The fusion reaction $^{48}\text{Ca} + ^{249}\text{Bk}$ leading to formation of the element Ts ($Z=117$)

J. Khuyagbaatar,1,2∗∗ A. Yakushev,2 Ch. E. Düllumann,1,2,3 D. Ackermann,2‡‡ L.-L. Andersson,1 M. Asai,4 M. Block,2 R. A. Boll,5 H. Brand,2 D. M. Cox,6 M. Dasgupta,7 X. Derkx,1,3 A. Di Nitta,3 K. Eberhardt,1,3 J. Even,1†† M. Evers,7 C. Fählander,8 U. Forberg,8 J. M. Gates,9 N. Gharibyan,10 P. Golubev,8 K. E. Gregorich,9 J. H. Hamilton,††† W. Hartmann,3 R.-D. Herzberg,6 F. P. Heßberger,1,2 D. J. Hinde,7 J. Hoffmann,5 R. Hollinger,2 A. Hüblner,2 E. Jäger,2 B. Kindler,2 J. V. Kratz,3 J. Krier,2 N. Kurz,2 M. Laatiaoui,2 S. Lahiri,12 R. Lang,2 B. Lommel,2 M. Maiti,12* K. Miernik,5 S. Minami,2 A. Mistry,6§ C. Mokry,1,3 H. Nitsche,9¶ J. P. Omvedt,13 G. K. Pang,9 P. Papadakis,6,14 D. Renisch,3 J. Roberto,5 D. Rudolph,8 J. Runke,2 K. P. Rykaczewski,5 L. G. Sarmiento,8 M. Schädel,2,4 B. Schausten,2 A. Semchenkov,13 D. A. Shaughnessy,10 P. Steinegger,15,16 J. Steiner,2 E. E. Tereshatov,10¶¶ J. V. Thöle-Pospiech,1,3 K. Tinschert,2 T. Torres De Heidenreich,2 N. Trautmann,3 A. Türler,15,16 J. Uusitalo,14 D. E. Ward,8 M. Wegrzecki,17 N. Wiehl,1,3 S. M. Van Cleve,5 and V. Yakusheva1

1 Helmholtz Institute Mainz, 55099 Mainz, Germany
2 GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
3 Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
4 Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
5 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
6 University of Liverpool, Liverpool L69 7ZE, United Kingdom
7 The Australian National University, Canberra, ACT 0200, Australia
8 Lund University, 22100 Lund, Sweden
9 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
10 Lawrence Livermore National Laboratory, Livermore, California 94551, USA
11 Vanderbilt University, Nashville, TN 37220, USA
12 Saha Institute of Nuclear Physics, Kolkata 700064, India
13 University of Oslo, 0315 Oslo, Norway
14 University of Jyväskylä, 40351 Jyväskylä, Finland
15 Paul Scherrer Institute, 5232 Villigen, Switzerland
16 University of Bern, 3012 Bern, Switzerland
17 The Institute of Electron Technology, 02-668 Warsaw, Poland

(Dated: April 13, 2019)

The heaviest currently known nuclei, which have up to 118 protons, have been produced in ^{48}Ca induced reactions with actinide targets. Among them, the element tennessee (Ts), which has 117 protons, has been synthesized by fusing ^{48}Ca with the radioactive target ^{249}Bk, which has a half-life of 327 days. The experiment was performed at the gas-filled recoil separator TASCA. Two long and two short α decay chains were observed. The long chains were attributed to the decay of ^{294}Ts. The possible origin of the short-decay chains is discussed in comparison with the known experimental data. They are found to fit with the decay chain patterns attributed to ^{293}Ts. The present experimental results confirm the previous findings at the Dubna Gas-Filled Recoil Separator on the decay chains originating from the nuclei assigned to Ts.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

During the past two decades the experimental attempts to reaching the island of stability, i.e., nuclei at around the predicted $Z = 114$ and $N = 184$ have had great successes resulting in the discoveries of elements with atomic numbers up to $Z = 118$ [13]. The heaviest nuclei ($Z > 111$) associated with island of stability have been observed in complete fusion reactions of the doubly magic ^{48}Ca ($Z = 20$) used as a projectile and radioactive actinide targets from uranium ($Z = 92$) to californium ($Z = 98$). Such reactions had already been considered for the synthesis of superheavy elements decades ago [4]. However, the sensitivity of those early experiments was not high enough for the observation of superheavy nuclei (SHN) produced as evaporation residues (ERs) of fusion-
evaporation reactions. Overall sensitivities for performing such experiments had significantly been improved at the Dubna Gas-Filled Recoil Separator (DGFRS) at the Flerov Laboratory of Nuclear Reactions in Dubna, Russia. As a result it became possible to produce SHN closer to the island of stability in 48Ca induced fusion reactions [2]. To date, several results from the DGFRS on the elements Cn ($Z = 112$), Fl ($Z = 114$), Mc ($Z = 115$), Lv ($Z = 116$) and Ts ($Z = 117$) have been confirmed across a number of laboratories by using the same 48Ca + actinide fusion-evaporation reactions [2–15]. Confirmation experiments aimed at studying chemical properties of Cn, Nh ($Z = 113$), and Fl (see review article [16]) were carried out as well.

The success of the 48Ca-induced reactions were reasonably high evaporation residue cross sections (order of pb for the range of $Z = 112$–118) observed for almost all cases. These are often attributed to gains in fusion probabilities, and effects of the compound nuclei that are located in the vicinity of the predicted island of stability [2, 17, 18].

Detailed investigations of these SHN are now one of the main topics in the field. SHN with odd numbers of nucleons are of particular interest as they give access to information on the single-particle states which would help theory to improve the calculations on the structure of the SHN. However, present spectroscopic data, collected exclusively from α decay, are scarce. Only recently, more detailed information on the structure of SHN formed in the decay of Mc [11, 13, 19] has been obtained by adding γ spectroscopy. However, performing such an experiment for heavier SHN is limited due to lower cross sections. Accordingly, in the heaviest nuclei, α decays still remain the main source for extracting nuclear structure information.

The odd-Z SHN, Mc [2, 11, 13, 19] and Ts [20–23] have been observed with α-decay chains that are relatively long compared to the even-Z ones. Thus, α decay of each member represents valuable information on the structures of various nuclei within wide ranges of Z and N. In this regard, in a recent analysis of all observed α-decay chains assigned to Mc, the possible presence of electron-capture (EC) decay branches in SHN has been inferred [13]. Therefore, a reliable assignment of decay chains originating from the heaviest odd-Z nuclei, which might contain important information on the structure of SHN is often challenging. Ideally, they will be investigated in more detail with advanced experimental techniques, in addition to improved statistics. Recently, an experiment on the direct mass-number measurements of isotopes produced in the fusion-evaporation 48Ca+243Am reaction has successfully been performed and confirmed the mass numbers of 288Mc and 284Nh [15].

Furthermore, the observed relatively long half-lives of the odd-Z SHN allow dedicated experiments to study their electronic shell configurations, which are of great interest in both atomic physics and chemistry.

The element Ts has been synthesized at the gas-filled recoil separator TASCA by using the fusion-evaporation reaction 48Ca+249Bk. The results on the observation of two long decay chains assigned to 294Ts have been published in [12]. Here, we present the experiment in detail together with results of yet unpublished short decay chains.

II. EXPERIMENTAL SETUP

A 48Ca$^{+10}$ heavy ion beam was delivered from a 14 GHz electron-cyclotron-resonance (ECR) ion source and was accelerated by the UNiversal LInear ACcelerator (UNILAC) in a pulsed mode with 5 ms pulse-length and 50 Hz repetition frequency. Three different beam energies of 268.3, 270.2 and 274.1 MeV were used. During the whole experiment 1.10×10^{19} 48Ca-nuclei irradiated the target within ≈27 days, corresponding to an average beam intensity of $0.75 \text{ particle/µA (4.7} \times 10^{12} \text{ particle per second)}$. In Fig. 1(a), the chronology of beam intensity and energy is shown.

Isotopically pure 249Bk target material was produced at the Oak Ridge National Laboratory (ORNL), USA [24] and a part was then sent to Johannes Gutenberg University Mainz, Germany for the production of the targets. Four target segments with thicknesses of $0.37(4), 0.53(5), 0.53(5), 0.50(5) \text{ mg/cm}^2$ were produced by electro-deposition on $0.99(5) \text{ mg/cm}^2$ Ti-backing foils with an area of 6 cm^2 each [24]. Because the half-life of 249Bk is only $327.2(3) \text{ d}$ [25], its amount in the target was continuously decreasing with time via β^- decay to 249Cf ($T_{1/2} = 351 \text{ y}$) [27], which primarily decays via α particle emission. Initially these targets were first used for an at-
studying physical and chemical properties of Fl have been set into operation for super-heavy element research in 2008 [35]. Several experimental campaigns aimed at the synthesis of the element 119 for about four months [28]. The present experiment started about five months later after the target production. The evolution of the average thicknesses of 249Bk and 249Cf in the target is shown in Fig. 1b). One can see that the amount of 249Bk was already reduced and the target with average total areal density of $\approx 0.48(5)$ mg/cm2 consisted of 249Bk (62%) and its decay product 249Cf (38%) at the beginning of the experiment. The four target segments were mounted on a wheel, which rotates synchronously to the beam pulse structure.

For safety reasons, the target segments were continuously monitored using different methods during the experiment. Their temperature (which proved to be a good quantity for monitoring the target stability during the bombardment) was measured on-line by using a pyrometer [29]. At typical beam intensity of about 0.75 particle μA, a temperature of $\approx 100^\circ$C was recorded by the pyrometer. Alpha particles from the decay of 249Cf accumulating inside the original Bk target were frequently guided to the focal plane detector of TASCA in order to verify target integrity. More detailed descriptions for the handling of the targets are given in Ref. [30].

Before impinging on the target, the beam passed through a 50 μg/cm2-thick carbon foil mounted on a wheel on the same axis as the target wheel, with both rotating synchronously. The carbon foil was used to increase the initial charge state of incoming 48Ca$^{10+}$ ions to safely deflect them in the TASCA dipole field also in case of accidental appearance of pinholes in the target. Beam energies in the center of the target were estimated by using the SRIM code [31]. Energy losses of 48Ca in the carbon and titanium foils were directly calculated using the data basis of SRIM. For the case of energy loss in the target, its compositions were assumed to have predominantly 249Bk16O$_3$ and/or 249Cf16O$_3$ forms. The three initial beam energies were calculated to result in $E_{\text{lab}} = 252.1$, 254.0, and 258.0 MeV in the center of the target in laboratory frame. Beam energies entering and leaving the target are about $E_{\text{lab}} = 2.1$ MeV and $E_{\text{lab}} = 2.1$ MeV, respectively. Excitation energies of the compound nucleus, 297Ts, formed in complete fusion reactions were estimated by using the known experimental mass excesses of 48Ca, 249Bk [22] and theoretical values for the compound nucleus. Two different mass excess calculations within the Thomas-Fermi [33] and the finite range droplet [34] models were compared. Similar reaction Q-values of 171.8 and 170.7 MeV have been predicted by these models. Excitation energies of $E^* = 39.5$, 41.2 and 44.5 MeV were attributed to 297Ts taking into account that calculations from Ref. [33] are widely used for describing the measured excitation functions of 48Ca + actinide reactions.

Since the gas-filled recoil separator TASCA has been set into operation for super-heavy element research in 2008 [35], several experimental campaigns aimed at studying physical and chemical properties of Fl have successfully been carried out in the period 2009-2010.
FIG. 3. Low a) and b) high energies spectra measured during the 270 MeV-run. All, anti-MWPC, and beam-off events are shown. In a) the spectrum of beam-off events detected solely with the stop detector or no coincidence box detector signal within energies 3-14 MeV is shown. The spectrum of these events with the additional requirement of having only single-signal traces (digital part of CANDI) is also shown. The algorithm for testing a presence of multi-signal traces has a time limit down to 0.3 µs in between signals.

ward hemisphere of the stop detector to form a five-sided box configuration (hereafter: box detectors). The stop detector comprised 144 vertical (X) and 48 horizontal (Y) 1 mm-strips on the front and back sides, respectively. The 144 vertical strips faced TASCa and have 0.1 mm strip-pitch. The 48 horizontal strips provide the position information along the Y-axis. Two adjacent single-sided Si-strip detectors having the same sizes as the stop detector were mounted directly behind the stop detector to register particles passing through the stop detector (veto detector). The veto detector was used to discriminate real α events from low energy signals originating from light particles which passed through the separator and the stop detector [9]. Each box detector had 16 strips on both sides with 72 and 48 mm sizes and longer strips were faced inside the box configuration. In the data processing signals from every two neighbouring strips of box detectors were combined. Detailed descriptions of the FPDS are given in Refs. [10, 41].

The combined ANalog and DIgital (CANDI) data acquisition system was used for processing the data collected with the FPDS. Signals from the front 144 vertical strips of the DSSD, box, veto and MWPC detectors were processed in a standard way, i.e., pre-amplified, amplified and shaped, and digitized using peak-sensing ADCs. All pre-amplified signals were duplicated and spectroscopic amplifiers with two gains differing by a factor eleven were used to get two branches for energies of α particles and for high-energetic particles. These signals were independently stored in the analog part of the CANDI, which had a dead-time of ≈35 µs (marked as DAQ1 in Fig. 2). Pre-amplified signals from the horizontal strips of the stop detector were digitized by 60 MHz-sampling ADCs by storing their shapes in 50 µs-long traces (8 µs before and 42 µs after the trigger), marked as DAQ2 in Fig. 2. Finally, both analog and digital DAQs connected to the FPDS were combined as single data events, which allowed the determination of the time, spatial coordinates, beam-on/off status, energy, and shape of each detected event [12]. Advantages of CANDI for the solution of various physics and measurement technical issues have been demonstrated in Refs. [12, 37, 42, 43].

The efficiency for the detection of α particles with full energies in the FPDS is estimated to be 76(4)%. The efficiency for the detection of fission events is 100%. Energy resolutions (FWHM) of individual strips of stop and box detectors were ≈40 keV for 5.8 MeV α particles from an external α source placed in front. The final energy calibrations were done using the α decays of nuclei produced in a preparatory 50Ti+176Yb reaction, and of nuclei which are additionally implanted in the stop detector during the experiment as products of reactions not leading to fusion (hereafter: non-fusion products/reactions [17]). In the case of the Y-strips of the DSSD, the full energy of an event was not always collected by a single strip but was sometimes shared between neighbouring ones while the energy from the front side was collected by a single X-strip. An average percentage of such a split signals was 16% throughout all Y-strips. The data acquisition was triggered by any event registering more than about 600 keV in a front (X) and/or more than about 500 keV in a back (Y) strips of the stop detector.

Calibration of the high-energy branch was done with an external four α-line source [3]. With such a calibration, the measured energies of fission fragments from 256Rf were distributed in the range of 50-200 MeV [45].

In the present experiment, the highest counting rates for X-strips of the stop detector were registered to the
“left”-side of the detector where mostly the low magnetic rigidity heavy ions originating from non-fusion reactions are detected. The total trigger rate of the FPDS was ≈700 Hz at ≈0.75 particle µA beam current on the target. Half of the counting rate originated from strips \(X = 0 \) to \(X = 34 \) and strongly decreased with increasing strip number.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Energy spectra and event types

The energy spectra of events measured in the low and high-energy branches (analog part of the data) from the stop detector are shown in Fig. 3a. All events registered in all strips of the stop detector resulted in a total counting rate of ≈700 Hz. In the anti-MWPC spectrum, i.e., consisting of events detected without a coincident signal from the MWPC, the number of events was significantly reduced. In the analysis, these anti-MWPC signals were considered to be events which might originate from \(\alpha \) particles (hereafter: \(\alpha \)-like events).

The background of \(\alpha \)-like events can be significantly suppressed further by considering only events registered during the 15 ms beam-off period between the UNILAC pulses of 5 ms duration. The spectrum requiring such beam-off \(\alpha \)-like events is also shown in Fig. 3a). This spectrum appears much cleaner and peaks corresponding to \(\alpha \) decays are clearly visible (cf. Fig. 3a). A relatively wide peak with a long tail appears at around 16.5 MeV. It is due to pile-up \(\alpha \) events, i.e., the summing of energies of \(\alpha \) particles detected within a short time window (≤ 5 µs). These pile-up events can partially be identified by coincident signals in the box detectors if one of the \(\alpha \) particles escaped from the stop detector.

In Fig. 3a), the spectrum of events detected solely in the stop detector, and with no coincident box-signals with energies 3-14 MeV, shows a slight decrease of rate in the range of ≈9–12 MeV where the decays of SHN are expected. The region above 12 MeV is not significantly affected because either no escape \(\alpha \) particle was detected, the escape energy is <3 MeV, or both \(\alpha \) particles were measured in the stop detector. At the same time, the rate of events within 0.8–3.5 MeV where typical \(\alpha \) escape energy releases in the stop detector are recorded, was reduced. Further analyses of pile-up events were done by using their digital traces stored in the second branch of the electronics (DAQ2).

An algorithm enabling a search for multi-signal traces was applied for all events, and the spectrum of events containing a single signal in their traces is also shown in Fig. 3b). While pile-up events were significantly reduced, lines corresponding to \(\alpha \)-decay energies remained unchanged. The remaining pile-up events are due to limitations of the algorithm for resolving multiple signals occurring within a very short time (≤ 0.3 µs). An individual trace containing multiple signals detected within a time between subsequent events down to ≈ 0.1 µs can be resolved only by visual inspection. Since many \(\alpha \)-like events associated with the decay of nuclei originating from non-fusion reactions were detected, we first performed the isotopic identification of \(\alpha \)-like events prior to the main analysis searching for the chains of Ts. The results are given in Sec. V TA.

Distributions of various types of events along the \(X \)-strips of the stop detector are shown in Fig. 4. Beam-off \(\alpha \)-like events are accumulated mostly in the left side of the stop detector and indicate the implantation of nuclei with magnetic rigidities lower than the set value. 57% of them were detected in strips \(X < 34 \). All events measured in the low-energy branch with \(E_{\text{stop}} > 0.5 \text{ MeV} \) have a distribution similar to that of beam-off \(\alpha \)-like events, while anti-MWPC events (5–18 MeV) are equally distributed over all \(X \)-strips. The behaviour of the latter events can be explained by a contribution of low-ionizing particles, e.g., helium, etc., which generate too small charges in the volume of the MWPC to be measured.

The high-energy spectrum of all events contains the recoils originating from the non-fusion reactions, scattered beam, and fission fragments originating from implanted nuclei (see Fig. 3b)). The energy spectrum becomes cleaner with the applied anti-MWPC condition. This is due to the efficiency of the MWPC, which is higher for detection of the heavy particles compared to low-energetic light particles. With the beam-off condi-
tion, the spectrum is almost free of background, and only events corresponding to fissions and α decays are left. Therefore, anti-MWPC events with energies above 50 MeV were considered to be fission events. In fact, all decay chains originating from the SHN produced in the 48Ca + actinide reactions terminate in fission. Thus, every single fission event was investigated in detail to search for its possible genetic parent (see Sec. VI A). The spatial distribution of fission events is shown in Fig. 4. Several X and Y strips were missing which somewhat reduces the total pixel numbers, but no events were lost, thanks to the combined triggering of CANDI, except for those occurring in the pixels at intersections of non-working strips.

B. Search for alpha-decay chains

In the present data analysis by taking into account various possible scenarios for the expected decay chains, first we searched for genetically correlated decay chains in different position and time correlation analyses between implantation (ER), α, and fission (SF) like events. Those candidates found from the correlation analyses were further investigated in more detailed event-by-event analysis, e.g., inspection of the shape (trace) of the signal for each member. The most promising candidates for such detailed event-by-event analysis were first selected from results of correlation analyses searching for ER−α1−α2 (ΔtER−α1 < 1 s, Δtα1−α2 < 20 s) and ER−α1−α2−SF (ΔtER−α1 < 20 s, Δtα1−α2 < 200 s, Δtα2−SF < 500 s). The search conditions for the first and second α-like events were 8.5-12.0 MeV, and 8-11 MeV, respectively. The energy ranges are strongly overlapping and the searching times are long, thus the random correlation rate will be relatively high, especially for those α-like events detected during beam-on periods. However, these search conditions ensure that also all non-random decay chains with ‘missing’ member(s), e.g., α particles escaping into the backward open hemisphere of the FPDS, will be found.

Energies of ERs originating from the present fusion-evaporation reactions were estimated on the basis of the measured implantation energies of the evaporation residues from the calibration runs with the 50Ti + 176Yb and 50Ti + 208,206 Pb reactions. By assuming a linear dependence between the measured energies of 231,222U and 254,256Rf and their mass numbers, an average measured implantation energy of 8 MeV was estimated for mass numbers 293 and 294. Accordingly, any event with energies 3-20 MeV and coincident to an MWPC-signal was considered to be an ER-like event.

Average counting rates of ER-like, α-like and SF events per pixel of the stop detector during the beam-on and beam-off periods are given in Table I. Expected numbers of random chains corresponding to the different correlation sequences are also given.

In total more than one thousand correlation chains were found for the ER−α1−α2 sequence. The majority contained two beam-on α-like events. About sixty chains having the ER−α1−α2−SF sequence were found and again most of them contain beam-on α-like events.

Also, α1−α2−α3 correlation searches (see Table I) were applied to ensure the safe identification of chains in case the ER-like signals are outside of the selected range. We found about 2000 chains with triple α-like events in correlation where most of them (92%) were detected with three beam-on α-like events, as expected (cf. Table I).

Finally, as a result of detailed analyses for the presence of various types of correlation sequences, event-by-event and digital trace inspections, four chains were identified as being non-random correlation sequences that do not contain any α particles originating from the decays of non-fusion products. All other chains were attributed to be of random origin and details of such an assignment are given in Sec. VI B where the analyses of the experimental data are comprehensively described. These four chains were further investigated in more detail and all their members were found and are shown in Table II.

Detailed descriptions on the identification of each chain are given in the following sections.

C. Long decay chains

Two chains #1 and #2 containing several α-decaying members were detected at beam energies $E_{\text{lab}} = 254.0$ MeV and 258.0 MeV, respectively. In the initial correlation analysis, α3, α2, and fission events of both chains (see Fig. III) did not appear. These members of

<table>
<thead>
<tr>
<th>Type</th>
<th>Event Energy (MeV)</th>
<th>Counting rate (1/s)</th>
<th>Beam-on</th>
<th>Beam-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER</td>
<td>3-20</td>
<td>1.3×10^{-4}</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>α1</td>
<td>8.5-12.0</td>
<td>1.0×10^{-3}</td>
<td>1.0×10^{-5}</td>
<td></td>
</tr>
<tr>
<td>α2</td>
<td>8-11</td>
<td>1.2×10^{-3}</td>
<td>1.5×10^{-5}</td>
<td></td>
</tr>
<tr>
<td>α3</td>
<td>8-10</td>
<td>1.0×10^{-3}</td>
<td>1.3×10^{-5}</td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td>> 50</td>
<td>1.2×10^{-6}</td>
<td>1.0×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>Correlation sequences</td>
<td>N_m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER−α1(1)−α2(20)</td>
<td>2.5</td>
<td>3.1×10^{-4}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER−α1(1)−α2(20)−α3(300)</td>
<td>1.9×10^{-2}</td>
<td>3.1×10^{-8}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α1−α2(20)−α3(300)</td>
<td>13</td>
<td>2.9×10^{-4}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER−α1(20)−α2(200)−SF(500)</td>
<td>1.8×10^{-4}</td>
<td>2.0×10^{-8}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the chains were identified in the event-by-event analysis of the corresponding pixels.

All α- and fission-like events, which occurred in the pixels X/Y = 103/41 and 111/19, where chains #1 and #2 were found, respectively, are shown in Fig. 5 with their energies (E_{stop}) as a function of experimental time. Only one fission event was registered during the entire beam time in each of these pixels. They were detected at about 5 and 31 hours after the implantation signals (ER) of chains #1 and #2, respectively. Accordingly, these fission events were attributed to terminate these decay chains.

In the case of chain #1, 55 beam-off α-like events were detected within the energy range of $E_{\text{stop}} = 7$-12 MeV. 32 of them were found to originate from known isotopes, produced in non-fusion reactions (see Sec. VI A). In the energy range of $E_{\text{stop}} = 8$-12 MeV, eight events could not be identified through the correlation analysis as originating from non-fusion products. Four of them occurred within a short time window and were assigned as members of chain #1 (see Table I).

The energies of the remaining four events (8.52, 8.23, 8.86 and 8.89 MeV) are in the range of typical background events where uncorrelated high-energetic α particles commonly appear during experiments on the synthesis of SHN [20]. Such events originate from α decays of long-lived 212Bi ($T_{1/2} = 60.55(6)$ min, [27]) and 213Bi ($T_{1/2} = 45.61(6)$ min, [27]), respectively. Because of very short half-lives of 212,213Po, often their α particles are measured with energies summed with electron energies. In the present experiment, such electron-α pile-up events could be resolved (see Sec. VII).

Fifteen beam-off α-like events with energies 7-8 MeV could not be unambiguously identified via the correlation analysis, but likely originate from long-lived (>1 s) nuclei produced in non-fusion reactions.

A small beam-off signal in between the third and fourth members (α2 and α3) was stored only in the digital branch, i.e., in the strip Y = 41 but without X-strip information. This beam-off event with a stop detector energy of 0.6 MeV was registered with a coincident signal in a box detector. Its total energy of 9.3(3) MeV was reconstructed. The counting rate for such events with reconstructed full energies of 8-10 MeV in strip Y = 41 with missing X-signal was about 1.0×10^{-5}/s during beam-off periods, corresponding to an average appearance every 28 h. Taking into account the negligible random probability to observe this event exactly in between several beam-off α-like events occurring within 0.07 h (\ll 28 h), this signal was attributed to be the fourth member of chain #1, registered 5.96 s after α2. Taking this finding into account, a partial decay chain consisting of six nuclei with α-particle emission was established. Hereafter

FIG. 5. Stop detector energies of anti-MWPC (vertical lines) and beam-off (horizontal lines) events in the pixels X/Y = 103/41 (a) and 111/19 (b) are shown as function of time, start from the beginning of the experiment. In the left panels, the time scale covering the entire experiment is shown. Shaded regions mark time windows where the chains #1 and #2 and fissions were detected. An expanded view of the time around these shaded regions is shown in the right panels (c,d). Identified beam-off α-like events with energies 7-12 MeV are marked by squares. In right panels, the α members of cluster-events reconstructed from stop and box detectors are shown by triangles. For details, see text.
we will refer to these α-like and ER events (see Table I) as a single cluster-event. The random probability for observing chains similar to this cluster-event is very low. By taking counting rates for ER-like and six α-like events within the ranges of (3-20) MeV and $E_\alpha \pm 1$ MeV, respectively, and measured correlation times, a probability of 2.4×10^{-21} was calculated for the random sequence of events like the chain #1 according to Ref. [48]. We note that this value could even be smaller if only non-identified α-like events would be considered as a source for random correlations.

In between the cluster-event and the fission event, four beam-off α-like events with energies of 6.82, 7.89, 11.53 and 6.29 MeV were detected (cf. Fig. 5, top right). Trace and event-by-event analyses proved the 11.53 MeV event to be a pile-up and a member of an ER-like chain #2 (see Table II). Therefore, this signal detected 2.35 s after the α_2 event was attributed to chain #2. With this additional member, the upper bound of the chain #2, which has seven members detected within a short time window of 0.12 h becomes similar to the cluster-event of chain #1. The random probability to observe the cluster-event of chain #2 was estimated in the same approach as for chain #1 and is found to be on the order of 10^{-21}.

Nine beam-off α-like events with energies of 6.66, 7.65, 8.44, 7.90, 6.17, 6.72, 5.67, 7.08, and 6.61 MeV were detected in between the cluster and fission events of chain #2. The first two α particles were found to be associated with the α-decay chain of 210Fr ($E_\alpha = 6.68$ MeV, [27]). No correlated members for the 8.44 MeV-event were found. This event can be attributed to $\alpha(2^{210}$Po) + β^- (213Bi) pule-up as mentioned previously (see Sec. VII).

No correlation members for the five low energetic (6.17, 6.72, 5.67, 7.08 and 6.61 MeV) α-like events were found, however, likely they originate from long-lived nuclei produced in non-fusion reactions. For the relatively high energy 7.9 MeV-event, no ER-like and no event at all were observed.
detected within 113 and 33 s, respectively.

Finally, both decay chains contain a cluster-event and a fission. Moreover, in both cases, beam-off α-like events with the same energy, 7.89(3) and 7.90(3) MeV, were observed in between the cluster and fission. Traces of these two α-like events contain a single signal in both cases, and no events back to 28 and 33 s were detected in the corresponding pixels. An origin of non-fusion products that emit the α particles with energies >7.6 MeV can easily be identified, because they have half-lives shorter than 0.4 s (cf. Sec. VI A). Ten and eleven α-like events with energies 7.7–8.2 MeV were detected in the pixels corresponding to chains #1 and #2, respectively. Only those two were left without an assignment to any of the non-fusion products. Therefore, a possible interpretation is that these two events might be associated with observed decay chains containing the cluster-event and the fission each. The rate of α-like events within the wider energy range 7.5–8.5 MeV still remains low; 15 and 22 events were detected in pixels 103/41 and 111/19 during the entire experiment, respectively, and only 3 and 6 of them remained unidentified.

The random probability to observe the cluster-event is very small, thus for estimation of the random probability for observing various sequences of cluster–α(7.89-MeV), cluster–SF and cluster–α(7.89-MeV)–SF correlations we use the cluster-event as a ‘single’ event. The random probabilities to observe cluster–SF correlations were 3.1×10^{-2} and 6.0×10^{-2} for chains #1 and #2, respectively. Then, the random probabilities to find a sequence of cluster–α(7.5–8.5 MeV) are 4.0×10^{-2} and 6.9×10^{-2} for chains #1 and #2, which are similarly low as the values for cluster–SF correlations. These estimated random probabilities will further be reduced if only those 3 and 6 non-identified beam-off α-like events are considered as a main source for random events. Finally, each triple sequence resulted in random probabilities of 8.6×10^{-4} and 2.2×10^{-3} for chains #1 and #2, respectively. Thus, these events are most probably genetically correlated. Moreover, decay properties of the corresponding members of both chains are compatible with one common origin. Therefore, based on the above mentioned analyses, two α-like events at 7.89(3) and 7.90(3) MeV were attributed to being members of the long-decay chains. Constructed full decay patterns are shown in Fig. 6 together with the traces of all members. All signals from α particles are recorded as single-signal traces. This allows to safely exclude pile-ups as source of any member

FIG. 6. Suggested decay sequence of the long α-decay chains observed during the 254 MeV-run (chain #1) and 258 MeV-run MeV (chain #2). Experimental energies in MeV and Δt are given for all events. Boxes with black triangles indicate events observed during beam-off periods. The measured fission-fragment energies are from stop+box detectors. Corresponding traces of all members of the chains are shown on the right side of the chains. A summary resulting from α-decay chains observed at DGFRS [23] is also shown.
of these two decay chains, as mentioned in the previous section.

The first and second α particles having energies in excess of 10 MeV and short correlation times point towards the events having an origin from SHN. Isotopic assignment of these long decay chains can be made based on the properties of the odd-odd nuclei, which have an enhanced fission stability due to their unpaired proton and neutron. In such cases, members of the decay chains have an enhanced α-decay branching, and thus genetic correlations can be continued down to nuclei where α decay is not favourable anymore.

We compare these two long-decay chains to DGFRS data where four similarly long-decay chains have been reported and assigned to 294Ts (cf. Fig. 6). Decay properties of members of the present two chains and DGFRS long-chains are in agreement down to 270Db. Therefore, the chains in this study were attributed to 294Ts as well [12].

However, in all four 294Ts chains from DGFRS, the end point of the chain was assigned to 270Db with a relatively long half-life. The measured correlation time to a preceding member ($\Delta t'$) for the fission of 270Db in the four chains of the DGFRS data were 33 h, 38 h, 24 h, and 1.2 h [21,23]. Only in the latter case, no α-like event in between decay of 274Bh and fission was observed in the beam shut-off period that continued until the detection of the fission event [21,23]. In the other three chains, α-like events in the energy range of 7.7-8.2 MeV were detected. However, these events could not be assigned [21-24]. In the present experimental data the α-like event could be assigned to occur in between the decay of 274Bh and fission of the long decay chains. Therefore, we suggest that 270Db has an α-decay branching based on the observation of the 7.89(3) and 7.90(3) MeV α-like events. Thus, the decay sequence of 294Ts was extended down to 266Lr, which decays by fission. It is worth to note that a possible EC-decay branching of 266Lr, which would likely result in the fission of 266No, is expected to be small ($\lesssim 1\%$) according to systematics given in Ref. [21].

We note that theoretically predicted decay properties for members of the 294Ts-chain ([49]) are in good agreement and describe our findings down to 266Lr [12,20].

For the DGFRS chain with the shorter $\Delta t'$ fission event, the chain is most likely terminated by fission of 270Db. For the other three chains where fissions have considerably longer correlation times, the α decay of 270Db may have been registered but could not be assigned (as considered in [21,23]) according to the present two chains. The half-lives of 266Lr and 270Db derived from the present two fission events and from three events (one fission event from DGFRS and two α events from the present work) are 11_{-5}^{+21} h and $1.0_{-0.3}^{+1.9}$ h, respectively. If so, a branching ratio for fission of about $1/6 = 17\%$ is deduced for 270Db. The partial fission half-lives for 266Lr and 270Db of 11_{-5}^{+21} h and ≈ 6 h fit well into the systematics of the partial spontaneous fission half-lives of known isotopes [45].

D. Short decay chains

Two shorter decay chains #3 and #4 consisting of six and four correlation members were observed at beam energies $E_{\text{lab}} = 254.0$ and 258.0 MeV, respectively. These two chains occur within much shorter time periods compared to the long chains. The complete data on these chains are given in Table I. Traces of each member where only single signals were stored are shown in Fig. 7.

Both chains were detected with Y-signals split into two neighbouring strips except for the α_2 member of chain #3. Both shorter chains were detected in X-strips located on the low magnetic rigidity side, where counting rates of non-fusion products were high. Thus, the spectroscopic performance of these strips deteriorated over the course of the experiment, which increased the probability to register a split Y-signal.

Detailed event-by-event analysis between the ER and SF members of chain #3 in the pixel $X = 47$ and $Y = 25/26$ showed that only one additional anti-MWPC event with an energy of 2.74 MeV was detected in between the third (α_2) and fifth (α_4) members of the chain (see Table I). Its split Y-signal points to its belonging to chain #3. No box-signal was detected. This can be a hint that an α particle escaped into the open hemisphere of the FPDS.

Since the position of implantation of the heavy nucleus remains unchanged during its further decays because of a negligible recoiling effect of the α emission, subsequent signals detected from decays of daughter nuclei will also be divided into two Y-strips. The ratio between charge-sharing will roughly be conserved if the ER energy is split between two Y-splits. As one can see in Fig. 7, the ratios of amplitudes (corresponding to energies) registered in $Y = 25$ and 26 are similar, and small variations are due to varying emission angles of the α particles. In case of the third (α_2) member, only one signal (in $Y = 25$) was detected. Because of the small energy (1.04 MeV) deposited in the stop detector by this escape α particle, the charge-sharing to the neighbouring $Y = 26$ strip was not detectable. We note that in the pixel $X/Y = 47/25$ only twelve beam-off α-like events were detected within the energy range of 8.5-12.0 MeV during the entire experiment and five of them were pile-up events. Four of the remaining events were detected with a split Y-signal. Similarly, two fissions were detected in the pixel $X/Y = 47/25$, only one of them had a split signal leaking into $Y = 26$. The random probability for chain #3 was estimated as 1.3×10^{-18} by taking counting rates of events within the range of $E_{\alpha} \pm 1$ MeV and without requiring Y-split in $X/Y = 47/25$ pixel.

No additional event between ER and SF was found in the data for the second short chain #4. Traces of four members of this chain are also shown in Fig. 7. The ratio of the signal split between neighbours remained similar throughout the chain member events. The random probability for chain #4 was estimated as 8.5×10^{-12}. These probabilities were calculated without taking into account
Sixteen short-decay chains observed at DGFRS have been attributed to originate from the decay of 293Ts in the 48Ca+249Bk reaction. Most of these chains (fourteen) were observed to terminate by fission at 281Rg. Only in two cases α decays of 281Rg followed by short fission activities were found. This short-lived fission activity could be originating from ei-

Similarly small energies (< 10 MeV) of the first α-like events in both chains did not allow to attribute them right away to Ts or Mc [2, 11–23]. Moreover, their correlation times to ER-like signals are quite different, indicating decays from different states and/or nuclei.

In the case of chain #3, the second α-member has a relatively high energy that could be considered to be originate from decay of Ts-Nh [2, 11, 13, 15–19]. Accordingly, it might be that the first α-decay energy in this chain #3 was not fully detected in the stop detector. Such a scenario can also be derived from the analysis of the correlation time of the 9.7 MeV α-like event according to well-known relations between the half-life and Q-value of the α decay [19]. By considering 9.7 MeV as being the full energy of the α particle originating either from Ts, Mc or Nh, one estimates half-lives of more than 1 s in all cases according to expressions given in Ref. [19]. These are significantly longer than the measured 8.65 ms correlation time. Therefore, likely, the 9.7 MeV is a partial energy of the α particle, which was emitted in a direction where part of its energy was not collected in the stop detector, similarly to the case of the 4.64 MeV event observed in chain #2.

In the case of chain #3, the first three α-decaying members show similar properties to the members of the long-decay chains, except for the energy of α_1. However, the properties of the fourth α and of the fission members significantly deviate from those in the two long chains (#1 and #2). Taking into account the odd-odd hindrance factor for spontaneous fission, it is unlikely that an isomeric state in 278Mt can decay by fission directly. However, it could happen that the isomeric state decays into the daughter, even-even 278Ds, which in turn rapidly fissions. Accordingly, based on the above assumptions one could attribute chain #3 as originating from 294Ts and terminating by fission of 278Ds produced in the electron capture decay of an isomeric state in 278Mt. However, such an interpretation based on a single chain is highly speculative. Therefore, presently, our data can only be comparatively discussed relative to findings from the DGFRS, where isotopic assignments for the observed short chains have been given [2, 21, 23].

FIG. 7. Suggested decay sequence of two short α-decay chains observed during the 254 MeV-run (chain #3) and 258 MeV-run MeV (chain #4). Summaries of the sixteen short decay chains observed at DGFRS and attributed to the decay of 293Ts are also shown for comparative discussion. Energies and correlation times of all individual members are given for two DGFRS chains that end by fission of either 277Mt or 277Hs. For each member of the “14 chains”, an average half-life was calculated from those data, where the correlation time was measured relative to the mother nucleus. Isotopic assignments of chains #3 and #4 are made based on the DGFRS findings. In the case of chain #4 only one of several possible scenarios is given. Boxes with black triangles indicate events observed during beam-off periods. The measured fission fragment energies are from stop+box detectors. The corresponding traces of all members of the chains are shown on the right side of the chains. For more details, see text.
ther ground or excited states in \(^{277}\text{Mt}\), or decay of \(^{277}\text{Hs}\) produced as a daughter of \(^{277}\text{Mt}\) decaying by EC as discussed in Ref. [24]. The decay properties of two chains are given in Fig. 7 together with compiled decay properties of the fourteen shorter chains.

First, we note that despite a difference in the numbers of the members, nevertheless, the last two members in each of our chains (##3 and ##4) are quite similar. Each chain ends with a fission with short correlation time (0.144 and 8.42 ms) following \(\alpha\) particles with energies of 9.34(8) and 9.31(8) MeV, respectively (see Fig. 7). Based on this, we assume that the last two members of these chains likely originate from the same nucleus. Moreover, the last two members of our two short chains are similar to the last two members observed in two chains at DGFRS, where the sequence was attributed to \(^{281}\text{Rg–277}\text{Mt/277}\text{Hs}\). Moreover, chain ##3 has the same number of members and their correlation times are in good agreement with data from DGFRS. Therefore, we conclude that chain #3 originates from the same nucleus as those two found at DGFRS. Thus, we attribute this chain to the decay-pattern of the chain assigned to \(^{290}\text{Ts}\) from the DGFRS.

The discrepancies between chain #4 and that assigned to \(^{293}\text{Ts}\) at DGFRS are obviously much more pronounced. Therefore, only a suggestive assignment relative to the DGFRS data can be given. One possible scenario is given in Fig. 7 where \(\alpha\)-particles from decays of \(^{293}\text{Ts}\) and \(^{289}\text{Mc}\) are scattered at open backward direction with small energy depositions in the stop detector, thus not generating signals above the \(\approx 500\text{keV}\) threshold. We note that the ER energy of this event is the lowest among our four chains. Accordingly, the implantation depth, which affects the energy release of backward scattered \(\alpha\) particles, is smaller than in the case of the three other chains.

E. Cross sections

In the present work, one long and one short decay chain each were observed at two different beam energies \(E_{\text{lab}} = 254.0\text{MeV}\) and \(258.0\text{MeV}\). No chain was observed at a beam energy of \(E_{\text{lab}} = 252.1\text{MeV}\). Cross sections were deduced taking into account the decrease of \(^{249}\text{Bk}\) target material as discussed earlier (see Fig. 1). Cross sections of the long decay chains attributed to the 3n channel of the \(^{48}\text{Ca}+^{249}\text{Bk}\) fusion reaction are shown in Fig. 8 (upper panel) together with results from DGFRS [20]. Cross sections of the short chains are shown in Fig. 8 (lower panel) compared to those assigned to the formation of \(^{293}\text{Ts}\) in the 4n channel.

Error bars and upper limits for cross sections were calculated according to Ref. [48]. The absolute values of cross sections obtained at TASCA and DGFRS are in agreement while the beam energies deviate. At DGFRS no simultaneous detection of both long and short decay chains at one particular beam energy (as was the case at TASCA) had been observed. In particular, the non-observation of the long decay chains (associated with the 3n channel) at higher excitation energies was in contradiction to theoretical calculations from Ref. [50], which described most fusion-evaporation reactions of \(^{48}\text{Ca}\) with actinide targets well. At the same time, the DGFRS results are well described by the calculations from Ref. [51], where significantly narrower excitation energies were calculated using the mass-table data from Refs. [32, 33].

![Cross section diagram](image)

FIG. 8. Cross sections for the production of Ts nuclei in the \(^{48}\text{Ca}+^{249}\text{Bk}\) reaction observed in the present work and from DGFRS [20, 23]. a) 3n channel from the fusion reactions where long-decay chains were assigned to \(^{294}\text{Ts}\). Numbers of observed chains are given. b) Cross-section values corresponding to short-decay chains assigned to \(^{293}\text{Ts}\) according to DGFRS are shown together with the sum of the observed number of chains terminating at \(^{281}\text{Rg}\) and \(^{277}\text{Mt/277}\text{Hs}\). Cross sections of the present chains ending with short-lived fission activity are also given. Solid and dashed lines mark the theoretically predicted cross section values adopted from Refs. [50] and [51], respectively. Excitation energies were calculated using the mass-table data from Refs. [32, 33].
sections of this channel have mostly been deduced from the set of 14 short decay chains terminating at ^{281}Rg (cf. Fig. 7). Ten of those chains were detected at $E^* \approx 39$ MeV in two 70-day long experimental campaign at DGFRS (with 1 event being produced on average after beam doses of 4.8×10^{18} and 2.4×10^{18} particles in the first [20] and second [22] experiment, respectively) and the others at higher energies. In the present experiment, at $E^* \approx 39.2$ and 40.9 MeV, beam doses of 4.9×10^{18} and 2.3×10^{18} particles were accumulated [12], respectively. Taking into account the above production rates from DGFRS and the amounts of ^{249}Bk material in the targets, the non-observation of short chains ending at ^{281}Rg in the present experiment can be attributed to the effect of rare-event statistics [48].

At DGFRS, two short chains ending with fission in ^{281}Rg and an additional one ending at $^{277}\text{Mt}/^{277}\text{Hs}$ have been measured at $E^* \approx 41$ and 44 MeV, respectively. These data give the α-decay branching of 1/3 $\approx 33\%$ for ^{281}Rg. Based on this, one might expect the detection of up to five chains ending at $^{277}\text{Mt}/^{277}\text{Hs}$ in the DGFRS experiments at $E^* \approx 39$ MeV. This, though, was not the case [23]. Again, this could be due to rare-event statistics.

The present two short decay chains, suggestively attributed to terminate at $^{277}\text{Mt}/^{277}\text{Hs}$, were observed at energies higher than $E^* \approx 39$ MeV similar to the results from DGFRS.

In summary, the beam energies corresponding to measured chains show some deviations between the present experiment and the results from DGFRS. In previous experiments on the production of F1 and Mc at TASCA, we did not observe significant deviations from DGFRS in the used beam energies. Taking into account the low statistics, we cannot draw any firm conclusions concerning deviations on the used beam energies, which may include systematic uncertainties in accelerator beam energies, target production, thickness estimation and the uniformity of the target surfaces between the experiments at TASCA and DGFRS.

IV. SUMMARY AND CONCLUSION

The fusion-evaporation reaction $^{48}\text{Ca} + ^{249}\text{Bk}$ leading to the formation of the element Ts was successfully performed at the gas-filled recoil separator TASCA. A comprehensive analysis of the measured data obtained with a combined analog and digital data acquisition system was described in detail.

In total, four non-random α-decay chains were detected. Two of them were in agreement with each other and were attributed to the decay of ^{291}Ts. In both long chains an additional 7.89-MeV α particle was registered, compared to the chains from DGFRS, and was assigned to the decay of ^{270}Db. Combining the data from DGFRS and TASCA, a half-life of $1.0^{+0.4}_{-0.3}$ h was attributed to ^{270}Db, which suggestively has 83% and 17% branchings for α and fission decays, respectively. For ^{260}Lr, fission with a half-life of 11^{+2}_{-1} h was measured.

Another two chains were in less good agreement with each other. Their origin is suggested via a comparison with the reported decay-patterns of ^{293}Ts from DGFRS.

The present two short decay chains, suggestively attributed to terminate at $^{277}\text{Mt}/^{277}\text{Hs}$, were in agreement with each other. Their origin is suggested via a comparison with the reported decay-patterns of ^{293}Ts from DGFRS.

V. ACKNOWLEDGEMENTS

We are grateful for GSI’s ECR ion-source and UNILAC staff, and the Experimental Electronics department for their continuous support of the experiment. This work was financially supported in part by the German BMBF (05P12UMFNE), the Helmholtz association (VH-NG-723), the Australian Research Council, the Swedish Research Council (VR 2011-5253), the U.S. Department of Energy by LLNL (DE-AC52-07NA27344), the Laboratory Directed Research and Development Program at LLNL (11-ERD-011) and the Helmholtz Institute Mainz. This work was co-sponsored by the Office of Science, U.S. Department of Energy, and supported under U.S. DOE grant No. DE-AC05-000R22725. Three of us (J.M.G., K.E.G., H.N.) were supported by the U.S. Department of Energy, Office of Science, Nuclear Physics, Low Energy Physics Program, through the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231.

VI. APPENDIX A: ANALYSIS OF THE EXPERIMENTAL DATA

A. Identifications of non-fusion products

Besides the implantation of ER from $^{48}\text{Ca} + ^{249}\text{Bk}$, significant amounts of non-fusion products have been implanted into the stop detector (cf. Fig. 3). Predominant amounts of these types of nuclei (which typically have smaller average magnetic rigidities than the set-value) are strongly deflected by the dipole magnet and thus do not pass through TASCA. However, nuclei produced in
non-fusion channels of the nuclear reaction can have kinematic properties that lead to a very broad magnetic rigidity distribution. Thus, a fraction evidently still can pass through TASCA and implant into the stop detector. As seen from Fig. 3, many α-like events and fissions were detected. Accordingly, prior to the main analysis to search for the decay of Ts, we identified the origins of detected α-like events. Such an analysis is very helpful for the identification of the rare radioactive decays of interest in the case when the background is high.

Possible candidates for implanted nuclei, which decay by α particle emissions with energies exceeding 7.6 MeV are shown in Fig. 9 by their $T_{1/2}$ against α-particle energies. The figure includes cases with α-decay branches of >10% [27]. Two groups of nuclei can be seen in Fig. 9: those with $A < 240$ and those with $A \geq 240$. The half-lives of nuclei in the $200 \leq A < 240$ region are shorter than 0.4 s, except for 212mPo, while half-lives of the heavier ones (243Es–260Sg) are predominantly in excess of 1 s.

Different types of correlation analyses between implantation signal and/or α-like events were carried out. Implantation signals of non-fusion products typically have relatively high kinetic energies [53–55]. However, recently it was found that non-fusion products can also have relatively small kinetic energies [47]. Therefore, in the present analysis the implantation signals of non-fusion products were selected to be events in coincidence to an MWPC signal and within a wide energy range of 3–100 MeV.

As a result, α decays of $^{211–216}$Po, $^{212–217}$At, $^{213–220}$Rn, $^{214–221}$Fr, $^{219–222}$Ra and $^{220–223}$Ac were identified. Those emitting α-particles with energies exceeding 7.6 MeV are marked in Fig. 9. These nuclei are relatively short-lived and their identification via correlation analyses was straightforward, i.e., most α-like events were correlated with a first preceding event in the data. The energy distribution of these implantation signals shows a well pronounced single peak at around 40 MeV, with FWHM of ≈25 MeV. In turn, this explains the origin of events within an energy range of = (20–80) MeV in the high energy spectrum with coincident to MWPC signals (cf. Fig. 3). No low energy component as seen in the 56Ti + 249Cf reaction [47] was observed, which may indicate a different collision kinematics (e.g., used beam energies) and/or dynamics.

From the α decays of the above mentioned nuclei, different types of pile-up events, e.g., $\alpha(^{217}$Rn)–$\alpha(^{213}$Po) or $\alpha(^{216}$Rn)–$\alpha(^{212}$Po) were generated in the stop detector and were identified thanks to CANDI. These pile-ups occurring in a wide range of energies as shown in Fig. 3 are one of the main sources for candidates of decays originating from SHN. Overall, every single uncorrelated α-like event with an energy of >7.6 MeV was attributed to belong to the decay of a non-fusion product, if it was preceded by a stop-detector signal within 1 s.

In our experiment, about thirteen thousand fission-like events were detected during the entire run. 60% of these were distributed in the left side of the DSSD ($X < 34$) similar to the case of α particles originating from non-fusion reactions (cf. Sect. IIIA). Only four fission events were identified to be correlated with α-decay chains and all remaining events were attributed to originate from transfer reactions around the 245Bk target nucleus. Potential candidates for the origin of such fission events have been discussed in Ref. [53].

B. Analysis of candidates for non-random chains

1. Results of ER–α–α correlations

In the main analysis searching for the α-decay chains originating from Ts, for which search conditions are given in Sec. IIIIB, about one thousand ER–α–α correlations were found. Most of them contain two α-like events, both occurring during beam-on periods. One such chain (labelled as #a) is shown in Table III as an example. Characteristics, i.e., correlation times and energies of every member of this chain, are very close to the upper and lower limits of the correlation windows, respectively. These are in contradiction to the expected decay properties of SHN, whose α-particles have higher energies and shorter correlation times according to known data [1 2 27] and theoretical predictions [49]. Furthermore, no other α- or fission-like events were found to be genetically correlated to the chain #a. Accordingly, this is an example for randomly correlated events where two beam-on α-like events are the main source for the random sequence. The distribution of these randomly correlated chains along the X-axis is shown in Fig. 10a). Their
Counts

\[\text{Counts} \]

suggested in Table III (labeled as chain #c) least one pile-up beam-off signal. One of them is pre-

connection with a single signal. These were the chains discussed in four of them were found to contain traces measured only

served and were inspected in detail event-by-event. Only

the beam structure. In total eleven such chains were ob-

was calculated as

\[\alpha \]

consisting of an ER-like and two beam-off

\[\alpha \]

sequence with these two beam-off \(\alpha \)-like events (see

Table III) is of random origin. The other six chains de-
tected with two beam-off \(\alpha \)-like events were assigned also
to random origin on the basis of the results from the

event-by-event analysis, which was similar to the case of chain #c.

TABLE III. Examples of random chains observed in ER–\(\alpha \)-\(\alpha \),
\(\alpha \)-\(\alpha \)-\(\alpha \) and ER–\(\alpha \)-SF analyses. Energies and correlation

times relative to preceding members are given. Bold font

values indicate beam-off events. Details are given in the text.

<table>
<thead>
<tr>
<th>Chain #</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strips (X/Y)</td>
<td>23/26</td>
<td>54/41</td>
<td>4/46</td>
<td>6/27</td>
<td>31/30</td>
</tr>
<tr>
<td>(E (\text{MeV}))</td>
<td>\Delta t (s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td>20.0</td>
<td>8.3</td>
<td>12.4</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>9.32</td>
<td>11.24</td>
<td>9.71</td>
<td>8.83</td>
<td>10.77</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>8.90</td>
<td>9.50</td>
<td>9.5</td>
<td>10.82</td>
<td>9.03</td>
</tr>
<tr>
<td>(\alpha_3 / \text{SF})</td>
<td>11.2</td>
<td>8.70</td>
<td>7.27</td>
<td>12.0</td>
<td>37.3</td>
</tr>
<tr>
<td>(\alpha_3 / \text{SF})</td>
<td>9.0</td>
<td>137</td>
<td></td>
<td>296.8</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Total energy of event with coincident stop and box signals.} \]

\[\text{Traces of these } \alpha \text{-like events have multi signals, and are} \]

thus assigned as pile-ups.

2. Results of \(\alpha \)-\(\alpha \)-\(\alpha \) and ER–\(\alpha \)-\(\alpha \)-SF correlations

Only three of 2000 chains with triple \(\alpha \)-like events were
identified as being non-random. They belong to members of chains #1 and #2 (\(\alpha_1 \)-\(\alpha_2 \)-\(\alpha_3 \)), and to chain #3
(\(\alpha_1 \)-\(\alpha_2 \)-\(\alpha_3 \)) (see Table II). One of the triple \(\alpha \) chains ob-
served with one beam-off \(\alpha \)-like event is given in Table III
(#d) and is representative also for the remaining random
chains. In the event-by-event analysis, the origin of the beam-off \(\alpha_2 \) member of the chain #d showed a two-signal
trace and was found to be the pile-up, \(\alpha(^{218}\text{Fr})-\alpha(^{214}\text{At}) \),
member of a decay chain originating from \(^{222}\text{Ac} \).

One of the sixty chains observed with ER–\(\alpha_1 \)-\(\alpha_2 \)-SF
sequence is shown in Table III (#e), as a representa-
tive of most of the chains detected with two beam-on
\(\alpha \)-like events. Four chains containing at least one beam-
off \(\alpha \)-like event were found. Three chains were belong-
ing to various combinations of the members of chain #3,
i.e., ER–\(\alpha_1 \)-\(\alpha_2 \)-SF, ER–\(\alpha_1 \)-\(\alpha_3 \)-SF, and ER–\(\alpha_2 \)-\(\alpha_3 \)-SF
(see Table II). The fourth ER–\(\alpha_1 \)-\(\alpha_2 \)-SF sequence corre-
sponds to chain #4 (see Table II). All chains containing
two beam-on \(\alpha \)-like members were further inspected for
the presence of additional members that occurred during
the beam-off periods in between ER and SF, but no such
event was found. Additionally, the decay properties of
such chains (cf. Table III, #e) did not show any indica-
tion for originating from SHN [1, 2, 49], thus they were
attributed to random correlations.

FIG. 10. Horizontal (X-strip) distributions of ER–\(\alpha_1 \)-\(\alpha_2 \)
chains containing a) two beam-on \(\alpha \)-like, b) one and c) two beam-off \(\alpha \)-like events.

abundance increases towards the low magnetic rigidity
side of the stop detector, where the counting rates were
high. 125 and 11 chains with one and two beam-off \(\alpha \)-like

events, respectively, were found and their X-distributions
are shown in Fig. 10 b-c). Most of the chains with one
beam-off \(\alpha \)-like event are found to be random correla-
tions. One such chain (#b), where the first \(\alpha \) decay with
11.24 MeV occurred during a beam-off period, is
also given in Table III. Inspection of the digital traces
showed that the 11.24 MeV event is the pile-up, where
two signals were detected within 2.5 \(\mu \)s. In a further
detailed analysis, true genetically correlated members of
the 11.24 MeV event which originates from the decay of
\(^{221}\text{Ra} \), accordingly different from those found in chain
#b, were found. Therefore, chain #b was attributed to
be random.

The expected average number of random chains con-
sisting of an ER-like and two beam-off \(\alpha \)-like events
was calculated as \(\approx 5.8 \times 10^{-5} \) per pixel based on average
counting rates given in Table II and by taking into account
the beam structure. In total eleven such chains were ob-
served and were inspected in detail event-by-event. Only
four of them were found to contain traces measured only
with a single signal. These were the chains discussed in
connection with \(\alpha \) decays from Ts in Sect. IIIC and IIID.

The remaining seven chains were found to contain at
least one pile-up beam-off signal. One of them is pre-
sented in Table III (labeled as chain #c) as an exam-
ple. The \(\alpha_2 \) member of this chain is a pile-up. In the
event-by-event analysis, these two beam-off \(\alpha_1 \) and pile-
up \(\alpha_2 \) events were found to be correlated with their true
members (e.g., with high energetic implantation signals)
of the different decay chains originating from \(^{220}\text{Ra} \) and
\(^{220}\text{Ac} \), respectively. Therefore, the correlation ER–\(\alpha_1 \)–
VII. APPENDIX B: ORIGIN OF THE DOUBLE-SIGNAL ER TRACE IN CHAIN #1

The detected small-energy signal in the trace of the event can originate from different sources. It could be associated with a backward-scattered α particle, which leaves the stop detector with a small energy release. A typical signal registered as a backward-scattered α within a short time after implantation (ER) is shown in Fig. 11b). In this case, the α particle of ^{210}Th ($E_\alpha = 9.34\text{ MeV,}$ \cite{27}) was emitted 2.1 μs after the ER implantation into the stop detector with 15 MeV energy, in backward direction, imparting an energy of about 1.1 MeV. Then, the backward scattered α particle was detected in the box detector from which the residual energy of about 8.2 MeV was extracted.

If the 1.6 MeV-signal detected shortly after the ER(^{294}Ts) is an escaping α particle, the box detectors register the additional signal (~rest energy) with relatively high geometric efficiency. However, no such box detector-signal was detected. From a geometric consideration, this would point to an emission into the open hemisphere of the FPDS. However, the non-observation of such a signal in the ER of the second chain points to this small-energy signal as not being due to the detection of such an escape α particle.

Another possibility for the origin of this signal is the detection of electron(s) originating from β− decay and/or internal conversion. In such cases, the non-detection of a small signal in the second chain is probable because of a low ionization efficiency. In Fig. 11c) and d), two cases where electrons were measured within a short time relative to the main signals are shown. The first case is the well-known decay of the relatively long-lived ^{213}Bi, which is often implanted during experiments on the synthesis of SHN as a non-fusion product \cite{20}. Because of the short half-life of ^{213}Po ($T_{1/2} = 2.4\mu\text{s,}$ \cite{27}), its α particle with an energy of $E_\alpha = 8.376\text{ MeV}$ \cite{27}) is often registered with an additional energy associated with the detection of the electron from the preceding β− decay of ^{213}Bi in standard conventional analog electronics \cite{20}. As shown in Fig. 11c), CANDI is well suited for resolving such cases; the energy of the electron was estimated to be less than 1 MeV in the present case where the α decay of ^{213}Po is the main triggering signal for data being collected. The preceding electron was detected prior to the main signal. Detection of electrons from the internal conversion originating from the de-excitation of K-forbidden transitions of excited $^{254}\text{Rf}^*$ \cite{45} is also possible with CANDI, see Fig. 11d). The measured energy of the shown example was estimated to be less than 0.5 MeV. In conclusion, by considering the detection efficiency of electrons with various energies in 300 μm Si, an energy of 1.6 MeV, as registered in the trace of the ER in chain #2 appears too high for originating from electrons. Thus, such scenarios are unlikely.

Finally, the most probable reason for observing such a signal is a random coincidence. As seen from Fig. 5 an event from the intense peak at around 1.5 MeV appears to be the most likely source for this small signal. The probability to observe such a signal associated with detection of light particles (e.g. proton) in the ER-trace was estimated as <5% based on the measured α decay of ^{211}Po during the beam-on periods. While this is a relatively low value for randomly observing an ER(^{294}Ts) with such a signal, this seems to be the most likely reason.

\[1\] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000).
[30] A. Yakushev et al., to be published.