Development and Recovery of Stress-Induced Elastic Anisotropy During Cyclic Loading Experiment on Westerly Granite



Passelegue, Francois X, Pimienta, Lucas, Faulkner, Daniel ORCID: 0000-0002-6750-3775, Schubnel, Alexandre, Fortin, Jerome and Gueguen, Yves
(2018) Development and Recovery of Stress-Induced Elastic Anisotropy During Cyclic Loading Experiment on Westerly Granite. GEOPHYSICAL RESEARCH LETTERS, 45 (16). pp. 8156-8166.

[img] Text
Passel-gue_et_al-2018-Geophysical_Research_Letters.pdf - Published version

Download (1MB) | Preview

Abstract

<jats:title>Abstract</jats:title><jats:p>In the upper crust, where brittle deformation mechanisms dominate, the development of crack networks subject to anisotropic stress fields generates stress‐induced elastic anisotropy. Here a rock specimen of Westerly granite was submitted to differential stress cycles (i.e., loading and unloading) of increasing amplitudes, up to failure and under upper crustal conditions. Combined records of strains, acoustic emissions, and <jats:italic>P</jats:italic> and <jats:italic>S</jats:italic> elastic wave anisotropies demonstrate that increasing differential stress promotes crack opening, sliding, and propagation subparallel to the main compressive stress orientation. However, the significant elastic anisotropies observed during loading (≥20%) almost vanish upon stress removal, demonstrating that in the absence of stress, crack‐related elastic anisotropy remains limited (≤10%). As a consequence, (i) crack‐related elastic anisotropies measured in the crust will likely be a strong function of the level of differential stress, and consequently (ii) continuous monitoring of elastic wave velocity anisotropy along faults could shed light on the mechanism of stress accumulation during interseismic loading.</jats:p>

Item Type: Article
Uncontrolled Keywords: stress-induced anisotropy, crack densities, acoustic emissions, damage recovery, anisotropy recovery, Kaiser effect
Depositing User: Symplectic Admin
Date Deposited: 16 Dec 2019 14:25
Last Modified: 04 Sep 2023 15:09
DOI: 10.1029/2018GL078434
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3066642