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GENERAL ABSTRACT 

 
Dolutegravir (DTG), the second-generation Integrase Inhibitor (InSTI) and Cobicistat 
(COBI), the new pharmacological booster, were approved for the treatment of HIV in 
2013-14. DTG changed the landscape of HIV therapy, raising standards for efficacy, 
safety and genetic barrier. It is now recommended as first line therapy in most major 
including universal guidelines and is the anchor drug for a number of new simplified 
ARV strategies. Meanwhile, COBI offers the opportunity to reduce pill burden in 
patients who require a boosted protease inhibitor, thanks to its co-formulation with 
atazanavir (ATV) and darunavir (DRV). It also has a lesser drug interaction profile 
than ritonavir (RTV), secondary to a lack of enzyme induction. Licensing data is often 
limited to highly selected study participants under strict trial conditions. The objectives 
of this thesis are therefore to address gaps in knowledge on the pharmacological 
behaviour of DTG and COBI in important real-life patient groups and clinical 
scenarios, including older people living with HIV (PLWH), women taking 
contraception, poorly adherent patients, DTG/DRV/COBI dual therapy candidates and 
genetically distinct populations. Five intensive pharmacokinetic (PK) studies were 
carried out, recruiting healthy volunteers and PLWH from four UK-based centers. 
Pharmacogenetic sampling from each DTG study was used in a final study to explore 
the impact of genetic variability in drug disposition genes on the PK of DTG. 
 
The intensive PK of DTG was described for the first time in PLWH aged 60 years and 
over, showing a significantly higher DTG Cmax (25%) versus younger subjects (median 
age 36yrs). Discontinuation rate secondary to neuro-psychiatric adverse events was 
4.6% and seemed to relate to elevated drug concentrations, but the Cmax increase was 
not associated with measured sleep or cognitive changes over six months in those who 
did continue the drug. The PK forgiveness of DTG and COBI-boosted elvitegravir 
(EVG), ATV and DRV was then characterised in healthy volunteers, showing a 72-
hour therapeutic PK tail for DTG, 36hrs for EVG, 30hrs for ATV and 24hrs for DRV 
when boosted with COBI. The PK impacts of DTG co-administration with DRV/COBI 
and of ethinylestrodiol/levonogestrel (EE/LNG) with ATV/COBI were also 
investigated. Findings showed minimal changes in DTG/DRV/COBI concentrations 
when administered together and a 25% decrease in EE C24 with no significant changes 
in LNG when EE/LNG was co-administered with ATV/COBI. Finally, a 
pharmacogenetic association between DTG PK and variants in the ABCG2, UGT1A1 
and NRI1/2 genes was demonstrated, particularly when combined. 
 
The data presented in this thesis provides clinicians with key information on the 
pharmacology and safety of DTG and COBI in important patient groups and clinical 
scenarios. The significance and clinical validity of the data is discussed and an 
argument is made to support future research in DTG dose optimisation. 

 The pharmacokinetics, pharmacodynamics and pharmacogenetics of dolutegravir and cobicistat in 
the treatment of HIV – Emilie Elliot – Oct 2019 
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1.1. HIV AND ITS PHARMACOLOGY  

By the end of 2016, approximately 36.7 million people were living with HIV/AIDS 

worldwide. As of July 2017, 20.9 million were accessing antiretroviral therapy (ART) 

globally.1 This is a formidable accomplishment for a disease that was uniformly fatal 

three decades ago.2 The critical contributor to this achievement has been the 

remarkably fast moving field of HIV pharmacotherapy.2, 3 Early and sustained 

antiretroviral (ARV) use now suppresses the virus and enables people living with HIV 

(PLWH) to enjoy long and healthy lives with negligible risks of sexual or perinatal 

HIV transmission.4-6 In the wake of these advancements, UNAIDS set the now well-

recognized 2020 fast track targets: 90-90-90, aiming for 90% of PLWH knowing their 

status, 90% accessing ART and 90% achieving viral suppression worlwide.7 This 

equates to almost 30 million people on ARV treatment and highlights the importance 

of meticulously characterising the pharmacokinetic (PK), pharmacodynamic (PD) and 

pharmacogenetic properties of the drugs involved in this ARV scale up.  

 

This chapter provides a brief overview of the HIV viral structure, replication cycle and 

drug targets followed by a detailed review of the pharmacology and pharmacogenetics 

of the two significant agents approved in 2013-14 for the treatment of HIV, 

dolutegravir (DTG) and cobicistat (COBI). Gaps in the literature addressed by the 

research presented in this thesis are highlighted and the chapter ends with the research 

objectives and structure of the thesis. 

1.1.1. An unprecedented epidemic 

Whilst 1981 saw the first cases of the HIV/AIDS pandemic reported in the US,8-11 the 

first verified report of AIDS dates back to 195912 and was retrospectively diagnosed 
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in blood samples collected from a man living in Kinshasa, now the Democratic 

Republic of Congo, by researchers studying the links between glucose-6-phosphatase 

deficiency, malaria and sickle cell disease.12-15 It is widely accepted that HIV-1 and 

HIV-2 are the result of zoonotic transfers of viruses from infected primates in central 

and equatorial Africa,15-17 and bush meat hunting, urbanisation and mass vaccination 

programs have all being implicated in the subsequent pathogenic evolution and 

propagation of the virus.15, 17-20 Phylogenetic and evolutionary studies of HIV-1 place 

the first cross-species transmission of chimpanzee Simian Immunodeficiency Virus 

(SIVcpz) into humans in the early 20th century14-17 and evidence supports the hypothesis 

that SIV must have crossed over into humans multiple times with limited virulence 

and capacity for spread across humans prior to the start of the current pandemic.14-17 

In spite of this, it wasn’t until 1987, that the human disease saw its first therapeutic 

agent approved.21-23 Today, over 30 individual agents are approved by the Food and 

Drugs Administration (FDA), including more than 10 co-formulated combinations. 

1.1.2. Viral structure, replication cycle and drug targets 

HIV viruses are lentiviruses, a family of retroviruses for which humans and non-

human primates are the only hosts.2 HIV-1 was first isolated and described in 1983 

and HIV-2 in 1986.19, 24, 25 The hallmarks of retrovirus infection are reverse 

transcription and integration,26 both of which are distinct and established therapeutic 

targets.  HIV-1 is not just one virus, it comprises four distinct lineages, termed groups 

M, N, O, and P, each of which results from an independent cross-species transmission 

event. Group M (group major) is responsible for more than 90% of all HIV/AIDS cases 

and has ~11 suspected or confirmed clades (A-K), resulting from differing 
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evolutionary pressures and adaptations.17, 27, 28 Clades A, B and C form the bulk of the 

epidemic.19 

Figure 1.1: HIV-1 genomic and structural organisation (adapted and with permission from Thomas 
Splettstoesser [www.scistyle.com] and Hoffman et al. HIV book, 2011).  

Figure 1.1 depicts the HIV-1 viral structure and genome organisation. Each individual 

virion consists of two copies of 9300 base pair-ribonucleic acid (RNA) genome, 

contained in a conical nucleocapsid core, itself surrounded by a lipid bilayer envelope 

(derived from host plasma membrane).2, 26, 29, 30 Overall, the HIV genome contains nine 

genes that encode fifteen viral proteins, that are either structural (found in all 

retroviruses) or nonstructural ("accessory", unique to HIV).31 The HIV life cycle and 

the individual steps targeted by the ARV agents currently approved or in development 

are illustrated in figure 1.2. The HIV-1 life cycle presents many potential opportunities 

for therapeutic intervention and some would argue that only a few have been exploited 

to date,32 albeit successfully. However, still, ARVs prevent infection of susceptible 

cells but do not eradicate the virus in cells that already harbour the integrated proviral 

DNA.2 The establishment of proviral DNA inside the host genome means that the viral 
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genome is replicated whenever cellular division takes place and will persist in the host 

even in the absence of active viral replication, which is known as the HIV reservoir.33  

Figure 1.2: HIV life cycle in a human cell, timing of early events post-cell infection and current drug 
targets (adapted from Prof Stanley Bruhl, University of Amsterdam)  

Triple therapy has been the cornerstone of HIV treatment since 1996. The currently 

used antiretroviral drugs are:34  

i. 6 nucleoside reverse transcriptase inhibitors (NRTIs): abacavir (ABC), zidovudine 

(ZDV), the cytosine analogues lamivudine (3TC) and emtricitabine (FTC), and the 

tenofovir prodrugs tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide 

(TAF)  

Early 
events 

Late 
events 
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ii. 4 nonnucleoside reverse transcriptase inhibitors (NNRTIs): efavirenz (EFV), 

rilpivirine (RPV), etravirine (ETR) and doravirine (DOR) 

iii. 3 protease inhibitors (PIs) pharmacologically boosted by ritonavir (RTV) or 

cobicistat (COBI): lopinavir (LPV), atazanavir (ATV) and darunavir (DRV) 

iv. 4 integrase strand transfer inhibitors (InSTIs): raltegravir (RAL), elvitegravir 

(EVG), dolutegravir (DTG) and bictegravir (BIC) 

 

A full timeline of FDA approvals of ARV drugs for human use is described in table 

1.1. Trade names can be found in appendix 1. 

1.2. A NEW ERA: THE INTEGRASE INHIBITORS 

1.2.1. The HIV integrase structure 

The HIV-1 integrase enzyme (IN) belongs to the retrotransposon family of proteins 

and is present in the initial infectious virion (40-100 copies). In vitro, it is the only 

viral or host enzyme necessary and sufficient to promote insertion of a donor DNA 

into a heterologous target DNA, at any phosphodiester bond.35-37 The prototypical 

HIV-1 IN is a 288-amino-acid protein and is divided into three major domains (figure 

1.3): an N-terminal domain, a catalytic core domain and a C-terminal domain:35-39  

1. The Amino (N)-terminal domain, sometimes referred to as a "zinc finger", is 

composed of the conserved HHCC, His and Cys residues; a motif that serves to 

bind zinc.40, 41 The function of the N-terminal domain is not completely clear, but 

it is thought to involve IN multimerisation (into dimers and tetramers) and viral 

DNA binding. 
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Table 1.1: FDA Antiretroviral drugs approval timeline. Abbreviations: GSK: GlaxoSmithKline, Gilead: Gilead Sciences, BMS: Bristol Myers Squibb, Merck: Merck Sharp & 
Dohme, HLA: Hoffman La Roche, Trim: Trimeris, Thera: Theratechnologies Inc., Abbott: Abbott Laboratories, Agouron: Agouron Pharmaceuticals.

1980-1984 1981  
First AIDS reports in United States 

1985-1989 1987 
Zidovudine (AZT; GSK) 

   

1990-1994 1991 
Didanosine (ddI; BMS) 
Saquinavir (SQV; HLR) 

1992 
Zalcitabine (ddC; HLR) 
 

1994 
Stavudine (d4T; BMS) 

 

1995-1999 1995 
Lamivudine (3TC; GSK) 
 

1996  
Indinavir  (IDV; Merk) 
Nevirapine (NVP; BI) 
Ritonavir (RTV; Abbott) 

1997 
Combivir (AZT/3TC; GSK) 
Delavirdine (DLV; Pfizer) 
Nelfinavir (NFV; Agouron) 

1998/1999 
Abacavir (ABC; GSK) 
Efavirenz (EFV; BMS) 
Amprenavir (APV; GSK) 

2000-2004 2000  
Lopinavir/r (LPV/r; GSK) 
Trizivir (AZT/ABC/3TC;GSK) 

2001 
Tenofovir DF (Gilead) 

2003 
Atazanavir (ATV; BMS) 
Emtracitabine (FTC; Gilead) 
Enfuvirtide (T-2z; HLR/Trim) 
Fosamprenavir 

2004 
Kivexa (ABC/3TC; GSK) 
Truvada (TDF/FTC; Gilead) 

2005-2009 2005 
Tipranavir (TPV; BI) 

2006 
Atripla (TDF/FTC/EFV; Gilead) 
Darunavir (DRV; Tibotec) 

2007 
Maraviroc (MVC; Pfizer) 
Raltegravir (RAL; BMS) 

2008 
Etravirine (ETV; Tibotec) 

2010-2014 2011 
Eviplera (TDF/FTC/RPV; Gilead) 
Rilpivirine (RPV; Tibotec) 

2012 
Stribild (TDF/FTC/EVG) 

2013 
Dolutegravir (DTG; GSK) 

2014 
Cobicistat (COBI; Gilead) 
Elvitegravir (EVG; Gilead) 
Triumeq (ABC/3TC/DTG; GSK) 

2015-2018 
 

2015 
Evotaz (ATV/COBI; BMS) 
Genoya (TAF/FTC/EVG/COBI; Gilead) 
Rezolsta (DRV/COBI; Janssen) 

2016 
Descovy (TAF/FTC; Gilead) 
Odefsey (TAF/FTC/RPV; Gilead) 

2017 
Juluca (RPV/DTG; GSK) 

2018 
Biktarvy (TAF/FTC/BIC; Gilead) 
Cimduo (TDF/3TC; Mylan) 
Symfi (TDF/3TC/EFV; Mylan) 
Ibalizumab (IBA; Thera) 
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2. The catalytic core domain contains the D,D-35-E triad motif, which constitutes the 

catalytic active site essential to coordinate a pair of Mg2+ ions (or divalent metal 

cations) and carry out the IN enzymatic function. This motif is typical of 

polynucleotidyl transferases.36 The core domain also contains key residues involved 

in target and viral DNA binding. Recognition of the target site is thought to be 

controlled by the core domain.37, 42 

 

3. Finally, the C-terminal domain is mostly involved in IN multimerisation and DNA 

binding.43, 44 

 

Figure 1.3: Domain organisation of the human immunodeficiency virus type 1 (HIV-1) integrase 
enzyme, common to all retroviral integrases (adapted from Ciuffi et al. 2016).37 

The IN enzyme orchestrates several sequence-specific events required for successful 

stable integration, which occurs in 3 major phases:  

1. Assembly with the viral DNA, endonucleolytic processing of the 3’ ends of the viral 

DNA and nuclear translocation  

2.  Strand transfer or joining of the viral and cellular DNA  

3. DNA repair by the host DNA repair machinery 

Figures 1.4 and 1.5 illustrate nuclear translocation and HIV DNA integration 

sequences. 

Zn2+ binding 
Multimerisation 

Mn2+/Mg2+ chelation 
Catalysis and DNA binding  

DNA binding 
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Figure 1. 4: Model of nuclear import and integration coupling. Interaction with Transportin-3 and 
RanBP2 shuttles the Pre-Integration Complex (PIC) through the nuclear pore and towards gene dense 
regions favored for HIV integration. The Ledgf/p75, co-factor then targets integration to active 
transcription sites. Abbreviations: F G, phenylalanine-glycine repeat sequences of nuclear pore proteins. 
Adapted from Ocwieja et al.2011  

Figure 1.5: HIV DNA integration sequence (from Ciuffi et al. 2016) 
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1.2.2. The Integrase Inhibitors (InSTIs) 

The integrase gene and enzyme of HIV were recognized as a potential therapeutic 

target susceptible to inhibition by oligonucleotides and synthetic peptides as early as 

1995.45, 46 However, the seminal study describing the first promising small compound 

targeting the integrase was published in 2000.47 Structures of intasome/drug 

complexes (from prototype foamy virus and more recently the HIV virus itself) have 

revealed that InSTIs bind to the catalytic core domain of the integrase and compete 

with host DNA binding (figure 1.6).47-49  

 

InSTIs are the most recently introduced ARVs. There are three established InSTIs 

licensed for HIV treatment naïve and experienced patients: raltegravir (RAL), 

elvitegravir (EVG) and dolutegravir (DTG).50 A fourth, bictegravir (BIC), was very 

recently (spring 2018) approved by the FDA for use in treatment-naive patients or 

patients with HIV-1 RNA <50 copies/mL for ≥3 months, no history of treatment 

failure, and no resistance to regimen components.51 InSTIs have changed the clinical 

landscape of HIV therapy significantly. Data from large clinical trials have showed 

that, as a drug family, they are equivalent or superior to existing treatments in efficacy, 

display favorable pharmacokinetics and show greater safety and tolerability than PIs 

and NNRTIs.52 They also benefit from paucity of drug-drug interactions (DDI), no 

cross-resistance to other drug classes, rapid HIV RNA reduction, action against HIV-

2 and availability in single tablet regimens (STR). In a 2013 comprehensive review, 

Messiaen et al. constructed forest plots of the modified intention to treat (mITT) 

analyses in 16 trials illustrating the integrase inhibitors’ superiority over other agents 

very clearly (figure 1.7 A-C) (data from the DTG VIKING 3&4 studies and the BIC 
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licensing studies are absent). The authors concluded that in first-line therapy, InSTIs 

are superior to other regimens and, additionally, that InSTI use after virological failure 

is supported but with caution when replacing a high genetic barrier drug in treatment-

experienced patients switching from successful treatment.52 

Figure 1.6: Integrase strand transfer inhibitors and the crystal structure of prototype human foamy virus 
integrase, complexed to dsDNA and raltegravir (from Hare et al. 2010, with permission). Abbreviations: 
N-term: amino-terminal; C-term: carboxy-terminal; GSK1349572: dolutegravir.
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Figure 1.7: Forest plot showing the meta-analysis of mITT data extracted from 
studies in patients who are A)therapy naive patient B) ART experienced in case of 
virological failure and C) ART experienced switching with suppressed viral loads. 
The black line indicates OR = 1, signifying no benefit of the INI arm compared to 
the non-INI arm. The dotted line shows the odds ratio of all included studies. The 
individual odds ratios as well as the proportionate weight in the overall analysis 
are shown in the right column. mITT = modified intention-to-treat; ART = 
antiretroviral treatment; INI = integrase inhibitor; (N)NRTI = (non-)nucleoside 
reverse transcriptase inhibitor; PI = protease inhibitor; OR = odds ratio 
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InSTIs now monopolise (DHHS/IAS-USA) or dominate (EACS/BHIVA)53-56 first-

line treatment in guidelines (table 1.2). They have even been credited for a marked 

increase seen in viral suppression and maintenance of undetectability overall.57 Table 

1.2 shows the recommendations for first line therapy in major 2018 HIV treatment 

guidelines. 

Table 1.2: North American and European 2018 guidelines for first line therapy in treatment-naïve HIV 
infected individuals. Abbreviations: DHHS: Department of Health and Human Service; IAS-USA: 
International Aids Society USA; EACS: European AIDS Clinical Society. In bold: single tablet 
regimen. 

Whilst the InSTI compounds share the same mode of action, they exhibit different PK, 

PD and DDI profiles. PK characteristics for each agent are tabulated in table 1.3.  

 

The second generation InSTI, DTG, is discussed below including licensing data, 

emerging real life experience, novel strategies and use in special populations.58 COBI 

is then discussed in the context of EVG licensing, the other second generation InSTI 

and in the context of its subsequent co-formulation with ATV and DRV.  

DHHS IAS-USA EACS 
BIC/TAF/FTC DTG/ABC/3TC DTG/ABC/3TC 

DTG/ABC/3TC DTG + TAF/FTC DTG + (TAF or TDF)/FTC 

DTG + (TAF or 
TDF)/FTC EVG/COBI/TAF/FTC EVG/COBI/(TAF or 

TDF)/FTC 
EVG/COBI/(TAF or 
TDF)/FTC RAL + TAF/FTC RAL + (TAF or TDF)/FTC 

RAL + (TAF or 
TDF)/FTC  RPV + (TAF or TDF)/FTC 

  DRV/ (RTV or COBI) + 
(TAF or TDF)/FTC 
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Table 1.3: Pharmacokinetic properties of integrase inhibitors (reported mean values in adults with 
normal renal and hepatic function). Abbreviations: AUC: Area Under the Curve; t1/2 elim: half-life of 
elimination; ND: not determined; UGT: UDP glucuronosyltransferase; IQ: inhibitory Quotient 
(Ctrough/IC90 or IC95), EC50/90 concentration producing a 50/90% effect (reduction of HIV RNA) in vivo, 
IC50/90/95 protein binding–adjusted concentration inhibiting viral replication by 50/90/95% in vitro. 

1.2.3. Dolutegravir 

1.2.3.1. DTG efficacy and PK   

Approved individually in 2013 and in combination with two NRTIs as part of triple 

therapy in 2014, DTG was the first InSTI to be dosed once daily (OD) without 

boosting. It exhibits high efficacy, a predictable and favourable PK profile 

characterised by relatively low variability in licencing trials (C24h, 25–26% CV) and 

excellent safety and tolerability profiles.57-62 Overall, it stands relatively ahead of other 

ARVs and has now replaced EFV as first line agent in the World Health Organisation 

(WHO)  guidelines, meaning it is likely to play a major role in the worldwide ARV 

scale up in coming years.62-66 Additionally, a generic STR consisting of 

TDF/3TC/DTG is now available in some low to middle income countries (LMIC) at a 

median price of US$75 per person-year, making a DTG-containing regimen more 

PARAMETER RAL EVG DTG BIC 
Oral bioavailability % ND ND ND >70 
Effect of food on AUC ñ13–212% ñ36-91 % ñ33-36% ñ24% 
Plasma t1/2, elim, h 9 9-14 14 18 
Plasma protein binding, % 76–83 98–99 ≥98.9% 99 
Metabolism UGT1A1 CYP3A > 

UGT1A1/A3 
UGT1A1 >> 

CYP3A 
CYP3A4 =  
UGT1A1 

Renal excretion of parent drug, % 9 6.7 <1% 1 
Cmax (ng/mL) 2170 1700 3670 9340 
AUC (h*ng/mL) 6910 23000 53600 140 000 
Cmin (ng/mL) 68.6 450 1110 3510 
In vitro PA-IC90/95 (ng/mL) 14.7 (IC95) 44.9 (IC95) 64 (IC90) ND 
In vivo EC90 (ng/mL) ND 126 324 ND 
IQ 8 10 17 16.2 
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affordable than EFV-containing regimens and enabling progress towards universal 

access to HIV treatment.66-68  

In the licencing phase, DTG was examined in five pivotal Phase III clinical trials, 

where it met criteria for superiority to EFV and to DRV/RTV in treatment naïve 

patients and to RAL in treatment experienced patients with at least two-class resistance 

but InSTI naïve. DTG also retained activity against some InSTI resistant viruses when 

dosed 50mg twice daily. Table 1.4 summarises all five studies.69-73 DTG dosing 

depends on patient-specific factors:74 

• 50 mg once daily if patients are treatment naïve or treatment-experienced and 

InSTI-naïve 

• 50 mg twice daily if patients also are taking a potent UGT1A/CYP3A inducer 

• 50 mg twice daily if patients are InSTI experienced with associated InSTI 

resistance substitutions, or are suspected to be InSTI-resistant. 

 

It is available alone as an individual tablet (Tiviquay®)50 and co-formulated with 

abacavir/lamivudine (Triumeq®).75 It is rapidly absorbed, achieving maximal blood 

concentration 2-4 hours after ingestion and has a terminal half-life of 12 hours, 

allowing OD administration without pharmacological enhancement.59, 60, 76 There is 

minimal urinary excretion as it is metabolised predominantly through hepatic 

glucuronidation by UDP-glucuronosyltransferase 1A1 (UGT1A1) with a small 

contribution from cytochrome P450 3A4 (CYP3A4).76, 77 DTG is detected in 

compartments such as CSF and cervicovaginal fluid at concentrations above that 

expected to confer continued antiviral efficacy and is therefore presumed to distribute 

widely.78-80 Absorption of DTG is not pH dependent, food does increase the area-

under-the-curve moderately (AUC ñ33-66%) but it can be taken with or without.81  
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Trial name Design 

D
uration 

N Regimen Subject characteristics Summary of results Comments 

SINGLE Phase III, 
randomised 1:1, 
active control, 
double-blind, 
non-inferiority 
study 

144 w
eeks 

833 

OD TDF/FTC/EFV  
 
vs 
 
OD DTG 50mg 
+ABC/3TC  

ARV naïve 
Female: DTG 16%, EFV 11% 
VL >100,000 cpm: DTG 27%, EFV 24% 
CD4 <200 cells/mL: DTG 14%, EFV 15% 
EFV: n=412 (in ITT analysis) 
DTG: n=403 (in ITT analysis) 

Efficacy (FDA snapshot):  
• Wk 48 HIV-1 RNA< 50 cpm: DTG 88% vs EFV 81%  
• Wk 96 HIV-1 RNA< 50 cpm: DTG 80% vs EFV 72%  
• Wk 144 HIV-1 RNA< 50 cpm: DTG 71% vs EFV 67%  

Criteria met for DTG superiority  
Superior efficacy primarily driven by fewer Discontinuations 
due to AE AEs: DTG 3%; EFV 11% 
CD4 increase at W144: DTG: 267, EFV 208 cells/ mm3 
Safety 
Insomnia only AE more reported DTG arm: 15 vs 10% 
GI symptoms and nasopharyngitis: 15-20% in both arms 
DTG: insomnia 10%, headache 6%, dizziness 7% 

No treatment-emergent 
InSTI or NRTI resistance in 
DTG arm through to W144. 
In the EFV arm, 6 ppts 
developed NNRTI DRMs 
(K101E, K103K/N, and 
G190G/A) and 1 NRTI 
DRM (K65K/R) at time of 
failure 
 

FLAMINGO Phase III, 
randomized 1:1 
open-label, 
active 
controlled 
non-inferiority 
study 

96 W
eeks 

468 

OD DRV/r 800/100mg 
vs 
 
OD DTG 50mg 
 
Each + TDF/FTC or 
ABC/3TC 

ARV naïve 
Female: DRV 17%, DTG 13% 
VL >100,000 cpm: DRV 25%, DTG 25% 
CD4 <200 cells/mL: DRV 10%, DTG 10% 
DRV: n=242 (in mITT analysis) 
DTG: n=242 (in mITT analysis) 

Efficacy (FDA snapshot):  
• Wk 48 HIV-1 RNA< 50 cpm: DTG 90% vs DRV 83%  
• Wk 96 HIV-1 RNA< 50 cpm: DTG 80% vs DRV 68% 

Criteria met for DTG superiority  
Virological non-response: DTG 5%, RAL10% 
Discontinuation due to AE: DTG 2%, DRV 4% 
CD4 increase at W48: DTG: 210, DRV 210 cells/ mm3 
Safety 
W96: The most common drug-related adverse events were 
diarrhoea DTG 10% vs DRV 24%, nausea DTG 13% vs DRV 
14%, and 
DTG: insomnia 9%, headache DTG 7% vs DRV 15%, 
depression 5% 
dizziness 6% 

Greatest difference in Wk96 
viral suppression seen in pts 
with high viral load at 
baseline DTG 82% vs DRV 
52% 
 
 

SPRING 2 Phase III, 
randomised, 1:1 
double-blind, 
active control, 
non-inferiority 
study 

96 w
eeks 

822 

BID RAL 400mg 
 
vs  
 
OD DTG 50mg 
 
Each + TDF/FTC or 
ABC/3TC 

ARV naïve 
Female: RAL 15%, DTG 14% 
VL >100,000 cpm: RAL 28%, DTG 28% 
CD4 <200 cells/mL: RAL 13%, DTG 12% 
RAL: n=411 (in ITT analysis) 
DTG: n=411 (in ITT analysis) 

Efficacy (FDA snapshot):  
• Wk 48 HIV-1 RNA <50 cpm: DTG 88% vs RAL 85%  
• Wk 96 HIV-1 RNA <50 cpm: DTG 81% vs RAL 76% 

Criteria met for DTG non-inferiority  
Virological non-response: DTG 5%, RAL10% 
Discontinuation due to AE: 2% in each group 
CD4 increase at W96: DTG: 276, RAL 264 cells/ mm3 
Safety 
Similar AEs in both groups, (up to 13%) including nausea, 
headache, nasopharyngitis, and diarrhoea. 
DTG: headache 12% 

Backbone similar in both 
arms: 60% TDF/FTC and 
40% ABC/3TC. 
 
No DRM seen in the DTG 
arm  
In the RAL arm:  
InSTI: T97A,  
NRT:A62/K65R/K70/M184 
M184I/A62V/M184V 
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SAILING Phase II, 
Randomized 
1:1double-
blind, non-
inferiority 
study 

48 W
eeks 

724 

BID RAL 400mg 
 
vs  
 
OD DTG 50mg 
 
Each + 2 additional 
ARVs with at least one 
fully active. 

ARV experienced but InSTI naïve 
At least 2 class resistance 
 
Female: RAL 30%, DTG 34% 
VL >50,000 cpm: RAL 30%, DTG 30% 
PI/r in regimen: RAL 84%, DTG 85% 
RAL: n=361 (in ITT analysis) 
DTG: n=354 (in ITT analysis) 

Efficacy (FDA snapshot):  
• Wk 48 HIV-1 RNA <50 cpm: DTG 71% vs RAL 64%  

Criteria met for DTG superiority  
Discontinuations due to AE: DTG 3%, RAL 4% 
CD4 increase at W96: DTG: 162, RAL 153 cells/ mm3 
Safety: 
Similar AE rates in both arms, (up to 9%); diarrhoea, URTI & 
headache commonest in both arms 
DTG: headache 9% 

Fewer virological failure 
with treatment-emergent 
InSTI resistance in DTG 
arm (4 vs 17, p=0.003). 
DRMs in DTG arm FC <2 
 
Those with DTG Ctrough in 
the lowest quartile had the 
lowest virological response 
rates 

VIKING 3 Phase III, 
single-arm 
open-label 
study 

24 W
eeks 

183 

BID DTG 50mg added 
to failing regimen 
 
Day 8, background 
regimen optimised with 
≥1 fully active drug and 
DTG continued 
 

ARV experienced with at least triple-class 
resistance (including INI resistance). 
VL > 500copies/mL 
 
Female: 33% 
VL >100,000 cpm: 22% 
Median VL: 4.38 (IQR), log10 cpm 
Median CD4 count: 140 cells/mL 
Median duration of prior ART: 14 years 
Median No of prior ARTs: 14 

Efficacy (FDA snapshot):  
• Week 8: mean change in VL −1.43 log10 cpm 
• Wk 24 HIV-1 RNA <50 cpm: 69% 

Response was most reduced in subjects with Q148 + ≥2 
resistance-associated mutation 
Discontinuations due to AE: 3% 
Safety: 
Drug related AEs rate: 15%, most common diarrhoea, nausea, 
and headache (similar to DTG 500mg OD) 

Strong association between 
baseline DTG susceptibility 
and response n multivariate 
analyses 
 
Formed the basis of the 
FDA approval of DTG for 
INI-resistant patients, at 
BID 50mg 

Table 1.4: Summary of the 5 pivotal licencing clinical trials for dolutegravir. Abbrieviations: DTG: Dolutegravir; TDF: Tenofovir Disoproxil Fumarate; FTC: Emtracitabine; 
EFV: Efavirenz; ABC: Abacavir; 3TC: Lamivudine; RAL: Rlategravir; DRV: Darunavir; OD: Once Daily; BID: Twice Daily; InSTI: Integrase Strand Transfer Inhibitor; PI/r: 
ritonavir boosted Protease Inhibitor; DRMs: Drug Resistance Mutations; ARV: Antiretrovirals; VL: Viral Load; cpm: copies per mL; AEs: Adverse Events; FDA: Food and 
Drug Association; FC: Fold Changes (in drug susceptibility); mITT: modified Intention To Treat analysis; GI symptoms: Gastrointestinal symptoms; IQR: Inter Quartile Range; 
Wk: Week; pts: patients; NRTI: Nucleoside Reverse Transcriptase Inhibitor
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However, like other InSTIs, DTG is at risk of chelation and must not be ingested 

concomitantly with cations-containing agents. If co-prescription is inevitable, it should 

be administered 2 hours before or 6 hours after.82 DTG holds a high genetic barrier.76 

It has an extended linker that allows its difluorophenyl group to enter further than other 

InSTIs into the pocket within the integrase active site, meaning it has a long 

dissociative half-life of 71h (vs 8.8 for RAL and 2.7 for EVG, p <0.0001) and an off-

rate 5 - 40 times slower than RAL and EVG.83 Studies have also shown that it has the 

ability to adjust its structure and conformation in response to structural changes within 

the active sites of RAL- and EVG-resistant integrases, further raising its barrier to 

resistance.84, 85 Finally, it has a high inhibitory quotient (IQ), determined by the 

remarkable distance of DTG minimum concentration within the dosing interval (Cmin) 

from its half maximal inhibitory concentration (IC50) at 50mg OD.57 Importantly, no 

DTG resistance mutation (DRM) had been observed when the drug is used in first-line 

therapy, up until very recently.86, 87 Major resistance pathways to InSTIs are shown in 

table 1.5. DTG distinguishes itself from both RAL and EVG by its very limited cross-

resistance to these compounds.88, 89 It is therefore a strong candidate for patients who 

struggle with adherence and chapter 3 explores DTG PK forgiveness in order to 

inform physicians in prescribing it to poorly adherent patients. Three cases of first-line 

failure with mutations have now been reported worldwide.90 Some potential resistance 

mutations (DRMs) to DTG have been identified at positions F121, S153, G118, E138, 

and R263 in vitro and in vivo.91, 92 R263K was initially reported as the most common 

substitution in cell culture selections but it confers only moderate resistance to DTG 

(2.3-fold).93 Overall, DTG associated DRMs decrease strand transfer activity and viral 

replication capacity, but these case reports highlight that this can be overcome and 

failing regimens do require a change of mode of action.94-99  
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Mutational pathways 

Fold resistance 

 RAL EVG DTG 
Y143 pathway  Y143C <10 <2 <2 
 Y143R <50 <2 <2 
 T97A, Y143C >100 <2 <2 
 T97A, Y143R >100 <2 <2 
 L74M, T97A, Y143G <50 ND <2 
 L74M, T97A, E138A, Y143C <20 ND <2 
N155 pathway N155N <50 <50 <2 
 E92Q, N155H <100 >100 <10 
 L74M, N155H <50 <50 <2 
Q148 pathway Q148H <20 <10 <2 
 Q148K <100 <100 <2 
 Q148R <50 <100 <2 
 E138K, Q148H <10 <20 <2 
 E138K, Q148K >100 >100 <10 
 E138K, Q148R >100 >100 <10 
 G140S, Q148H >100 >100 <20 
 G140S, Q148K >10 <100 <2 
 G140S, Q148R >100 >100 <10 
 E138A, G140S, Y143H, Q148H >100 ND <50 
R263K pathway R263K <1 3 4 
 R263K, H51Y 3-5 3 4-6 
G118R pathway G118R 10-17 >5 >8 
 G118R, H51Y ND ND ND 
 G118R, E138K 4-20 4-5 8-13 

Table 1.5: Major resistance pathways to raltegravir (RAL), elvitegravir (EVG), and dolutegravir 
(DTG). Abbreviations: ND: Not detetected. Adapted from Wainberg et al., Can. J. Micr, 2017  

Data post-marketing of DTG has focused on treatment simplification strategies, 

special populations infected with HIV, real life tolerability and DDIs, all of which are 

discussed below.  

1.2.3.2. Treatment simplification 

There has been interest, in recent years, in challenging the use of triple therapy, in 

order to lessen toxicity, cost and, potentially, drug interactions.100-103 Well-designed, 

adequately powered long-term randomized controlled trials (RCTs) in diverse 

populations are needed to consider the widespread adoption of simplified regimen into 

clinical practice. At the time of writing, 12 initial studies investigating dual therapy 
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using DTG as the anchor drug had been published: 10 observational studies and 2 

randomized trials.104  Additionally, following supporting bioequivalence data, the first 

dual therapy STR, DTG/RPV (Julucaâ) was approved by the FDA in 2018, for use in 

the US as maintenance therapy in selected patients.54, 105  

1.2.3.2.1. Dual therapy 

DTG + 3TC 

ARV-naïve patients: In the single arm PADDLE study, 20 ARV-naïve patients 

initiating DTG/3TC OD achieved HIV-1 RNA <50 copies/mL at week 48 (bar 1 

suicide, reported as unrelated to study drug).106 This was followed up by another pilot 

study, the ACTG5353, which recruited 120 ARV naïve patients with HIV-1 RNA 

1000-500,000 copies/mL and reported 90% achieving viral load (VL) <50 copies/mL 

at week 24 (FDA Snapshot). There were 3 protocol driven virological failures (VF) all 

of which had DTG levels reflective of suboptimal adherence.107  Finally, a fully 

powered multicenter, parallel-group, double-blind, randomized phase III non-

inferiority trial, GEMINI 1&2, compared DTG/3TC to triple therapy TDF/FTC/DTG 

in treatment naïve subjects with no major resistance associated mutations (n=1433). 

The FDA snapshot 48 weeks analysis reported non-inferiority of the dual therapy 

regimen (viral suppression 90% versus 93% in triple regimen), consistent across 

baseline HIV-1 VL and CD4 counts. There were no treatment-emergent InSTI or 

NRTI mutations observed in patients with confirmed VF.108 

 

Pre-treated patients: The ASPIRE (randomized, phase III) and the ANRS 167 

LAMIDOL (single-arm phase II) studies investigated safety and efficacy of 

DTG/3TC in pre-treated patients, reporting non-inferiority to triple therapy (91% vs 
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89%) in the ASPIRE study and 97% viral suppression in the LAMIDOL study, both 

at 48 weeks. There was no emergence of resistance in either study and no signal for 

lipid and renal toxicity.109, 110 Since 3TC is already available in the generic form, this 

combination would be advantageous in LMIC, with caution applied to hepatitis B 

screening, as Hep B co-infection would require TDF, TAF or an alternative strategy.  

DTG + RPV 

RPV is the one NNRTI with no interaction with DTG.111 This combination has mainly 

been studied as maintenance therapy, with the most compelling evidence coming from 

2 large open-label randomized trials, SWORD 1 and 2, which are discussed in details 

in chapter 4. In summary, the pooled analysis showed non-inferiority to 3- or 4-drug 

regimen with improvements in bone, renal and lipid parameters, also confirmed in 

other studies.112-116 There have also been similar findings in subjects with multiple 

previous treatment failures.117 

DTG + DRV/RTV 

Data for DTG/DRV/RTV dual therapy is discussed in detail in chapter 4. The 

DUALIS RCT demonstrated that OD DTG/DRV/RTV maintenance therapy, in 

suppressed patient, was non-inferior to continuing DRV-based triple therapy.118 

Additionally, cohort studies have investigated the use of DTG/DRV/RTV in multi-

treatment experienced patients with resistance and all demonstrate viral suppression 

in >90% of subjects at 48 weeks and beyond, in this difficult to treat population.119-121 

Whilst an intensive 12-hour PK sub-study of the DUALIS trial was published, there 

is very limited PK data on DTG combined with co-formulated DRV/COBI and, to 

address this, chapter 4 reports the intensive PK of DTG with and without DRV/COBI 

in healthy volunteers.  
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1.2.3.2.2. Monotherapy 

Various small non-randomized studies have investigated the use of DTG monotherapy 

in selected ARV-naïve and experienced patients with conflicting results but with a 

positive response in some individuals.101, 122, 123 This strategy is currently not 

recommended and requires further investigation before use. 

1.2.3.3. Real life tolerability 

DTG demonstrated excellent safety and tolerability in licensing trials.61, 69-72, 124 

However, real life data has emerged reporting higher than expected rates of adverse 

events (AE) and discontinuations secondary to AEs, particularly neuropsychiatric 

(NP) AEs and weight gain.125-151 These data are discussed extensively in chapters 1 

and 6. Consequently, there has been a call for DTG pharmacovigilance and for studies 

in diverse populations to further characterise those at risk of toxicity.127 To this effect, 

the intensive pharmacokinetics of DTG in subjects over the age of 60 are described in 

chapter 1 and DTG impact on sleep architecture and cognition is investigated in this 

population.  

1.2.3.4. Special populations 

Women 

Women represent just over half of the worldwide HIV population and those of 

childbearing age represent a majority in certain LMICs; it is therefore important to 

characterise the use of newer ARVs in women.1, 152 The phase IIIb randomised, open-

label trial, ARIA showed superiority of the fixed drug combination (FDC) 

DTG/ABC/3TC over ATV/RTV plus TDF/FTC in 495 treatment-naïve adult women 
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over 48 weeks. Resistance mutations were low in those with VF and predictably, there 

was a higher rate of discontinuations in the ATV/RTV arm due to AEs (7% vs 4%).153  

Pregnancy 

The first PK evaluation of standard dose DTG in pregnant women, IMPAACT P1026, 

showed that the median DTG AUC0-24, maximum concentration (Cmax), and C24 were 

25% to 51% lower in the second and third trimesters as compared with postpartum 

(n=29). These differences were deemed clinically non-significant since C24 remained 

above the DTG protein adjusted (PA)-EC90, maternal viral loads remained 

undetectable, high placental transfer was demonstrated and all infants were HIV 

negative. For pregnant women initiating third trimester ART, the DolPHIN-2 study 

confirmed that DTG-based therapy conferred quicker virologic response and increased 

likelihood of suppression at delivery than EFV-based therapy, with similar safety 

outcomes.154 Of interest also, DTG transfers into breast milk, resulting in significant 

plasma concentrations in the infant.155 

 

Safety data is available from over 10 observational studies and 1200 pregnancies 

including a number of monitoring databases, all of which suggest that there is no 

increased risk of preterm deliveries, small for gestational age or congenital anomalies 

in women started on DTG during pregnancy, relative to background risk.156-160 But 

there is marked heterogeneity among the databases.65, 161 And this year, some 

concerning results from an unscheduled analysis of the Botswana birth outcomes 

surveillance study revealed a signal for increased neural tube defects (NTD) in patients 

conceiving on DTG compared to other subgroups: 0.3% vs 0.12% in non-DTG ART 

at conception, 0.09% in HIV-negative women and 0% in DTG started after 1st 

trimester.162, 163 As a result, warnings were issued from the WHO, FDA, European 
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Medicines Agency (EMA) and major associations and whilst the final data set from 

the Botswana study is awaited, most recommend avoiding DTG in women at risk of 

conception. 68, 164-167 

Renal Impairment 

DTG is highly protein bound with low water solubility. There is no effect on exposure 

in mild to moderate renal impairment but unexpectedly lower DTG exposures were 

reported in HIV-seronegative subjects with severe renal impairment (AUC0–oo 40% 

lower) and caution should be applied.168 With regards to renal replacement therapy, 

Molto et al., demonstrated minimal DTG removal by haemodialysis (extraction ratio 

7%) suggesting no specific dosage adjustments required in this setting.169-171 Notably 

also, DTG inhibits the renal organic cation transporters 2 (OCT2) on the basolateral 

membrane of renal cells, thereby causing a mild increase in serum creatinine in the 

first 6 weeks of treatment, this is not thought to be clinically significant.57 

1.2.3.5. Drug interactions 

In vitro, DTG was found to be a substrate for the efflux transporters P-glycoprotein 

(P-gp) and human breast cancer resistance protein (BCRP). It is metabolised by 

UGT1A1 and, to a lesser extent by CYP3A4 (10-15%), with minimal contribution 

from UGT1A3 and UGT1A9, without being an inducer or inhibitor of most of the 

usual metabolic systems, thereby limiting DDI perpetration.57, 172 However, in a study 

using healthy volunteers, co-administration of DTG and metformin significantly 

increased metformin plasma exposure in a dose dependent manner; assumed to be 

OCT2 related. Dose adjustment and monitoring for lactic acidosis are therefore recom-

mended in those at risk.173 Studies investigating DTG interactions with the anti-

mycobacterial agents initially showed that co-administration with the potent inducer 
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rifampicin, required twice daily dosing of DTG 50 mg.174 More recent intensive co-

administration PK data showed that DTG dosing could be simplified to 100mg OD.175  

A dose adjustment is not necessary with rifabutin 300 mg.176 There does not appear to 

be a significant interaction between DTG and oral contraceptive pills or proton pump 

inhibitors.50 However, antacids and supplements containing divalent cations, can 

attenuate DTG absorption through chelation and DTG should be taken 2 hours prior 

to or 6 hours after.82 

 

Amongst the ARVs, both EFV and ETV significantly lower DTG levels and should 

be avoided unless ETV is administered with RTV.177, 178 Finally, the PIs currently used 

can be safely administered with DTG, when boosted with RTV. However, interactions 

between DTG and COBI are unclear and require further investigation.179 To address 

this gap in knowledge and as previously mentioned, chapter 4 investigates the 

pharmacokinetics of DTG with and without co-administration of DRV boosted with 

COBI. 

1.2.4. Bictegravir 

Bictegravir, the fourth InSTI was recently licenced, co-formulated with FTC and TAF 

(BIC/F/TAF, Biktarvy®). It was approved in Europe in June 2018, for adults infected 

with HIV-1, without evidence of viral resistance to InSTIs, FTC or TDF.180 Like DTG, 

it has high genetic barrier to HIV-1 resistance.181 In phase 3 trials, it was non-inferior 

to DTG-based therapy in treatment-naïve adults through to 96 weeks and, similarly, 

was noninferior to ongoing DTG/3TC/ABC or boosted EVG- or PI-based therapy in 

preventing virological rebound over 48 weeks in treatment-experienced patients. No 

resistance emerged to any of the antiretrovirals in the STR.182-187 It is generally well 
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tolerated, requires no prior HLA-B*5701 testing (unlike Triumeq®), fulfils the ARV 

regimen requirement for patients with HBV co-infection (TAF) and can be used in 

renally impaired patients with creatinine clearance ≥ 30 mL/min.181, 188  

1.3. COBICISTAT 

For over a decade, low dose RTV has been used as a pharmacological booster for most 

PIs, in order to increase the half-life (t1/2), the time to reach Cmax (tmax), Cmax, and AUC 

through potent CYP3A4 and P-gp (intestinal and hepatic) inhibition. Cobicistat 

(COBI) was released in 2014 as an alternative to RTV, available either as a single 

agent (Tybost®) or co-formulated with the new integrase inhibitor at the time, 

Elvitegravir (EVG/COBI/FTC/TDF, Stribild®).189, 190 It’s approval followed phase III 

studies demonstrating non-inferiority of EVG/COBI/FTC/TDF to EFV, ATV/RTV 

and RAL-based regimen in treatment naïve and virologically suppressed ARV-

experienced participants (GS-102, 103, 145, STRATEGY-NNRTI and 

STRATEGY-PI).191-195 COBI is a structural analogue of RTV. It inhibits CYP3A4 

with a similar potency and, to a lesser degree, P-gp.196-201 Its tolerability profile overall 

is similar to that of RTV.199 At a dosage of 150 mg OD, it provides bioequivalent 

exposures of atazanavir (300 mg OD) and darunavir (800 mg OD) compared with 

those observed with 100 mg of RTV OD and similar virological suppression when 

compared to ATV/RTV.201-211 COBI does not have antiviral activity and good 

solubility lends it to co-formulation. It was approved co-formulated with ATV 

(Evotaz®) and DRV (Rezolsta®) in 2015, potentially reducing pill burden in patients 

requiring a boosted PI. The PK properties of COBI are summarised in table 1.6; there 

are key pharmacological differences between RTV and COBI. Unlike its counterpart, 

COBI does not inhibit CYP1A2, CYP2C8, CYP2C9 or CYP2C19 and is a weaker 
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inhibitor of CYP2D6 and CYP2B6.197-199 The greatest discrepancy between the two, 

however, lies in the fact that COBI does not induce the activity of CYP1A2, CYP2B6, 

CYP2C8, CYP2C9, CYP2C19 or UGT1A1 and is not expected to induce that of 

CYP3A4 or P-gp.198-201 Additionally, compared to RTV, COBI has a limited effect on 

the pregnane X receptor (PXR), a nuclear receptor activated by xenobiotics that 

subsequently induces and regulates the expression of various drug-metabolising 

enzymes, including CYP 450 and UGT.197, 198, 212 This is particularly salient to patients 

switching from an RTV-boosted to a COBI-boosted regimen, when the loss of 

CYP/glucuronidation induction may potentially require the dose adjustment of co-

prescribed drugs.198  

PARAMETER COBICISTAT 

Oral bioavailability % ND 
Effect of food on AUC ñ* 
Plasma t1/2, elim, h 3-4 
Plasma protein binding, % 97-98 
Metabolism CYP3A4 >> CYP2D6 
Renal excretion of parent drug, % 8.2 
Cmax (ng/mL) 1200 
AUC (h*ng/mL) 10 900 
Cmin (ng/mL) 70 

Table 1.6: PK properties of cobicistat (reported mean values in adults with normal renal and hepatic 
function). Abbreviations: AUC: Area Under the Curve; t1/2 elim: half-life of elimination; ND: not 
determined. * no formal study conducted 

No COBI dose adjustment is required in patients with renal impairment as data shows 

its PK are not significantly changed following administration of standard daily doses 

in subjects with severe renal impairment (eGFR <30 mL/ min).213 COBI, however, 

like RTV, does inhibit tubular secretion of creatinine leading to an apparent reduction 

in estimated creatinine clearance; yet actual glomerular filtration rate, as measured by 

the clearance of iohexol (a probe excreted solely by glomerular filtration) is not 

altered.214 The effect is reversible and mainly reflects the inhibition of creatinine 
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secretion by the multi-antimicrobial extrusion protein 1 (MATE1) transporter, on 

apical proximal tubular cells.214 Interestingly, COBI leads to greater creatinine 

changes than RTV despite similar IC50 values for MATE1, which may relate to active 

OCT2-mediated COBI transport into tubular cells, increasing its availability to 

MATE1.198, 215 Caution, however, remains when COBI is co-administered with and 

boosts potentially nephrotoxic drugs such ATV and TDF. COBI dosage adjustment is 

not required in patients with mild to moderate hepatic impairment, however is not 

recommended in patients with severe hepatic impairment (lack of data).199 To address 

some gaps in the literature and inform clinicians considering the use of COBI in 

commonly encountered clinical situations, chapter 3 establishes the PK forgiveness 

of EvotazÒ and RezolstaÒ following cessation of drug intake and compares it to that 

of RTV-boosted ATV and DRV. In addition, chapter 5, characterises the PK of one 

of the commonest contraceptive pill, ethinylestradiol/levonorgestrel, when it is co-

administered with ATV/COBI. 

1.4. GENETIC VARIATION AND ARV PK/PD 

The penultimate chapter of this thesis, chapter 6, focuses on the pharmacogenetics of 

dolutegravir PK. Background on pharmacogenetics is provided in the section below.  

The inter- and intra-individual variability observed in both therapeutic and toxic 

effects of a drug is governed by demographic, physiological and genetic factors. 

Pharmacogenomics is the study of the contribution of naturally occurring genetic 

variants to this variability whilst pharmacogenetics refers to single drug–gene 

interactions.216 Precision medicine, then aims to use pharmacogenomic/enetic data, 

amongst other parameters, to predict a patient’s clinical outcome and to tailor therapy 

to genetically-defined sub-populations.217 This is particularly important in areas of 
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medicine, where complex and potentially toxic therapies are prescribed in multiples 

and over prolonged periods of time such as in HIV.216 Genetic sequence variations 

between individuals include single-nucleotide polymorphisms (SNPs), insertions and 

deletions (indels) and short tandem repeats (STRs) amongst others and are described 

as common if they exist in individual genomes at frequencies > 5%. SNPs are the most 

frequent (>90% of all sequence variations).218 They can result from either the deletion, 

insertion or substitution of a single nucleotide in a sequence and occur either within 

the protein coding (exons) or non-coding (regulatory or intron) regions of genes or 

within intergenic regions. SNPs within coding region that result in the same amino 

acid sequence being translated are called synonymous whilst SNPs that result in a 

different amino acid or a premature stop codon are called nonsynonymous. 

Nonsynonymous SNPs can either be classified as missense (leading to change in one 

amino acid in a protein) or as nonsense (leading to a premature stop codon and protein 

truncation), both potentially altering the level of expression and/or intrinsic activity of 

metabolically active proteins.216, 218 Importantly, SNPs in non-protein-coding regions 

may still have a pharmacological effect if they disrupt the regulatory functions of these 

regions, such as transcription regulation.219, 220 SNPs are usually associated via 

haplotype groups, which occur because multiple SNPs are inherited together. This is 

referred to as linkage disequilibrium, which is the non-random association of alleles 

on the same chromosome within a particular population.217, 218, 221  

 

As PK and biodistribution are inherent to both drug safety and efficacy, the most 

commonly studied variants in HIV are SNPs in genes implicated in drug absorption, 

distribution, metabolism and excretion pathways (ADME, figure 1.8), and include 

SNPs in genes that are involved in the production of transporters and enzymes.217 In 
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addition, there is also increasing interest in nuclear receptors that regulate the 

expression of ADME genes (such as PXR), in human leukocyte antigen (HLA) 

subtypes involved in hypersensitivity reactions (HSR) and in genes implicated in the 

development of metabolic toxicity.222  

 

 

Figure 1.8: Enzymes and transporters involved in drug disposition. Blue & Red dots: venous & arterial 
circulation. BBB: Blood Brain Barrier, BCB: Blood Cerebrospinal fluid Barrier. From Calcagno et al. 
2017 

The completion of the Human Genome Project in 2001, heralded the beginning of 

great technological advancements in the era of pharmacogenetics and precision 

medicine. Two main approaches have been used to study pharmacogenetics: 1) the 

analysis of single gene variant’s effect after mechanistic observations and 2) genome-

wide association studies (GWAS). The first relies on preceding observations and 

understanding of drug metabolisms and transports and the latter tests the effect of a 

large number of genes on a selected target, then potentially requires post-hoc 

confirmatory in vitro studies.222 The study described in chapter 6 uses a single gene 
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variant approach following careful selection of common SNPs related to enzymes and 

transporters that are known to be involved in the disposition of DTG.  

 

It is important to note that the effect of genetic variants on drug disposition might vary 

according to the molecule characteristics and metabolism. An accurate selection of the 

compound to be studied might be cost effective. For instance, a practical and relatively 

straightforward method called the relative genetic contribution (rGC) has been 

proposed and recently applied to ARVs. It is quantified comparing the intra- and 

interpatient variation in PK parameters following the repeated administration of a 

drug; compounds with higher rGC have a higher genetic contribution to interpatient 

variability, warranting PK/PG analysis. ARV class-specific differences in rGC may 

exist with NNRTIs seemingly ranking the highest and RAL the lowest.223 

 

The last decade has seen a surge of data in HIV pharmacogenomics, suggesting that 

the choice and dose selection of ARVs might be improved upon knowledge of a 

patients’ pharmacogenetic background;216, 217, 222 however, findings have frequently 

been conflicting and very few confirmatory clinical studies have been published. Only 

three pharmacogenetic markers have been widely replicated and have attained the 

point of potential practical utilisation in the clinical setting: HLA-B*5701 (ABC 

HSR), CYP2B6 516G>T (EFV and NVP PK and toxicity) and UGT1A1*28 (ATV 

hyperbilirubinaemia). In practice, only data on HLA B*5701 genotyping in abacavir 

candidates is clinically decisive and routinely used.224, 225 Limits to the detection and 

strength of any genotype-phenotype relationship include the fact that several enzymes 

and transporters are involved in the ADME of any one drug, often with complex 
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interactions between them. Additionally, huge variability in genetic variants exists 

among different ethnic groups meaning ethnic stratification of data is also key.217, 222 

 

DTG and COBI (in its role as a pharmacological booster for EVG, ATV and DRV) 

are the focus of this thesis; whilst there are pharmacogenetic data for the former, no 

study has been published on the latter. DTG pharmacogenetic studies are discussed in 

details in chapter 6. In summary, studies have primarily investigated the association 

between DTG PK and UGT1A1 and ABCG2 variants. Approximately 40-70% of all 

clinical drugs are metabolised by UGTs within humans and there are three main 

subfamilies (UGT1A, UGT2A and UGT2B).222, 226 UGT1A1-mediated 

glucoronidation is the main metabolic pathway for DTG.57 Several genetic variants in 

the UGTA1 gene have been identified, the most common is a thymidine and adenine 

(TA) repeat polymorphism in the promoter region. Increasing number of TA repeats 

is inversely associated with UGT1A1 transcription, with five and six repeats (alleles 

*36 and *1, respectively) being associated with increased and normal UGT1A1 

activity, and seven and eight repeats (*28 and *37, respectively) with low UGT1A1 

activity.227-229 Individuals are categorised as extensive, intermediate or poor 

metabolisers according to their allele combination.222, 229 UGT1A1*6 211G>A is also 

a common variant associated with reduced enzyme function, it is most prevalent in 

individuals of Asian descent.229 Chen et al. were the first to suggest a moderate 

relationship between UGT1A1*28 and *6 and DTG PK, publishing at the time of DTG 

FDA approval. This was later supported by data from Yagura et al.230,148 As previously 

mentioned, DTG is a known BCRP substrate and the homozygous ABCG2 c.421C>A 

(rs2231142) allele, coding for BCRP, has been associated with a 50% higher DTG 

Cmax.231  
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Since there have been concerns around high rates of insomnia and NP-AEs with DTG 

use, Yagura et al. suggested an association between the UGT1A1 poor metabolising 

status and Cmin-mediated NPAEs as well as all AE-related DTG cessations in a 

Japanese cohort.147, 148 Finally, Borghetti et al. recently reported an association 

between the SLC22A2 808C>A (rs316019) variant, coding for OCT2, and a set of sub-

clinical neuropsychiatric measurements in a European cohort.232 However, findings 

from both groups have yet to be reproduced and collinearity between the respective 

genetic variants and high DTG concentrations needs to be clearly distinguished. 

 

Chapter 6 therefore aims to address some existing gaps in currently published data 

and confirm some already published findings, through exploring the role of UGT1A1, 

ABCG2, CYP3A and NR1I2 SNPs on plasma DTG concentrations, in isolation or in 

combination, in pooled subject data from four clinical trials investigating the PK of 

50mg DTG taken OD. 

1.5. THESIS OBJECTIVES 

As discussed above, 2013-14 saw the approval of two significant new agents for the 

treatment of HIV, DTG and COBI. Both addressed unmet clinical needs at the time 

and are now widely used. DTG’s properties have secured its place as a preferred agent 

in major guidelines, including the WHO Guidelines, meaning that by 2025, an 

estimated 15 million PLWH could be taking it.7, 63, 65 This raises a number of clinical 

questions about the pharmacological behaviour of newly approved drugs in real-world 

settings. Often, these questions are not addressed in licencing trials, because they are 

not FDA and EMA requirements for approval and RCT participants often differ 

substantially from broader patient populations.127 Therefore, in this thesis, we aimed 
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to investigate common and important clinical pharmacological scenarios reflective of 

HIV treatment in real life, focusing particularly on PK in older populations, PK 

forgiveness for the management of late and missed doses, co-administration with 

common drugs and genetic determinants of PK.  

 

More specifically, Chapter 2 characterises the intensive PK of DTG in HIV infected 

participants over the age of 60 and its pharmacodynamic effect on sleep over 6 months. 

The PK tails of DTG and COBI-boosted EVG, ATV and DRV are then reported in 

chapter 3. Chapter 4 and 5 investigate the effect of co-administration of common 

drugs, with DTG and COBI-boosted DRV in chapter 4 and the oral contraceptive pill 

(OCP) and COBI-boosted ATV in chapter 5. Finally, chapter 6 explores the impact 

of genetic variability in drug disposition genes on the PK of DTG.
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CHAPTER 2 

Increased Dolutegravir Peak 

Concentrations in People Living With 

HIV Aged 60 And Over And Analysis 

of Sleep Quality And Cognition 
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2.1. INTRODUCTION 

By 2015, one in three people accessing HIV care in the UK233 and almost half in the 

US were aged 50 and over.234-238 With advancing age, several physiological changes 

are known to occur and affect drug pharmacokinetics and pharmacodynamics.239 

 

DTG is now the drug of choice for many HIV providers, thanks to high efficacy firmly 

demonstrated in trials, retained activity against some InSTI-resistant HIV-1 

phenotypes and low potential for drug-interactions.72 Overall, these properties make it 

a strong candidate for therapy in older PLWH.236 As discussed in chapter 1, DTG 

demonstrated favorable safety and tolerability profiles in pre-marketing trials with a 

<2% discontinuation rate secondary to any adverse events (AEs), which was 

comparable to RAL and superior to EFV.69, 240 However, contrasting real-life data 

from cohort studies, involving >6400 patients overall,  have  revealed unexpectedly 

higher discontinuation rates secondary to any AEs  (2.3-13.7%, median time 72 days), 

most commonly due to gastrointestinal AEs and insomnia/sleep disturbances and other  

NP-AEs (mean incidence 3.5%, range, 1.4-7.2%), regardless of prior neuropsychiatric 

history, thereby implicating a potentially neurotoxic effect of DTG. Some attempts at 

defining risk factors for NP-AEs, including PK and pharmacogenetics have been made 

but data remain conflicting.127-139, 146-149 Comparison studies suggest that NP-AEs are 

more common with DTG than other InSTIs.135-138 Interestingly, in several reports, NP-

AEs and DTG discontinuation were significantly higher in women and in PLWH >60 

years old, two groups which are often under-represented in licensing trials due to 

highly selective inclusion criteria.133-135 This has prompted a call in the literature for 

prospective studies to evaluate DTG-associated NP-AEs, using detailed, longitudinal, 
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validated sleep architecture and neuropsychological analyses, in conjunction with PK 

determinations, particularly in special populations.241 

 

Importantly, also, a high prevalence of sleep disturbances is already described in the 

HIV population, even in the cART era, (30-73% vs 10-20% in the general 

population)242, 243 and it is strongly associated with poorer disease outcomes, cognitive 

impairment and HIV-associated dementia.242, 244 It is, therefore, important to 

characterise the role of aging on DTG PK/PD, especially with regards to central 

nervous system (CNS) toxicity and sleep disturbances. The primary objectives of this 

study were to describe the steady state PK of DTG 50 mg OD in PLWH ≥60 years and 

compare them to a published younger population (from the SINGLE trial).69 The 

secondary objectives were to evaluate, in detail, changes in sleep and cognition over 

six months following a switch from non-DTG-based ARV regimen to ABC, 3TC and 

DTG, as a fixed dose combination tablet.  

 

We hypothesised that age-related changes in drug PK might impact DTG, except its 

metabolism since it is mainly by UGT1A1 and no evidence supports age-related 

glucuronidation changes.245 We also expected a reverse-association between 

sleep/cognition changes and PK parameters, particularly at the high end of the 

therapeutic range (or higher). 

2.2. METHODS 

2.2.1. Participants 

Written informed consent was obtained from male and female PLWH, stable on cART, 

aged ≥60 years with a body mass index (BMI) 18-35 kg/m2. The protocol required that 
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approximately 70% of subjects be ≥65 years (to ensure a variable age range). 

Eligibility criteria included plasma HIV-RNA <50 copies/mL at screening and no 

history of treatment failure or documented significant drug resistance on viral 

genotyping. With ABC use, a negative HLA-B*5701 allele result was required and 

participants were screened for cardiovascular (CV) risk using the QRISK2 calculator56, 

246 (eligible if 10-year risk of CV event was <20% or if risk factors were well controlled 

with medication/lifestyle measures). Participants were excluded if they had: 

significant acute/chronic illnesses; abnormal physical examination, ECG or laboratory 

determinations or use of known interacting drugs/remedies. No patients had preceding 

Primary Sleep Disorder diagnoses. The study was approved by the London Central 

Research Ethics Committee and the Medicines and Healthcare products Regulatory 

Agency (MHRA) and ran in accordance with Good Clinical Practice and the 

Declaration of Helsinki (NCT02509195). 

2.2.2. Study design 

This was a four-centre, 180-day (excluding screening and follow-up), open-label, 

prospective PK/PD study. After screening, eligible subjects were switched to 

ABC/3TC/DTG 600/300/50 mg FDC (Triumeq®)75 on day 1, one pill OD, orally, in 

the morning with or without breakfast for the study period, except on day 28 (D28). 

On D28, subjects underwent intensive DTG PK determinations, having fasted for six 

hours pre-dose and four hours post-dose to match the SINGLE PK sub-study 

circumstances.69 Blood samples were collected pre-dose, 1, 2, 3, 4, 8, 12- and 24-hours 

post-dose. Study medications safety was evaluated using the National Institute of 

Allergy and Infectious Diseases (NIAID) Division of AIDS table for grading the 

severity of adult and paediatric adverse events (2004), that characterises abnormal 
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findings, vital signs, physical examinations and clinical laboratory investigations. HIV 

viral load was checked on all safety and PK visits. Medication compliance was 

assessed through direct questioning and pill count. 

2.2.3. Collection and quantification of plasma dolutegravir 

Whole blood samples were collected at each time-point on D28, from an indwelling 

venous catheter, into 6 mL spray-coated EDTA tubes. Following centrifugation, 

plasma was aliquoted equally into three 2.0mL tubes (Sarstedt, Germany) and stored 

at -80oC.  Samples were then shipped on dry ice to the Jefferiss Trust Laboratory 

(Imperial College London). DTG plasma concentrations were determined using ultra-

performance liquid chromatography (UPLC) coupled with UV detection.247 The assay 

calibration range was 0.25-10 mcg/ml, intra-assay variability 3.3%-6.1% and inter-

assay variability 4.5%-5.7%. Overall accuracy was between 90.7% and 97.7% for 

three different quality control sample concentrations. The laboratory adheres to the 

ARV International Inter-laboratory Quality Control Program.248 

2.2.4. Pharmacokinetic and statistical analysis 

A sample size of 40 subjects was calculated to provide at least 80% power to detect 

DTG PK parameter changes in older people against 16 controls. The calculated 

parameters were plasma concentration measured 24 hours after the observed dose 

(C24), maximum observed plasma concentration (Cmax), area-under-the-plasma-

concentration-curve from 0 to 24 hours (AUC0–24) and half-life (t1/2). All PK 

parameters were calculated using actual blood sampling time and non-compartmental 

modelling techniques (WinNonlin-Phoenix, version 7.0). Descriptive statistics, 

including geometric mean (GM), 95% confidence interval (CI) and percentage 

coefficient of variation (CV% = 100*standard deviation/mean) were calculated for 
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DTG PK parameters at all time-points on D28, and compared to those obtained from 

the SINGLE PK sub-study control HIV population (≤50 years, n =16)69 using the non-

parametric Mann-Whitney U test. 

2.2.5. Sleep and cognitive data collection  

Six published and validated self-reported paper questionnaires (table 2.1),249-254 

recording different aspects of sleep, were administered to participants at baseline and 

on days 28, 90 and 180 in order to provide a comprehensive description of sleep 

quantity, quality, impact on daytime function, wakefulness, mental status and general 

wellbeing before and after the medication switch. Answers to each question were 

coded as per questionnaire protocols (appendix 2) and entered into Excel for scoring. 

Neurocognitive testing was carried out on D1 and D180 using the validated, widely 

used Cogstate® computerised assessment software,255 which evaluates a range of 

cognitive functions through eight domains: detection (DET)/identification (IDN) 

(speed of performance); one card learning (OCL), one back memory (OBM)/two back 

memory (TWOB) (accuracy of performance); Groton Maze learning (GML), Groton 

Maze recall (GMR), and set-shifting (SETS) (number of errors made on testing). 

Participants completed a mock practice at screening to minimise learning effect. 

2.2.6. Sleep and cognitive data analysis  

Sleep baseline characteristics and outcome measures at each time-point were 

descriptively summarised using medians, interquartile ranges (IQR), and proportions. 

Composite scores for sleep questionnaires were calculated and interpreted as per 

questionnaire protocols and cut-offs (table 2.1). Neurocognitive scores were analysed 

using Cogstate® recommendations.256 Changes in cognitive scores were calculated for 

each subject for each domain (baseline-D180), and were standardised according to the 
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within-subject standard deviation (WSD). The score sign was reversed where 

appropriate so positive values represent improvement for all domains. A composite 

score for the change from baseline was calculated by averaging the standardised 

change scores across all Cogstate® tasks for each individual. As data was not normally 

distributed, non-parametric tests were used for analysis. Changes in sleep and 

cognitive scores from baseline to each time-point were tested for significance using 

the Wilcoxon sign-rank test. Spearman’s correlation examined correlations between 

outcomes and DTG PK parameters. 

 

As EFV use is associated with NP-AEs, especially sleep disturbances, a sub-analysis 

was conducted using the Mann-Whitney test to compare individuals who switched 

from an EFV-based regimen to those who didn’t, thereby preventing EFV removal 

from potentially masking DTG effects.56  

 

Internal consistency was evaluated for outcomes with multiple domains using 

Cronbach’s α and corrected component-total Spearman’s rho (rs) correlations (α ≥.70 

and rs ≥.30 indicated adequate internal consistency). Correlation between different 

sleep questionnaires was evaluated at baseline to determine the level of agreement.  

Statistical analyses were performed using Stata (version 14.1) and GraphPad Prism 

(version 7.03). In the analyses, p-values, uncorrected and corrected for multiple 

comparisons, were calculated; p <0.05 was deemed significant. 

 

The Bonferroni correction was used to account for multiple comparisons.   
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Questionnaire Process Main 
Domains R

ec
al

l 
pe

ri
od

 
 

N
o 

of
 

ite
m

s Time 
to fill 
(mins) 

Scores 

PSQI Self- 
Reported 
0-3 
Likert 
scale 

Sleep Quality, 
sleep 
Disturbance and 
sleep habits 

1 mth 19 5-10 Score of 5 or more 
indicates poor sleep 
quality 
 
Global score calculated by 
summing subscale scores 
(not calculated for 
individuals with missing 
results) 

ESS Self- 
Reported  
0-3 
Likert 
scale 

Level of 
sleepiness/ 
propensity of 
falling asleep 

N/A 8 < 5 ≥11 indicates excessive 
daytime sleepiness 

FOSQ Self- 
Reported 
0-4 
Likert 
scale 

Functional 
impairment in 
activities of 
daily living 
resulting from 
sleepiness  

N/A 30 15 5 domains: for each 
domain, lower scores 
indicate more acute issues. 
Each domain score 
calculated by averaging 
answered domain 
questions. 
 
Global score calculated by 
averaging the subscale 
scores & multiplying by 5 
(allows for missing 
subscale scores) 

ISS Self- 
Reported 
0-4 
Likert 
scale 

Nature, severity 
and impact of 
insomnia 

2 wks 7 <5 0-7 no insomnia 
8- 14 subthreshold 
insomnia 
15-21 moderate insomnia 
22-28 severe insomnia 

FSS Self- 
Reported 
1-7 
Likert 
scale 

Effect of fatigue 
on motivation, 
exercise, 
physical, social 
and family 
functioning 

1 wk 9 <5 >5 indicates abnormal 
fatigue 

SDQ Self- 
Reported 
1-5 
Likert 
scale 

Sleep quality 
Sleep 
disturbance 
Daytime 
function 
Medication 
Medical family 
history 

6 
mths 

175 30 4 sleep disorders 
categories: Sleep Apnoea 
Syndrome, Narcolepsy, 
Periodic Limb Movements 
Disorders and Psychiatric 
sleep disorders. 

Cogstate 
neuro-
cognitive test 

Compute
rised 
battery 

Detection 
Identification 
Set Shifting 
Groton Maze 
Learning 
Groton Maze 
Recall 
One Card 
Learning 
One Back 
Memory 
Two Back 
Memory 

N/A 8 
tasks 

 Score provided for each of 
8 domains using optimal 
outcome measure (as 
defined by Cogstate 
guidelines). Composite 
score for change from 
baseline calculated by 
averaging standardised 
change scores 

Table 2.1: Summary of content, process and scoring of sleep questionnaires and cognitive testing. 
Questionnaire acronym definitions available listed in text 
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2.3. RESULTS 

2.3.1. Study population 

Fifty-three subjects were screened; 43 enrolled and received at least one study drug 

dose. Three/43 participants withdrew before D28 and could not be included in the PK 

analysis (two moved abroad and one experienced fatigue and photosensitivity 

attributed to the study drugs). Forty participants completed the PK phase and 38 

attended the final study visit (D180). One participant withdrew secondary to 

insomnia/vivid dreams (resolved by switching to TDF/FTC/RAL) and the other 

withdrew for job relocation; both were included in D28 PK and PD analyses. Subject 

and control characteristics are summarised in table 2.2.  

2.3.2. Dolutegravir plasma pharmacokinetics 

Steady-state PK parameters are summarised in table 2.3; figure 2.1 demonstrates GM 

DTG concentration vs time curves for the observed and control populations. There 

were no differences in DTG AUC0-24, C24 or t1/2 between the two populations. However, 

Cmax (approximately two hours post-dose in both groups) was significantly higher in 

subjects ≥60 years old (GM 4246 vs 3402 ng/mL, p=0.005).  The PK parameters for 

the participant who withdrew secondary to NP-AEs after day 28 were: Cmax 5300 

ng/mL, C24 2013 ng/mL, AUC0-24 77942 hr*ng/mL and t1/2 19.8 hrs; all were above the 

95th percentile for the study group.  
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 Variable Study subject in 
PK analysis 
(n=40) 

Controls 
(n=15) 

Age  Median (range) in years 66 (60-79) 36 (22-50) 

Ethnicity (n) White British/Irish/Other 33 11 

African Heritage 3 3 

Hispanic 2 0 

Asiatic 2 0 

American Indian/Alaskan Native 0 1 

Gender (n) Male 39 15 

Female 1 1 

Pre-switch regimen 

Backbone (n) ABC/3TC 16 N/A 

TDF/FTC 20 N/A 

3rd Agent (n) Boosted Protease PI (of which 

mono & dual therapy with RAL) 

9 

(2 & 1) 

N/A 

NNRTI (of which EFV) 24 (17) N/A 

RAL (of which dual tx with PI/b) 6 (1) N/A 

AZT 1 N/A 

Salvage tx (n) FTC, MVC, DRV, RTV 1 N/A 

Table 2.2: Demographic and clinical characteristics of study participants and controls. Tx: therapy 

Table 2.3: DTG steady-state PK parameters for the observed and control groups over 24 hours. In bold: 
significant difference in Cmax  

 

Observed group 
(n=40) Control group (n=15) P value (Mann-

Whitney U) 
Cmax 

(ng/ml) 
Cmin 

(ng/ml) 
AUC0-24 
(ng.h/ml) 

t1/2 
(hrs) 

Cmax 
(ng/ml) 

Cmin 
(ng/ml) 

AUC0-24 
(ng.h/ml) 

t1/2 
(hrs) 

Cmax 
(ng/ml) 

Cmin 
(ng/ml) 

AUC0-24 
(ng.h/ml) 

t1/2 
(hrs) 

GM 4246 1052 51799 12.84 3402 942 48068 14.35 0.005 0.772 0.56 .706 

Low 
95% 4018 999 49405 12.05 3008 799 42350 11.16 - - - - 

Up 
95% 4767 1351 59020 14.93 4030 1461 59898 21.44 - - - - 

CV 
% 27 48 29 34 29 58 34 62 - - - - 
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Figure 2.1: GM DTG concentration vs time curves for the observed and control populations 

2.3.3. Sleep questionnaire results at baseline and follow up 

Detailed response rates and median (IQR) scores per questionnaire, domain and time-

point are in appendix 2: table A and figure B.  

2.3.3.1. Overall sleep impairment: Pittsburgh Sleep Quality Index (PSQI)249 

Median global PSQI score was higher at D28 vs baseline (5.0 vs 6.0, p=0.02 adjusted 

for multiple testing) but at no other time-points. No domain achieved statistical 

significance individually. Internal consistency was acceptable for the global score 

(α=0.72). Corrected component-total correlations ranged from 0.19 (daytime 

dysfunction) to 0.66 (quality). 

Time (hours) 
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2.3.3.2. Insomnia: Insomnia Severity Index (ISI)250  

Median (IQR) global ISI scores remained stable (range 5-6.5); four individuals 

developed moderate insomnia over time (ISI 14-21; not significant) and one subject’s 

severe insomnia (ISI >21) improved whilst another’s developed by D28 leading to 

discontinuation (participant described above).  

2.3.3.3. Daytime sleepiness: Epworth Sleepiness Scale (ESS)251 

At baseline, 29% individuals were considered ‘sleepy’ (ESS >10) compared with 24% 

at D180 (not significant). 

2.3.3.4. Daytime function: Functional Outcomes of Sleep Questionnaire (FOSQ)252 

Median (IQR) global FOSQ remained stable from baseline to day D180 (range 18.01-

18.81/20) with a generally good level of daytime function across the cohort. 

2.3.3.5. Fatigue severity: Fatigue Severity Scale (FSS)253 

At baseline, 4/39 (10%) individuals reported having fatigue; this was 20% on D180 

(not significant). 

2.3.3.6. Risks of possessing sleep disorder: Sleep Disorder Questionnaire (SDQ)254 

No participants met the diagnostic criteria at baseline for any of the four sleep disorders 

tested and no significant change in scores was observed over time. 

2.3.3.7. Correlation between sleep measures 

There was a significant correlation between all sleep measures evaluated by more than 

one questionnaire across all scores at baseline (0.37<r<0.83; p <0.05).  
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2.3.3.8. Sleep scores by EFV status 

17/40 (43%) subjects switched from an EFV-based combination. At baseline, some 

measurements appeared worse in individuals who did not switch from EFV. No 

significant difference was observed between groups in overall score changes at each 

time-point compared to baseline for all questionnaires except ISI, which, counter-

intuitively, improved over 180 days in participants without efavirenz in their previous 

regimen and worsened in those with (p=0.02); this did not however remain after 

adjustment for multiple comparisons (p >0.05) (appendix 1; table C). 

2.3.3.9. Relationship between sleep scores and PK parameters 

There was no correlation between DTG PK parameters and D180 sleep scores or intra-

subject change in global scores over 180 days (delta test scores) (figure 2.2; appendix 

2: tables D and E). To rule out an effect dependent on a drug level threshold, the 

Mann-Whitney test was used to compare delta test scores in subjects with Cmax above 

the upper quartile (Q4) to those below (Q1-3). There were no differences (0.62<p-

value<1.0); nor with 95th centile Cmax used as threshold (0.13<p-value<0.73).  

Similarly, there was no difference in Cmax between D180 test score or delta test score 

low and high quartile groups for all sleep questionnaires (0.31≤p-value≤0.66 and 

0.63<p-value<1.0). 

2.3.4. Changes in cognitive scores 

Between baseline and D180, no change in global cognitive composite scores and 

individual domain scores was observed over time except GML (executive function) 

where a significant improvement from baseline to D180 was seen (median change 

(IQR) 0.32 (0-0.74), unadjusted p=0.002). 
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There was no correlation between C24 and AUC0-24 and D180 cognitive function or 

delta cognitive scores (individual domains and global composite scores; p=0.07). 

Unexpectedly, higher Cmax was associated with improvements in global cognitive 

function (r=0.39, p=0.02 figure 2). The improvement in median (IQR) delta score was 

higher in those with a Cmax >upper 95% CI than in those below (p=0.0195) (table 2.4). 

Note: for difference scores, score sign reversed for all outcome measures where increasing values 
indicate performance decline. Thus, for all measures, negative values indicate performance decline and 
positive values indicate performance improvement. Difference scores standardised according to within-
subject standard deviation (WSD). Composite score for each subject calculated by averaging 
standardised change scores across all domains. P-values are exact derived from Wilcoxon matched-
pairs sign-rank test (not adjusted for multiple comparisons). *p <0.05, **p <0.01 

Table 2.4: Change in neurocognitive scores (effect size)  

2.3.5. Clinical safety and efficacy 

2/43 (4.6%) participants discontinued the study secondary to AEs (described above). 

In the remaining subjects, there were no virological failures or grade 3 or 4 toxicity 

following treatment initiation. The studied FDC was well tolerated. 

Cogstate domain Cognitive function 
Standardised change score  
(Day 180-baseline) 

n Median (IQR) p-value 
Detection task Psychomotor function 37 0.02 (-0.16,0.13) 0.743 
Identification task Attention 37 -0.04 (-0.47,0.58) 0.602 
Set Shifting Executive function 37 0.05 (-0.32,0.75) 0.471 
Groton Maze 
Learning Executive function 34 0.32 (0.00,0.74) 0.002** 

Groton Maze Recall Delayed recall 35 0.27 (-0.82,1.37) 0.176 
One Card Learning Learning 36 0.06 (-0.69,1.00) 0.592 

One Back Memory Working memory - 
simple 37 0.24 (-0.90,0.77) 0.908 

Two Back Memory Working memory - 
complex 37 0.00 (-0.97,0.84) 0.982 

Composite score   37 0.16 (-0.23,0.37) 0.187 
    

 Cmax <95th centile 
(n = 25) Cmax >95th centile (n=12) p-value 

Median Cogstate 
Delta score (IQR) 0.08 (0.30-0.20) 0.41 (0.12-0.64) 0.0195* 
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Figure 2.2: Scatter plots showing changes in sleep and neurocognitive scores in 180 days against Cmax
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2.4. DISCUSSION 

The steady-state PK of DTG 50 mg OD was characterised in an aging HIV population, 

mostly over 65 years, the age associated with potential changes in drug PK.245 

Compared to the younger control group, Cmax was significantly higher (25%) in those 

≥60, indicating increased DTG absorption. Whilst the net effect of age-related 

physiological intestinal changes (e.g. reduction in pH, gastrointestinal motility etc.) on 

the absorption of most drugs is thought to be minimal,239, 257 our findings could 

potentially be explained by age-related alterations in expression of active DTG efflux 

transporters, such P-gp and BCRP, across epithelial cells in the gastrointestinal 

tract;239, 245, 258 however further research is required. There were no differences in DTG 

C24, AUC0-24 or t1/2 between the two groups, supporting a lack of age-associated effect 

on the main DTG metabolic pathway (UGT1A1).  

 

To address the call for prospective PD data, this report describes the first post-

marketing analysis of sleep and cognition-related PD changes following a switch to 

ABC/3TC/DTG, over 180 days.125, 241 DTG-related NP-AEs (including insomnia) are 

an emerging concern and older age has been described as an independent risk factor. 

125-151 In this study, two participants discontinued DTG because of NP-AEs (4.6%), 

which is consistent with published cohorts (1.4-7.2%). However, when investigating 

sleep quality and Cogstate status in those who continued the drug, we only observed a 

small increase in PSQI scores at D28, which resolved by D90, and a non-significant 

trend towards an increase in FSS score. Other scores remained stable or improved 

following the introduction of DTG. Whilst the one subject with PK measurements who 

withdrew secondary to NP-AEs had elevated levels of DTG, we did not find any 

association between DTG PK parameters and changes in sleep scores in the remaining 



 

 68 

subjects over time, which is in keeping with observations from Riva and Hoffman.259, 

151 There were also no changes in sleep scores in subjects with very high drug 

concentrations in whom, surprisingly, cognition improved significantly. These 

interesting findings suggest that the mechanisms of DTG-related neurotoxicity are 

likely to be more complex than a simple linear or threshold-defined PK relationship 

and may relate to a combination of factors that include pharmacogenetic, immune 

and/or functional predispositions. Of interest and mentioned in the introduction, 

Yagura et al. and reported that DTG C24 (≥1.06 µg/mL) correlated with CNS side 

effects in younger Japanese PLWH. No significant difference in DTG concentration 

was, however, observed with individual symptoms or insomnia. The researchers 

subsequently reported a weak association with UGT1A1*6 and UGT1A1*28 alleles.148 

 

Capetti et al. found DTG-related sleep disorders resolved in some patients switching 

to morning dosing (0.9% vs 3.5%).134 In the study reported here, subjects were dosed 

in the morning to allow for steady state PK measurements; this could partially explain 

the absence of new sleep disturbances, although other researchers report unchanged 

rates of NP-AEs with morning dosing.148, 241 The present subject population was a 

group of only mildly sleep-disturbed individuals from baseline, which may also 

partially explain the lack of positive findings in those who completed the study. 

Overall, whilst sleep impairment rates (PSQI >5) at baseline, matched that historically 

reported in the HIV literature (44-51%), scores were only just in the lower range of 

abnormal (≤7). Additionally, the prevalence of subjects with moderate insomnia (ISI) 

in this cohort (7-21%) is below that previously reported in PLWH.242 
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Controlling for a switch from EFV did not change the lack of positive results; this 

likely to be due to the fact that the EFV subjects in this study were stable on it and are 

therefore a self-selected group of patients who do not experience major sleep 

disturbances on EFV. 

 

There are limitations to this study. Subjects were predominantly male, thereby not 

fully representative of real-life cohorts. DTG NP-AEs are thought to be higher in 

women, although it is an independent risk factor.  Importantly, the study was not 

powered to detect changes in sleep quality but for the ability to detect PK differences 

between younger and older PLWH, PD results should therefore be interpreted with 

caution (although the numbers mirrored previous HIV sleep studies242 and consistency 

across sleep tools (measuring the same effect) suggest that results are accurate). 

Furthermore, the use of self-reported questionnaires may compromise intra- and inter-

subject consistency and lead to recall bias. The effect of suggestion may also introduce 

bias as was proposed by the authors of the SINGLE trial (EFV vs DTG)69 to explain 

higher rates of DTG-related sleep disturbances. Although validated in the general 

population, the sleep questionnaires used in this study are not validated in aging 

PLWH. Nevertheless, a good correlation between direction changes reflects good 

inter-questionnaire reliability. Finally, the use of historical controls is a limitation, 

which should be addressed in future studies with a larger and active control arm. 

 

The strengths of this study lie in its prospective and controlled design, investigating a 

special population in need of data, which is growing in size and requires appropriate 

HIV treatment tailoring. Additionally, it is the first to characterise detailed sleep and 

cognitive data in PLWH following the introduction of Triumeq® and to explore the 
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DTG PK/PD relationship in aging PLWH. The use of multiple questionnaires also 

allowed a more comprehensive evaluation of sleep and its effects than previously 

reported. 

 

In conclusion, a significantly higher DTG Cmax was seen in PLWH ≥60 vs younger 

subjects. The discontinuation rate was similar to previous real-life reports but the Cmax 

increase was not associated with sleep or cognitive decline over six months. This data 

informs physicians and patients on the safety and tolerability of DTG in older patients, 

particularly following the early period where careful monitoring remains 

recommended.138
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CHAPTER 3 

Exposure of Dolutegravir and of 

Cobicistat-boosted Elvitegravir and 

Protease Inhibitors Following Cessation 

of Drug Intake 
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3.1. INTRODUCTION 

Despite advances in antiretroviral therapy (ART) facilitating better adherence to HIV 

treatment, delay or omitted doses still occur, potentially leading to drug 

underexposure, virological failure and selection of drug-resistance mutations, 

conditioning future choice of ART. Therefore, plasma PK data after cessation of ARV 

drugs are important to understand and guide the management of late and missed doses, 

particularly in drugs, such as the protease inhibitors and the integrase inhibitors, that 

are used in complex cases of viral resistance, poor adherence and extensive 

antiretroviral treatment experience.56, 260, 261 Drug persistence in plasma is dependent 

on its half-life (which itself depends on clearance, CL, and volume of distribution, 

V).262 ARV agents with longer half-life may be more forgiving and allow for forgotten 

doses, especially if drug concentrations remain above therapeutic concentrations until 

the patient reinitiates drug intake. 

 

In addition to information on ‘forgiveness’, PK data after cessation of intake may also 

inform the appropriateness of specific compounds for HIV pre-exposure prophylaxis 

(PrEP) and for alternative treatment strategies tailored to facilitate adherence, such as 

described in the FOTO and  BREATHER studies.263 The former demonstrated that an 

ARV strategy that includes structured, short-cycle, treatment interruptions (dosing for 

5 days consecutively followed by a 2-day break) with ART containing TDF/FTC/EFV, 

all long t1/2 agents, was non-inferior in HIV-infected adults to continued daily therapy 

and resulted in no virological failures, whilst being preferred by patients.263 The 

BREATHER study, carried out in both, LMIC and high-income countries (HIC), 

demonstrated similar efficacy of the same strategy in adolescents264 
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In vivo data for the InSTIs, DTG and EVG/COBI, concentration decay after intake 

cessation have not been previously described. Neither have they been investigated in 

the PIs, DRV and ATV, when they are boosted by COBI rather than RTV.  This 

chapter describes two pharmacokinetic tail studies in HIV-negative healthy volunteers 

that aim to address these gaps in pharmacokinetic knowledge.  

 

InSTIs are the newest ARV class approved and as described earlier, they are 

increasingly favoured over older drug classes thanks to their high efficacy and 

tolerability.265 EVG, is prescribed in combination with the CYP3A4 inhibitor, COBI, 

which enhances EVG exposure and enables its once-daily dosing, whilst DTG does 

not require pharmacological boosting. Both are available in a FDC taken once-daily, 

thereby facilitating potential for adherence.266-268 

 

Conversely, most PIs do require pharmacological boosting.260 RTV-boosted PIs such 

as ATV and DRV have been used for many years and remain an instrumental option 

as third agents in the management of HIV. As discussed in chapter 1, advantages of 

pharmacological boosting include increased drug exposure and a prolonged half-life 

allowing OD dosing, and in the case of PIs, achieving a high genetic barrier to 

resistance.260 COBI, the newer pharmacokinetic enhancer lends itself to co-

formulation and lacks enzyme-inducing activity, thereby reducing pill burden and 

potentially offering a better drug interaction profile than RTV.198, 199 At 150 mg OD, 

it provides bioequivalent exposures of ATV (300 mg OD) and DRV (800 mg OD) 

compared with those observed with 100 mg of RTV OD.198, 199, 204, 211  

 

Previously published data on the pharmacokinetic forgiveness of OD RTV-boosted 
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DRV and ATV, showed a favorable ATV PK tail and a slight increase in decline rate 

for both protease inhibitors as RTV concentrations decrease.269 

 

The objectives of the two studies described below were to independently evaluate the 

plasma PK of once-daily InSTIs, DTG and EVG/COBI, up to 9 days (216 hours) 

following cessation of drug intake and the plasma PK of once daily PIs, ATV and 

DRV, boosted by COBI up to 72 hours following cessation of intake, in healthy 

volunteers. 

3.2. METHODS 

3.2.1. Participants 

Written informed consent was obtained from male and non-pregnant, non-lactating 

female healthy volunteers aged between 18 and 65 years old and with a BMI between 

18-35 kg/m2. Participants were excluded if they had any significant acute or chronic 

medical illness, abnormal physical examination, ECG or clinical laboratory 

determinations; positive screens for HIV, hepatitis B or C; current or recent (within 

three months) gastrointestinal disease; clinically relevant alcohol or drug use that the 

investigator felt would adversely affect compliance with trial procedures; exposure to 

any investigational drug or placebo within three months of the first dose of the study 

drug; use of any other drugs, including over the counter medications and herbal 

preparations, within two weeks before the first dose of the study drug; and previous 

allergy to any of the constituents of the pharmaceuticals administered  during the trial.  

3.2.2. Study design 

Both studies were open-label, two-phase PK trials carried out at the Clinical Trial Unit 
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of the St. Stephen’s Centre, Chelsea, and Westminster Hospital, London, United 

Kingdom. Participant involvement was 38 days in Study 1 (DTG and EVG/COBI) and 

33 days in study 2 (ATV/COBI and DRV/COBI), excluding screening and follow up 

visits.  

At screening, participants had a clinical assessment and routine laboratory 

investigations performed. The safety and tolerability of study medications were 

evaluated throughout the trial (on safety visit days, PK days and at follow-up) using 

the 2004 NIAID Division of AIDS table for charaterising and grading the severity of 

adult and paediatric AEs described previously. 

3.2.2.1. Study 1 (InSTIs):  

After successful screening, participants were administered DTG 50 mg (Tivicay®) 

OD for 10 days for the first phase of the study. They were admitted to the unit on D10. 

Blood samples for DTG PK assessment were taken before the final dose in the morning 

of D10 and at 2, 4, 8, 12, 24, 36, 48, 60, 72, 96, 120, 144, 168, 192- and 216-hours 

post-dose. After a washout period of nine days, on day 20, all subjects were 

administered fixed-dose combination TDF/FTC/EVG/COBI 245/200/150/150 mg 

(Stribild®) OD for 10 days for the second phase of the trial and blood samples were 

taken at the same intervals as above, prior to and over 216 hours following the final 

dose. On the PK days, study medication intake was witnessed and taken with a 

standardised breakfast (626 kcal) and 240 mL of water and subjects were admitted for 

12 hours, after which they could leave the unit and return at specified intervals to 

complete sampling over nine days. 

3.2.2.2. Study 2 (PI/COBI): 

After successful screening, volunteers were administered fixed-dose combination 
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ATV/COBI 300/150 mg (Evotaz®) OD in the morning for 10 days. On D10, 

participants were admitted and blood samples for ATV and COBI PK assessment were 

taken pre-dose and at 1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 30, 36, 48, 60, and 72 hours 

post-dose. After a washout period of seven days, all subjects were administered fixed-

dose combination DRV/COBI 800/150 mg (Rezolsta®) OD for 10 days. On study 

D30, sampling for DRV and COBI plasma PK was taken pre-dose and at 1, 2, 3, 4, 6, 

8, 10, 12, 16, 20, 24, 30, 36, 48, 60, and 72 hours post-dose. On the PK days, study 

medication intake was witnessed and taken with a standardized breakfast (626 kcal) 

and 240 mL of water. Study staff assessed compliance with study drug administration 

using direct questioning and pill count, throughout both studies.  

3.2.3. Ethics 

The study protocol for study 1 was approved by the London Westminster Research 

Ethics Committee, London, United Kingdom whilst the study protocol for study 2 was 

approved by the Bloomsbury Research Ethics Committee, London, United Kingdom. 

Both studies were also approved by MHRA UK and were conducted according to 

Good Clinical Practice and the Declaration of Helsinki (Study 1: NCT02219217; 

Study 2: NCT02589158).  

3.2.4. Plasma collections for DTG, EVG, COBI, ATV and DRV 

Blood samples were collected into lithium heparin containing-blood tubes (6 mL) at 

each time-point, immediately inverted several times and then kept on ice or 

refrigerated until centrifugation. Within 30 minutes of blood collection, each blood 

sample was centrifuged for 10 minutes at 2000 g at 4°C. Plasma was then aliquoted 

equally into three 2.0 mL tubes (Sarstedt Germany) and stored at -20°C. Samples were 

shipped on dry ice to the Liverpool Bioanalytical Facility for analysis. The laboratory 
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is Good Clinical Laboratory Practice-accredited and participates in an external quality 

assurance scheme (KKGT, the Netherlands).270, 271 

3.2.5. Quantification of plasma DTG, EVG, COBI, ATV and DRV 

Quantifications of DTG, EVG, COBI, ATV and DRV in plasma were determined 

using liquid-liquid extraction (with methyl tertiary-butyl ether) of analyte and internal 

standard (d5-DTG, d6-EVG, quinoxaline, ATV-d5 and DRV-d9) using validated high-

pressure liquid chromatography tandem mass spectrometry and analytical conditions 

described by the Liverpool University group in the literature.272, 273  

 

The lower limit of quantification (LLQC) was 0.75 ng/mL for all plasma analyses in 

study 1, 10 ng/mL for ATV and 15 ng/mL for DRV in study 2. For concentrations 

below the assay limit of quantification, a value of one-half of the quantification limit 

was used in both studies. 

 

In study 1, the assay was validated over a calibration range of 10-4000 ng/mL and 

0.75-20 ng/ml (for concentrations below the LLQC of the initial assay). Accuracy 

(percentage bias) was between 98.0% and 104.6% (DTG), 101.8% and 106.7% (EVG), 

99.8% and 106.2% (COBI) and precision was between 4.6% and 6.2% (DTG), 4.3% 

and 5.6% (EVG) and 5.0% and 6.0% (COBI).   

 

In study 2, the assay was validated over a calibration range of 3.7-500 ng/mL for all 

three analytes. Accuracy (percentage bias) was between 99.5% and 108.2% (ATV), 

94.2% and 101.2% (DRV) and 92.3% and 104.0% (COBI), and precision was between 

2.8% and 5.4% (ATV), 4.4% and 6.0% (DRV) and 3.1% and 6.5% (COBI). 
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3.2.6. Pharmacokinetic and statistical analysis  

The calculated PK parameters for DTG, EVG, COBI, ATV and DRV were the plasma 

Cmax, AUC0-24 and C24. The half-life was determined from the elimination phase within 

the normal dosing interval of 0 to 24 hours and as a terminal elimination half-life to 

the last measurable concentration within 216 hours for DTG and EVG/COBI and 

within 72hrs for ATV/COBI and DRV/COBI. All PK parameters were calculated 

using actual blood sampling time and non-compartmental modelling techniques 

(WinNonlin Phoenix, version 6.1; Pharsight Corp., Mountain View, CA). 

 

Descriptive statistics, including GM and 90% or 95% CI were calculated for all 5-drug 

PK parameters. GMs were compared to the suggested therapeutic targets established 

in vitro (DTG, EVG and DRV) or in vivo (ATV), currently available in the literature. 

For the integrase inhibitors, this is the population protein binding-adjusted (PA) 

inhibitory concentration at 90% (IC90) for wild type (WT) virus for DTG (64 ng/mL) 

and the PA-IC95 for EVG (45 ng/mL). For the PIs, the suggested therapeutic target is 

the consensus minimum trough concentration (equivalent to 10 times the protein-

binding-corrected IC50 for WT virus), which is 150 ng/mL for ATV for wild type virus 

and 550 ng/mL for DRV for resistant virus, as defined at the 7th International 

Workshop on Clinical Pharmacology of HIV.76, 274-276 Inter-individual variability in 

drug PK parameters was expressed as a percentage coefficient of variation [CV%]. 

3.3. RESULTS 

3.3.1. Study populations 

3.3.1.1. Study 1 
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Seventeen participants completed all phases of study 1. The median (range) age was 

39 (26-52) years, and the median BMI (range) was 26 (19-34) kg/m2. Twelve 

participants were female; nine described themselves as Caucasians and eight as Black.  

3.3.1.2. Study 2  

Sixteen volunteers completed all phases of study 2. Median (range) age and BMI were 

38 (24-54) years and 25 (22-31) kg/m2, respectively. Nine were female. Nine described 

themselves as Caucasian, six as Black and two as Asian.  

3.3.2. Drug plasma pharmacokinetics 

3.3.2.1. Study 1: DTG and EVG/COBI  

PK parameters for DTG, EVG and COBI are summarised in tables 3.1 and 3.2. GM 

plasma concentration vs time curves are shown in figure 3.1. 

Dolutegravir plasma pharmacokinetics 

The GM terminal elimination half-life (90% CI) for DTG was 23.1 hours (19.7-26.6). 

This value was higher than the half-life measured over the dosing interval of 24 hours 

(14.3 hours; 12.9-15.7).  

 

The PA-IC90 for DTG is 64 ng/mL.76 GM plasma DTG concentrations were measured 

above this value in all participants, at 24, 36, and 48 hours post-cessation of drug 

intake. At 60- and 72-hours post-drug intake cessation, 16 out of 17 subjects had DTG 

concentrations above the PA-IC90. At 96 hours post-dose, DTG GM concentration fell 

below the PA-IC90 (52.2ng/ml, range 6.9-153.0), with four subjects remaining above 

the PA-IC90 (table 3.1; figure 3.2). 
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Elvitegravir plasma pharmacokinetics 

EVG GM terminal elimination half-life (90% CI) to the last measurable concentration 

was 5.2 hours (4.7-6.1), which was lesser than the half-life measured over the dosing 

interval of 24 hours (10.8 hours, 9.7-13.0).  

 

The suggested PA-IC95 for EVG is 45 ng/mL.9 All subjects had EVG concentrations 

above the PA-IC95 at 24 hours post-dose. EVG GM plasma concentration was above 

the PA-IC95 36 hours post-drug cessation (GM 57 ng/mL, range from 11 to 296 

ng/mL), however only 11/17 subjects had EVG concentrations above it. The EVG GM 

concentration fell below the PA-IC95 at 48, 60- and 72-hours post-drug intake cessation 

and EVG concentrations were below the lower limit of quantification in all study 

participants at 96 hours post-dose (table 3.1; figure 3.3). 

Cobicistat plasma pharmacokinetics when combined with EVG 

The GM terminal elimination half-life (90% CI) to the last measurable concentration 

for COBI was 18.2 hours (16.2-26.0). This was higher than the half-life measured over 

the dosing interval of 24 hours (3.5 hours, 3.3-3.9) (table 3.2; figure 3.1).
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Figure 3.1: GM plasma concentration vs time curves for DTG, EVG and COBI
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Table 3.1: Summary of dolutegravir and elvitegravir concentrations (expressed as GM) and detectability at significant time points 

Hour post-dose Variable Dolutegravir (PA-IC90 64 ng/mL) Elvitegravir (PA-IC95 45 ng/mL) 

24hrs 
GM concentration (ng/mL) 1324 419 

Proportion detectable in plasma 100% (17/17) 100% (17/17) 

Proportion above IC90 or IC95 100% (17/17) 100% (17/17) 

36hrs 
GM concentration (ng/mL) 711 57 

Proportion detectable in plasma 100% (17/17) 100% (17/17) 

Proportion above IC90 or IC95 100% (17/17) 65% (11/17) 

48hrs 
GM concentration (ng/mL) 427 8.3 

Proportion detectable in plasma 100% (17/17) 94% (16/17) 

Proportion above IC90 or IC95 100% (17/17) 0% 

60hrs 
GM concentration (ng/mL) 240 2.5 

Proportion detectable in plasma 100% (17/17) 76% (13/17) 

Proportion above IC90 or IC95 94% (16/17) 0% 

72hrs 
GM concentration (ng/mL) 131 1.7 

Proportion detectable in plasma 100% (17/17) 53% (9/17) 

Proportion above IC90 or IC95 94% (16/17) 0% 

96hrs 
GM concentration (ng/mL) 52.2 — 

Proportion detectable in plasma 100% (17/17) 0% 

Proportion above IC90 or IC95 23.5% (4/17) — 
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Figure 3.2: DTG Plasma concentrations over time and proportion of subjects with DTG concentration above PA-IC90 at key time points. Top right corner: concentration-time 
curve for each individual subject showing spread of the concentration decay data
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Figure 3.3: EVG Plasma concentrations over time and proportion of subjects with DTG concentration above PA-IC90 at key time points 

Time (h) 

45 ng/mL  

1

10

100

1000

10000

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216

48 h: GM 8.3 ng/ml (range from <LLQ-21.7, 16/17 detectable but all below PA-IC95)

36 h: GM 57 ng/ml  (range from 11 to 296, above PA-IC95 in 11/17)

45ng/mL

EVG (GM 90%CI) 

[E
V

G
] (

ng
/m

L
) 24 h: GM 419 ng/ml (range from 182 to 666, all above PA-IC95) 



 

 86 

 
DTG EVG COBI 

PK parameters 
GM (90% CI) 

C
V

 %
 

GM (90% CI) 

C
V

 %
 

GM (90% CI) 

C
V

 %
 

tMax (hours) 3.1 
(2.4-3.9) 

55 4.5 
(4.1-4.6) 

39 3.1 
(2.9-3.7) 

30 

C
max (ng/mL) 3908 

(3571-4245) 
21 1675 

(1557-1884) 
24 127 

(1184-1437) 
24 

AUC0-24 
(ng.h/mL) 

55505 
(51368-59642) 

18 22965 
(21483-25592) 

22 10686 
(9692-12522) 

32 

C24 (ng/mL) 1324 
(1178-1470) 

27 419 
(387-501) 

32 28 
(24-48) 

85 

C48 (ng/mL) 427 
(362-499) 

35 8 
(8-15) 

78 7 
(6-9) 

47 

t
1/2 

(0-24) (hrs) 14.3 
(12.9-15.7) 

23 10.8 
(9.7-13.0) 

31 3.54 
(3.3-3.9) 

20 

t
1/2 

(last) (hrs) 23.1 
(19.7-26.6) 

16 5.2 
(4.7-6.1) 

18 18.2 
(16.2-26.0) 

57 

C48: concentration 48 hours post-dose 

Table 3.2: Plasma dolutegravir and elvitegravir/cobicistat PK parameters 

3.3.2.2. Study 2: ATV/COBI and DRV/COBI 

ATV and DRV PK parameters are summarised in table 3.3. 

Atazanavir plasma pharmacokinetics 

ATV GM plasma concentration vs time curves when combined with COBI are shown 

in figure 3.4. The GM terminal elimination half-life to 72 hours of ATV was 6.77 

hours (95% CI 6.2-7.5). This value was lower than the half-life measured over the 

dosing interval of 24 hours (GM 9.69 hours; 95% CI 9.2-12.8).  

 

All subjects had ATV concentrations above the suggested target 24 hours post-dose 
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(GM [range] 759.2 [249-2667] ng/mL). Out of 16 subjects, 2 and 13 had 

concentrations below the target at 30 and 48 h post-dose, respectively (GM 407.0 and 

65.9 ng/mL, table 3.4). The inter-individual variability in ATV C24 was 73%. 

Darunavir plasma pharmacokinetics 

Darunavir GM plasma concentration vs time curves when combined with COBI are 

shown in figure 3.4. DRV GM terminal elimination half-life was 6.4 hours (95% CI 

5.9-7.0). This value was lower than the half-life measured over the dosing interval of 

24 hours (GM 10.4h; 95% CI 9.2-12.9).  

 

Out of 16 subjects, 3 had DRV concentrations below the suggested target 24 hours 

post-dose and 11 had concentrations lower than the target at 30 hours (GM [range] 

1032.6 [373-3359] and 381.7 [97-2057] ng/mL respectively; table 3.4). Of note, the 

GM DRV concentration was 1202 ng/mL, at 20 hours, the last sampling time before 

24 hours. The inter-individual variability in DRV C24 values was 65%. 

Cobicistat plasma pharmacokinetics 

Steady-state COBI PK parameters when combined with ATV and DRV are reported 

in table 3.5. When combined with ATV, the GM terminal elimination half-life to the 

last measurable concentration for COBI was 4.2 hours (95% CI 3.9-4.7) and over the 

dosing interval of 24 hours was 4.4 hours, 95% CI 4.0–5.2).These were higher than 

when COBI was combined with EVG and with DRV.  

When combined with the latter, GM terminal elimination half-life to the last 

measurable concentration of COBI was 3.6 hours (95% CI 3.3-4.0) and was 3.8 (95% 

CI 3.5-4.3) over the dosing interval of 24 hours.  
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PK parameters ATV 300mg OD  

  
t1/2 

(0-24h) 
t1/2 

(0-Clast) 
Cmax 

(ng/mL) 
C24 

(ng/mL) 
Clast 

(ng/mL) 
AUC0-24 

(ng.h/mL) 
AUC0-Clast 
(ng.h/mL) 

GM 9.69 6.77 3718.85 759.20 6.36 37713 46129 

low 
95% 9.24 6.22 3308.00 612.57 1.29 32661 38592 

up 
95% 12.83 7.54 4940.55 1290.07 19.00 51556 67844 

Min 6.32 5.42 844.97 256.10 5.00 11414 14058 

Max 19.26 9.96 7282.82 2666.54 77.28 83763 128323 

CV 
(%) 33 20 40 73 178 46 56 

 

 
 
 
PK parameters DRV 800mg OD  

  
t1/2 

(0-24h) 
t1/2 

(0-Clast) 
Cmax 

(ng/mL) 
C24 

(ng/mL) 
Clast 

(ng/mL) 
AUC0-24 

(ng.h/mL) 
AUC0-Clast 
(ng.h/mL) 

GM 10.41 6.35 5515.02 1032.56 8.80 58100 66710 

low 
95% 9.18 5.88 4949.07 837.92 6.01 51464 58145 

up 
95% 12.94 7.03 6566.03 1625.74 14.44 70391 83214 

Min 5.23 4.25 2855.55 372.96 7.50 26404 29317 

Max 19.15 8.48 8365.97 3359.34 41.13 111312 141982 

CV 
(%) 35 18 29 65 84 32 36 

Table 3.3: Plasma atazanavir (ATV) and darunavir (DRV) steady state pharmacokinetic (PK) 
parameters, expressed as geometric mean (GM) and 95% confidence intervals (CI), range (minimum, 
Min; maximum, Max) and coefficient of variation (CV), over 24 and 72 hours)



 

 89 

 

Figure 3.4: Plasma concentration vs time curves of atazanavir (ATV) and darunavir (DRV) when boosted by 150 mg of cobicistat (COBI) over 72 hours.
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 Hours post-dose 

 24 30 36 48 

ATV GM 
(range; ng/mL) 

759 

(249-2667) 

407 

(148-1679) 

201 

(65-1093) 

66 

(13.5-949) 

No of subjects 
below target 0/16 2/16 5/16 13/16 

DRV GM 
(range; ng/mL) 

1033 

(373-3359) 

382 

(97-2057) 

109 

(LLQ-594) 

45 

(LLQ-196) 

No of subjects 
below target 3/16 11/16 15/16 16/16 

Table 3.4: Plasma concentrations of atazanavir (ATV) and darunavir (DRV) measured at 24, 30, 36, 48 
hours post-dose, expressed as geometric mean (GM) and range, and number (No) of subjects below 
target per time-point. 

3.3.3. Safety and tolerability 

No serious breaches to the protocols were recorded in either study. Study drugs in 

study 1 were well tolerated and no grade 3 or 4 adverse events were reported.  

 

During study 2, treatment was generally well tolerated, and no serious adverse events 

occurred during the study. As expected because extensively described in the 

literature,277 the most common adverse events observed throughout the study were 

scleral icterus and hyperbilibirubinaemia (during the ATV/COBI phase). No other 

clinically relevant changes in laboratory parameters were reporte
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Table 3.5: Plasma cobicistat (COBI) steady state pharmacokinetic (PK) when combined with atazanavir 
and with darunavir, expressed as geometric mean (GM) and 95% confidence intervals (CI), range 
(minimum, Min and maximum, Max) and coefficient of variation (CV), measured over 24 and 72 hours.

 PK parameters COBI 150mg combined with atazanavir 

 t1/2 
(0-24h) 

t1/2 
(0-Clast) 

Cmax 
(ng/mL) 

C24 
(ng/mL) 

Clast 
(ng/mL) 

AUC0-24 
(ng.h/mL) 

AUC0-Clast 
(ng.h/mL) 

GM 4.43 4.21 1408.02 49.59 5.00 10554 10924 

low 
95% 3.95 3.87 1293.37 42.07 5.00 9589 9905 

up 
95% 5.19 4.69 1577.76 79.63 5.00 12059 12535 

Min 3.14 3.21 929.72 14.15 5.00 7826 8145 

Max 8.39 6.13 1986.37 156.24 5.00 14681 15068 

CV 
(%) 28 19 20 63 0 23 24 

  
PK parameters COBI 150mg combined with darunavir 

 t1/2 
(0-24h) 

t1/2 
(0-Clast) 

Cmax 
(ng/mL) 

C24 
(ng/mL) 

Clast 
(ng/mL) 

AUC0-24 
(ng.h/mL) 

AUC0-Clast 
(ng.h/mL) 

GM 3.81 3.62 1250.25 27.56 5.00 9532 9681 

low 
95% 3.49 3.34 1149.77 22.29 5.00 8678 8791 

up 
95% 4.29 3.98 1392.73 51.37 5.00 10857 11079 

Min 2.59 2.59 932.46 5.00 5.00 6167 6254 

Max 5.60 5.55 1867.32 120.90 5.00 14426 14933 

CV 
(%) 21 18 20 81 0 23 23 
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Figure 3.5: Atazanavir (ATV) and Darunavir (DRV) concentrations vs time curves when combined with cobicistat (COBI) compared with ritonavir (RTV) (Boffito et al. 2011) 
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3.4. DISCUSSION 

In the first study, the steady-state plasma pharmacokinetics of DTG 50 mg OD and 

EVG 150 mg OD boosted by COBI (150 mg) over 10 days following drug intake 

cessation was reported, in 17 male and female healthy volunteers. This data fully 

characterised, for the first time, the PK forgiveness of the two newest InSTIs (at the 

time of publishing). Following achievement of steady-state, GM DTG concentrations 

remained above the suggested plasma PA-IC90 of 64 ng/mL for up to 72 hours post-

drug intake cessation, with most subjects (94%) showing concentrations above the PA-

IC90 at this time. The GM concentration for EVG was above the suggested PA-IC95 of 

45 ng/mL at 24- and 36-hours post-drug cessation, with 65% of participants above this 

cut-off at the latter time point, but it had fallen below the PA-IC95 by 48 hours post-

dose (with no participant above this cut-off then). At the time of the study, there were 

no established minimum effective therapeutic concentrations for either agents. Being 

above the (partially PA) in-vitro IC90 or IC95 does not imply that exposure is sufficient 

for a fully effective in vivo drug exposure, especially when optimal drug exposures 

are needed during induction of virological control. More recently, an in-vivo minimum 

effective concentration (MEC) of 324 ng/mL has been suggested for DTG, based on 

data from the initial 10-day monotherapy study, which showed that, with a Hill Factor 

of 1, it was associated with 90% of Emax.57, 59 If this MEC is used, GM DTG Cmin 

remained therapeutic for over 48 hours in our study, falling below target at 60 hours. 

Plasma inter-individual variability (CV) was 27% in DTG C24 and 32% in EVG C24, 

which is consistent with previously published data.57 These values are considerably 

lower than those published for the third available InSTI, raltegravir (53%–220%).278 
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Interestingly, whilst DTG is not dependent on a booster and concentrations are 

persistent in the systemic circulation for a prolonged period; concentrations of EVG 

were observed to drop when the concentrations of its booster, COBI, fell below a 

certain level. The terminal t1/2 (0 to 216 h) was longer than the t1/2 within the dosing 

interval (0–24 h) for DTG, whilst the opposite was true for EVG (23.1 vs 14.3 hours 

and 5.2 vs 10.8 hours, respectively). One explanation for this phenomenon could be 

saturation of metabolic processes at higher concentrations, meaning a change in rate 

of CL as COBI concentrations fall to non-saturating levels.  

 

Of note, the single-tablet formulations of DTG and EVG contain partner NRTIs of 

varying t1/2 values. It has been previously shown that the plasma t1/2 of ABC and 3TC 

are 3–4 hours and 5.7 hours, respectively, with intracellular half-lives of the active 

triphosphorylated metabolite of ABC (carbovir) and the active triphosphorylated 

metabolite of 3TC being 14.1 hours and 19 hours, respectively.279 Exposures do differ 

between male and female subjects. The longer t1/2 of FTC and TDF, both in plasma 

and peripheral blood mononuclear cell (PBMC; 31 hours and 37 hours and 164 hours 

and 39 hours, respectively)280-283 may also be important to the clinical forgiveness of 

these regimens and the specific resistance mutations that are observed at failure. DTG 

is currently available in co-formulation with ABC and 3TC; it is interesting to note 

that the t1/2 of carbovir and the active triphosphorylated metabolite of 3TC match 

DTG’s t1/2 both within the dosing interval (14 hours) and to the last measurable 

concentration (23 hours). 

 

One of the limitations of study 1 is that DTG was administered alone, whilst 

EVG/COBI were co-administered as part of a single tablet combination therapy with 
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TDF/FTC. DTG administered within an ABC/3TC FDC was not considered justified, 

based on the risk of ABC hypersensitivity in HIV-negative subjects 284 and the known 

lack of effect of backbone NRTIs on the pharmacokinetics of either EVG or DTG. 

Additionally, it is not impossible that a minority of patients had residual exposure to 

low-dose DTG at the start of the EVG phase of the study, but this exposure is likely to 

be minimal, as PK sampling for EVG was carried out 19 days after the last dose of 

DTG and, importantly, DTG has no known impact on EVG/COBI metabolic 

pathways. 

 

The second study reports the steady-state PK of COBI-boosted ATV 300 mg and DRV 

800 mg in plasma over 72h following drug intake cessation in HIV-negative healthy 

volunteers, to describe the PK forgiveness of these two commonly used PIs when 

boosted by COBI (150mg). Concentrations of ATV were measurable in all subjects 48 

hours post-dose and in 11 and 2 subjects 60- and 72-hours post-dose. Importantly 

14/16 subjects had concentrations above the suggested minimum effective 

concentration (MEC) of 150 ng/mL and the remaining two had concentrations close 

to the MEC (148 ng/mL) 30 hours post-dose, suggesting that a 6-hour drug intake 

delay would not compromise optimal drug exposure and efficacy. Similarly, DRV 

concentrations were measurable in 13/16, 6/16 and 2/16 subjects 48, 60- and 72-hours 

post-dose, respectively. However, 3/16 study individuals had concentrations below the 

suggested 550 ng/mL cut-off 24 hours post-dose and only 5 had concentrations above 

550 ng/mL 30 hours post-dose. Whether this is clinically significant is unclear and 

more data in patients who are poorly adherent to DRV/COBI are needed in the near 

future to help clinicians with prescribing the optimal booster in certain complex 

clinical situations (e.g. suboptimal viral replication suppression).  
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Notably, measurements of ATV PK forgiveness in the presence of COBI were similar 

to those in the presence of RTV where ATV terminal elimination half-life was 6.77 

hours with COBI vs 6.74 hours with RTV (figure 3.5).269  DRV terminal elimination 

half-life was measured at 6.35 hours with COBI vs 6.48 hours with RTV (figure 3.5). 

While there is no doubt of PI robustness in ARV-naïve PLWH, in patients who are 

inclined to poor compliance or harbour viral resistance, PK forgiveness knowledge 

may be particularly important. 

 

In addition, we did not see the small increase in DRV plasma concentration at the end 

of the dosing period (C24) relative to previous time points (i.e.C20) described with both 

RTV and, to a lesser extent, COBI in bioequivalence studies.204, 285 This effect remains 

unexplained; it has been tentatively attributed to either enterohepatic recycling or 

redistribution of cellular DRV into plasma as the effect of RTV or COBI on cellular 

influx or efflux transporters diminishes with dropping concentrations.204 This effect is, 

however, unconfirmed and would require further investigation.  

 

Both COBI and RTV inhibit CYP3A4, thereby reducing the metabolism of 

concomitantly administered PIs and leading to enhanced drug exposure.198 Although 

very similar, the two drugs are not identical and their relationship with the therapeutic 

agent they enhance may explain concentration decay patterns. Importantly, the rates 

of decline of both ATV and DRV slightly increased as COBI concentrations declined. 

COBI itself is metabolised by CYP3A4 and when given with ATV, a moderate 

CYP3A4 inhibitor,189 it achieves slightly higher concentrations than when co-

administered with DRV, which, although also a CYP3A4 inhibitor, may have a lesser 
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effect.189 COBI terminal half-life was 4.21 hours with ATV and 3.62 hours with DRV, 

therefore shorter than RTV terminal half-life with ATV (5.03 hours) and DRV (6.30 

hours), respectively. The inter-individual variability (CV) in ATV and DRV C24 was 

73% and 65% with COBI, therefore similar to those previously measured with RTV 

(81% and 62%, respectively).269 

The cut-off values used in study 2 were those used in the published PK tail study for 

ATV and DRV when boosted with RTV, to allow for direct comparison between the 

studies.269 They were the ATV MEC (150 ng/ml, 10-fold the in-vitro PA-IC50 

calculated during drug development) and the DRV PA-EC50 for protease inhibitor-

resistant strains (550 ng/ml) used as a reference by TDM services.276 Of note, for 

treatment-naïve patients with wild-type virus, the DRV target is a lower 200 ng/ml.286, 

287 

 

There are limitations common to both studies. They were carried out in healthy 

volunteers so as not to impose ARV dose delays in patients infected with HIV. As 

such, PK/PD deductions or predictions on the in-vivo concentrations needed to 

maintain efficacy cannot be robustly drawn. Ideally, pharmacodynamics data in HIV 

infected participants are required to draw definite conclusions on how late a drug dose 

can be or how many drug doses can be missed before efficacy is lost. 

Additionally, discrepancies in ARV drug pharmacokinetics between healthy 

volunteers and people living with HIV have been previously described, particularly 

for the PIs.288 Such differences are thought to be related to physiological variability in 

several parameters between the two populations, including CYP450 activity and α-1-

acid glycoprotein expression, and must be kept into consideration when interpreting 

data from healthy volunteers.288 With regards to the InSTIs, intensive PK data from 
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licensing studies suggest that DTG and EVG concentrations may be moderately lower 

in healthy compared to HIV-infected subjects, but this is not thought to be 

significant.57 Drugs in both studies were well tolerated, with adverse events limited to 

expected increases in indirect bilirubin levels during the ATV/COBI study phase. 

 

PK forgiveness data is important, particularly in diseases that are chronic, where sub-

optimal compliance to medications is common.289 In the context of HIV infection, this 

is especially salient since therapy is life-long and insufficient drug exposure from 

missed doses can lead to the emergence of drug-resistant HIV strains and limit future 

therapeutic options. Great efforts are made to support and encourage patients with 

respect to the importance of adherence, but it is often unclear how delayed a dose can 

be or how many doses can be omitted before efficacy is lost. Additionally, and as 

previously mentioned, understanding the PK attributes of a drug and, more 

specifically, its PK forgiveness can also allow identification of potential candidates for 

PreP and alternative treatment strategies where optimal dosing frequency needs to be 

characterised. These studies on PK forgiveness address some of these issues and gaps 

in knowledge for commonly used InSTIs and PIs. 

 

In conclusion, these data contribute to understanding whether doses, for the specific 

drugs investigated, can be delayed or missed and, if so, to what extent. In particular, 

marked differences were found in the elimination rates of DTG and EVG following 

treatment interruption. This suggests that clinical differences may emerge in patients 

who have suboptimal adherence. Although, the net risk or benefit of these elimination 

characteristics will depend upon all the components of the regimen taken. 
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4.1. INTRODUCTION 

As discussed in the introduction, triple-drug therapy has been the cornerstone of HIV 

treatment since 1996, leading to unprecedented success in disease control in PLWH. 

With increasingly potent agents, there has, in recent years, been a drive to investigate 

treatment simplification strategies that aim to lessen toxicity, drug interactions and 

cost through reducing the number of drugs taken.100 This is particularly salient since 

the HIV-infected population is aging and, with increasing comorbidities, 

polypharmacy is rising.290 Current available evidence favours dual therapy over 

monotherapy and is most reassuring in suppressed patients who have maintained 

virological control for at least six months on triple therapy.103 

 

DTG and boosted DRV (DRV/b) are both strong players in this paradigm shift and 

both have featured independently in most of the recent dual combinations 

investigated.103 They are the agents with the highest potency and resistance barrier 

within their respective classes and overall,291, 292 meaning that they are also important 

in salvage therapy in patients experiencing treatment failure and harbouring multi-

class drug resistances (BD dosing recommended).72, 293 They have both been paired 

individually with 3TC in dual therapy studies, with promising data in treatment naïve 

and in virologically suppressed patients; this is outlined in chapter 1.106-109, 294-296 DTG 

combined with RPV has also been studied as maintenance therapy in two large RCTs 

(SWORD 1&2) and in smaller cohort studies, showing high efficacy, improved safety 

and cost savings, when used as maintenance therapy (albeit with slightly higher 

discontinuation rates secondary to AEs, 3% vs <1%).112-116, 297 Of note, Diaz et al. 

reported that switching suppressed HIV-infected patients with multiple previous 
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treatment failures to standard dose DTG/RPV OD was effective through to 48 weeks, 

with improved safety profiles.117 

However, the aforementioned options are not appropriate in the context of NRTI-

related long-term toxicities and NRTI/NNRTI-associated resistance mutations.102 In 

this setting, combining a PI and an InSTI offers an appealing NRTI-sparing 

alternative.101, 102 The NEAT001/ANRS143 study found DRV/RTV combined with 

RAL non-inferior to DRV/RTV/TDF/FTC based on clinical and/or virological failure 

at 96 weeks in 800 ART naïve individuals. However, the genetic barrier of the two-

drug regimen in this context was lower than the three-drug regimen, with more 

frequent emergence of resistance in cases of VF, particularly in those with high 

baseline VL.298, 299 Additionally, the SPARE pilot study in already virologically 

suppressed patients, suggested that RAL/DRV/RTV was effective in maintaining viral 

suppression.300 This combination requires twice daily drug intake, whereas combining 

boosted DRV with DTG offers the benefits OD dosing and a high genetic barrier to 

resistance, since both agents have a high affinity for their target enzymes.83, 301, 302 

 

A small number of cohort studies have been published on the use of DTG/DRV/RTV 

in multi-treatment experienced patients.119-121In Canada, Wheeler et al demonstrated 

high tolerability and maintenance of viral suppression after a mean of 12.8 (range 1-

22) months in all of 13 HIV patients with primary transmitted thymidine analogue 

mutation (TAM) resistance, who switched from a complex salvage multi-drug regimen 

to DTG/DRV/RTV.119 Similarly, in Italy, Capetti et al. followed 130 patients, with a 

current or past history of VF and documented viral resistance to one to five ARVs, 

who switched to DTG/DRV/RTV for simplification or rescue therapy. At 48 weeks, 

subjects with viral suppression increased from 60% to 94% and the metabolic impact 
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was favorable.120 A single-point pharmacokinetic (PK) analysis in a subgroup of this 

study (32 subjects) confirmed adequate median C24 for both drugs (DTG 579 ng/mL; 

DRV 3007 ng/mL); the thresholds used were the in vitro PA-IC90 for wild type HIV 

for DTG (64 ng/mL) and the PA-IC50 for PI-resistant viruses, for DRV (550ng/mL).274, 

286 Five subjects were taking darunavir 600 mg BD and three were taking DTG BD 

(the majority of InSTI single mutations cause <10 fold changes in DTG sensitivity, 

BD dosing is recommended, however, in the presence of any InSTI resistance 

associated mutation patterns).60, 76, 303 The DUALIS study, a recent large, prospective, 

interventional RCT (n=320) showed that OD DTG/DRV/RTV maintenance therapy in 

suppressed patient, was non-inferior to continuing DRV-based triple therapy, with 

high rates of maintained VLs and comparable rates of AEs demonstrated.118 An 

intensive PK sub-study over 12 hours was published and described steady-state PK 

parameters for both drugs during co-administration (median Cmax was 3427 ng/mL for 

DTG and 6170 ng/mL for DRV, C12 was 637 ng/mL for DTG and 1245 ng/mL for 

DRV and AUC0-12 was 26809 ng*h/mL for DTG and 49920 ng*h/mL for DRV), C24 

was not measured.304 

 

COBI may be preferable to RTV in some patients, in view of its lower potential for 

drug interactions than RTV and lower pill burden when co-administered.198-200 

However, PK data for DTG co-administration with DRV/COBI are very limited. DTG 

C24 doubled, when measured at least 10 days after switching DRV/RTV to DRV/COBI 

in a therapeutic drug monitoring (TDM) survey of HIV infected subjects taking DTG 

and DRV (n=12),305 in contrast to a 38% decrease seen in DTG C24 when co-prescribed 

with twice daily DRV/RTV in healthy volunteers.306 
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No intensive PK data have been published to date on DTG/DRV/COBI co-

administration. We, therefore, aimed to describe the steady-state PK of DTG 50 mg 

(Tivicay®) OD and of fixed dose DRV/COBI 800/150 mg (Rezolsta®) OD, over 24 

hours when co-administered in healthy volunteers. 

4.2. METHODS 

4.2.1. Participants 

Eligible participants were male and non-pregnant and non-lactating female healthy 

volunteers aged between 18 and 65 years with a BMI between 18 and 35 kg/m2. 

Participants were excluded if they had any significant acute or chronic medical illness; 

abnormal physical examination, ECG or clinical laboratory determinations; positive 

screens for HIV, hepatitis B or C; current or recent (within three months) 

gastrointestinal disease; clinically relevant alcohol or drug use which the investigator 

felt would adversely affect compliance with trial procedures; exposure to any 

investigational drug or placebo within three months of the first dose of the study drug; 

use of any other drugs, including over the counter medications and herbal preparations, 

within two weeks of the first dose of the study drug; and previous allergy to any of the 

constituents of the pharmaceuticals administered during the trial. 

4.2.2. Study design 

The study design is illustrated in figure 4.1. This was a randomised phase 1, open 

label, 57-day, crossover PK study carried out at the Clinical Trial Unit of the St. 

Stephen’s Centre, Chelsea, and Westminster Hospital, London, United Kingdom. At 

screening, participants had a clinical assessment and routine laboratory investigations 

were performed. After successful screening, eligible participants were randomised to 
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one of two groups. Group one received DTG 50 mg OD for 14 days followed by a 7 

day wash out (days 15 – 21). From day 22 to 35, the co-administration period, they 

received DTG 50 mg OD plus DRV/COBI 800/150 mg OD for 14 days, which was 

followed by a 7 day wash out (day 36 – 42) and finally a 14-day period of DRV/COBI 

800/150 mg OD ensued. Group 2 followed the same structured sequence but started 

with DRV/COBI 800/150 mg OD and concluded with DTG 50 mg OD. Subjects were 

asked to take both DTG and DRV/COBI in the morning within 15 minutes of a 

standard breakfast. The safety and tolerability of study medications were evaluated 

throughout the trial (on days 7, 28, 49, PK days and at follow-up) using the NIAID 

Division of AIDS table for grading the severity of adult and paediatric adverse events 

(published in 2004). Each group underwent intensive PK sampling on study days 14, 

35 and 56 to measure plasma concentrations of DTG and/or DRV/COBI at 0 (pre-

dose), 2, 4, 8, 12- and 24-hours post-dose. On the PK days, study staff witnessed study 

medication intake with a standardized breakfast (626 kcal) and 240 mL of water. 

Figure 4.1: study design. PK = pharmacokinetics, DTG = dolutegravir, DRV = darunavir, COBI = 
cobicistat 

4.2.3. PK sample collection 

Blood samples were collected into lithium heparin-containing blood tubes (12 mL) at 
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each time-point, immediately inverted several times and then kept on ice or 

refrigerated until centrifugation. Within 30 minutes of blood collection, each blood 

sample was centrifuged for 10 min at 2000 g at 4°C. Plasma was then aliquoted equally 

into three 2.0 mL tubes (Sarstedt, Germany) and stored at -20°C. Samples were 

shipped on dry ice to the Liverpool Bioanalytical Facility for analysis. The laboratory 

is Good Clinical Laboratory Practice-accredited and participates in an external quality 

assurance scheme (KKGT, the Netherlands).270, 271  

4.2.4. Quantification of plasma DTG, DRV and COBI 

Concentrations of dolutegravir, darunavir and cobicistat in plasma were measured 

using validated high-pressure liquid chromatography–tandem mass spectrometry 

methods as previously described (HPLC MS/MS).272, 273 The lower limits of 

quantification (LLOQ) for plasma DTG was 10 ng/mL, 15 ng/mL for DRV and 10 

ng/mL for COBI. For concentrations below the assay limit of quantification, a value 

of one-half of the quantification limit was used. Accuracy (percentage bias) was 

between 92.5% and 96.2% (DTG), 104.1% and 104.9% (DRV) and 95.0% and 105.1% 

(COBI), and precision was between 2.6% and 4.1% (DTG), 4.4% and 9.4% (DRV) 

and 5.7% and 7.3% (COBI). 

4.2.5. Data analysis 

The calculated PK parameters for plasma DTG, DRV and COBI were C24, Cmax and 

AUC0–24. All PK parameters were calculated using actual blood sampling time and 

non-compartmental modeling techniques (WinNonlin Phoenix, version 6.1; Pharsight, 

Mountain View, CA). Descriptive statistics, including GM 95% CI were calculated for 

DTG, DRV and COBI plasma PK parameters. Each drug PK parameter during the co-

administration period was compared to the unaccompanied drug PK parameter by 



 

 107 

calculating GM ratios (GMR) and 90% CI (co-administered/alone). Inter-individual 

variability in drug PK parameters was expressed as CV%. 

Since both COBI and DTG are associated with a small rise in creatinine through renal 

MATE1 and OCT2 transporter inhibition respectively, the statistical significance of 

the changes in creatinine from baseline was calculated using the two-sided Wilcoxon 

signed-rank test for paired samples.307, 308 

 

Additionally, as DTG is a substrate of P-gp and BCRP transporters, both of which are 

present within the endothelium of the blood brain barrier and are inhibited by COBI,198 

a review of neuropsychiatric adverse events (NP AE) was carried out. 

4.2.6. Statistical power  

This is an exploratory study and, as such, no formal sample size calculation was 

performed. Twenty (20) participants completing the study was deemed appropriate to 

allow for relevant conclusions, as is standard for PK studies.309 

4.2.7. Ethics 

The study protocol was approved by the Surrey Borders Research Ethics Committee 

and by MHRA UK. The study was conducted according to Good Clinical Practice and 

the Declaration of Helsinki (NCT03094507). 

4.3. RESULTS 

4.3.1. Study Population 

Twenty-five healthy volunteers were screened, 21 attended baseline and 20 completed 

all PK phases (eleven in group 1 and 9 in group 2; one subject withdrew for personal 
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reasons). Median age was 33.5 years (range 24-63), 13 participants were female and 

median BMI was 27 (range 20-31) kg/m2. Thirteen subjects described themselves as 

Caucasian, six as Black African/Caribbean and one as White and African.  

4.3.2. DTG, DRV and COBI plasma pharmacokinetics 

4.3.2.1. Dolutegravir plasma pharmacokinetics 

Figure 4.2 illustrates the DTG GM plasma concentration vs time curves with and 

without DRV/COBI, in relation to DTG’s PA-IC90 for wild type virus (64 ng/mL).76 

DTG geometric mean ratios (GMR, DTG+DRV/COBI vs DTG alone) and 90% 

confidence intervals (CI) for Cmax, AUC0-24 and C24 were 1.01 (0.92-1.11), 0.95 (0.87-

1.04) and 0.9 (0.8-1.0). No differences were seen between groups 1 and 2.  The inter-

individual variability in DTG values was between 23 and 40% when administered 

alone and between 28 and 48% during co-administration with DRV/COBI. C24 

remained 7 to 32 fold above the PA-IC90.76 

4.3.2.2. Darunavir plasma pharmacokinetics 

Figure 4.3 shows the DRV GM plasma concentration vs time curves with and without 

DTG in relation to DRV’s suggested PA-EC50 for resistant virus (based on in-vitro 

studies; 550 ng/mL).274 DRV GMR (DRV/COBI+DTG vs DRV/COBI alone) and 90% 

CI for Cmax, AUC0-24 and C24 were 0.90 (0.83-0.98), 0.93 (0.86-1.00) and 0.93 (0.78-

1.11) and for COBI Cmax, AUC0-24 and C24 were 0.96 (0.89-1.04), 0.98 (0.88-1.08) and 

0.98 (0.79-1.22). The inter-individual variability in DRV values was between 31 and 

52% when administered alone and between 20 and 53% during DTG co-

administration. 

C24 remained 1 to 4.5 fold above the suggested PA-EC50 (550 ng/mL)274 for DRV in 
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all subjects (except for one participant with a DRV C12 of 1428 ng/mL but C24 185 

ng/mL).  

Table 4.1 summarises the PK parameters for DTG and DRV/COBI when administered 

alone or together in the co-administration phase, in both groups combined. No 

difference was seen between groups for either drugs.  

4.3.3. Safety and tolerability 

The studied drugs were well tolerated, with no grade 3 or 4 side effects or laboratory 

abnormalities. Median (IQR) creatinine was 67 µmol/L (63-71) at baseline, 70 µmol/L 

(65-74) during DRV/COBI alone, 76 µmol/L (69-81) during DTG alone and 74.5 

µmol/L (70-79.5) during co-administration (equivalent to 0.75,0.79, 0.86 and 0.84 

mg/dL respectively). The difference between baseline and during co-administration 

was significant (T=2.5, p <0.01), which was driven by DTG. However, there was no 

evidence that adding DRV/COBI to DTG changed median creatinine significantly 

(>0.05), whilst adding DTG to DRV/COBI did (T=29.5, p <0.01). 

 

Grade 1-2 drug related NP-AEs were seen in 6 participants (30%) during DTG 

monotherapy and in 3 participants (15%) during DRV/COBI monotherapy. The co-

administration of the two drugs did not change the prevalence of drug related NP-AEs, 

which was 15% during the co-administration period and remained low grade (1-2). 

The commonest drug related NP-AEs were a grade 1 headache and sleep disturbances.
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Figure 4.2: GM dolutegravir concentration vs time curves and standard error bars over 24 hours with 
and without darunavir/cobicistat (DRC/c)  

Figure 4.3: GM darunavir concentration vs time curves and standard error bars over 24 hours with and 
without dolutegravir 
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 GM Cmax (90% CI) (ng/mL) GM AUC0-24 (90% CI) (ng*h/mL) GM C24 (90% CI) (ng/mL) 
 

Alone 
C

V
%

 
Combined 

C
V

%
 

GMR Alone 

C
V

%
 

Combined 

C
V

%
 

GMR Alone 

C
V

%
 

Combined 

C
V

%
 

GMR 

D
T

G
 

3398 
(3087-3708) 23 3429 

(3104-3755) 46 1.01 
(0.92-1.11) 

47669 
(42377-52960) 28 45188 

(40203-50174) 28 0.95 
(0.87-1.04) 

952 
(795-1109) 40 852 

(690-10145) 46 0.9 
(0.80-1.00) 

D
R

V
 

5364 
(4726-6003) 31 4821 

(4455-5187) 20 0.90 
(0.83-0.98) 

63222 
(55152-71291) 33 58864 

(52978-64750) 26 0.93 
(0.86-1.00) 

1146 
(891-1400) 52 1070 

(817-1322) 53 0.93 
(0.78-1.11) 

C
O

B
I 

967 
(868-1066) 27 929 

(845-1014) 24 0.96 
(0.89-1.04) 

7829 
(6865-8793) 32 7650 

(6619-8682) 35 0.98 
(0.88-1.08) 

19 
(10.4-28) 90 19 

(6.7-31) 111 0.98 
(0.79-1.22) 

Table 4.1: Dolutegravir (DTG), darunavir (DRV) and cobicistat (COBI) steady state pharmacokinetic (PK) parameters, expressed as geometric mean (GM), 90% confidence 
intervals (CI), coefficient of variation (CV) and GM Ratios (GMR, alone/co-administered). Cmax: maximum concentrations, AUC0-24: area-under-the-curve, C24: concentration 
measured 24 hours post-dose. 
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4.4. DISCUSSION 

The steady state PK of standard dose DTG co-administered with DRV/COBI over 24 

hours was characterised in healthy volunteers. The changes in DTG PK parameters 

during co-administration compared to DTG administered alone were minimal. DTG 

C24 decreased by 10%, whilst AUC0-24 decreased by 5% and Cmax remained unchanged. 

DRV concentrations also decreased by less than 10% in all parameters. DTG and DRV 

concentrations remained manifold above the PA-IC90/PA-EC90 in all participants at all 

time points, suggesting that the combination of DTG and DRV/COBI can be 

prescribed safely in the treatment of HIV-1, including in patients harbouring resistance 

who benefit from optimal ARV exposures and in which BD dosing is recommended. 

In contrast, DTG C24 had decreased by 38% when co-administered with DRV/RTV 

(twice daily) in early DTG drug interaction studies, which was not deemed clinically 

significant (Cmax decreased by 11% and AUC0-24 22%; participants received multi-

dose DTG 30 mg, administered with food).306 

 

Our findings are in agreement with Gervasoni et al., who showed a doubling of DTG 

C24 in HIV patients who switched from DRV/RTV to DRV/COBI.305 DTG is primarily 

metabolised by UGT1A1 and is only a minor substrate for CYP3A4.172 Whilst both 

COBI and RTV are potent CYP3A4 inhibitors, unlike RTV, COBI does not induce 

glucoronidation (or any CYP enzymes),196 which, as previously discussed, is likely to 

explain the difference in effect seen between the two pharmacological boosters. A lack 

of inhibition of UGTA1A1, 1A3, 1A6, 1A9, 2B4 and 2B7, by both RTV and COBI, 

was recently demonstrated in-vitro, meaning that, in agreement with our results, COBI 

has a lack of effect overall on UGT.310 Interestingly, Gervasoni et al. commented on 
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the possibility that their observed surge in DTG concentrations when RTV was 

switched to COBI may be driven, at least in part, by a higher degree of inhibition of 

COBI on intestinal efflux transporters (P-gp and BCRP), leading to increased DTG 

absorption.196, 305 There was no rise in DTG Cmax, in our study, when DRV/COBI was 

added to DTG, which would suggest, conversely, that the inhibitory effect of COBI on 

these transporters in this setting is, at the most, limited.196, 198 DTG does not induce or 

inhibit CYP enzymes,76 therefore effects on DRV and COBI (which are mainly 

metabolised by CYP3A4) were not expected during co-administration with DTG.  

 

Interestingly, the PK parameters of DTG in this study were, overall, lower than seen 

in Min et al.’s early DTG PK study (healthy volunteers, n=8, food intake not specified) 

when administered alone and lower than in the Gervasoni et al. study when co-

administered with COBI, highlighting the importance of describing intra-individual 

effect in drug interaction studies.60, 305  

 

Serum creatinine concentrations significantly increased from baseline during DTG 

administration, but no significant increment was recorded when DRV/COBI was 

added to DTG, which is consistent with previous observations that administration may 

not result in additive renal effect, at least in the short-term.305, 308 The commonest NP-

AEs seen were mild headache and sleep disturbances, particularly with DTG (30%). 

Co-administration of DTG and DRV/COBI did not increase the prevalence of NP-

AEs, however, this study was not powered for a toxicodynamic analysis.  

 

There are limitations to this study. Subjects were healthy volunteers and 

pharmacokinetic conclusions cannot be fully drawn in HIV infected participants. In 
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licencing trials, DTG concentrations appeared generally lower in HIV infected 

participants than in healthy volunteers.57 Indeed, discrepancies in ARV drug PK 

between healthy volunteers and PLWH have been previously described (particularly 

for the protease inhibitors), which was discussed in chapter 3.288 Additionally, 

pharmacodynamics deductions cannot be drawn from healthy volunteers; however, 

previous cohort studies have reported good efficacy of DTG/DRV/COBI in small 

groups of treatment experienced HIV infected individuals.119, 120 Finally, DTG 

intensive PK over 24hrs remain to be determined during co-administration with DRV 

when the latter is boosted with RTV (to date only 12hr data is available); this is 

important in view of RTV’s known induction of UGT1A1 and is particularly relevant 

to patients with a background of InSTI resistance.   

 

The strengths of this study lie in its prospective, controlled and crossover design, 

which allowed an analysis of intra-individual effect. Additionally, the study 

population was appropriately diverse in gender, ethnicity and age. 

 

In conclusion, this study investigated the intra-individual variance in DTG and 

DRV/COBI PK parameters when administered together compared to alone. The 

results suggest that no dose adjustment is required in either agents and that this 

combination can be prescribed safely, at standard recommended doses, in the treatment 

of HIV-1, including in patients harbouring resistance, when BD dosing remains 

standard practice. 
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5.1. INTRODUCTION 

Women account for just over half of the world’s 36.7 million people living with 

HIV/AIDS and the majority are of childbearing age.311 Early and sustained HIV viral 

load suppression with ARV therapy now enables longer, healthier lives and improved 

fertility in women living with HIV (WLWH).312-314 A significant number do, however, 

report requiring the flexibility to plan or prevent pregnancy,313, 314 meaning that access 

to safe and reliable contraception in the context of ARVs is critical.315, 316 The 

combined oral contraceptive pill (COCP) is a preferred method of contraception for 

many women worldwide.317, 318 Nevertheless, WLWH have often been unable to use 

the COCP due to drug-drug interactions with some ARVs leading to altered drug levels 

and adverse events.319 For instance, a reduction in the progestogen component of the 

COCP potentially runs the risk of contraceptive failure and unwanted pregnancy319 

whilst overexposure can lead to a number of side effects such as increased appetite, 

fluid retention, acne and headaches.320 Meanwhile, changes in oestrogen 

pharmacokinetics impact tolerability (e.g. breakthrough bleeding with underexposure, 

which can impact adherence) and toxicity (e.g. thrombotic events with increased 

concentrations).321-323 There is now good evidence that an undetectable viral load 

equates to HIV being untransmittable4 and, hence, many HIV serodifferent couples 

choose to rely on hormonal contraception alone without condoms.313, 324 It is therefore 

essential to define the pharmacokinetics and pharmacodynamics of hormonal 

contraception co-administered with individual ARVs in order to inform guidelines and 

ensure that the efficacy and safety of both are maintained.321 

 

In addition, exogenous oestrogens are also used by trans-gender women (TGW) as 
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feminising therapy.325 TGW carry a disproportionate burden of HIV infection 

(estimated global prevalence 19.6% and incidence 3.4 to 7.8 per 100 person-years 

worldwide)326, 327 and are less likely to engage into care or being compliant with 

ART.328, 329 Qualitative studies have attributed this, in parts, to a limited understanding 

of the interactions between some ARVs and gender affirming hormones and to fears 

amongst TGW that ARVs will impede on hormonal efficacy, further underscoring the 

importance of having evidence-based data on DDIs.325, 330 Ethinylestrodiol (EE), 

specifically, is not recommended for feminisation therapy in guidelines;331 however, 

it is the most studied oestrogen and the reference agent for drug interaction 

guidance.325 It is also often used by TGW outside of healthcare settings for medical 

transition.332 

 

Despite very recently being removed from some major guidelines,312, 333, 334 boosted 

atazanavir (ATV/b) remains the preferred second-line ARV agent in the World Health 

Organisation guidelines and large numbers of patients, stable on treatment, continue 

therapy with ATV/b worldwide.246 With its long-standing experience history, high 

genetic barrier and once daily dosing, it remains an instrumental option in the 

management of HIV.335 For over a decade, ATV was mainly co-administered with the 

only pharmacological booster available, RTV. Hormonal contraceptives are 

extensively metabolised by CYP enzymes (CYP3A and CYP2C9/19) and drug 

interactions between the COCP and ATV (with or without RTV) have been 

demonstrated.336 The progestogens studied to date, norgestimate (NGM) and 

norethisterone (NET), are both increased in exposure with unboosted and with 

ritonavir-boosted ATV, through the inhibition of CYP3A4-mediated progestogen 

metabolism by both agents, thereby potentially leading to the side effects described 



 

 119 

above.337, 338 Similarly EE concentrations also increase with unboosted ATV (48% rise 

in area under the curve, AUC)339 but, in contrast, decrease with ATV/RTV (16% 

decrease in EE Cmax, 19% in AUC and 37% in Cmin)338 which is thought to result from 

RTV’s concomitant induction of CYP2C9 and of the glucuronidation responsible for 

EE clearance (via UGT1A1).336 Therefore, according to guidelines and the ATV 

summary of product characteristics (SPC), if a combined oral contraceptive is 

administered with ATV/RTV, it must contain at least 35µg of EE, strict compliance is 

necessary and a second method of contraception is recommended, considering the 

unknown PD effect of the drug interactions.255, 338, 339 

 

Unlike RTV and as previously discussed, COBI is available co-formulated with ATV 

(Evotaz®) and is neither a UGT1A1 nor a CYP2C9 inducer.198-200 The product insert 

for Evotaz® and the University of Liverpool’s HIV drug interactions website58 state 

that no dosing recommendations can be made for COCP co-administration with 

ATV/COBI due to a lack of published data. It is currently suggested that additional or 

alternative (non-hormonal) forms of contraception should be considered. ATV/COBI 

co-administration with the COCP has been investigated in an unpublished, phase I 

drug interaction study (Majeed et al., IWCPAT, Chicago 2017), which only assessed 

a single dose of drospirenone (DRSP)/EE 3mg/20µg administered prior to and at the 

end of a 14-day course of standard dose ATV/COBI in healthy volunteers (n=14). The 

investigators found a 130% increase in DRSP AUC0-∞ and a 12% increase in Cmax. 

There was a non-clinically significant decrease in EE (22% reduction in AUC0-∞ and 

18% in Cmax). C24 was not reported.340 Neither COCP C24 nor ‘steady state’ (real life 

use) PK data are available; the latter are important since progestogen serum levels are 

2 to 3 fold higher in the steady state compared to a single administration (after 
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approximately 8-10 days of treatment) and EE steady state concentrations increase by 

a 30-40% rise in plasma level (5-6 days post-initiation).323, 341 

 

EE/levonorgestrel (LNG; Microgynon®) is the leading COCP prescribed in the UK.342 

The aim of this study was therefore to investigate the steady state PK of EE/LGN 

30/150µg and ATV/COBI 300/150mg (Evotaz®) when co-administered in HIV 

negative female healthy volunteers and to assess the safety and tolerability of co-

administration. 

5.2. METHODS 

5.2.1. Participants 

Written informed consent was obtained from non-pregnant and non-lactating female 

healthy volunteers aged between 18 and 35 years with a body mass index (BMI) 

between 18 and 35 kg/m2. Participants were excluded if they had any significant acute 

or chronic medical illness; abnormal physical examination, ECG or clinical laboratory 

determinations; positive screens for HIV, hepatitis B or C; current or recent (within 

three months) gastrointestinal disease; clinically relevant alcohol or drug use that the 

investigator felt would adversely affect compliance with trial procedures; exposure to 

any investigational drug or placebo within three months of the first dose of the study 

drug; use of any other drugs, including over the counter medications and herbal 

preparations, within two weeks of the first dose of the study drug; and previous allergy 

to any of the constituents of the pharmaceuticals administered during the trial. Women 

of childbearing potential required a negative pregnancy test at screening and baseline 

and additional contraception if required. 
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5.2.2. Study design 

Figure 5.1: Study design. PK: Pharmacokinetics, W-O: Washout period. *14 or 21 days, patient choice 

The study design is shown in figure 5.1. This was an open-label, crossover, 57-day 

(excluding screening and follow-up) phase 1 PK trial carried out at the Clinical Trial 

Unit of the St. Stephen’s Centre, Chelsea and Westminster Hospital, London, UK.  

 

At screening, clinical assessment and routine laboratory investigations were performed 

in all participants. The safety and tolerability of study medications were evaluated 

throughout the trial (on days 7, 28, 49, on PK days and at follow-up) using the previously 

referred to NIAID Division of AIDS table for grading the severity of adult and pediatric 

adverse events (2004). After successful screening, volunteers were randomized to either 

i) group 1, which received EE/LNG 30/150 µg alone on days 1-21, EE/LNG (21 days) 

+ ATV/COBI 300/150 mg (14 days) in the co-administration period (days 22-42) and 

ATV/COBI alone on days 43-56 (14 days) or ii) group 2, which followed the same 

structured sequence but started with ATV/COBI alone and finished with EE/LNG alone 

(14 or 21 days, patient choice). Each group underwent intensive PK sampling on study 

days 14, 35 and 56 to measure plasma concentrations of EE/LNG and/or ATV/COBI at 

0 (pre-dose), 2, 4, 8, 12- and 24-hours post-dose. On the PK days, study staff witnessed 

study medication intake with a standardized breakfast (626 kcal) and 240 mL of water.  
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Adherence: 

Adherence was assessed through direct questioning of dosing schedules, missed and 

late doses at each safety and PK visit. A pill count was carried out at each PK visit.  

5.2.3. Analytical and PK methods 

Blood samples were collected into lithium heparin-containing blood tubes (12 mL) at 

each time-point, immediately inverted several times and then kept on ice or 

refrigerated until centrifugation. Within 30 minutes of blood collection, each blood 

sample was centrifuged for 10 minutes at 2000 g at 4°C. Plasma was then aliquoted 

equally into three 2.0 mL tubes (Sarstedt, Germany) and stored at -20°C. Samples were 

shipped on dry ice to the Liverpool Bioanalytical Facility for analysis. The laboratory 

is Good Clinical Laboratory Practice-accredited and participates in an external quality 

assurance scheme (KKGT, the Netherlands).270, 271  

5.2.4. Quantification of LNG, EE, ATV and COBI 

Concentrations of LNG, EE, ATV and COBI in plasma were measured using validated 

high-pressure liquid chromatography–tandem mass spectrometry methods (LC-

MS/MS).272, 273, 343 The LLOQ for the plasma analyses were 0.240 ng/mL for LNG, 5 

pg/mL for EE, 10 ng/mL for ATV, and 5 ng/mL for COBI. For concentrations below 

the assay limit of quantification, a value of one-half of the quantification limit was 

used. Accuracy (percentage bias) was between -0.42% and 1.5% (LNG), 0.61% and 

3.28% (EE), 4.70% and 6.36% (ATV), and 6.45% and 8.07% (COBI) and precision 

was less than 3.1% (LNG), 8.0% (EE), 6.3% (ATV), and 8.0% (COBI). 

 

5.2.5. Data analysis 
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The calculated PK parameters for plasma LNG, EE, ATV and COBI were plasma C24, 

Cmax and AUC0–24. All PK parameters were calculated using actual blood sampling 

time and non-compartmental modeling techniques (WinNonlin Phoenix, version 6.1; 

Pharsight, Mountain View, CA). Descriptive statistics, including GM 90% CI were 

calculated for LNG, EE, ATV and COBI plasma PK parameters. Each drug PK 

parameter during the co-administration period was compared to the unaccompanied 

drug PK parameter by calculating GMR and 90% CI (co-administered/alone). Inter-

individual variability in drug PK parameters was expressed as CV%. 

5.2.6. Statistical power 

This was an exploratory study and, as such, no formal sample size calculation was 

performed. Sixteen (16) participants completing the study was deemed appropriate to 

allow for relevant conclusions and is standard for PK studies. 

5.2.7. Ethics 

The study protocol was approved by the Westminster Research Ethics Committee, 

London, United Kingdom, as well as by MHRA UK. The study was conducted 

according to Good Clinical Practice and the Declaration of Helsinki (NCT02697851). 

5.3. RESULTS 

5.3.1. Study population 

Fourteen healthy female volunteers were screened, 13 were enrolled and 11 attended 

the baseline visit (2 withdrew prior to baseline for personal reasons). 9 completed the 

intensive PK day 14 (five in group 1, four in group 2), 8 completed day 35 (four in 

each group) and 6 completed day 56 (four in group 1, two in group 2). Overall, seven 
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participants withdrew consent; five because of adverse events and two before starting 

the study medications. Of the six participants who completed all PK phases (up to day 

56), the median (range) age and BMI were 31 (19-35) years, and 24 (19-29) kg/m2, 

respectively. Of the eleven participants who attended the baseline visit, four 

participants described themselves as Caucasian, six as black African, and one as 

Hispanic. Demographics and reasons for withdrawals are summarised in table 5.1. 

 

Table 5.1: Participant demographics, withdrawals and withdrawal reasons. ID = study identification, 
BMI = body mass index, G = group, D = day, n/a = not available, WBC = White and Black Caribbean 

5.3.2. Pharmacokinetic results 

PK data for all four drugs in the two separate groups are detailed in table 5.2. For each 

drug, only paired data from participants who completed the first period (either 

EE/LNG or ATV/COBI alone) and the co-administration period were used, so as to be 

able to assess and summarise intra-individual PK changes between the two periods. 

Groups 1 and 2 (G1 and G2) are grouped together in the results described below.   

ID 
Age 
(yrs) 

Ethnicity BMI Group Study stage reached Reason for 
withdrawal 

101 31 Hispanic 21.1 G1 Completed N/A 
102 27 White 23.7 G2 Between D7 and D14 Rash 
103 30 African 29.3 G1 Completed N/A 
104 33 White 22.1 G2 Completed N/A 
105 30 African 26.8 G1 Between D28 and D35 Deranged LFTs 
106 28 Turkish 23.1 G1 Before baseline 1st dose not given 
107 35 White 26.9 G1 Completed N/A 

108 23 WBC 27.4 G2 Between D35 and D43 
Moderate nausea, 
D&V, orthostatic 
hypotension 

109 18 White 20.7 G2 Between Baseline and 
D7 

Side effects, not 
specified 

110 27 White 25.3 G2 Completed N/A 
111 19 White 19.0 G1 Completed N/A 

112 25 WBC 22.4 G2 Between D35 and D43 No cause given 

113 29 White 27.6 G1 Before baseline 1st dose not given 
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5.3.2.1. Levonogestrel plasma pharmacokinetics 

Six participants provided data for LNG intake with and without ATV/COBI (G1 n=4, 

G2 n=2). Geometric mean ratios (with ATV/COBI vs without) and 90% CI for LNG 

Cmax, AUC0-24 and C24 were 0.83 (0.68-1.02), 0.92 (0.71-1.18) and 1.01 (0.73-1.38) 

respectively. 

5.3.2.2. Ethinylestradiol plasma pharmacokinetics 

Six participants provided data for EE intake with and without ATV/COBI (G1 n=4, 

G2 n=2). GMR (90% CI) for EE Cmax, AUC0-24 and C24 were 1.05 (0.92-1.19), 1.01 

(0.88-1.22) and 0.75 (0.60-0.93) respectively. 

5.3.2.3. Atazanavir plasma pharmacokinetics 

Eight participants provided data for ATV intake with and without EE/LNG (G1 n=4, 

G2 n=4). GMR (90% CI) of ATV Cmax, AUC0-24 and C24 were 0.75 (0.60-0.95), 0.78 

(0.64-0.96) and 0.89 (0.72-1.11) respectively. 

5.3.2.4. Cobicistat plasma pharmacokinetics 

Eight participants provided data for COBI intake with and without EE/LNG (G1 n=4, 

G2 n=4). GMR (90% CI) of COBI Cmax, AUC0-24 and C24 were 0.88 (0.8-0.97), 0.85 

(0.77-0.95) and 0.89 (0.66-1.21) respectively.  

 

LNG and EE drug concentrations vs time curves with and without ATV/COBI are 

illustrated in figures 5.2 and 5.3 respectively. Table 5.3 summarises the results in this 

study together with currently reported findings of COCP interaction studies involving 

ATV/RTV and/or COBI. 
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Table 5.2: Summary of pharmacokinetic data for all four drugs. EE = ethinylestradiol, LNG = levonorgestrel, ATV = atazanavir, COBI = cobicistat, CV = coefficient of 
variation, GM = geometric mean, GMR = geometric mean ratio, CI = confidence interval, Cmax = maximum concentration, AUC0-24 = area under the curve from 0 to 24 hours, 
C24 = concentration at 24 hours post-dose. 

 GM Cmax (90% CI) (ng/mL) GM AUC0-24 (90% CI) (ng*h/mL) GM C24 (90% CI) (ng/mL) 
 

Alone 

C
V

%
 

Combined 

C
V

%
 

GMR Alone 

C
V

%
 

Combined 

C
V

%
 

GMR Alone 

C
V

%
 

Combined 

C
V

%
 

GMR 

LNG (n=6)  

Total 6.5 (3.5-9.6) 60 5.4 (3.7-7.2) 43 0.83 (0.68-1.02) 92 (41-143) 67 84 (57-111) 43 0.92 (0.71-1.18) 2.83 (1.2-4.5) 67 2.85 (1.9-3.8) 45 1.01 (0.73-1.38) 

Group 1 (n=4) 8.8 (5.9-12) 46 7.2 (6.1-8.3) 23 0.82 (0.61-1.11) 130 (81-180) 50 111 (93-129) 23 0.85 (0.64-1.12) 4.2 (2.7-5.7) 47 3.8 (3.2-4.5) 25 0.90 (0.64-1.27 

Group 2 (n=2) 3.6 (1.5-5.7) 47 3.09 (2.1-4.1) 26 0.86 (0.66-1.12) 45 (3.2-87) 69 48 (36-61) 23 1.07 (1.74-2.69) 1.3 (-0.05-2.6) 75 2.6 (1.0-4.2) 59 0.9 (0.64-1.27) 

EE (n=6)  

Total 40 (28-53) x10-3 43 42 (32-52) x10-3 34 1.05 (0.92-1.19) 407 (259-555) x10-3 49 410 (318-501) x10-3 32 1.01 (0.83-1.22) 7.4 (3-12) x10-3 72 5.6 (3.9-7.3) x10-3 42 0.75 (0.6-0.93) 

Group 1 (n=4) 43 (28-58) x10-3 47 46 (32-60) x10-3 35 1.07 (0.88-1.3) 446 (281-612) x10-3 50 440 (335-544) x10-3 33 0.98 (0.77-1.26) 8.2 (3-13) x10-3 76 5.5 (3.7-7.3) x10-3 45 0.67 (0.50-0.89) 

Group 2 (n=2) 36 (29-42) x10-3 26 36 (32-39) x10-3 15 1 (0.88-1.13) 338 (202-475) x10-3 55 356 (302-411) x10-3 22 1.05 (0.7-1.59) 6.1 (3.2-9) x10-3 63 5.7 (3.5-8) x10-3 53 0.94 (0.82-1.08) 

ATV (n=4)  

Total 4157 (3151-5163) 39 3133 (2472-3795) 34 0.75 (0.60-0.95) 48998 (37387-60608) 38 38293 (27206-49380) 45 0.78 (0.64-0.96) 1061 (614-1507) 62 949 (527-1371) 66 0.89 (0.72-1.11) 

Group 1 (n=4) 4447 (2692-6201) 45 2861 (2158-3565) 29 0.64 (0.46-0.90) 49455 (35411-634500) 33 33680 (24048-43312) 32 0.68 (0.51-0.91) 930 (348-1510) 65 787 (543-1031) 35 0.85 (0.59-1.21) 

Group 2 (n=4) 3886 (2692-5080) 36 3432 (2286-4577) 38 0.88 (0.65-1.21) 48544 (27777-69312) 48 43539 (23393-63684) 50 0.90 (0.69-1.17) 1211 (467-1954) 65 1145 (341-1949) 71 0.95 (0.71-1.27) 

COBI (n=4)  

Total 1760 (1604-1917) 15 1554 (1325-1782) 25 0.88 (0.8-0.97) 16456 (13863-19049) 26 14054 (10703-17405) 39 0.85 (0.77-0.95) 70 (27-113) 84 62 (13-112) 101 0.89 (0.66-1.21) 

Group 1 (n=4) 1810 (1669-1952) 9 1414 (1173-1655) 20 0.78 (0.7-0.87) 15834 (13044-18624) 21 11820 (9572-14069) 23 0.75 (0.65-0.86) 49 (25-73) 53 44 (26-61) 44 0.89 (0.47-1.67) 

Group 2 (n=4) 1712 (1409-2014) 21 1707 (1332-2082) 26 1 (0.95-1.05) 17102 (12363-21842) 32 16710 (10942-22479) 40 0.98 (0.91-1.05) 99 (21-177) 78 89 (-4.7-182) 94 0.90 (0.74-1.09) 
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Figure 5.2: Levonogestrel (LNG) GM (95% CI) plasma concentration vs time curves, with and without ATV/COBI, GM (95% CI) n=6. LNG = levonorgestrel, ATV = 
atazanavir, COBI = cobicistat, GM = Geometric Mean, CI = Confidence Interval
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Figure 5.3: Ethinylestradiol EE GM (95% CI) plasma concentration vs time curves, with and without ATV/COBI, GM (95% CI) n=6. EE = ethinylestradiol, ATV = atazanavir, 
COBI = cobicistat, GM = Geometric Mean, CI = Confidence Interval 
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  ATV/COBI 
+ EE/LNG 
(this study) 

PI/RTV + 
NETa 

(n=16) 

ATV/RTV + 
EE/NGMb 

(n=13) 

TDF/FTC/ 
EVG/COBI +  
EE/LNGc 
(n=20) 

ATV/COBI + 
EE/DRSPd 

(n=14) 

Progestogen AUC 8% 50% 85% 110% 130% 
(AUC0-∞) 

 Cmax 17% 33% 68% 60% 12% 

 Cmin 1% 26% 102% N/A N/A 

EE AUC 1% N/A 19% 20% 22%  
(AUC0-∞) 

 Cmax 5% N/A 16% 10% 18% 

 Cmin 25% N/A 37% N/A N/A 

Table 5.3: Summary of COCP drug interactions studies with atazanavir, ritonavir & cobicistat. Legend: 
AUC = Area Under the Curve; Cmax = maximum concentration reached; Cmin = trough concentration; 
ATV= atazanavir; COBI = cobicistat; EE = ethinylestradiol; LNG = levonogestrel; PI = protease 
inhibitor; RTV = ritonavir; NET: norethindrone; NGM = norgestimate; TDF = tenofovir; FTC = 
emtracitabine; EVG = elvitegravir; DRSP = drospirenone; N/A: not applicable. 

a: Atrio et al. J Acquir Immune Defic Syndr. 2014337 b: Zhang et al. Antivir Ther. 2011338 c: Squires et 
al. Asia Pacific AIDS Conference. 2016344 d: Majeed et al. IWCPAT. 2017340 

5.3.3. Safety and tolerability 

Five participants withdrew consent from the study secondary to side effects; of those, 

data on the reason are available for three and are listed in table 5.1. Full adherence 

was confirmed through regular direct questioning and pill counts in the women who 

completed the study and no grade 3 or 4 adverse events or laboratory abnormalities 

were observed in this group. 

5.4. DISCUSSION 

This was the first study to investigate the steady state PK of Microgynon® co-

administered with ATV/COBI (Evotaz®). The hormonal components of the COCP 

undergo extensive first-pass metabolism by phase I and II microsomal enzymes in the 

small intestinal mucosa and the liver before reaching the systemic circulation, meaning 
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that they are highly susceptible to DDI.345, 346 LNG is first hydroxylated in the liver, 

mainly by CYP3A4, and its metabolites are then excreted as glucuronide conjugates.347 

The results of this study showed only a small reduction in steady state LNG Cmax 

(17%) and no changes in C24 or AUC0-24 when it is administered with ATV/COBI 

(GMR range 0.92-1.01). Majeed et al. had also reported little interaction with 

progestogens, with only a 12% increase seen in DRSP Cmax when co-administered as 

a single dose with ATV/COBI. Both studies therefore suggest that ATV/COBI has a 

lesser impact on progestogen peak concentrations than ATV/RTV does when co-

administered with NGM or NET (GMR 1.33-1.68)337, 338, 340 and when NGM is co-

administered with COBI as part of Stribild® (TDF/FTC/EVG/COBI; GMR 2.08; 

Polina et al. 12th Clin Pharm of HIV Therapy Workshop 2011). Whilst the number of 

participants completing the relevant phases in our study (n=6) was small and our data 

cannot be conclusive, a lack of clinically significant decrease in LNG minimum 

concentration and exposure is cautiously reassuring. This is because the progestogen-

mediated suppression of the luteinising hormone (LH) surge is one of the main 

contraceptive mechanisms of the COCP and LNG is also the progestogen contained in 

the most commonly prescribed form of the emergency contraceptive pill.347-349 

Furthermore, the lack of meaningful rise in progestogen C24 and AUC0-24 in the study 

presented here differs to the increases seen with ATV/RTV co-administration (GMR 

1.85 and 2.02 respectively) or with COBI co-administration when combined with DRV 

or EVG (GMR range 1.58-2.67; Majeed et al., IWCPAT 2017 and Polina et al. 12th 

Clin Pharm of HIV Therapy Workshop 2011). This finding is important since 

progestogen overexposure can lead to a number of significant side effects, as described 

above, that include nausea, weight gain and acne amongst others and that may impact 

tolerability and adherence.320 
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This study showed that EE C24 decreased by 25% with ATV/COBI compared to a 37% 

decrease reported with ATV/RTV. Moreover, no clinically significant changes were 

found in Cmax or AUC0-24 (5% and 1% increases respectively), compared to the 

decreases seen with ATV/RTV (19% and 16% respectively).338 This may be explained 

by the fact that, unlike RTV, COBI does not induce UGT1A1 or CYP2C9, both of 

which are involved in EE clearance.198 As the EE component of the COCP is mainly 

responsible for endometrial stability and a significant reduction in C24 can lead to 

breakthrough bleeding potentially impacting adherence to contraception,319 smaller 

decreases in PK parameters are likely to optimise tolerability and adherence. Our 

findings also compared well to data on EE co-administration with DRV/COBI in the 

Majeed et al. study, which lead to a 30% and a 14% decrease in EE AUC0-∞ and Cmax 

respectively, secondary to DRV-mediated induction of CYP2C9 and CYP2C19.336, 340 

EVG-mediated induction of CYP2C9 and UGT appears to overcome general COBI-

mediated enzyme inhibition, leading to a decrease in EE PK parameters when it is co-

administered with Stribild (GMR range 0.66-0.94; Polina et al. 12th Clin Pharm of 

HIV Therapy Workshop 2011). 

 

As previously described, EE concentrations increase with unboosted ATV (AUC, Cmax 

and Cmin 48%, 15% and 91%, respectively), as do progestogen concentrations, through 

ATV mediated CYP3A4 and UGT1A1 inhibition.339  Yet, when co-administered with 

ATV/COBI in this study, EE AUC0-24, EE Cmax, LNG AUC0-24 and LNG C24 did not 

increase, whilst EE C24 and LNG Cmax even decreased. This is despite the lack of 

known COBI related enzyme or transporter induction (in-vitro) to counteract ATV and 

COBI-mediated enzyme inhibition. This highlights that COBI’s in-vivo metabolic 
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effects may not yet be fully elucidated and warrant further investigation.  

Of note, EE Cmax levels were consistently lower in this study (36-46 pg/mL regardless 

of the study phase), than in a majority of other EE PK studies (mean levels 80 pg/mL 

following a 30ug EE dose).350 This could be explained by the sampling schedule used 

- EE tmax is usually reached at an average of 1.5 hours; it is therefore possible that the 

maximum concentration reached for some subjects was missed by sampling 1- and 2-

hours post-dose. Additionally, levels of EE have been shown to steadily increase 

within the first treatment cycle,341 therefore concentrations measured at the end of the 

cycle (day 21) may be higher than mid-cycle (day 14), which is when subjects in this 

study underwent intensive PK sampling. It may also be higher again in subsequent 

cycles. This is however offset by the study design, which allowed for the intra-

individual effect of co-administration to be measured. LNG PK parameters in this 

study were comparable to previously published data.320, 323 

 

ATV and COBI concentrations were slightly reduced during the co-administration 

period (table 5.2). For ATV, the changes in both groups combined were small and 

within the no-effect boundary (GMR Cmax was 0.79 and GMR C24 0.89). Interestingly, 

there was a significant decrease in ATV/COBI Cmax and AUC0-24 when combined with 

EE/LNG (GMR 0.64 and 0.68 respectively) in group 1 subjects only (i.e. those who 

received Microgynon30 alone for 21 days prior to combining with ATV/COBI) 

whereas no interaction was present with the group 2 subjects. Whilst this could be 

interpreted as being due to enzyme induction by EE, it is an observation and it is not 

possible to come to any conclusions based on the very small number of subjects in a 

sub-group (n=4); C24 remained unchanged.  Importantly, ATV concentrations in both 

groups remained reassuringly above the in-vivo suggested minimum effective 
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concentration for wild type HIV  (MEC = 150 ng/mL).335 

The target recruitment was not reached and five/11 participants (45%) withdrew from 

the study secondary to side effects, 3 of which disclosed information on the reason 

(rash, deranged liver function tests and gastrointestinal symptoms). This is a higher 

dropout rate than seen in Majeed et al. (22%), although participants in that study had 

only received one dose of COCP. Whilst high, it is in keeping with the combined 

published discontinuation rates secondary to any AE for boosted atazanavir (15%) and 

the COCP (29%).349, 351 Both are drugs with relatively common side effects in the 

initial period and it is important that patients are counseled accordingly.  

 

There are limitations to this study. The subjects were HIV negative healthy volunteers. 

As such, PK or pharmacodynamic comparisons with HIV positive women must be 

made cautiously and the practical implications of these PK observations are unknown. 

Clinical outcome data are required in large cohorts of HIV infected participants, and 

studies investigating pharmacodynamic endpoints (such as failure of viral suppression, 

HIV-related clinical disease progression or unintended pregnancy) are needed in order 

to draw definite conclusions on how likely a contraceptive or an ARV is to fail in the 

context of co-prescription. It is also important to remember that efficacy rates of user 

dependent contraception differ between perfect use (as seen in a clinical study) and 

real-life use. The fact that this study involved healthy volunteers may also explain the 

low number of participants completing the study.  In real-life settings, mild side effects 

associated with the initiation of COCP and/or of ARVs do not normally persist beyond 

three to six months, at which point an alternative would usually be offered. The option 

to persist and reassess was not available in the setting of the study.  
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Nonetheless, this study provides the first steady state PK data on EE/LNG co-

administered with ATV/COBI, demonstrating minimal changes in LNG 

concentrations and a smaller decrease in EE than seen with ATV/RTV.  Whilst 

preliminary, these data are important in informing physicians, who need to discuss and 

choose safe and reliable contraception with their female patients living with HIV. 

Whether this minor difference between ATV/RTV and ATV/COBI will be clinically 

significant warrant further characterisation in future studies.
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CHAPTER 6 

Genetic Influence Of ABCG2, UGT1A1 

And NR1I2 On Dolutegravir Plasma 

Pharmacokinetics 
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6.1. INTRODUCTION 

DTG is now a preferred agent in major guidelines and a drug of choice for many HIV 

healthcare providers worldwide.352 It has replaced EFV as the preferred first-line agent 

in the WHO ARV guidelines and has been recommended by PEPFAR (Emergency 

Programme on AIDS Research) for rapid introduction in its key target countries, 

meaning that it is a major player in the worldwide ARV scale up.65 Despite a signal 

raised for a possible increased risk of NTD in women who conceive on DTG (0.3% vs 

0.12% on other ARVs),167 the WHO still recommends DTG in women who do not 

plan to conceive, provided that those of childbearing age are well informed and have 

access to reliable contraception, until further data is available.63-65, 164 Overall, up to 

60 LMICs have adopted DTG into their national treatment guidelines and it is 

estimated that 15 million people could be taking DTG by 2025, which stresses the 

importance of understanding how its pharmacology behaves in diverse and wide-

ranging populations.7, 65 

 

The real-life rates of DTG-related AEs and discontinuation rates secondary to AEs, 

particularly NP-AEs, have been discussed in details in chapters 1 and 2. A number 

of cohort studies have suggested an association between DTG PK and neurotoxicity, 

although this remains to be confirmed.149-151 Other risk factors such as age, gender, 

evening dosing and ABC co-administration, have also been suggested in some cohorts, 

whilst being altogether disproved in others.129-135, 146 More recently, reports of drug 

associated weight gain have emerged with InSTIs, particularly DTG and particularly 

in women and persons of black origin, raising concerns around potential metabolic 

sequelae.140-144 Despite TAF being identified as a co-factor and suggestions of possible 
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DTG-mediated disruptions of adiponectin and/or melanocortin receptor 4 (MCR4) 

pathways, the aetiology remains poorly understood.145, 353  

 

Overall, whilst a relation with DTG Cmin is suggested, mechanisms of DTG-related 

AEs, particularly neurotoxicity, are likely to be more complex than a simple linear or 

threshold-defined PK relationship and may relate to a combination of factors that also 

include pharmacogenetic, immune and/or functional predispositions.241, 354 

 

The PK and PD properties of DTG have already been extensively described in the 

literature and are discussed in chapters 1 and 2 of this thesis.57 To summarise, DTG 

is primarily metabolised via the phase II enzyme UGT1A1 and, to a minor extent, by 

phase I CYP3A4 (~ 15%; and UGT1A3, UGT1A9 in vitro), whilst being a substrate 

for the efflux transporters BCRP and P-gp, which are found on gastrointestinal 

epithelial cells, liver cells and on endothelial cells within the blood brain barrier.172 

DTG displays no significant CYP enzyme inhibition or induction and thus is a minor 

DDI perpetrator.76 Notably, it has a long PK tail (chapter 3) and its PK inter-individual 

variability was moderate in pre-licencing trials (CV%, 24-26%) although greater in 

subsequent studies (CV% up to 85%).354-356  

 

PK data have also become available in populations underrepresented in clinical trials.57 

For instance, in chapter 2, a 25% higher Cmax was demonstrated in PLWH aged 60 

years and over and a 25-50% lower exposure (AUC) and Cmin have been described in 

women in the 3rd trimester of pregnancy.65, 160, 354 The DTG SPC reports no ethnicity 

or gender differences in DTG exposure235 but this remains to be confirmed more 

specifically in large, controlled and diverse populations.76 
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Pharmacogenetics data for DTG to date are relatively limited. Chen et al., in a pooled 

analysis of pharmacogenomics samples collected from pre-licencing clinical studies 

in healthy subjects, found a 34% lower CL/F, 31% higher AUC0-t  and 22% higher Cmax 

in homozygous carriers of UGT1A1 (rs8175347) poor function variants (*28/*37/*6) 

compared with subjects with normal enzyme activity (*1/*1 and *1/*36).230 This data 

is referred to in the DTG SPC. Furthermore, in smaller studies, Yagura et al. found an 

association between UGT1A1*6 (rs4148323) and UGT1A1*28 (rs8175347) variants 

and higher Cmin, whilst Tsuchiya et al. reported that DTG Cmax was significantly higher 

(50%) in individuals homozygous for ABCG2 c.421C>A (rs2231142), which may be 

particularly important if supratherapeutic DTG concentrations are shown to correlate 

with DTG side-effects.148-150, 357 At the time of writing, there were no other published 

studies investigating the impact of polymorphisms on DTG pharmacokinetics. Of note, 

however, Borghetti et al. recently reported an association between a variant within the 

encoding gene for OCT2 (SLC22A2) and sub-clinical neuropsychiatric 

pharmacodynamic  measurements in a European cohort.232 DTG inhibits OCT2 but is 

not a substrate; variants would therefore not be expected to impact DTG plasma 

concentrations.  

 

Common UGT1A1 polymorphisms were discussed in chapter 1. DTG is also a known 

substrate of the BCRP efflux transporters. ABCG2 c.421C>A (rs2231142) is one of 

the most studied SNPs for the BCRP encoding gene; the variant allele is most common 

in East Asian populations (29.1%; Caucasians 10%). It is associated with a loss of 

protein function and a reduction of drug efflux transport leading to increased substrates 

plasma and cellular concentrations.150 Of additional interest, CYP3A4*22 (522-
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191C>T; rs35599367) is associated with lower CYP3A4 expression and activity 

within the liver,358 as well as increased lopinavir concentrations.359 The CYP3A5*3 

(6986A>G, rs776746) variant allele, whilst not directly involved in DTG metabolism, 

is known to be in linkage disequilibrium with CYP3A4*1B and has been independently 

associated with higher NVP AUC and reduced ATV clearance.222, 360, 361 NR1I2 

encodes the PXR nuclear receptor, which regulates the expression and activity of 

several enzymes, including CYP3A4 and UGT1A1.222, 362 NR1I2 c.63396C>T 

(rs2472677) has been associated with the PK of unboosted atazanavir.363, 364 

Accordingly, the objective of this study was to investigate the role of common 

UGT1A1, ABCG2, CYP3A and NR1I2 SNPs on plasma DTG concentrations in pooled 

subjects from four clinical trials investigating the PK of 50mg DTG taken OD. Of note, 

ABCB1 SNPs, coding for P-gp, were not selected since there are many known 

compensatory mechanisms for any potential ABCB1 polymorphism related PK/PD 

effects. 

6.2. METHODS 

6.2.1. Clinical study and participant selection 

Pooled samples from three Phase I (SSAT061 (NCT02219217), SSAT064 

(NCT02509195) and SSAT073 (NCT03094507)) and one Phase III (SSAT066 

(NCT02351908)) clinical trials carried out at the St Stephen’s AIDS Trust clinical trial 

unit, London, between 2014 and 2017 were collected and saved for genetic analysis. 

All Phase I trials were clinical pharmacology repeat-dose studies involving intensive 

PK assessments. The Phase III trial included a PK sub-study involving a timed DTG 

C24 at steady state.  All studies used a 50mg dose of DTG OD, taken as a tablet 

formulation either alone (healthy volunteers) or co-formulated with 
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abacavir/lamivudine as part of Triumeq® in the Phase I studies and with 

emtracitabine/tenofovir (Truvada®) in the Phase III study (HIV infected participants). 

All clinical studies are registered. 

 

The studies selected for inclusion were conducted in accordance with good clinical 

practice procedures, all applicable regulatory requirements and the guiding principles 

of the Declaration of Helsinki. The study protocols for each clinical study were 

reviewed and approved by the applicable National Research Ethics Service (NRES) 

committees and MHRA UK. Pharmacogenetic samples were collected under separate 

written informed consent to the main clinical study and were optional for participants 

in each study. The respective NRES committees for each study approved the 

pharmacogenetic sub-study for each trial as part of the main study protocol approval.  

No individual subject took part in more than one study.  

6.2.2. PK sample and data collection 

Within each of the Phase I studies, subjects underwent steady state intensive DTG 

plasma PK determinations, following witnessed drug intake (on study day 14 or 28).  

Blood samples were collected pre-dose, 1, 2, 3, 4, 8, 12- and 24-hours post-dose. The 

Phase III study involved a one-off PK sample taken 24-hour post-dose. This was 

carefully timed, with research staff instructing participants over the phone to take the 

medication the morning of dosing and with participants attending the clinical research 

unit the following day to allow for PK sampling exactly 24-hours post-dose, as timed 

by research staff. Overall, medication adherence was assessed through direct 

questioning and pill count in all studies. Steady-state plasma concentrations were 

determined using high-pressure liquid chromatography–tandem mass spectrometry 
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methods for samples from three of the clinical trials (HPLC-MS/MS; completed at the 

Bioanalytical Facility, University of Liverpool) or using ultra-performance liquid 

chromatography coupled with UV detection for one clinical trial (UPLC; Jefferiss 

Trust Laboratory, Imperial College London). Both are validated and have been 

previously described in the literature.247, 273 The lower limits of quantification (LLOQ) 

were 10 ng/mL and 80 ng/mL, respectively. For concentrations below the assay 

LLOQ, a value of one-half of the quantification limit was used. Accuracy (percentage 

bias) was between 92.5% and 96.2% and precision was between 2.6% and 4.1% for 

the HPLC-MS/MS method, whilst the reported accuracy for the UPLC method was 

between 90.7% and 97.7%, intra-assay variability was 3.3–6.1%, and inter-assay 

variability was 4.5–5.7%.247, 273 The two methods have not been cross-validated as 

their respective calibration ranges vary widely. The calculated PK parameters for 

plasma DTG in the three phase I studies were C24, Cmax, AUC0-24 and half-life (t1/2). 

For the phase III study, only C24 was determined. PK parameters were calculated using 

actual blood sampling time and non-compartmental analysis techniques (WinNonlin 

Phoenix; version 6.1 or above; Pharsight, Mountain View, CA). 

6.2.3. Pharmacogenetics sampling, DNA extraction and genotyping 

Venous blood was collected at baseline, from subjects consenting to pharmacogenetics 

research, into an EDTA vacutainer. Samples were then shipped on dry ice to the 

Pharmacology Research Laboratories at the University of Liverpool, UK, and stored 

at -80°C. Genomic DNA was extracted from whole blood using a spin-column based 

kit according to the manufacturer’s protocol (E.Z.N.A Blood DNA Mini Kit; Omega 

bio-tek; Norcross, GA). Extracted DNA was quantified using NanoDrop 

(ThermoFisher Scientific, Wilmington, DE). Genotyping was completed using real 
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time allelic discrimination polymerase chain reaction (PCR) assays on a DNA Engine 

Chromo4 system (Bio-Rad Laboratories, Hercules, CA). The PCR protocol followed 

denaturation at 958°C for 10 min, followed by 50 cycles of amplification at 928°C for 

15 sec and annealing at 608°C for 1 min 30 sec.  

 

Taqman Genotyping Master mix and assays were purchased from Thermofisher 

Scientific (Life Technologies Ltd, Paisley, Renfrewshire, UK) and were as follows: 

CYP3A4*22 c.522-191C>T (rs35599367, catalogue number C_59013445_10), 

CYP3A5*3 c.6986A>G (rs776746, catalogue number C_26201809_30), ABCG2 

c.421C>A (rs2231142, catalogue number C_15854163_70), ABCG2 c.34G>A 

(rs2231137, made to order), NR1I2 c.63396C>T (rs2472677, catalogue number 

C_26079845_10), NR1I2 c.44477A>G (rs1523130, catalogue number 

C_9152783_20) and UGT1A1*6 c.211G>A (rs4148323, catalogue number 

C_559715_20). Opticon Monitor V3.1 software (Bio-Rad Laboratories) was used to 

obtain allelic discrimination plots and identify genotypes. The UGT1A1 promoter 

region (*1, *28, *36 and *37) was genotyped using an Agena MassArray iPLEX assay. 

6.2.4. Covariates 

Subjects age, gender, height, weight, ethnicity, HIV status and accompanying drug to 

DTG were extracted from each study. Covariates were then included in the univariate 

and multivariate linear regressions described below.  

6.2.5. Statistical analysis 

In order to determine assay performance, genotypes for each marker were evaluated 

for compliance with Hardy–Weinberg equilibrium (p >0.05) using validated and 

previously outlined methods.365 Allele frequencies were also compared to published 
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and publicly available British and European allele frequencies.242  

Genotypes were coded for regression analyses as 0 for the homozygous common 

allele, 1 for the heterozygous and 2 for the homozygous variant allele. For SNPs 

displaying a dominant or recessive allele effect, coding was dichotomized and 

weighted appropriately (e.g. if using a recessive genotypic test model, the homozygote 

common variant and the heterozygote allele were grouped into a single category and 

were coded as 0 whilst the homozygote variant was coded as 2).366 The SNPs selected 

for the study were analyzed individually. SNPs found to correlate with any PK 

parameter were then also combined in pairs to create scoring algorithms consisting of 

the sum of each genotype code.  

 

Categorical variables were described using relative frequencies, while continuous 

variables were described using medians and interquartile ranges (IQR). Drug PK 

parameters were described using GM (95% CI). Inter-individual variability in PK 

parameters was expressed as CV%. The Shapiro–Wilk test was applied to test 

continuous variables for normality, with p <0.05 considered statistically significant; 

variables were Log10 transformed if the normality test failed.  

 

Associations between participant covariate characteristics or genotypes and DTG 

concentrations were determined through univariate and multivariate linear regressions. 

Univariate linear regression with a p value of <0.2 were carried through to multivariate 

linear regression analysis where a p value of <0.05 was classed as statistically 

significant. Results were checked with the Benjmini-Hochberg procedure to account 

for multiple comparisons, using a false positivity rate (Q value) of 10%. All statistical 
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analyses were carried out using IBM SPSS Statistics v.22 (IBM, Armonk, NY). Charts 

were produced using GraphPad Prism 8 (GraphPad Software, La Jolla, CA). 

6.3. RESULTS 

6.3.1. Participants 

One hundred participants attended the baseline visit of one of the four clinical trials. 

Two subjects declined participation to a genomic sub-study and 5 withdrew from their 

trial before PK data were collected. Ninety-three subjects with paired pharmacogenetic 

and PK data were pooled for analysis (57 HIV-infected and 36 healthy volunteers; 67 

men and 26 women). Subject characteristics and genotype frequencies are summarised 

in table 6.1. The median (IQR) age and weight were 51 years (35–64 years) and 77 kg 

(67-84); 71% self-described as Caucasian and 17% as Black African or Black 

Caribbean.  

6.3.2.  DTG pharmacokinetics 

76 participants provided intensive PK data collected over 24 hours and 17 provided a 

single PK sample 24 hours post-dose (C24). 53 samples were analysed using HPLC-

MS/MS and 40 using UPLC. All participants received 50mg OD DTG, taken in the 

morning of the intensive PK day or the morning before the one-off PK measurement.  

DTG GM (95% CI) for Cmax, AUC0-24, C24 and t1/2 were 3974 ng/mL (3864 - 4357), 

51846 ng*h/mL (48607- 55085), 1182 ng/mL (994 - 1371) and 13.0 hours (12.1 - 

14.0). DTG PK parameters are summarised by SNP in table 6.2. 

6.3.3. Genotypes overview 

All SNPs were in Hardy–Weinberg equilibrium, except for CYP3A5*3 c.6986A>G 
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(rs776746; X2 = 33.36; p=0.001) and CYP3A4*22 c.522-191C>T (rs35599367; X2 = 

33.13; p=0.001), which may compromise their interpretation (although both still 

mirrored European genotype distributions). Genomic data were missing in 1 case for 

CYP3A5*3, in 1 case for UGT1A1*6 and in 9 cases for UGT1A1*28 due to assay 

failure. Univariate and multivariate regression analyses with significant associations 

for DTG PK parameters are presented in table 6.3 whilst figure 6.1 shows scatter plots 

for each statistically significant genotype, plotting DTG PK data (GM) versus 

genotype for each SNP. The totality of the regression results can be found in table 6.4. 

6.3.4. Covariates 

Weight and Log10 height were associated with lower DTG Log10 Cmax (β=-1.649 

p=0.012 and β=-0.003; p=0.009, respectively) whilst DTG administration with 

ABC/3TC was associated with a higher DTG Log10 Cmax than intake alone (GM Cmax 

(95% CI) 4246 (3872-4620) vs 3692 (3414-3971) ng/mL, p=0.001). TDF/FTC co-

administration with DTG was associated with a higher DTG Log10 C24 than 

administration alone or with ABC/3TC (GM C24 (95% CI): 1791 (975-2607) vs 1106 

(976-1236) & 1052 (876-1228) ng/mL, respectively; β=0.069; p=0.034).  Finally, 

higher weight was also associated with lower DTG Log10 AUC0-24 (β=-0.002; 

p=0.02), with an 8-10% lower GM AUC0-24 for every 10kg increase in weight bracket 

between 40 and 80kg. 

6.3.5. ABCG2 c.421C>A (rs2231142)  

After multivariate analysis, ABCG2 c.421C>A (rs2231142) was independently 

associated with a 28% higher DTG Cmax (β=0.053, p=0.047) in the homozygous 

variant carriers. GM Cmax (95% CI) was 3893 (3774-4240), 4346 (3629-5531) and 

4994 (single value) ng/mL in the CC, CA and AA genotype groups, respectively.  
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  Total N 
 93 
 Median (IQR) 
Age (years) 51 (36-64) 
Weight (kg) 77.6 (67-84.4) 
Height (cm) 173 (168-177) 
ARV Regimen N (%) 

• ABC/3TC/DTG 40 (43) 
• TFV/FTC + DTG 17 (18) 
• DTG alone 36 (39) 

Ethnicity N (%) 
• Caucasian  70 (75) 
• Black 16 (17) 
• Asian 3 (3) 
• Mixed race 1 (1) 
• Other 3 (3) 

Female gender 26 (28) 
 PK parameters GM (95% CI) – IQR 
DTG GM Cmax (ng/mL) 3974 (3864 – 4357) – IQR 3462-4611 
DTG GM AUC0-24 (hr*ng/mL) 51846 (48607- 55085) – IQR 53190-57191 
DTG GM C24 (ng/mL) 1182 (994 – 1371)) – IQR 873-1612 
DTG GM t1/2 (hrs) 13 (12.0- 14.0) – IQR 11.0-15.3 
 Genotypic frequencies % 
UGT1A1*28 (rs8175347)** Extensive 

metaboliser 
Intermediate 
metaboliser 

Poor 
metaboliser 

46 43 11 
UGT1A1*6 c.211G>A (rs4148323) Extensive 

metaboliser 
Intermediate 
metaboliser 

Poor 
metaboliser 

37 63 0 
CYP3A4*22 G>A (rs35599367) GG GA AA 

88 6 5 
CYP3A5*3 C>T (rs776746) CC TC TT 

76 12 12 
ABCG2 421C>A (rs2231142) CC CA AA 

82 17 1 
ABCG2 34C>T (rs2231137) CC CT TT 

83 17 0 
NR1I2 63396C>T (rs2472677) CC CT TT 

17 42 41 
NR1I2 44477T>C (rs1523130) TT CT CC 

19 39 42 

Table 6.1: Characteristics of participant population are shown as medians (interquartile range) or count 
(N), percentage of population (%). PK values are shown as geometric means (GM) (95% Confidence 
Interval, 95% CI). CV% = percentage coefficient variation. **Clinical Pharmacogenetics 
Implementation Consortium (CPIC) classification for UGT1A1 genotype-predicted phenotypic 
function: extensive metabolisers (*1/*1; *1/*36; *36/*36), intermediate metabolisers (*1/*28; *1/*37; 
*36/*28; *36/*37; *1/*6) and poor metabolisers (*28/*28; *28/*37; *37/*37; *6/*6
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6.3.6. NR1I2 c.63396C>T (rs2472677) 

NR1I2 c.63396C>T (rs2472677) was associated with higher DTG Log10 Cmax 

(β=0.032; p=0.033) and higher DTG Log10 AUC0-24, (β= 0.042; p=0.029).  GM Cmax 

(95% CI) was 3445 (3176-3822), 3938 (3705-4480) and 4278 (3992-4817) ng/mL and 

GM AUC0-24 (95% CI) was 42750 (38002-52263), 54138 (50998-61344) and 54170 

(51019-60413) ng*h/mL in the CC, CT and CC genotype groups, respectively. This 

represents a 24% difference in Cmax and a 27% difference in AUC0-24 between 

homozygote groups. 

6.3.7. UGT1A1*28 (rs8175347) 

The UGT1A1*28 variant allele displayed a recessive allele effect (figure 6.1). Coding 

was therefore dichotomized and weighted appropriately (extensive and intermediate 

metabolisers were grouped as a single category coded as 0 and poor metabolisers were 

coded as 2). The UGT1A1*28 poor metaboliser genotype was independently 

associated with higher DTG Log10 AUC0-24 (β=0.042; p=0.02). GM AUC0-24 (95% 

CI) were 52639 (47956-57321), 51818 (46866-56771) and 66281 (57162-75401) 

ng*h/mL for the extensive, intermediate and poor metaboliser genotypes respectively 

(27% difference between homozygote groups).  When UGT1A1*28 was combined 

with UGT1A1*6, genotypic scores ≥three/4 were associated with a 36% increase in 

DTG AUC0-24 and a 44% increase in DTG C24 (β=0.041; p=0.023 and β=0.042; 

p=0.009 respectively). GM AUC0-24 (95% CI) was 48500 (43417-53583) ng*h/mL in 

participants who scored 0 and 66085 (54917-77253) ng*h/mL in those who scored 

three/4 (no individual scored four/4). GM C24 (95% CI) was 1109 (885-1334) and 1594 

(1247-1941) ng/mL respectively.  

6.3.8. Composite Scores 
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6.3.8.1. UGT1A1*28 + NR1I2 c.63396C>T  

Participants carrying the homozygous variant alleles for both NR1I2 c.63396C>T 

(rs2472677) and UGT1A1*28 displayed a statistically significant 79% higher AUC0-

24 (β=0.42, p=0.005). GM AUC0-24 (95% CI) in those who carried the common allele 

for both genotypes was 42306 (36990-52278) vs 75807 (69714-82166) ng*h/mL in 

those who carried the variant allele for both. This was the largest magnitude of SNP 

effects seen in this study. Variability in the two groups as reflected by IQR was 41921-

47692 and 73180-74542 ng*h/mL respectively. There was also a significant 47% 

increase in Cmax and a 78% increase in GM C24. The latter was not statistically 

significant (p=0.436). 

6.3.8.2. ABCG2 c.421C>A (rs2231142) and NR1I2 c.63396C>T 

When combined into a scoring algorithm, a statistically significant 43% higher Cmax 

and 39% higher AUC0-24 were seen in participants who scored ≥three/4 relative to 

participants who scored 0 (β=0.038; p=0.002 and β=0.038; p=0.002 respectively). GM 

Cmax (95% CI) were 3450 (3102-3799) vs 4924 (3555-6293) ng/mL and GM AUC0-24 

(95% CI) were 42768 (35078-50457) vs 59335 (48362-70308) ng*h/mL in the two 

groups respectively. Only one person scored four/4 and they were categorised with 

those who scored three/4. A genotypic score-dose effect was seen. 

 

There were no significant differences in genotypic distribution for ABCG2, UGT1A1 

and NR1I2 between groups analysed with either HPLC-MS/MS or UPLC for PK. 

Remaining genotypes  

No clinically significant association was found with the remaining genotypes studied.
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 Allele Cmax (ng/mL) AUC0-24 (ng*h/mL) C24 (ng/mL) t1/2 (hrs) 

CYP3A4*22 
(rs35599367) 

GG 3942 (3816- 4356) 50689 (49364- 56391) 1153 (1133-1548) 12.96 (12.52-14.56) 
GA 3820 (3761-4284) 57590 (42549- 63889) 1426 (647-2124) 12.67 (10.11-17.13) 
AA 4571 (3745-5581) 64494 (57914-71837) 1430 (1253-1634) 14.20 (11.70-17.26) 

CYP3A5*3 
(rs776746) 

TT 4011 (3526-4722) 57328 (51748- 64881) 1295 (1167-1475) 13.40 (11.92-15.37) 
TC 4333 (3544-5545) 57339 (51437-65205) 1313 (1014-1838) 13.48 (11.87-15.66) 
CC 3898 (3753-4294) 49972 (48290-56523) 1159 (1129-1611) 13.03 (12.47-14.83) 

ABCG2 c.421C>A 
(rs2231142) 

CC 3893 (3774-4240) 51179 (49757-56852) 1037 (1156-1578) 13.15 (12.72-14.51) 
CA 4346 (3629-5531) 54765 (48083-65483) 1122 (882-1801) 12.29 (9.75-16.81) 
AA 4994 (-) 60762 (-) 1310 (-) 15.55 (-) 

ABCG2 c.34C>T 
(rs2231137) 
 

CC 3936 (3812-4310) 51381 (49992-57307) 1021 (1148-1585) 12.90 (12.43-14.57) 
CT 4163 (3543-5153) 54158 (48523-62306) 1230 (1020-1662) 13.75 (12.35-15.63) 
TT - - - - 

NRI1/2 c.63396C>T  
(rs2472677) 
 

CC 3445 (3176-3822) 42750 (38002-52263) 1094 (910-1539) 11.93 (10.63-13.95) 
CT 3938 (3705-4480) 54138 (50998-61344) 946 (1171-1632) 13.05 (12.20-14.98) 
TT 4278 (3992-4817) 54170 (51019-60413) 1165 (1002-1757) 13.51 (12.50-15.72) 

NRI1/2 c.44477A>G  
(rs1523130) 

TT 3830 (3581-4191) 53505 (49786-59019) 1158 (1047-1387) 12.68 (11.51 -14.62) 
CT 3933 (3636-4537) 50105 (46431-57750) 1031 (1049-1904) 13.14 (11.85 -15.79) 
CC 4087 (3826-4677) 52298 (49481-60752) 1031 (1119-1528) 13.15 (12.34 -15.03) 

UGT1A*28  
(rs8175347) 

Extensive 4152 (3731-4573) 52639 (47956-57321)) 1115 (934-1297) 12.43 (11.22 -13.65) 
Intermediate 4015 (3665-4364) 51818 (48966-58871) 1212 (973-1452) 13.57 (11.82 -15.32) 

Poor 4512 (3733-5291) 66281 (57162-75401) 1600 (1294-1906) 14.85 (11.91 -17.79) 

UGT1A1*6  
(rs4148323) 

GG 4205 (3946-4767) 51735 (48953-597470 1085 (1015-1399) 13.00 (11.76-14.24) 
GA 3797 (3622-4201) 51935 (49667-57553) 1221 (1147-1690) 13.06 (11.73-14.39) 
AA - - - - 
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Combined UGT1A1*6 
and *28 scores  

0 3966 (3639-4294) 48500 (43417-53583) 1109 (885-1334) 12.72 (11.93-14.40) 
1 4189 (3765-4613) 55837 (51521-60152) 1208 (1008-1407) 13.53 (12.50-15.89) 
2 - - -  
3 4678 (3812-5545)- 66085 (54917-77253) 1594 (1247-1941) 13.65 (11.21-16.36) 

Combined 
UGT1A1*28 and 
NRI1/2 c.63396C>T 
scores 

0 3626 (3361-3950) 42306 (34990-52278) 1097 (868-1619) 10.97 (9.64-12.54) 
1 4151 (3855-4737) 57502 (53574-64634) 1366 (1253-1801) 13.76 (12.23-15.29) 
2 4207 (3887-4774) 52718 (49568-58223) 1027 (954-1230) 13.17 (11.51-14.83) 
3 3844 (3238-4477) 53789 (53659-53918) 1132 (973-1304) 16.88 (12.15-21.60) 
4 5333 (4570-6159) 75807 (69714-82166) 1958 (1703-2253) x 

Combined ABCG2 
c.421C>A and NRI1/2 
c.63396C>T scores 

0 3450 (3102-3799) 42768 (35078-50457) 1124 (795-1453) 11.98 (10.19-13.78) 
1 3915 (3528-4301) 53948 (48733-59162) 1204 (980-1429) 13.38 (11.95-14.80) 
2 4077 (3763-4392) 52720 (47997-57443) 1217 (217-791) 13.05 (11.73-14.36) 
3 4924 (3555-6293) 59335 (48362-70308) 1067 (740-1394) 13.72 (8.15-19.29) 

Table 6.2: Dolutegravir (DTG) pharmacokinetic parameters shown as Geometric Means (GM) 95% Confidence Interval (95% CI), summarised by single or combined genotype. 
NB: UGT1A1*28 was coded as binary 

Log10 Cmax 
Univariate Linear Regressions Multivariate Linear Regressions 

p value β value (95% CI) r2 p value β value (95% CI) r2 

Log10Height (Log10cm) 0.008 -1.716 0.092 0.012 -1.649 0.394 
Weight (kg) 0.000 -0.004 0.175 0.009 -0.003 0.394 
Accompanying Drug 0.019 0.061 0.072 0.001 0.074 0.394 
UGT1A1*6 (rs4148323) 0.091 -0.044 0.038 0.355 0.039 0.402 

ABCG2 c.421C>A (rs2231142) 0.111 0.050 0.034 0.047 0.053 0.394 

NR1I2 c.63396C>T (rs2472677) 0.010 0.045 0.086 0.033 0.032 0.394 

Combined NRI1/2 and UGT1A1*28 
scores 

0.030 0.029 0.071 0.023 0.026 0.311 
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Combined ABCG2 and NRI1/2 scores 0.011 0.057 0.291 0.005 0.054 0.377 

Log10 C24 
Univariate Linear Regressions Multivariate Linear Regressions 

p value β value (95% CI) r2 p value β value (95% CI) r2 

Log10 Age (Log10years) 0.125 -0.236 0.026 0.029 -0.310 0.104 

Accompanying drug 0.008 0.084 0.076 0.114 0.048 0.133 

UGT1A1*28 (rs8175347) 0.045 0.070 0.049 0.083 0.059 0.140 

Combined UGT1A1*6 and *28 scores 0.009 0.067 0.082 0.009 0.067 0.082 

AUC0-24 
Univariate Linear Regressions Multivariate Linear Regressions 

p value β value (95% CI) r2 p value β value (95% CI) r2 

Log10Height (Log10cm) 0.011 -1.866 0.066 0.323 -0.871 0.282 

Weight (kg) 0.017 0.003 0.075 0.03 -0.002 0.228 

Ethnicity 0.044 0.036 0.054 0.143 0.025 0.256 

CYP3A4*22 (rs35599367) 0.059 0.053 0.047 0.295 0.027 0.270 

CYP3A5*3 (rs776746) 0.097 -0.034 0.037 0.033 -0.040 0.228 

NR1I2 c.63396C>T (rs2472677) 0.033 0.043 0.060 0.029 0.042 0.228 

UGT1A1*28 (rs8175347) 0.020 0.058 0.060 0.020 0.116 0.228 

Combined UGT1A1*6 and *28 scores 0.075 0.046 0.048 0.041 0.050 0.231 

Combined UGT1A1*28 and NRI1/2 
scores 

0.011 0.039 0.095 0.002 0.048 0.025 

t1/2 
Univariate Linear Regressions Multivariate Linear Regressions 

p value β value (95% CI) r2 p value β value (95% CI) r2 

Ethnicity 0.057 0.031 0.058 
   

Table 6.3: Significant results from univariate (p <0.2) and multivariate (p <0.5) linear regression analysis per PK parameter (significant SNP associations are boxed in bold) 
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Figure 6.1: Scatter 
plots of statistically 
significant relationships 
between genotypes and 
DTG plasma PK 
parameters 
(Geometric Means)
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Log10 Cmax 
Univariate Linear 
Regressions 

Multivariate Linear 
Regressions 

Effect 
size 

p value β value r2 p value β value r2  
Log10 Age (Log10years) 0.252 0.104 0.018     
Log10Height (Log10cm) 0.008 -1.716 0.092 0.012 -1.649 0.394 - 
Weight (kg) 0.000 -0.004 0.175 0.009 -0.003 0.394 - 
Ethnicity 0.297 0.002 0.015     

Accompanying drug 0.019 0.061 0.072 0.001 0.074 0.394 - 
CYP3A4*22 (rs35599367) 0.309 0.025 0.014     
CYP3A5*3 (rs776746) 0.514 - 0.012 0.006     
ABCG2 c.421C>A (rs2231142) 0.111 0.050 0.034 0.047 0.053 0.394 28% 
ABCG2 c.34C>T (rs2231137) 0.487 0.024 0.007     

NR1I2 c.63396C>T (rs2472677) 0.010 0.045 0.086 0.033 0.032 0.394 24% 
NR1I2 c.44477A>G (rs1523130)  0.384 0.014 0.010     
UGT1A1*6 (rs4148323) 0.091 -0.044 0.038 0.355 0.039 0.402  

UGT1A1*28 (rs8175347) ** 0.332 0.044 0.014     

Combined NRI1/2 and UGT1A1*28 
scores  

0.030 0.029 0.071 0.023 0.026 0.311 47% 

UGT1A1*6 and UGT1A1*28 0.797 0.004 0.001    18% 
Combined ABCG2 c.421C>A and 
NRI1/2 c.63396C>T scores 

0.004 0.040 0.105 0.002 0.038 0.390 43% 

Log10 C24 
Univariate Linear 
Regressions 

Multivariate Linear 
Regressions 

Effect 
size 

p value β value r2 p value β value r2  
Log10 Age (Log10years) 0.125 -0.236 0.026 0.029 -0.310 0.104 - 
Log10Height (Log10cm) 0.363 1.033 0.009     
Weight (kg) 0.454 -0.001 0.006     
Healthy volunteer 0.697 -0.047 0.011     
Ethnicity simplified coding 0.526 0.004 0.017     

Accompanying drug 0.008 0.084 0.076 0.114 0.048 0.133  

CYP3A4*22 (rs35599367) 0.221 0.057 0.016     
CYP3A5*3 (rs776746) 0.390 -0.029 0.008     
ABCG2 c.421C>A (rs2231142) 0.766 -0.016 0.001     

ABCG2 c.34C>T (rs2231137) 0.735 0.021 0.001     

NR1I2 c.63396C>T (rs2472677) 0.847 0.006 0.000     

NR1I2 c.44477A>G (rs1523130)  0.922 0.003 0.000     
UGT1A1*6 (rs4148323) 0.281 0.051 0.013     
UGT1A1*28 (rs8175347)** 0.045 0.070 0.049 0.083 0.059 0.140 38% 

Combined UGT1A1*6 and *28 0.009 0.067 0.082 0.009 0.067 0.082 44% 
Combined ABCG2 c.421C>A and 
NRI1/2 c.63396C>T scores 

0.436 0.017 0.008    39% 

Combined NRI1/2 c.63396C>T and 
UGT1A1*28 scores 

0.436 0.017 0.008    78% 

Log10 AUC0-24 
Univariate Linear 
Regressions 

Multivariate Linear 
Regressions 

Effect 
size 

p value β value r2 p value β value r2  
Log10 Age (Log10years) 0.291 -0.110 0.015     
Log10Height (Log10cm) 0.011 -1.866 0.066 0.323 -0.871 0.282  

Weight (kg) 0.030 -0.002 0.075 0.03 -0.002 0.228  
Healthy volunteer 0.978 0.001 0.000     
Ethnicity simplified coding 0.044 0.036 0.054 0.143 0.025 0.256  

Accompanying drug 0.978 -0.001 0.000     
CYP3A4*22 (rs35599367) 0.059 0.053 0.047 0.295 0.027 0.270  
CYP3A5*3 (rs776746) 0.097 -0.034 0.037 0.033 -0.040 0.228 -12% 
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ABCG2 c.421C>A (rs2231142) 0.376 0.032 0.011     
ABCG2 c.34C>T (rs2231137) 0.566 0.023 0.004     
NR1I2 c.63396C>T (rs2472677) 0.033 0.043 0.060 0.029 0.042 0.228 27% 
NR1I2 c.44477A>G (rs1523130)  0.893 -0.003 0.000     
UGT1A1*28 (rs8175347)** 0.020 0.058 0.060 0.020 0.116 0.228 27% 
UGT1A1*6 (rs4148323) 0.956 0.002 0.000     
Combined UGT1A1*6 and *28  0.035 0.041 0.067 0.023 0.041 0.243 36% 
Combined ABCG2 c.421C>A and 
NRI1/2 c.63396C>T scores 

0.031 0.035 0.061 0.008 0.042 0.257 43% 

Combined NRI1/2 c.63396C>T and 
UGT1A1*28 scores 

0.011 0.039 0.095 0.002 0.048 0.225 78% 

t1/2 
Univariate Linear 
Regressions 

Multivariate Linear 
Regressions 

Effect 
size 

p value β value r2 p value β value r2  
Log10 Age (Log10years) 0.506 -0.069 0.006     

Log10Height (Log10cm) 0.495 0.529 0.007     

Weight (kg) 0.484 0.001 0.007     
Healthy volunteer 0.637 0.014 0.003     
Ethnicity 0.437 0.008 0.003     

Accompanying drug 0.637 -0.014 0.003     

CYP3A4*22 (rs35599367) 0.561 0.016 0.005     

CYP3A5*3 (rs776746) 0.719 -0.008 0.002     
ABCG2 c.421C>A (rs2231142) 0.744 -0.011 0.002     
ABCG2 c.34C>T (rs2231137) 0.487 0.028 0.007     

NR1I2 c.63396C>T (rs2472677) 0.212 0.025 0.022     

NR1I2 c.44477A>G (rs1523130)  0.707 0.007 0.002     
UGT1A1*28 (rs8175347)** 0.274 0.058 0.020     
UGT1A1*6 (rs4148323) 0.950 0.002 0.000     
Combined UGT1A1*6 and *28  0.302 0.021 0.017     
Combined ABCG2 c.421C>A and 
NRI1/2 c.63396C>T scores 

0.391 0.014 0.011     

Combined NRI1/2 c.63396C>T and 
UGT1A1*28 scores 

0.057 0.031 0.058     

Table 6.4 Univariate and Multivariate regressions – complete analysis. Results in bold = above cut off; 
**UGT1A1*28 dichotomised throughout, using a recessive genotypic test model  

6.4. DISCUSSION 

The impact on DTG PK parameters of key common SNPs coding for the four main 

enzymes and transporters involved in its disposition were investigated.172 For the first 

time, to the best of our knowledge, these were brought together in a multivariate 

analysis model, which also controlled for important demographic covariates and were 

combined into scoring algorithms.  
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A statistically significant increase in DTG exposure was found in carriers of the 

UGT1A1*28 (rs8175347) poor metaboliser genotype (28%). Our results are in keeping 

with findings from the Chen et al. study albeit with a smaller effect size (28% vs 

46%).230 As previously discussed, Yagura et al. reported an association between the 

*28 heterozygote status (intermediate metaboliser) and an increase in Cmin but not for 

the homozygote (poor metaboliser) genotype, which the authors related to lack of 

statistical power.148 Contrastingly, our study demonstrated higher DTG PK parameters 

in the UGT1A1*28 poor metaboliser group and not the intermediate group, consistent 

with a recessive genotype model. Whilst this may also relate to a potential lack of 

statistical power, other studies have reported a lack of PK or PD effect with the 

UGT1A1*28 intermediate metaboliser genotype with drugs such as irinotecan or 

raloxifene.367, 368 Of note, the impact of UGT1A1*28 alone on DTG concentrations 

seemed modest compared to that seen for raltegravir concentrations, where C12 was 

110% higher in individuals carrying UGT1A1*28 poor metaboliser genotype.369 

However, when UGT1A1*28 and NR1I2 c.63396C>T were combined in our study, a 

79% higher AUC0-24 and a 47% higher Cmax, were seen in those with a maximum score 

(C24 was 78% higher but this was not statistically significant). Additionally, when 

UGT1A1*28 and UGT1A1*6 were combined, genotypic scores ≥three/4 were 

associated with a 36% higher DTG AUC 0-24 and a 44% higher DTG C24. Overall, this 

indicates that genomic biomarkers of DTG plasma exposure may be better based on 

carefully defined sets of SNPs or scoring algorithms rather than on single SNP 

characterisation.228, 370-373 

 

A statistically significant, but moderate, 28% higher DTG Cmax was found in subjects 

carrying the ABCG2 c.421C>A (rs2231142) homozygous variant genotype (AA) 
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compared to those homozygous for the common allele (CC).  This therefore confirms, 

results previously reported by Tsuchiya et al. but in a very different population (75% 

Caucasian and 17% Black participants (n=76) vs 100% Japanese participants (n=42) 

respectively).357 The higher DTG Cmax may reflect a decrease in first pass metabolism, 

for instance through reduced expression of efflux BRCP transporters in intestinal 

epithelial cells leading to increased absorption and/or through reduced hepatic 

clearance.357, 374 Higher exposures to sunitinib, rosuvastatin and atorvastatin have 

similarly been described in individuals carrying the ABCG2 c.421C>A (rs2231142) 

variant.375, 376 Interestingly, when ABCG2 c.421C>A was combined with NR1I2 

c.63396C>T (rs2472677), participants homozygous for the variant in both genes 

showed a significant 43% increase in DTG Cmax, once again suggesting a composite 

of SNPs may represent a more useful genomic biomarker of DTG PK parameters. 

 

The NR1I2 c.63396C>T (rs2472677) variant was independently associated with higher 

Cmax (24%) and AUC0-24 (27%).  This is converse to the effects seen with unboosted 

atazanavir363, 364 and is surprising since the TT genotype is thought to be associated 

with higher basal expression of the nuclear receptor PXR, which in turn would be 

expected to result in higher UGT1A1, BCRP and CYP3A4 expression and lower DTG 

concentrations.212, 222 Therefore, this observation should be interpreted with caution 

and needs to be confirmed. 

 

There are limitations to this work. The use of pooled data means drug intake 

conditions, such as time of day, accompanying food and backbone regimen were 

standardised within but not necessarily across trials. Moreover, a number of studies 

involved healthy volunteers whilst others investigated HIV infected individuals, 
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although this was included as a covariate in the multivariate analyses. Whilst the 

majority of studies contributing data were Phase I clinical trials, one study was a Phase 

III trial (n=17) and only contributed DTG trough concentrations rather than intensive 

PK data, meaning the sample sizes for Cmax/AUC0-24 and for C24 differed (N=76 and 

N=93 respectively). Additionally, two different assay methodologies were used for the 

PK analysis, potentially introducing variability. However, reassuringly, there was no 

significant difference in genotypic distribution for ABCG2, UGT1A1 and NR1I2 

between groups analysed by either method. Findings need to be interpreted in the 

context of the limited population size and statistical power of this study. Finally, our 

population was predominantly Caucasian (75%) and whilst the genetic associations 

found were preserved when the analyses were restricted to Caucasians only, we could 

not conduct any other ethnicity sub-analyses due to the small numbers representing 

other ethnic groups, therefore clinical findings should be verified further in population-

specific studies.  

 

In conclusion, since there is evidence of concentration-dependent DTG side effects 

and given that DTG-based regimens are increasingly replacing preferred first line 

therapy in ARV naïve HIV patients worldwide, searching for genomic biomarkers of 

plasma exposure may help tailor DTG-based HIV therapy at individual and population 

levels. This study showed a pharmacogenetic association between DTG 

pharmacokinetics and variants in the ABCG2, UGT1A1 and NRI1/2 genes, particularly 

when combined.  Further studies in large and diverse populations are warranted, 

particularly examining pharmacodynamic endpoints such as neuropsychiatric AEs, in 

order to further determine the clinical validity and population impact of 

pharmacogenetic testing for DTG.371-373
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CHAPTER 7 

General Discussion 
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Dolutegravir and cobicistat were approved for the treatment of HIV in 2013-14. Both 

addressed unmet clinical needs at the time and are now widely used. Their licences 

coincided with an intensification in the global ARV scale-up and, separately, a general 

paradigm shift in HIV research towards individualising therapy.100, 101 Both drugs have 

played a significant role in these latest developments, particularly DTG, which 

replaced EFV as preferred first line agent in universal guidelines alongside the newly 

introduced recommendation to adopt a ‘test and treat’ approach.64 It is estimated that 

at least 35 million people, including newly infected individuals, would need to be on 

treatment to meet in the 90–90–90 targets, meaning that, regardless of the target being 

reached and the residual need for further key population data (pregnancy, TB co-

infection), the worldwide implementation of DTG is likely to be widespread, across 

many different settings and across very diverse populations.65-68, 377 This highlights the 

importance of characterising the pharmacological behaviour of these drugs in real life 

settings and in commonly encountered clinical scenarios, in order to guide physicians 

in prescribing. It is particularly salient since data from licencing programs often only 

reflect drug use in highly selected groups of individuals under stringent trials 

conditions.127 

 

The goal of HIV therapy is to achieve and maintain virological suppression. Whilst 

clinical developments in novel formulations such as long active (LA) injectables and 

implantables are currently at the forefront of research and results are promising, 

treatment today still requires lifelong daily oral ARV dosing.378 Most agents now have 

near-perfect efficacy (>90%) in clinical trials in ARV naïve individuals, the chances 

of success of therapy therefore fall heavily on optimising adherence, itself dependent 

on a large number of factors (figure 7.1). The data presented in this thesis has 
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addressed gaps in knowledge within the domain of therapy-related factors that impact 

adherence, efficacy and tolerability of treatment, with the aim of assisting clinicians 

in appropriately individualising treatment to the patients and to their clinical 

circumstances.  

 

 

Figure 7.1: Non-exhaustive list of factors that influence adherence to and efficacy of ARVs. HCP: 
healthcare provider; CDC: Centre for Disease Control and Prevention; BMI: body mass index; PK: 
pharmacokinetics; ARV: antiretrovirals; HAND: HIV Associated Neurocognitive Disorder 

As discussed in chapter 2, both high and low-to-middle income settings have seen an 

ageing of the HIV population as a result of greater survival and of increasing rates of 

infection in later life.234-238 HIV physicians are now commonly faced with managing 
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ARVs in the context of multiple comorbidities and polypharmacy, both strongly 

associated with older age.235-238, 379-385 Additionally, in advancing age, several 

physiological changes affect drug pharmacokinetics and pharmacodynamics.239 Since 

DTG is a fitting candidate for therapy in this population, the study in chapter 2 

characterised DTG’s intensive PK in PLWH ≥ 60 years, showing a significantly higher 

DTG Cmax (25%) vs younger subjects (median age 36 years). 

 

Changes in sleep and cognition were also evaluated over six months of DTG in this 

population. There were two discontinuations secondary to NP-AEs, matching 

published rates.127 The one participant with PK data available had a Cmax, AUC0-24 and 

Cmin above the 95th centile for the study group, suggesting a PK contribution. This is in 

keeping with cohort data from the groups of Borghetti, Menard and Yagura, all of 

whom found an association between Cmin and NP-AEs.146, 148, 149, 232 However, there 

was no association between DTG PK parameters and changes in PD scores in the 

remaining subjects over time, in our study, which is in keeping with observations from 

Riva and Hoffman.259, 151 More specifically, there were no changes in sleep scores in 

some subjects with very high drug concentrations (>95th centile) in whom, 

surprisingly, cognition improved significantly, suggesting that the mechanisms of 

DTG-related neurotoxicity are more complex than a simple linear or threshold-defined 

PK relationship. It may relate, as already discussed, to a combination of factors that 

include pharmacogenetic, immune and/or functional predispositions.138 Further 

research is warranted in order to determine the role of DTG drug concentrations in its 

safety and tolerability profiles and to characterise other contributing factors more 

precisely. This will be crucial to minimising the personal and financial impacts of DTG 

adverse effects on individuals and health care systems, respectively.  
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As previously mentioned, there has been a recent drive to investigate treatment 

simplification strategies and challenge the use of conventional triple therapy, which 

has been the staple of HIV treatment since 1996. This aims to lessen toxicity, cost and, 

potentially, drug interactions through reducing the number of agents in any single 

regimen.100 Treatment simplification is especially relevant in today’s ageing HIV 

patient population.236 One recent study conducted in France, demonstrated that DDIs 

are common in people over the age of 65 living with HIV and substantially increase 

healthcare cost by as much as $2693 per patient per year.386 A number of simplification 

strategies have been examined, however, following the historically mixed success of 

PI/RTV monotherapy, concerns over CSF viral escape and poor quality data on DTG 

monotherapy, current data firmly favours dual therapy over monotherapy.100-103, 387 Of 

note, phase 3 trials for long-acting dual therapy maintenance are on-going 

(cabotegravir + RPV).388 RCT and cohort data available for some of the main dual 

combinations studied to date are discussed in chapters 1 and 4. The latter focuses on 

DTG combined with boosted DRV, which offers a simplified and safe regimen with a 

high genetic barrier and can particularly assist in cases where treatment simplification 

is desired but NRTI or NNRTI based dual therapy is not possible (e.g. cases of 

complex resistances).101, 102 The DUALIS study and a number of cohort studies have 

already demonstrated high efficacy and safety of this combination as maintenance 

therapy, including in highly treatment experienced patients with resistance.118-121 PK 

and efficacy data, however, were mainly available for DTG with DRV when boosted 

with RTV. In chapter 4, co-administration of DTG with DRV when boosted with 

COBI was therefore investigated; minimal intra-individual variance in DTG and 

DRV/COBI PK parameters when administered together was demonstrated (<10%) 
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compared to alone. Concentrations of both active agents remained manifold above the 

PA-IC90/PA-EC90 in all participants, suggesting that no dose adjustment is required in 

either agents and that this combination can be prescribed safely, at standard doses, in 

the treatment of HIV-1, including in patients harbouring resistance. DTG/DRV/COBI 

thus offers a potent dual regimen that is taken as two tablets rather than three with 

RTV and is likely to become a strong addition to the HIV therapy armamentarium in 

future.  

 

Despite advances to improve adherence such as single tablet regimens, smaller tablets, 

adherence support and purpose-designed technology, delayed or omitted doses still 

occur, potentially compromising virological control and risking the emergence of drug 

resistance. In chapter 3, the plasma PK of oral DTG and COBI-boosted EVG, DRV 

and ATV following cessation of drug intake were investigated, in order to understand 

and guide the management of late and missed doses for these drugs. A marked 

difference in the elimination rates of DTG and EVG was seen following treatment 

interruption. There was a significant decline in EVG GM concentration after 24 hours, 

paralleling a rapid COBI decay; EVG levels dropped to below the PA-IC95 shortly 

after the 36 hours mark. Conversely, DTG was persistent in systemic circulation for a 

very prolonged period, with GM concentrations remaining above the suggested plasma 

PA-IC90 for up to 72 hours and above the suggested MEC for over 48 hours post-drug 

intake cessation. These discrepancies in PK forgiveness may influence drug choices 

in patients who have suboptimal adherence, as clinical difference may emerge in this 

population. There was also an increase in rates of decline for ATV and DRV as COBI 

concentrations diminished. All 16 subjects in the study had ATV concentrations above 

or very close to the suggested MEC 30 hours post-dose, suggesting that a 6-hour drug 
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intake delay would not compromise optimal drug exposure and efficacy. DRV 

concentrations, however, appeared to drop below the MEC shortly after the 24-hour 

mark and 3/16 study individuals had concentrations below the suggested MEC cut-off 

24 hours post-dose. DRV is a robust agent and whether this is clinically significant is 

unclear. PD data in patients who are poorly adherent to DRV/COBI are therefore 

needed. Overall, the findings contribute to the understanding of whether oral doses, 

for the specific drugs investigated, can be delayed or missed and, if so, to what extent. 

This is particularly important as DTG and the PIs are the agents used in patients who 

are susceptible to poor compliance or harbour viral resistance.56, 260, 261 

 

PK tail data will be particularly important in the era of LA compounds, not only to 

determine optimal dosing intervals but also for clinicians to assess the suitability of 

certain patients for available options. There remains an ongoing debate on whether 

patients who struggle with adherence to medication and attendance to clinic would be 

suitable candidates for LA formulations of ARV agents with long PK tails. This is 

because of the risk of viral resistance in the context of prolonged exposure to 

subtherapeutic drug doses in those who do not attend their scheduled dosing.  

Consequently, strategies for the implementation of LA therapeutics in real life clinical 

settings is an important and actively evolving area.388  

 

Chapter 5 describes the intra-individual variance in the PK of EE/LNG in one of the 

most commonly used oral contraceptive pill (Microgynon®) and of ATV/COBI co-

formulated in Evotaz®, when they are administered together compared to alone. 

Evotaz® may be preferentially used over ATV + RTV in some patients in order to 

reduce pill burden.208 With (TG)WLWH living longer and healthier lives, U=U 
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(undetectable = untransmittable) and the markedly minimised rates of mother-to-child 

transmission (MTCT) in the context of planned pregnancy with optimal viral 

suppression, access to safe and reliable contraception and ART is a priority on the HIV 

care agenda. As discussed comprehensively in chapter 5, oestrogen and progestogen 

have relatively narrow therapeutic indices and the tolerability, safety and efficacy 

sequalae of underexposure or overexposure to either are all potentially significant. 

This study demonstrated minimal changes in LNG concentrations and a smaller 

decrease in EE Cmin than seen with ATV/RTV (25% vs 37%).338, 339 There were no 

clinically significant changes in EE Cmax or AUC0-24 (5% and 1% increases 

respectively). The disparity in DDI between the two pharmacological boosters is likely 

to relate to the fact that unlike RTV, COBI does not induce CYP2C9 and 

glucuronidation, both responsible for EE clearance.198, 199, 338  ATV has fallen out of 

favour in high income countries but it remains in the WHO guidelines and large 

numbers of patients stable on ATV continue to take it. Whilst preliminary, these data 

are therefore important in informing physicians, who need to discuss and choose safe 

and reliable contraception with their female patients living with HIV. Whether this 

difference between ATV/RTV and ATV/COBI will be clinically significant, however, 

demands further characterisation. 

 

Finally, considering that DTG is fast becoming the leading agent for naïve HIV 

patients in the transition to global ARV access, searching for genomic biomarkers of 

plasma exposure may help tailor DTG-based HIV therapy at individual and population 

level.64, 65 Chapter 6 therefore evaluated the impact of genetic variability in drug 

disposition genes on the PK of DTG, showing an independent pharmacogenetic 

association between DTG PK and variants in the ABCG2, UGT1A1 and NR1I2 genes, 
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particularly when combined. Most significantly, co-occurring UGT1*28 and NR1I2 

c.63396C>T homozygosity was associated with a statistically significant 79% increase 

in AUC0-24 and a 47% increase in Cmax whilst combined ABCG2 c.421C>A and NR1I2 

c.63396C>T variants were associated with a 43% increase in Cmax and a 39% increase 

in AUC0-24. The combination of UGT1A1*28 poor metaboliser and UGT1A1*6 

intermediate metaboliser statuses correlated with a 43% increase in AUC0-24. Overall, 

results indicate that genomic biomarkers of DTG plasma exposure may be best 

characterised with carefully defined sets of SNPs or scoring algorithms rather than 

with individual alleles. These findings warrant further research in large and diverse 

populations that particularly examine pharmacodynamic endpoints in order to 

determine the feasibility, clinical validity and population impact of pharmacogenetic 

testing for DTG.228, 370-373 

 

There remains a call in the field for tangible biomarkers of DTG toxicity, particularly 

with regards to NP-AEs and to weight gain, both of which are likely to be 

multifactorial.127, 144 From the studies of weight gain published so far, women and 

black people appear most likely to be at risk on InSTI-based regimen, particularly 

when compared with NNRTI-based regimen.144 Median gain has ranged from 1kg to 

4.9kg in RCTs that reported weight changes.144 Recent data from IAS 2019, showed 

that DTG-related weight gain was significantly associated with TAF co-

administration,389 but, interestingly, there has also been a suggestion that DTG binding 

to the MC4R receptor may be involved. In vitro, DTG inhibited the binding of 

radiolabelled α-melanocyte-stimulating hormone (MSH) to the human recombinant 

MCR4 receptor by 64% at a concentration equal to the clinical Cmax, when >50% is 

considered clinically significant by the EMA. MC4R is involved in the regulation of 
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energy homeostasis and food intake, and deficiency in MC4R is associated with 

monogenic obesity.390 It is not clear if these findings will be associated with changes 

in body weight in vivo and further studies are needed.144 If a mechanistic link is found, 

MC4R genetic variants may merit further investigations to assess their contribution to 

DTG-mediated weight gain. For NP-AEs, the literature to date remains suggestive 

rather than conclusive. A number of cohort studies have reported that co-

administration with ABC increases the risks of DTG discontinuation secondary to 

AEs, although this DDI has been refuted in a number of other studies, as have 

suggestions implicating PK, gender and age as risk factors.129-135, 146  As previously 

discussed, Borghetti et al. reported an association between a common SLC22A2 

genetic variants and a set of measured subclinical NP-AEs during DTG therapy, 

although none led to drug termination.232 In their study, two neuropsychiatric metrics 

were also associated with DTG Cmin, leading to the authors proposing a synergy 

between DTG PK and genetic neurological susceptibility.232 Yagura et al. similarly 

described an association between UGT1A1*28 and UGT1A1*6 gene polymorphisms 

and a higher cumulative incidence selected NP-AEs, mediated by Cmin in a Japanese 

cohort.148 These findings were furthered by data presented by the same authors in a 

poster at IAS 2019, showing an association between UGT1A1*28 and UGT1A1*6 

gene polymorphisms and AE related DTG discontinuation one to four years after DTG 

initiation in a similar cohort.149 There may be a genetic predisposition in the aetiology 

of DTG-mediated neurotoxicity. Further DTG NP-AE pharmacogenetic research is 

therefore warranted in order to investigate the role of SNPs, specifically in hard 

pharmacodynamic endpoints such as the discontinuation of DTG due to AEs with 

resolution of symptoms post-discontinuation. Genes involved in DTG transport across 

the BBB (e.g.BCRP) and in the susceptibility of neuronal receptors substrates 
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(e.g.OCT2) are of particular interest. This study is under-way and will characterise 

three SNPs in genes coding for DTG and BIC disposition (ABCG2 (BCRP, rs2231142) 

and UGT1A1*28) and coding for DTG target (SLC22A2 (OCT2, rs316019)), in a large 

cohort of patients on DTG or BIC who have discontinued the drug secondary to NP-

AEs (cases) compared to participants who have experienced no NP-AEs (controls) for 

over 1 year on either drug (the DOLBIC study). 

 

Lastly, as summarised above, chapter 3 reported a long DTG PK tail, with GM 

concentrations remaining above the in-vitro PA-IC90 for 3 days, above the suggested 

MEC for over 2 days and being detectable in plasma in 100% of participants at 4 days. 

Additionally, DTG C24 in all the DTG studies described in earlier chapters ranged 

between 1052 and 1324 ng/mL, for a 50mg OD dose, in various populations. This 

represents an inhibitory coefficient (IQ90) ranging between 16 and 21, which is high 

for wild type virus. The IQ90 is used in evaluating a drug’s efficacy at a given dose. It 

relates the in-vivo drug exposure to viral susceptibility, usually Cmin divided by IC90 or 

IC95, indicating the number of times the Cmin is greater than the IC90/IC95. DTG GM 

Cmin in the DTG SPC is 1110 ng/mL, giving an IQ90 within the same range as in our 

studies. For reference, the IQ95 for standard dose EFV is approximately 14 and NVP 

12.391 During the drug development phase for DTG, doses of 10 and 50 mg OD yielded 

Cmin values that were 3 and 13 times higher than the PA-IC90, in ARV naïve/ARV 

experienced, InSTI naïve patients, dosed with DTG monotherapy for 10 days.390 The 

subsequent dose finding phase II study, SPRING1, evaluated 10mg, 25mg and 50mg 

OD against the active control efavirenz 600 mg in ARV-naive subjects. All regimens 

contained a NRTI backbone of ABC/3TC or TDF/FTC. At 48 weeks, all 3 DTG dosing 

arms achieved more rapid and sustained virological suppression than EFV (88-91% vs 
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82%) and there was no difference in efficacy between arms.392 This raises the question 

of whether DTG could be considered for dose optimisation trials in first line therapy, 

particularly if PK is found to play a significant contributory role in DTG toxicity. 

Several dose optimisation trials have been conducted in the past to challenge approved 

supratherapeutic dosing of commonly used agents such at ATV, EFV and AZT.393-396 

In the ENCORE-1 study, for instance, lower dose of EFV, 400 mg OD, was non-

inferior in efficacy and showed lower risks of EFV-related AEs compared to the 

approved dose of 600 mg OD, in ARV naïve individuals.395, 396 Efficacy was consistent 

across different races and CYP2B6 polymorphisms, which are known to affect EFV 

concentrations. Efficacy results were subsequently replicated in patients with TB/HIV 

co-infection on rifampicin and in pregnant women and the WHO antiretroviral 

guidelines were updated to recommend EFV 400mg as the alternative first line option 

to DTG, aiming to reduce cost and overall toxicity of EFV-based therapy.397-399   

Consideration of DTG dose optimisation research aiming to reduce global cost and 

toxicity would depend on upcoming results from DTG toxicity aetiology studies, key 

population safety and efficacy data and overall cost-saving analyses, since DTG is 

already relatively competitively priced in LMIC (median price $30 per person per 

year; TDF/3TC/DTG is $75 per person-year).66  

 

In conclusion, on the back of the remarkable advances made in HIV pharmacotherapy 

in the last three decades, the field has been able to progress towards investigating and 

implementing the individualisation of treatment. Tailoring of therapy can be beneficial 

on an individual level but also on a population-level, where characteristics such as 

genomics or clinical circumstances (e.g. co-infection and pregnancy) are common to 

a population. DTG and, to a lesser degree, COBI have played a significant role in this 
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paradigm shift. DTG, in particular, is becoming a key player in the global ARV scale 

up, meaning that any findings related to DTG will be applicable to very large 

populations. The novel data presented in this thesis addresses gaps in knowledge on 

DTG and COBI’s pharmacological behaviour in important patient groups and clinical 

scenarios frequently encountered by physicians, namely older PLWH, women on 

contraception, patients who are poorly adherent, candidates for DTG/DRV/COBI dual 

therapy and genetically distinct populations. The findings provide data to assist 

clinicians in decision-making in clinically and genetically predefined sub-populations 

and support future research in DTG dose optimisation.   
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Appendix 1: commercial nomenclature for individuals ARVs 
 

Molecule/combination UK commercial name 

Efavirenz + emtricitabine + tenofovir DF Atripla 

Bictegravir + TAF + emtricitabine Biktarvy 

Rilpivirine + emtricitabine + tenofovir DF Eviplera 

Rilpivirine + emtracitabine + TAF Odefsey 

Dolutegravir + abacavir + lamivudine Triumeq 

Elvitegravir + cobicistat+ emtracitabine + TAF Genvoya 

Darunavir + cobicistat + emtricitabine + TAF Symtuza 

Doravirine + lamivudine + tenofovir DF Delstrigo 

Dolutegravir + lamivudine Dovato 

Dolutegravir + rilpivirine Juluca 

Tenofovir DF + emtracitabine Truvada 

Tenofovir alafanemide (TAF) Descovy 

Abacavir + lamivudine Kivexa 

Efavirenz Sustiva 

Nevirapine Viramune 

Etravirine  Intelence 

Rilpivirine Edurant 

Doravirine Pifeltro 

Raltegravir Isentress 

Dolutegravir Tivicay 

Maraviroc Celsentri 

Atazanavir Reyataz 

Darunavir Prezista 

Atazanavir + cobicistat Evotaz 

Darunavir + cobicistat Rezolsta 

Cobicistat Tybost 

Ritonavir Norvir 
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Appendix 2: Description of sleep questionnaires used in chapter 2 study:  

1. The Pittsburgh Sleep Quality Index (PSQI) is a well validated multidimensional 

tool with 19 scored questions (0-3 likert scale) covering 7 domains of subjective 

sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep 

disturbances, use of sleeping medications and daytime dysfunction. It aims to 

measure sleep quality and disturbances over the prior month and to discriminate 

between “good” and “poor” sleepers. The scoring range is 0-21. Score of 5 and 

above indicates poor sleep quality. 

2. The insomnia severity scale (ISS) is a self-questionnaire to measure the nature, 

severity and impact of any insomnia experienced including associated concerns 

and distress; The scaling of items is on a 5 point likert scale, with a total range 

from 0-28; Cut offs are 0-7: no insomnia, 8-14: subthreshold insomnia, 15-21: 

significant insomnia and 22-28: severe insomnia. 

3. The Epworth Sleepiness Scale (ESS) is an 8 question self reported tool to assess 

tendency for daytime sleepiness. It does not distinguish the cause and there is no 

recall period. The scoring range is between 0-24. Scores of 10 or higher indicate 

excessive daytime sleepiness. 

4. The Functional Outcomes of Sleep Questionnaire (FOSQ) is a 30-question tool to 

assess the impact of excessive sleepiness on functional outcomes relevant to daily 

behaviours and sleep-related quality of life. It contains 30 items in 5 factor 

subscales: activity level, vigilance, intimacy and sexual relationships, general 

productivity, social outcome and difficulty performing a given activity. The range 

goes from 5-10. Higher scores indicate better functional status. 

5. The Fatigue Severity Scale (FSS) is a 9-item questionnaire to assess the effect of 

fatigue on daytime function in a 7-point likert scale. There are no categories or 
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domains established and the recall period is 1 week. The scoring range goes from 

0-63. Scores of 36 or higher indicate fatigue. 

 

6. The SDQ is a 175-question extensive and comprehensive questionnaire, which 

assesses all of the sleep domains (this was only administered on days 1 and 180 

only). The recall period is 6 months.
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Appendix 2; Table A: Sleep questionnaire results by time point 

Sleep component, median (IQR) 
Baseline  
(n=43) 

Day 28  
(n=40) 

Day 90  
(n=38) 

Day 180   
(n=38) 

n Score n n' Score n n' Score n n' Score 
PSQI (Sleep Quality)                       
  Subjective sleep quality 43 1 (1,2) 40 40 1 (1,2) 37 37 1 (0,1) 38 38 1 (0,2) 
  Sleep latency 43 1 (0,1) 39 39 1 (0,2) 36 36 1 (0,1) 38 38 1 (0,2) 
  Sleep duration 42 1 (0,1) 39 38 1 (0,2) 37 37 1 (0,1) 36 35 1 (0,1.5) 
  Habitual sleep efficiency 40 0 (0,1.5) 38 35 1 (0,2) 37 35 0 (0,2) 35 32 1 (0,2) 
  Sleep disturbances 40 1 (1,2) 38 36 1 (1,2) 37 34 1 (1,2) 38 35 1 (1,2) 
  Sleeping medication 43 0 (0,0) 39 39 0 (0,0) 37 37 0 (0,0) 38 38 0 (0,0) 
  Daytime dysfunction 42 1 (0,1) 40 39 1 (0,1) 37 36 1 (0,1) 38 37 1 (0,1) 
Global PSQI 36 5 (3.5,7.5) 35 29 6 (4,9)** 36 30 5.5 (3,9) 35 28 6 (4,11) 
  Global PSQI >5a, n (%) 36 16 (44) 35 29 18 (51) 36 30 18 (50) 35 28 18 (51) 
ESS (Sleepiness)                       
Overall ESS 41 5 (3,10) 37 37 6 (4,8) 34 32 5 (2,7) 38 36 5 (3,8) 
  ESS ≥10b, n (%) 41 12 (29) 37 37 8 (22) 34 32 6 (18) 38 36 9 (24) 
ISI (Insomnia)                       
Overall ISI 42 5.5 (2,10) 40 39 6.0 (3,10.5) 35 35 6.0 (1,10) 38 37 6.5 (1,12) 
  ISI category, n (%) 

42 

  

40 39 

 

35 35 

 

38 37 

  
    ≤14 (none or subthreshold) 38 (90) 37 (93) 33 (94) 30 (79) 
    15-21 (moderate) 3 (7) 2 (5) 2 (6) 8 (21) 
    ≥22 (severe) 1 (2) 1 (3) 0 (0) 0 (0) 
FOSQ (Functional Outcomes)                       
  General productivity 42 3.88 (3.6,4) 40 39 3.88 (3.6,4) 37 36 3.75 (3.25,4) 38 37 3.88 (3.6,4) 
  Social outcome 42 4.00 (4,4) 40 39 4.00 (4,4) 37 36 4.00 (4,4) 38 37 4.00 (4,4) 
  Activity level 43 3.67 (3.3,3.9) 40 40 3.56 (3.4,3.8) 37 37 3.67 (3.3,3.9) 38 38 3.65 (3.2,3.9) 
  Vigilence 43 3.71 (3,4) 40 40 3.63 (3.3,3.9) 37 37 3.71 (3.4,4) 38 38 3.57 (3.3,4) 
  Intimacy 38 3.75 (3,4) 36 35 3.75 (3.1,4) 34 31 4.00 (3,4) 36 31 3.88 (3,4) 
Global FOSQd 42 18.36 (16.1,19.5) 40 39 18.55 (16.7,19.4) 36 35 18.81 (17.8,19.7) 38 37 18.01 (16.4,19.6) 
FSS (Fatigue)                       
Overall FSS 39 22 (14,19) 35 31 23 (16,34) 31 28 21 (14,31) 35 31 26 (14,34) 
  FSS ≥36c, n (%) 39 4 (10) 35 31 6 (17) 31 28 7 (23) 35 31 7 (20) 
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SDQ (Sleep Disorders)                       
            
  Sleep apnea 23 29 (25,31)         31 19 26 (23,31) 
  Periodic leg movement 38 20 (18,24)         36 32 20 (17,24) 
  Psychiatric sleep disorder 35 17 (14,21)         35 29 16 (14,21) 
  Narcolepsy 28 19 (17,22)             30 23 18 (16,20)             
Scores are raw median (IQR) unless otherwise stated. N are number of individuals with results at time point. N' are number of individuals with baseline & timepoint results 
Significant testing using Wilcoxon matched pairs sign-rank test compared to baseline. *** p <0.001, ** p <0.01, * p <0.05 (no correction for multiple testing) 
EFV, efavirenz;  ESS, Epworth sleepiness scale; FOSQ, Functional outcomes of sleep questionnaire; FSS, Fatigue severity scale of sleep disorders; ISI, Insomnia severity index; IQR, Interquartile range; PSQI, Pittsburgh sleep quality index; 
SDQ, Sleep disorders questionnaire 
For all sleep components a higher score indicates poorer performance with the exception of FOSQ, for which a higher score indicates better performance. PSQI domain range 0-3, global range 0-21; FOSQ domain range 1-4, global range 5-
20; ESS range 0-24; ISI range 0-28; FSS range 9-63; SDQ, sleep apnea range 12-60, period leg movement range 9-45, psychiatric sleep disorder range 9-45, narcolepsy range 15-75. 
a Global PSQI >5 considered poor sleep quality; bESS ≥10 considered sleepy; cFSS ≥36 indicates possible fatigue; dGlobal FOSQ only calculated if ≥60% questions answered 
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Appendix 2; Figure B:  Changes in individual sleep questionnaire median scores from baseline to day 90 and 180 (95% CI) 
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Appendix 2: Table C: Sleep scores by previous efavirenz status 

Scores are raw median (IQR) unless otherwise stated. 

EFV, efavirenz; ESS, Epworth sleepiness scale; FOSQ, Functional outcomes of sleep questionnaire; FSS, Fatigue severity scale of sleep disorders; ISI, Insomnia severity index; IQR, Interquartile range; PSQI, Pittsburgh 

sleep quality index; SDQ, Sleep disorders questionnaire 

Note: At baseline, for all sleep components a higher score indicates poorer performance with the exception of FOSQ, for which a higher score indicates better performance. PSQI domain range 0-3, global range 0-21; 

FOSQ domain range 1-4, global range 5-20; ESS range 0-24; ISI range 0-28; FSS range 9-63; SDQ, sleep apnea range 12-60, period leg movement range 9-45, psychiatric sleep disorder range 9-45, narcolepsy range 15-

75. For difference scores, score sign is reversed for all outcome measures where increasing values indicate performance decline. Thus, for all measures, negative change values indicate performace decline & positive 

values indicate performance improvement 

aP-values are exact Mann-Whitney tests for difference between groups at baseline; bP-values are exact Mann-Whitney tests for absolute difference between groups (non-EFV versus EFV) for change from baseline to 

timepoint (no correction for multiple testing) 

Sleep 
component, 

median (IQR) 

Baseline Change from baseline, mean (SD) 
Day 28 Day 90 Day 180 

No EFV EFV p-
valuea 

No EFV EFV p-
valueb 

No EFV EFV p-
valueb 

No EFV EFV p-
valueb 

PSQI, global 6 (4,11.3) 4 (1,6) 0.029* -1 (-2,1) -1  

(-2.3,0.3) 

0.923 -1 (-3,1) -1  

(-3,0) 

0.719 0 (-1,1) 0 (-5,1) 0.556 

FOSQ, global 17.3 

(15.3,18.7) 

19.4 

(18.2,19.8) 

0.030* 0.11 

(-0.8,1.0) 

0.04  

(-0.5,0.6) 

>0.999 0.00  

(-1.8,2.0) 

-0.00  

(-1.1,0.3) 

0.909 0.52  

(-1.0,2.2) 

0.00  

(-1.2,0.3) 

0.082 

ESS 6 (4.5,11.5) 4 (3,7.5) 0.049* 0 (-2,2) -1  

(-1,0.5) 

0.674 1 (-1,3) 1 (0,1) 0.524 -1  

(-3,3) 

0  

(-1,1) 

0.664 

ISI 8.5 (3.8,11.5) 3 (0,7) 0.015* 0 (-2,2.3) 0 (-3,2) 0.961 0.5 (-

1.3,3.5) 

0 (-4,1.5) 0.225 1  

(-1,2.8) 

-1  

(-6,0) 

0.018* 

FSS 24 (18,35) 21.5 (10,26) 0.058 2 (-4.3,5) 2 (-7,8) 0.914 1 (-5,8) 2 (-3.5,9) 0.641 1.5  

(-6.5,5.5) 

0  

(-6,1) 

0.552 

SDQ, sleep apnea 31 (26,35) 26 (22,30) 0.024*   
 

    
 

  2 (-2.5,4.5) 0 (-2.3,1) 0.214 
SDQ, periodic leg 

movement 

20 (18,24) 20.5 (17,21) 0.953   
 

    
 

  -0.5  

(-1.3,3.3) 

-0.5  

(-4.3,2.3) 

0.350 

SDQ, psychiatric 

sleep disorder 

17.5 (14,22) 16 (14,20) 0.541   
 

    
 

  1 (-3,3) 1  

(-2.5,4.3) 

0.855 

SDQ, narcolepsy 18.5 (16,23.5) 20 (18,21) 0.651             -1.5 (-3,1.8) 3 (0,4) 0.007** 



 

 180 

Appendix 2; Table E: P-values for correlation between PK parameters 
and change in sleep scores (baseline-day 180) 

Correlations tested using Spearman correlation. *** p <0.001, ** p <0.01 * p <0.0 

Appendix 2; Table D: P-values for correlation between PK parameters 
at day 28 and sleep scores at day 180 

 
Sleep component Cmax Clast AUClast 
PSQI, global -0.04 -0.09 -0.12 
FOSQ, global -0.09 0.24 0.17 
ESS 0.17 -0.15 -0.02 
ISI 0.01 0.08 0.01 
FSS -0.06 0.17 0.45 

Correlations tested using Spearman correlation. *** p <0.001, ** p <0.01 * p <0.0 

 

Sleep component Cmax Clast AUClast 
PSQI, global -0.16 -0.1 0.15 
FOSQ, global 0.04 0.07 0.09 
ESS -0.1 -0.21 -0.12 
ISI -0.12 -0.15 -0.14 
FSS -0.03 0.06 -0.02 
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