are impractical for all but the smallest networks as the number of possible networks grows as 2 m , where m is the number of sites within the network. A metaheuristic method based around Markov Chain Monte Carlo methods is described which searches for the set of Pareto optimal networks (or a good approximation thereto) given two separate objective functions, for example for network quality or effectiveness, population persistence, or cost of protection. The optimization and search methods are independent of the choice of objective functions and can be easily extended to more than two functions. The speed, accuracy and convergence of the method under a range of network configurations are tested with model networks based on an extension of random geometric graphs. Examination of two real-world marine networks, one designated for the protection of the stony coral Lophelia pertusa, the other a hypothetical man-made network of oil and gas installations to protect hard substrate ecosystems, demonstrates the power of the method in finding multi-objective optimal solutions for networks of up to 100 sites. Results using network average shortest path as a proxy for population resilience and gene flow within the network supports the use of a conservation strategy based around highly connected clusters of sites.

Item Type: Article
Uncontrolled Keywords: multi-objective optimization, Pareto optimal solution, marine protected area networks, random geometric graph, connectivity, Markov Chain Monte Carlo, graph theory
Depositing User: Symplectic Admin
Date Deposited: 30 Apr 2019 09:11
Last Modified: 15 Mar 2024 23:09
DOI: 10.3389/fmars.2019.00017
Open Access URL:
Related URLs: