Synthesizing Optimally Resilient Controllers

Neider, Daniel, Weinert, Alexander and Zimmermann, Martin ORCID: 0000-0002-8038-2453
(2017) Synthesizing Optimally Resilient Controllers. In: CSL 2018.

[thumbnail of LIPIcs-CSL-2018-34.pdf] Text
LIPIcs-CSL-2018-34.pdf - Published version

Download (534kB) | Preview


Recently, Dallal, Neider, and Tabuada studied a generalization of the classical game-theoretic model used in program synthesis, which additionally accounts for unmodeled intermittent disturbances. In this extended framework, one is interested in computing optimally resilient strategies, i.e., strategies that are resilient against as many disturbances as possible. Dallal, Neider, and Tabuada showed how to compute such strategies for safety specifications. In this work, we compute optimally resilient strategies for a much wider range of winning conditions and show that they do not require more memory than winning strategies in the classical model. Our algorithms only have a polynomial overhead in comparison to the ones computing winning strategies. In particular, for parity conditions, optimally resilient strategies are positional and can be computed in quasipolynomial time.

Item Type: Conference or Workshop Item (Unspecified)
Uncontrolled Keywords: cs.GT, cs.GT
Depositing User: Symplectic Admin
Date Deposited: 12 Jul 2019 14:50
Last Modified: 06 Jun 2024 09:43
DOI: 10.4230/LIPIcs.CSL.2018.34
Related URLs: