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Abstract

In this paper we present new theoretical and practical insights into the method of
dollar cost averaging (DCA) and averaging-style investment timing strategies, with a for-
mal analysis of the problem. Firstly, we provide a rigorous mathematical formulation
for studying DCA and related strategies. This provides closed form formulae for the ex-
pected value and variance of the investor’s wealth process, which mathematically proves
many properties that have been documented in the literature only by empirical studies.
Secondly, we prove a counterintuitive, but important, result that the frequency of DCA
investment has a non-monotonic and non-trivial impact on risk, risk-return trade-off and
other important performance metrics (such as the Sharpe ratio).Thirdly, we provide a
method of valuing the DCA risk for models which incorporate jumps. We also provide a
method of hedging DCA risk based on applying Asian options. Finally, using the PROJ
method of computation, we obtain a robust and computationally efficient method for cal-
culating standard risk measures of generic and deterministic investment strategies, such
as DCA. We provide numerical experiments to illustrate our conclusions, and conduct an
empirical study on the S&P500 index (from 1954 to 2019) to substantiate our results.
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1 Introduction

Dollar cost averaging (hereafter DCA) is one of the most popular investment methods actively

used by ordinary investors. DCA refers to an investment strategy in which a fixed dollar

amount is invested in a risky asset (such as a mutual fund or exchange-traded fund (ETF)) at

regular time intervals, and over a predefined holding period (see for instance Rubin and Spaht

(2018), Panyagometh and Zhu (2016) and Fong (2017)). The commonly publicized advantage

of this form of incremental investing is that the investor reduces exposure to temporary price

fluctuations, which could lead to lower returns. For example, during a market downturn one is

able to buy more shares of the asset at a lower price, leading to greater returns at the end of the

investment horizon. By reducing exposure to the impact of price fluctuations, DCA enables

investors to avoid “market timing”. Hence DCA has been found in some studies to achieve

better investment returns for ordinary investors, without requiring sophisticated market timing

skills1. Additionally, DCA is a standard method of saving for many important investments for

future wealth, such as retirement accounts and pensions. Hence it is important to understand

DCA as an investment method. In general, asset/portfolio allocation and investment timing is

an important problem, with many practical applications, Wachter (2010); Battauz et al. (2015,

2017); Battauz and Sbuelz (2018); Ma et al. (2019); Pun and Wong (2019); Ling et al. (2019).

The advantage of DCA not requiring market timing skills is particularly appealing, espe-

cially for ordinary investors, as it has been well documented that market timing is extremely

difficult to achieve, even for professional or experienced investors. For example, Cuthbertson

et al. (2010) show that only approximately 1% of UK mutual funds demonstrate significant

market timing skills. Economically, this implies that learning (costs) in terms of the optimal

investment timing are extremely high, and so DCA provides a method of bypassing the learning

of such skills. Additionally, DCA is preferable to lump sum (LS) investing from an economic

perspective because DCA places fewer liquidity and other budgetary constraints upon firms and

individuals (see for instance Telyukova (2013), Campbell and Hercowitz (2019) and Boguth and

Simutin (2018)).

Another potential advantage of DCA is that it is deemed to reduce the volatility of invest-

ments (Braselton et al., 1999), by smoothing out the effects of volatile movements in asset prices

with regular, periodic asset purchases. This has also been referred to as time diversification, in

that it reduces the risk from purchasing at the “incorrect” time. Under suitable assumptions,

we prove that DCA does in fact offer a reduction in variance compared with LS investing, but

1In Tomlinson (2012). DCA is deemed an “the unbeatable formula” because “No one has yet discovered any
other formula for investing which can be used with so much confidence of ultimate success, regardless of what
may happen to security prices, as Dollar Cost Averaging.” While this is a positive appraisal of DCA, we will
investigate the potential merits of DCA and related strategies from a mathematical and formal perspective in
this paper.
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at the cost of lower expected returns.

Nonetheless, academic views on DCA have been generally negative. For example, Constan-

tinides (1979) discredited the efficiency of DCA as it is considered to be an inferior strategy.

His conclusion was mainly drawn on DCA not having flexibility to incorporate additional infor-

mation that is accumulated as time passes; DCA is a deterministic policy that is not adjusted

as new market information is revealed. In Knight and Mandell (1992), using graphical analysis,

historical stock market returns, and Monte Carlo simulation, the authors argued that DCA

is suboptimal. In an empirical study, Williams and Bacon (1993) compares the annualized

returns from various dollar-cost averaging strategies with those produced by lump-sum (LS)

investing in the S&P 500 from 1926 to 1991. For all time periods and averaging strategies

investigated, LS investing produced superior returns to DCA, and in all but one instance, the

differences were significant at the 0.005 level. In an empirical study with S&P 500 data, as well

as simulated experiments, we will show that a more optimal deterministic strategy is generally

somewhere “between” DCA and LS investing, but it depends critically on the frequency of

periodic investments, and on the investment horizon.

Despite the aforementioned unfavorable views on DCA, there is also substantial (empirical)

research evidence in support of DCA. For example, Trainor (2005); Dubil (2005) showed that

DCA reduces shortfall risk, which is a major factor in retirement saving and retail investing.

Grable and Chatterjee (2015) documented that a DCA strategy provides a way to outperform

during a bear market (rather than a bull market) for clients who have less tolerance for fi-

nancial risk. Luskin (2017) reported that DCA outperforms LS investment during the period

when cyclically adjusted price-to-earnings (CAPE) ratio is high. Balvers and Mitchell (2000);

Brennan et al. (2005) argued that DCA may be advantageous if asset returns are negatively au-

tocorrelated (e.g. correcting). Moreover, using mutual fund data, Israelsen (1999) argued that

lump-sum investing does not always yield superior returns over dollar-cost averaging, especially

if the volatility of mutual funds is low. For additional literature on DCA and LS investing,

the reader is referred to Pye (1971); Dodson (1989); Thorley (1994); Leggio and Lien (2003);

Milevsky and Posner (2003); Smith and Artigue (2018) and references therein.

Whilst DCA has several important advantages for ordinary investors, there has been little

research conducted with respect to continuous time financial models, which are fundamental to

financial risk and derivatives modeling. For example, under the Geometric Brownian motion

framework, Milevsky and Posner (2003) prove that the expected return from the DCA strategy,

conditional on knowing the final value of the security, will uniformly exceed the return from

the underlying security for all sufficiently large volatilities. Vanduffel et al. (2012) revisited the

suboptimality of DCA when (log)returns are governed by Lévy processes. They then construct

a strategy that dominates the DCA strategy explicitly. In this work, we consider the case of
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general exponential Lévy models, which includes the classic Black-Scholes-Merton framework,

but also allows for jumps in the underlying.

1.1 Summary of Contributions

In this paper we present new theoretical and practical insights into the nature of DCA and

deterministic investment timing strategies in general. We provide a formal and rigorous math-

ematical formulation for examining DCA and related strategies, which confirms many of the

DCA properties that have been documented in the literature only by empirical studies. Given

the importance of risk measures such as VaR and Expected Shortfall in determining optimal

investment strategies in numerous applications Staino and Russo (2019); Ling et al. (2019),

we provide an efficient method for calculating such measures under DCA and deterministic

strategies in general. Since the seminal work of Markowitz (1952), mean-variance optimality

is another commonly used method for portfolio selection Lwin et al. (2017); Bi et al. (2018);

Penev et al. (2019), and we also provide the mean-variance optimal deterministic strategy.

The contributions of this paper are as follows:

• Firstly, we provide a rigorous mathematical formulation for studying deterministic timing

strategies, such as DCA and geometric DCA. Fundamental results are derived, which

confirm many empirical properties that have been reported in the literature. Several

counter-intuitive results are also derived and verified empirically. We then derive in

closed-form the mean-variance optimal timing strategy. The mathematical results are

supported by numerous examples, which illustrate the relationship between the various

investment strategies, and provide insights into the risk-return tradeoffs afforded by each

strategy.

• Secondly, we provide a method of evaluating DCA risk (and deterministic investment tim-

ing strategies in general) for continuous time models which incorporate jumps. We provide

a unified framework for modeling and analyzing the risk of DCA, and for determining

optimal deterministic strategies based on various risk measures. We prove a fundamental

distributional equality between timing strategies and arithmetic averaging, which enables

the use of efficient computational methods for risk measurement and hedging. From this,

we develop an efficient and robust numerical method based on the Fourier PROJ method

for evaluating the risk of deterministic strategies. We also provide numerical results which

can be used as a reference for industry and research work.

• Finally, we conduct an empirical study using S&P500 index (SPX) to assess the merits

of LS, DCA, and a generalization of the two, which we call Geometric DCA, under

various investment horizons. The study not only confirms a number of theoretical results
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presented in the paper but also provides new insights on how one can use a Geometric

DCA investment strategy to obtain a better tradeoff between risk and return.

The rest of the paper is organised as follows. In Section 2, we introduce the exponential Lévy

processes which are considered as models for the risky investment. In Section 3, we formally

define the deterministic timing problem in full generality, and then discuss the important special

cases of DCA and Lump Sum (LS) investing, as well as the relationships between these common

investment strategies. In particular we examine the frequency of investment, risk-return trade-

offs, and related performance metrics (such as the Sharpe ratio). In Section 4, we introduce the

PROJ computational method for calculating risk measures on the wealth outcome of timing

strategies (such as Value at Risk). In Section 5, we conduct an empirical study to assess the

merits of DCA, Geometric DCA, and LS investment strategies applied to the S&P500 index

(SPX) over the period 1954-07-01 to 2019-04-11. In this section we compare several metrics,

including Sharpe’s ratio, CRRA utility, as well as the mean and variance of terminal wealth for

several competing timing strategies. We finally end with a conclusion.

2 Exponential Lévy process

We formulate the DCA investment problem for investing in a risky asset (mutual fund, exchange-

traded fund (ETF), index, stock, etc.) using a class of Lévy models which are common in

financial asset pricing and risk modeling. Let {L(t)}t≥0 be a Lévy process, a continuous-time

stochastic process, with stationary and independent increments, which generalizes the classic

diffusion process by allowing for jumps. We assume that our random processes are defined on the

standard filtered probability space (Ω;F ;P ), and Ft, t ≥ 0, represents the information available

at time t. Many stochastic processes are included in this class, the most well known being the

scaled Brownian motion with drift Bachelier (1900) where Lt+∆t − Lt
d
= N ((µ− σ2

2
)∆t, σ2∆t).

Here “
d
=” is used to denote equality in distribution, and N (µ, σ2) denotes a normally dis-

tributed random variable with mean µ and standard deviation σ. To ensure positivity in asset

prices, the Geometric Brownian Motion (GBM) model of Black and Scholes (1973) posited the

dynamics

dSt = µStdt+ σStdBt, 0 ≤ t ≤ T. (1)

Jumps can be added to the GBM model which leads to Merton’s jump diffusion (MJD) model,

see Merton (1976), given by

dSt = µSt−dt+ σSt−dBt + St−d

(
Nt∑
i=1

(Yi − 1)

)
, (2)
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where Nt is a compound Poisson process with rate λ > 0. In the MJD model, the jump size

Yi satisfies log(Yi) ∼ N (µJ , σ
2
J). Another common model for log(Yi) is when log(Yi) has an

asymmetric double exponential distribution, with density

f(z) = pη1e
−η1z1{z≥0} + (1− p)η2e

η2z1{z<0}, 0 < p < 1, η1 > 1, η2 > 0,

where 1{.} denotes the indicator function, then (2) is reduced to Kou’s jump diffusion model

(see Kou (2002)). More generally, we consider the class of exponential Lévy models,

St = S0e
µt+L(t), t ≥ 0, (3)

where µ is the expected annualized rate of return on the asset. From the Lévy-Khintchine

theorem, the characteristic function (ChF) of L(t) satisfies

φL(t)(ξ) := E[eiL(t)ξ] = etψL(ξ), t ≥ 0. (4)

In the above equation, ψL(ξ) is called the Lévy symbol of L(t). The model considered in (3)

covers a wide range of common exponential Lévy processes. In particular, it covers the following

family of processes:

• Carr-Geman-Madan-Yor (CGMY). The CGMY family of exponential Lévy models intro-

duced in Carr et al. (2002) is characterized by four parameters: C > 0 accounts for the

overall activity level, G > 0 and M > 0 control the distribution’s skewness, and 0 < Y < 2

dictates the fine structure of the process. This model is a popular parameterization of

the more general KoBoL class of Boyarchenko and Levendorskii (2000, 2002).

• Normal Inverse Gaussian (NIG). The NIG(α, β, δ) return process Yt of Barndorff-Nielsen

(1997) is constructed by time changing a standard Brownian motion, via the inverse

Gaussian subordinator It which has parameters a = 1 and b = δ
√
α2 − β2, Yt = βδ2It +

δWt, where α > 0, β ∈ (−α, α), δ > 0.

• Variance Gamma (VG). The VG process introduced in Madan et al. (1998) has finite

moments which distinguishes it from many Lévy processes and is also determined by

a random time change. The process can be written as a Brownian motion with drift

subordinated by a random time change which follows a Gamma process.

For a list of characteristic functions of several common exponential Lévy processes, please see

Table 3 in Appendix A. Throughout, we will assume that all investments are made in one of

two accounts. The first is the random asset (fund) St, which is modeled as an exponential Lévy

process in (3). In particular, it is assumed that L(t) is normalized such that E[eL(t)] = 1, which
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implies E[St+∆t|St] = Ste
µ∆t for ∆t, t ≥ 0.2 In particular, we will model the process using the

convexity-corrected symbol3

ψR(ξ) = i(µ− ψL(−i))ξ + ψL(ξ),

which ensures that E[eL(t)] = 1 for any ψL(ξ). For example, in the GBM case (1), we have St =

S0e
µt+L(t) = S0e

(µ−σ2/2)t+σB(t). In particular, the Lévy process L(t) = −(σ2/2)t+σB(t) includes

the convexity correction, which satisfies the requirement 1 = E[eL(t)] = e−(σ2/2)tE[eσB(t)].

The second asset is a risk free account, with a guaranteed annualized rate of return of r ∈ R,

where we assume that µ ≥ r.

In this Lévy market, each investor has her/his own utility function u(·) which is used to

assign a utility u(w) to each possible wealth level w. When the investor must choose between

two random wealth outcomes X and Y , she/he compares the expected utilities, E[u(X)] and

E[u(Y )], provided that these expectations exist. An investor is said to be profit seeking if

her/his utility function u(·) in non-decreasing, see Vanduffel et al. (2012) for more discussions

related to the present context.

Throughout this paper, it is assumed that every reasonable investor prefers a certain gain

over a random gain with the same expectation. This in turn implies that her/his utility function

is concave, that is

E[u(X)] ≤ u(E[X]). (5)

We assume that investors are risk averse, i.e. their utility function u(·) is concave and non-

decreasing. Lastly, to ensure economic consistency of Lévy processes, it is assumed throughout

this paper that the expected return on the risky investment is never less than that of the

risk free investment, that is E[ST |St] ≥ er(T−t). In the Lévy market, this is equivalent to the

assumption that µ ≥ r.

3 Discrete Investment Formulation

We begin by formulating the general problem of an investor who seeks to optimally invest a

fixed wealth W = W0 into an asset over a time horizon [0, T ], such that all wealth is allocated

by T . The initial endowment currently resides in an account which earns the risk-free rate of

interest4, r ∈ R. The trajectory of the asset (index) price is denoted (St)t≥0, and we assume

that the asset earns an expected rate of return of E[St+∆t/St|St] = exp(µ∆t), where µ ≥ r.

2Note that under the physical measure, µ needn’t equal the risk free rate of interest, so St is not assumed
to be a martingale after discounting.

3Note that we refer to convexity here in the mathematical function sense rather than with respect to the
pure financial terminology (such as bond convexity correction).

4Note that interest rates can be negative in this analysis, which is the current market state within the
Eurozone, for example.
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Let αm ≥ 0, αm ∈ F0, denote the dollar value invested at any one of the discrete times

0 = t0 < t1 < · · · < tM = T representing the beginning of the investment period [tm, tm+1], at

a price of Stm , where m = 0, 1, 2, ....,M − 1. At the beginning of each stage tm, the investor

purchases nm := αm/Stm shares of the asset, leaving an uninvested cash holding of W−
∑m

j=0 αj,

which earns a risk-free income over the investment period [tm, tm+1] of

(
er(tm+1−tm) − 1

)(
W −

m∑
j=0

αj

)
, m = 0, . . . ,M − 1,

where continuous compounding is assumed. Moreover, interest also accrues on the cash flows

generated by previous risk-free investment holdings. In the final stage, any remaining wealth

αM (from the initial endowment of W ) is invested. For any deterministic timing strategy5

α = {αm}Mm=0 ∈ F0, we can thus express the terminal wealth, WT = WT (α), as the sum of two

accounts:

WT (α) = W S
T (α) +WR

T (α),

where the first term on the right hand side is the wealth invested in the risky asset, and the

second term is the wealth resulting from all risk-free proceeds up to T . In Lemma 1, we give

an explicit representation of WT (α).

Lemma 1. Let α = {αm}Mm=0 ∈ F0, M ≥ 1, be an investment strategy with initial endowment

W such that αm ≥ 0 and
∑M

m=0 αm = W . The terminal wealth WT (α) ∈ FT satisfies

WT (α) = ST ·
M∑
m=0

αm
Stm

+ erTW −
M∑
m=0

αme
r(T−tm) (6)

= ST ·
M−1∑
m=0

αm
Stm

+ erTW −
M−1∑
m=0

αme
r(T−tm).

Proof. First, since the total shares purchased at the end is
∑M

m=0 nm =
∑M

m=0
αm
Stm

, it is clear that

W S
T (α) = ST ·

∑M
m=0

αm
Stm
∈ FT . We will prove that WR

T (α) = erTW −
∑M

m=0 αme
r(T−tm) ∈ F0.

To this end, let us denote by WR
tm the risk-free account value at the end of period tm, that is

immediately following the investment of size αm in the asset, then we have the update rule

WR
tm = er(tm−tm−1)WR

tm−1
− αm, m = 1, . . . ,M,

where WR
t0

= W −α0, which is the sum of interest gains and what remains of the initial wealth

5That is, any strategy which is determined at time t0, and adhered to over [0, T ].
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W to be invested. Hence

WR
tm = er(tm−tm−1)WR

tm−1
− αm

= er(tm−tm−1)
(
er(tm−1−tm−2)WR

tm−2
− αm−1

)︸ ︷︷ ︸
WR
tm−1

−αm

= . . .

=
m∏
p=1

er(tp−tp−1)W −
m∑
k=0

m∏
p=k+1

er(tp−tp−1)αk

= er(tm−t0)W −
m∑
k=0

αke
r(tm−tk) = erTW −

M∑
k=0

αke
r(T−tk) when m = M,

where t0 = 0 and tm = T . Hence

WT (α) = W S
T (α) +WR

T (α)

= ST ·
M∑
m=0

αm
Stm

+ erTW −
M∑
m=0

αme
r(T−tm),

and the result follows immediately.

In general, the decision is how to choose α = {αm}Mm=0 to optimize the utility of this wealth

(or to minimize some measure of risk). That is, invest the initial endowment optimally by

choosing α to solve

max
α

u (WT (α)) s.t. αm ≥ 0,
M∑
m=0

αm = W, (7)

where u : R → R captures the (expected) utility of the (random) terminal wealth. We note

that u can represent a standard utility function, or an objective measure such as Sharpe’s ratio

or other mean-variance criteria. For example, a common strategy is to maximize u(WT (α)) =

θE [WT (α)]−V ar (WT (α)) , where θ controls the level of risk-aversion. Due to the strong path

dependency of the deterministic timing problem, the optimal solution is extremely difficult to

determine for non-trivial u, and heuristics (such as DCA) are attractive approaches.6

Given the importance of mean and variance for quantifying and comparing risky outcomes,

we next derive these expression for a general deterministic timing strategy.

Lemma 2. Suppose that the expected asset growth satisfies E[St+∆t/St|St] = exp(µ∆t), for

t,∆t ≥ 0. Then

E [WT (α)] = erTW +
M−1∑
m=0

αm
(
eµ(T−tm) − er(T−tm)

)
. (8)

6For the remaining discussion, the reader can keep in mind the identity utility, u(x) = x. A more interesting
utility function is considered in Section 5.
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If µ ≥ r, the expected terminal wealth of any strategy α = {αm}Mm=0 ∈ F0 can be bounded by

erTW ≤ E[WT (α)] ≤ eµTW. (9)

If µ > r, so that the risky investment asset offers greater expected returns than the risk free rate,

the upper bound is achieved by the lump-sum strategy α0 = W , and the lower bound by αM = W .

In this case, for any strategy α = {αm}Mm=0 with αM < W , we have E[WT (α)] > W · exp(rT ).

Proof. See appendix B.

From Lemma 2 if µ > r, then an investor who seeks to simply optimize the expected terminal

wealth, u (WT (α)) = E[WT (α)], or equivalently, e−rTE[WT (α)], will always prefer a lump sum

investment of α0 = W , which earns an expected return of E[WT (α)/W ]− 1 = exp(µT )− 1 >

exp(rT ) − 1. This proves that in this case DCA is suboptimal (excluding the risk aversion of

the investor).7

In addition to the final wealth, investors are also concerned about the uncertainty of their

wealth, which can be measured, for example, by the variance. At one extreme, the strategy

with αM = W results in a strategy with zero variance of WT . In general, we have the following

variance of wealth for any deterministic strategy.

Lemma 3. Suppose that St is an exponential Lévy process defined in (3), with symbol ψR(ξ) =

i(µ− ψL(−i))ξ + ψL(ξ). Then, for M ≥ 1, α = {αm}Mm=0 ∈ F0,

V ar (WT (α)) =
M−1∑
m=0

α2
m

{
exp((M −m)∆t · ψR(−2i))− exp(2(M −m)∆t · µ)

}
+ 2

M−2∑
m=0

M−m−1∑
k=1

αmαm+k

{
exp(k∆t · µ) exp((M −m− k)∆t · ψR(−2i))

− exp((2(M −m)− k)∆t · µ)
}
. (10)

Proof. See appendix B.

We note that for exponential Lévy processes, the symbol ψR(ξ) = i(µ − ψL(−i))ξ + ψL(ξ)

is typically known explicitly. In Table 3 in Appendix A, we provide the closed functional

form ψR(ξ) and its value ψR(−2i) for several Lévy processes, from which (10) is calculated in

closed-form.

7When r = µ, all strategies are equivalent, and expected wealth alone is not sufficient to prefer a strategy.
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3.1 DCA Fundamental Results

The first deterministic investment strategy we investigate is DCA, where in each period we

invest an identical amount αm = W/(M + 1) for m = 0, . . . ,M , and (6) becomes

WDCA
T = WerT +

W

M + 1

M∑
m=0

(
ST
Stm
− er(T−tm)

)

=
W

M + 1

M∑
m=0

(
ST
Stm

+ erT
(
1− e−rtm

))
.

We next derive several fundamental results concerning DCA investing. For example, we demon-

strate that the wealth variance is non-trivial, and depends significantly on M . This is a counter-

intuitive, but also an important result, because M is typically neglected in analyses of deter-

ministic strategies.

Recall that the number of shares purchased at time tm is determined by nm = αm/Stm =

W
(M+1)Stm

. As a result, an investor who uses a DCA strategy must (periodically) adjust the

number of shares purchased as asset prices fluctuate. If asset prices Stm are high, nm is small,

so fewer shares are bought, and conversely the same is also true. Since the average cost weights

the purchase prices by the number of shares acquired at each price, the average cost is always

less than the average price. This implies that DCA provides a better (overall) purchasing price

compared to the average asset price. Specifically, we have the following theorem:

Theorem 1. For a DCA strategy, the average purchase cost is always less than or equal to the

average asset price. That is, for M ≥ 1, and αm = W/(M + 1) for m = 0, . . . ,M , we have

W

n0 + n1 + . . .+ nM
≤ St0 + St1 + . . .+ StM

M + 1
.

Proof. See appendix B.

From Theorem 1, it appears that a DCA strategy seems to have a positive expected profit

even if changes in asset prices are independent with a mean of zero. However, the fact that the

expected value of average cost is less than the expected value of the asset prices does not always

imply a positive expected return (see Smith and Artigue (2018)). The following corollary gives

us a surprising result reflecting the expected performance of DCA as a function of M , in that

the expected value decreases with M .

Corollary 2. Suppose that E[St+∆t/St|St] = exp(µ∆t), for t,∆t ≥ 0, for example when St is

an exponential Lévy process, and tm = Tm/M . Then the expected value E
[
WDCA
T

]
is given by

E
[
WDCA
T

]
= erTW +

W

M + 1

(
eµT (M+1)/M − 1

eµT/M − 1
− erT (M+1)/M − 1

erT/M − 1

)
, M ≥ 1,
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and E
[
WDCA
T

]
is monotonically decreasing in M . Moreover we have for r 6= 0, µ 6= 0,

lim
M→∞

E
[
WDCA
T

]
= erTW +W

(
eµT − 1

µT
− erT − 1

rT

)
. (11)

Proof. See appendix B.

In particular, expected terminal wealth always declines as we increase the number of invest-

ments between t0 and T , eventually approaching the limit in (11). As a corollary of Lemma 3,

we can obtain a closed-form for the variance of the DCA investment strategy.

Corollary 3. The variance of DCA under exponential Lévy dynamics for M ≥ 1 is given in

closed form by

V ar
[
WDCA
T

]
=

W 2

(M + 1)2
(Π1 + 2Π2 − 2Π3) , (12)

where Π1,Π2,Π3 are defined as

Π1 :=
exp((M + 1)∆t · ψR(−2i))− 1

exp(∆t · ψR(−2i))− 1
− exp(2(M + 1)∆t · µ)− 1

exp(2∆t · µ)− 1

Π2 :=
exp(∆t · (µ− ψR(−2i)))

exp(∆t(µ− ψR(−2i)))− 1
·
(

exp(∆t(µ+ ψR(−2i)))
exp((M − 1)∆t · µ)− 1

exp(∆t · µ)− 1

− exp(2 ·∆t · ψR(−2i))
exp((M − 1)∆t · ψR(−2i))− 1

exp(∆t · ψR(−2i))− 1

)
.

Π3 :=
exp(2∆t · µ)

exp(−∆t · µ)− 1

(
exp((M − 1)∆tµ)− 1

exp(∆tµ)− 1
− exp(∆t · µ)

exp(2(M − 1)∆t · µ))− 1

exp(2∆t · µ)− 1

)
.

Proof. See appendix B.

We note that in contrast to its expectation, the variance of DCA is not always monotonic

in M . To demonstrate the return-uncertainty trade-off, we consider the terminal wealth under

a Geometric Brownian motion (GBM) model for St. The underlying has a volatility of σ = 0.2,

which is typical of equities, with an expected return (drift) of µ = 0.08. The risk-free asset

delivers a continuously compounded return of r = 0.02, and the investor starts with W = 10

units of wealth which is invested over M +1 periods. We also consider a Merton jump diffusion

(MJD) model (recall (2)), with a high volatility σ = 0.6, and a high jump rate of λ = 6.

In Figure 1, we illustrate the theoretical mean/variance of DCA under the two models, over

an investment horizon of T = 1 year, as a function of M . As expected, from the plots in

Figure 1 the expectation (mean) decreases monotonically to the limit in (11) as M increases

while the variance is not always monotonic. However, the variance tends to increase for large

M (in fact the variance converges to its limit derived in Corollary 4). The figure illustrates

that the “optimal” investment strategy is not trivial, and it will depend crucially on the choice

of M , which governs the number of investments made over [0, T ]. Surprisingly, for the (non-

pathological) example in the left figure, any natural trade-off between return and risk will favor

11
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Figure 1: DCA mean (solid line) and std. dev. (dashed line) of return on initial wealth, (WT−W )/W ,
for DCA as a function of M , with r = 0.02, µ = 0.08, T = 1, W = 10. Left: GBM with σ = 0.2.
Right: MJD, σ = 0.6, λ = 6, µJ = −0.2, σJ = 0.3.

M = 1 for DCA, which represents an equal split of wealth between t = 0 and t = T . In the

previous examples, we saw that V ar(WDCA
T ) is not always a monotone function of M . It is

however bounded, and it converges to a limit.

Corollary 4. The variance of wealth under DCA investing converges in the limit to

lim
M→∞

V ar
[
WDCA
T

]
=

2W 2

T (µ− ψR(−2i))

(
exp(Tµ)− 1

Tµ
− exp(TψR(−2i))− 1

TψR(−2i)

)
+

W 2

(Tµ)2
(2 exp(Tµ)− exp(2Tµ)− 1) . (13)

Proof. See appendix B.

These results offer precious insight into DCA investing, proving that different choices of M

lead to different levels of mean, variance, and equally as important risk-return trade-offs, and

hence to different optimal investment strategies.

3.2 Comparison to Lump Sum Investing

We next compare DCA to another common deterministic timing strategy, lump sum (LS)

investing, to illustrate the trade-off between return and uncertainty of terminal wealth. In the

case of LS investing, we invest the full amount W at some period m̃ ∈ {0, 1, . . . ,M}, so

WLSm̃
T = W

(
ST
Stm̃

+ erT
(
1− e−rtm̃

))
, (14)

where we denote this strategy by LSm̃. Most commonly, m̃ = 0.

Intuitively, the uncertainty of a timing strategy is a measure of the duration of time that

the wealth is exposed to the risky asset. This is illustrated clearly in Figure 2, which compares

12



the same DCA strategy to each of the possible LS strategies, which differ based on which time

period, tm̃ for m̃ ∈ {0, . . . ,M}, is chosen to invest the full wealth. From (14), the investment

wealth and risk can be calculated easily from the single source of randomness, ST/Stm̃ , which

yields

E
[
WLSm̃
T

]
= erTW +W

(
eµ(T−tm̃) − er(T−tm̃)

)
, (15)

V ar(WLSm̃
T ) = W 2

(
exp((T − tm̃)ψR(−2i))− exp((T − tm̃)2µ)

)
.

In particular, both the expected return and variance are monotonically decreasing in m̃, which

is seen as well in Figure 2.
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Figure 2: DCA (dashed lines) vs Lump Sum (solid lines), as a function of the period of investment,
tm, for Lump Sum. Expected terminal wealth, WT , and two standard deviation bands. Left: GBM
with σ = 0.2, r = 0.02, µ = 0.08, T = 1, W = 10. Right: MJD with λ = 2, µJ = −0.12, σJ = 0.18.

Corollary 2 provides a mathematical result on expected returns that is also consistent with

empirical studies. In particular, it has been documented in the literature (see Williams and

Bacon (1993), Knight and Mandell (1992)) that a LS investment often has higher expected

return as compared to that of a DCA strategy. That is, for LS with α0 = W , i.e, the investor

invests all of her wealth at time t0, then from the fact that E
[
WDCA
T

]
is decreasing in terms of

M (from Corollary 2), the LS investment will have higher expect return as compared to that

of a DCA investment. This higher expected return is achieved only at the cost of a higher

variance of wealth, which we summarize in the following result.

Corollary 5. (DCA vs LS) For LS0 with α0 = W , we have

V ar(WDCA
T ) ≤ V ar(WLS0

T ) = W 2
(

exp(ψR(−2i)T )− exp(2µT )
)
. (16)

Moreover, we can always bound the difference (uniformly in M) by

E
[
WLS0
T −WDCA

T

]
≥ W

2

(
eµT − erT

)
≥ 0, ∀M ≥ 1. (17)
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Proof. The proof is a straightforward application of Corollary 2 and Corollary 3.

Remark 1. It is also interesting to note that the expected wealth for a DCA strategy is the

same as that of a randomized buy and hold strategy (which is studied in Brennan et al. (2005))

which places an equal weight of investing the full amount W in any period 0 ≤ m ≤M :

E
[
WDCA
T

]
=

M∑
m=0

1

M + 1
E
[
WLSm
T

]
= E[E[WLSM

T |M]].

That is, the expected wealth of DCA is equivalent to that of a strategy which randomly chooses

a period M, and invests the full lump sum at time M.

From Corollary 5, we see that although DCA has a lower expected return than LS, it

does achieve a reduction in variance, as one would expect due to its averaging nature. This

variance reduction property is attractive to many risk averse investors, and is documented in

the empirical literature. The risk-return tradeoff is not so clear cut, but its analysis can be

simplified with the investment strategy we introduce in section 3.3.

3.3 Geometric DCA

Figure 3: Distribution of terminal wealth, WT , over 106 simulated paths. Model: GBM with σ = 0.2,
r = 0.02, µ = 0.08, T = 1, W = 10, M = 9. Left: Lump sum (blue histogram with wider variance) vs
DCA (histogram with lower variance), where LS invests α0 = W . Right: DCA vs GDCA (histogram
with lower variance) with θ = 0.75.

We introduce an alternative investment strategy which highlights the nature of the rela-

tionship between DCA and LS. In particular, DCA and LS are both special cases belonging

on the continuum of geometrically timed investment strategies, which we call Geometric DCA

(GDCA), with weights

αm = W
(1− θ) · θm

1− θM+1
, m = 0, . . . ,M,
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where θ ∈ (0, 1) is the duration weight, which controls the duration of time that wealth is

exposed to the risky asset over [0, T ]. As θ → 1 (decreasing duration), we obtain DCA with

αm = W/(M + 1), for m = 0, . . . ,M . As θ → 0, we obtain LS with α0 = W , and αm = 0 for

m ≥ 1. For θ ∈ (0, 1), we obtain strategies which are a smoothly varying compromise between

the duration of LS and DCA, and attain all expected returns between the two strategies. By

varying the weight θ, we are able to study the impact of timing exposure to the risky asset for

various risk and return measures. Moreover, GDCA might itself offer an attractive investment

strategy which combines the desirable features of DCA and LS, as we will later demonstrate

empirically.

Figure 3 illustrates the distribution of wealth, WT , for each strategy. In the left figure,

LS invests immediately α0 = W , while in the right figure GDCA is used with θ = 0.75, a

compromise between LS and DCA investment strategies. In either case, the distribution of DCA

is much tighter around its mean of E[WDCA
T ] = 10.5128, reflecting its lesser exposure (duration)

to the risky asset. In the left figure, the LS strategy earns on average E[WLS
T ] = 10.8329, which

is about 3% in excess of the DCA strategy. To achieve this, LS is also exposed to a significantly

greater level of risk, which is expected from the result obtained in Theorem 5. In the right

figure, GDCA earns 1.4% in excess of DCA on average, with slightly more variance.
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Figure 4: GDCA risk-return trade-off, as a function of θ. Mean (solid line) and std dev (dashed line)
of return on initial wealth. Left: M = 10. Right: M = 100. Model: MJD with σ = 0.3, λ = 3,
µJ = −0.12, σJ = 0.2, r = 0.02, µ = 0.08, T = 1, W = 10.

In Figure 4, we consider the effect of θ on the mean and standard deviation (std) of WT ,

for two values of M . First note that for θ ∈ (0, 1), the range of attainable values for both the

mean and standard deviation of WT are the same for M = 10 and M = 100, and as expected,

both measures decline as θ → 1 (DCA). Comparing the two figures, we can see that the nature

of the trade-off between risk and return as a function of θ varies greatly with M . In particular,

as we approach the DCA strategy, both mean and return drop abruptly when M = 100, but
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the decline is very gradual for M = 10. Any measure of risk which is impacted by the two

competing forces will also be greatly influenced by the choice of M .
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Figure 5: Sharpe ratios for GDCA as a function of θ for M ∈ {1, 2, 10, 500}. Left: T = 1. Right:
T = 3. Model: GBM with σ = 0.2, r = 0.02, µ = 0.08, W = 10.

A commonly used measure which assesses the tradeoff between excess return and risk is the

Sharpe ratio, given by8

SR(α) =
log(E[WT (α)]/W )− rT√

V ar(WT (α)/W )
(18)

which measures the excess return minus the risk free return, per unit of wealth volatility. This

metric is preferred by practitioners as it succinctly captures the trade-off in a single number,

allowing investors to choose between different strategies. Figure 5 compares the Sharpe ratio

for T = 1 (left) and T = 3 (right), as a function of duration θ, for M ∈ {1, 2, 10, 500}, where

the Sharpe-optimal θ is plotted with an asterisk. As before, we note the enormous impact of

M on the resulting preferred strategy. For all interior values of θ, the strategy with M = 1

which splits wealth between the first and last period, is preferred to other values of M for both

T = 1 and T = 3. Also we observe that as θ → 1 (approaches DCA) the Sharpe ratio tends to

rapidly decrease, for all M ≥ 2.

In general, the relationship between the optimal Sharpe ratio, M , and the duration θ is

complex. We note that in the examples given in Figure 5, LS is suboptimal for each value of

M . With the exception of M = 1 (for which DCA is optimal), the optimal strategy is some

compromise between DCA and LS investing, i.e. an interior θ∗ ∈ (0, 1). This finding is later

reinforced in Section 5 with an empirical study on S&P 500 returns.

8Note that this is a slight modification of the standard definition.
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3.3.1 Effect of Interest Rates and Excess Return

This section considers the effect of interest rates and excess return on timing strategies. Given

the recent state of negative interest rates in many European economies, there is an interest in

understanding decision making and investing under these (formerly) unusual market conditions.

Several works have explored this case in the option pricing literature, for example Battauz et al.

(2018); Battauz and Rotondi (2019).
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Figure 6: Sharpe ratios for GDCA as a function of θ for ri ∈ {−0.01, 0.0, 0.01, 0.02}. Left: µi =
0.06 + ri. Right: µi = 0.08 held fixed. Model: MJD with σ = 0.3, λ = 3, µJ = −0.12, σJ = 0.2,T = 3,
W = 10, M = 10.

Figure 6 illustrates the effect of rates in two interesting cases. The left panel demonstrates

the effect of varying ri ∈ {−0.01, 0.0, 0.01, 0.02} when µi = 0.06 + ri, so the excess return is

held constant (µi − ri = 0.06). In this case, the Sharpe-optimal θ (plotted with an asterisk)

is very close for all interest rate levels, with a slight decrease in duration as rates decrease

(more investment up-front). However, there is a clear change in strategy in the right panel,

which corresponds to µi = 0.08 held fixed, and the excess return is decreasing as interest rates

increases. In this case, decreasing interest rates has a strong effect on shifting the optimal

policy towards the DCA strategy.

3.4 Mean-Variance Optimality

We next consider the mean-variance optimal trade-off for an investor who seeks a desired (tar-

get) return, which is a classic problem stemming from Markowitz Portfolio Theory (Markowitz,
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1952). Towards this end, note that we can re-express the terminal variance as

V ar(WT (α)) = V ar

(
M∑
m=0

αm
ST
Stm

)
= V ar

(
M−1∑
m=0

αm
ST
Stm

)

= V ar

(
M−1∑
m=0

αm exp(Rm+1 + · · ·+RM)

)

= V ar

(
M−1∑
m=0

αmXm

)
, (19)

where Xm := exp(Rm+1 + · · · + RM). Hence, we can treat each Xm as a separate “asset” in

a portfolio, and these assets are correlated. The assets in this case represent a sequence of

exposures to a single underlying, across overlapping segments of time. In the final time period,

the return is a degenerate random variable, as any allocation of αM > 0 has a deterministic effect

on WT . Hence, in this section we consider a slightly modified problem in which the investor

invests all wealth by period M − 1, so that
∑M−1

m=0 αm = W (rather than
∑M

m=0 αm = W as we

considered before). In particular, we enforce that αM = 0. To reformulate this as a quadratic

programming problem, note that from (19) we can write

V ar(WT (α)) = αTHα, (20)

where Hm,j = Cov(Xm, Xj), which are derived in Lemma 3. Specifically, the matrix H is

symmetric positive definite, with upper triangular defined as follows. For m = 1, . . . ,M − 1,

Hm,m = exp((M −m)∆t · ψR(−2i))− exp(2(M −m)∆t · µ). (21)

Moreover, for 1 ≤ m ≤M − 1, and 1 ≤ k ≤M −m− 1,

Hm,m+k = exp(k∆t · µ) exp((M −m− k)∆t · ψR(−2i))− exp((2M − 2m− k)∆t · µ). (22)

Interpreting the exposures as correlated asset returns Xm allows us to derive the following.9

Theorem 6. Let [µ̂L, µ̂U ] = [erTW, eµTW ] be the interval given in (9) and µ̂ ∈ [µ̂L, µ̂U ], and α =

{αm}M−1
m=0 ∈ F0, where M ≥ 2. Consider the following mean-variance optimization problem10

min
α

1

2
V ar (WT (α))

Subject to E[WT (α)] = µ̂,

M−1∑
m=0

αm = W. (23)

9Note that the optimal solution in Theorem 6 imposes no non-negativity constraints. To ensure that αm ≥ 0,
ie no short positions, we can use standard quadratic programming software to determine the optimal holding.

10Note that in the Theorem, E[WT (α)] is calculated with the formula using M + 1 from (8), although the
size of α in this optimization is only M .
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Then the optimum α∗ = {α∗m}M−1
m=0 ∈ F0 is given by

α∗ = H−1

(
(µ̂− erTW )1TH−11−WyTH−11

(yTH−1y)(1TH−11)− (yTH−11)(1TH−1y)

)
y

+H−1

(
WyTH−1y − (µ̂− erTW )1TH−1y

(yTH−1y)(1TH−11)− (yTH−11)(1TH−1y)

)
1, (24)

where y =
(
eµT − erT , eµ(T−t1) − er(T−t1), . . . , eµ(T−tM−1) − er(T−tM−1)

)T
.

Proof. See appendix B.

Remark 2. Note that in Theorem 6, aside from αM = 0 and
∑M−1

m=0 αm = W , we enforce

no sign constraints on α, which permits short positions to be taken. However, (23) can be

solved with standard quadratic programming software if we incorporate the constraints αm ≥ 0,

m = 0, . . . ,M − 1.

To illustrate the applicability of Theorem 6, consider an investor who targets a terminal

return of µ̂ ∈ [µ̂L, µ̂U ], which can be parameterized by ζ ∈ (0, 1) as the convex combination

µ̂(ζ) = ζµ̂L + (1− ζ)µ̂U = W (ζ exp(rT ) + (1− ζ) exp(µT )). (25)

Consider the case of W = 1, so that αm is the proportion of the initial wealth invested at tm.

As an example, we consider an investor who invests in quarterly installments over T = 3 years,

so M = 12. Figure 7 illustrates two preferences, with ζ = 0.5 in the left figure, and ζ = 0.75

on the right. In either case, the optimal strategy involves an investment in each period, with

the boundary periods dominating the overall allocation.
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Figure 7: Mean-variance optimal weights α. Parameters: W = 1, r = 0.02, µ = 0.08, M = 12 and
T = 3. Target return µ̂(ζ) defined in (25). Left: ζ = 0.5. Right: ζ = 0.75. Model: MJD with σ = 0.3,
λ = 2, µJ = −0.12, σJ = 0.3.
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3.5 Equivalence to Arithmetic Averaging

In this section, we establish a fundamental distributional equivalence between the stochastic

component W S
T and arithmetic averaging. This equivalence not only simplifies the computation

of risk measures, but also opens the door for hedging strategies based on (liquidly) traded

arithmetic Asian options. We assume that potential investments are made at regularly spaced

time intervals, so that tm+1 − tm = ∆t, for m = 0, . . . ,M − 1, for example once per day.

Theorem 7. Let ∆t := tm+1 − tm be uniform. Then under exponential Lévy dynamics,

1. For α ∈ F0, the equivalence holds:

M∑
m=0

αM−mStm
d
= S0 ·

M∑
m=0

αm
ST
Stm

(26)

2. Define the averages

AT :=
1

M + 1

M∑
m=0

Stm , HT :=
1

M + 1

M∑
m=0

ST
Stm

.

Let VA(S0, K,M, T ) and VH(S0, L,M, T ) denote the value of an Asian option written on

AT and HT , respectively. Then we have the pricing equation

VH(S0, L,M, T ) =
e−rT

S0

· VA(S0, S0 · L,M, T ). (27)

Proof. See appendix B.

In particular, we can hedge the risk of the DCA strategy with an initial wealth of W , and

αm = W/(M + 1), using(
M∑
m=0

W

M + 1

ST
Stm
− L

)+

= W

(
M∑
m=0

ST
Stm
− L

W

)+

As Asian options are liquid in many traded markets, especially commodities and energy markets,

this implies that the risk of a DCA trading strategy may be offset (hedged) by positions in

Asian options.11

4 The PROJ Method for Timing Strategy Risk

In this section, we apply the frame projection (PROJ) method introduced in Kirkby (2015);

Kirkby and Deng (2019) to estimate the risk of DCA and other deterministic timing strategies.

11We note that the PROJ method presented below can also be used to value options written on DCA. In this
case, one must switch to the risk-neutral measure, which for the proposed exponential Lévy model is a simple
as changing the drift from µ to r.
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It also allows for the determination of optimal α ∈ F0, based on commonly used risk measures

such as Value-at-Risk and Downside Risk. The PROJ method has been successfully applied

in several contexts involving exotic option pricing Cui et al. (2019b, 2017); Kirkby (2018),

actuarial theory Wang and Zhang (2019); Zhang et al. (2020), as well as non-parametric density

estimation Cui et al. (2019c). In the following section, we briefly review the PROJ method, and

then describe how it can be used to recover the distribution of HT (α) :=
∑M

m=0 αm
ST
Stm

. This

will allow us to calculate arbitrary risk measures, such as value at risk and expected shortfall,

for any deterministic timing strategy with weights α ∈ F0.

4.1 Frame Projection

Given a random variable Y whose (unknown) probability density function is denoted by fY ∈
L2(R) but its ChF function φY (ξ) = E[eiξY ] is known or can be approximated in some form.

Let ϕ be a compactly supported function, which is often called a generator. For example, ϕ

can be chosen as linear spline function as below

ϕ(y) = (1 + y)1[−1,0](y) + (1− y)1[0,1](y).

Choose a resolution a > 0, and a reference point −∞ < y1 < ∞. Using a, y1 and ϕ, we

generate a set of compactly supported functions {ϕa,n}n∈Z obtained from the generator ϕ using

dilation and translation transformations, ϕa,n(y) := a1/2ϕ(a(y−yn)), where yn = y1 +(n−1)/a

for n ∈ Z. Now consider the subspace Ma := span{ϕa,n}n∈Z of L2(R). Given fY ∈ L2(R),

the orthogonal projection of fY , denoted by PMafY , onto Ma is determined by the dual basis

{ϕ̃a,n}n∈Z:

PMafY (y) =
∑
n∈Z

〈fY , ϕ̃a,n〉ϕa,n(y). (28)

In (28), the dual basis {ϕ̃a,n}n∈Z is biorthogonal in the sense that 〈ϕa,n, ϕ̃a,m〉 = 1{n=m}, as well

as the particular case of an orthogonal basis is self-dual. Moreover, the projection coefficients

〈fY , ϕ̃a,n〉’s in (28) are derived in closed-form using the Fourier transform ̂̃ϕ of ϕ̃:

〈fY , ϕ̃a,n〉 =
a−1/2

π
<
[∫ ∞

0

exp(−iynξ) · φY (ξ)̂̃ϕ(ξ
a

)
dξ

]
, (29)

given that ̂̃ϕ(ξ) is known. For example, for the linear splines, we have

̂̃ϕ(ξ) = 12 sin2(ξ/2)/(ξ2(2 + cos(ξ))). (30)

Next, choosing N ∈ N+, given a and y1 have been chosen appropriately, we confineMa to a

domain of finite set {yn}Nn=1 where each basis function ϕa,n(y) is centered around the grid point

yn = y1 + (n− 1)/a. In addition, to account for the Nyquist frequency, an N -point frequency

grid is specified by ∆ξ = 2πa/N, ξn = (n − 1)∆ξ, n = 1, ..., N, and this is numerically applied
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to invert the analytical coefficient representation in equation (29). Therefore the (unknown)

probability density function fY of the random variable Y can be now approximated by

fY (y) ≈ PMafY (y) ≈
∑

1≤n≤N

β̄a,nϕa,n(y). (31)

With constant Υa,N := 24a2/N , the coefficients β̄a,n ≈ 〈fY , ϕ̃a,n〉 are determined as follows

{
β̄a,n

}N
n=1

:= a1/2Υa,N<{D {Gj}} , Dn {Gj} =
N∑
j=1

e−i 2π
N

(j−1)(n−1)Gj, n = 1, ..., N. (32)

In (32), D{.} denotes the discrete Fourier transform (DFT) operator. The input vectors {Gj}Nj=1

is specified by

G1 := 1/24a2, Gm := φY (ξn) · Bn, n ≥ 2, (33)

where

Bn :=
(sin(ξn/(2a))/ξn)2

2 + cos(ξn/a)
, n ≥ 2. (34)

For details on the derivation of ̂̃ϕ (and Bn) for B-spline bases, the reader is invited to refer

to Kirkby (2017).

4.2 Characteristic Function Recovery

We now briefly describe the procedure required to calculate YM using the PROJ method. More

details can be found in Kirkby (2016), Kirkby and Nguyen (2020), where the current calculation

is closely related to that of an Asian option. This recursive approach can also be applied with

alternative Fourier techniques, see for example Leitao et al. (2019) for a related application.

The next result enables us to easily calculate the distribution of

HT (α) :=
M∑
m=0

αm
ST
Stm

(35)

which in turn enables the computation of arbitrary risk measures on WT , since

WT (α) = HT (α) + erTW −
M∑
m=0

αme
r(T−tm) := HT (α) +WR(α), (36)

where WR(α) is deterministic.

Corollary 8. Suppose that αm > 0 for m = 0, . . . ,M . Set Y1 = log(α0/α1) + RM , and define

recursively

Ym = log

(
αm−1

αm

)
+RM+1−m + Zm−1, m = 2, . . . ,M, (37)

where Rm = log(Stm/Stm−1) and Zm := log(1 + exp(Ym)). Then

HT (α)
d
= αM (1 + exp(YM)) . (38)

22



Proof. See appendix B.

From Corollary 8, we obtain a recursive formula for the ChF of Ym defined in (37), starting

with Y1. It is easy to see the ChF of Y1 is given by

φY1(ξ) = e
iξ log

(
α0
α1

)
eiξRM = e

iξ log
(
α0
α1

)
φR(ξ),

which initializes the recursion. Similarly, applying (37) we obtain the formula

φYm(ξ) = φR(ξ)φZm−1(ξ)e
iξ log(

αm−1
αm

), m = 2, . . . ,M. (39)

In the above, the ChF φZm−1(ξ) of Zm−1 is given by

φZm(ξ) = E[eiξ log(1+exp(Ym))] =

∫
(ey + 1)iξfYm(y)dy, (40)

which can be calculated in closed form as described in Kirkby (2016).

4.3 Risk Measurement

We now describe how to use the PROJ method for the calculation of various risk measures, such

as those satisfying the coherency axioms formalized in (Artzner et al., 2003). Risk measures

are commonly used to identify an optimal portfolio strategy, such as Value-at-Risk Staino and

Russo (2019), Downside Risk Ling et al. (2019), and mean-variance criteria Lwin et al. (2017);

Bi et al. (2018); Penev et al. (2019). Given a risk measure ρ : R→ R, we can calculate

ρ (WT (α)) = ρ
(
HT (α) +WR(α)

)
= ρ

(
M∑
m=0

αm
ST
Stm

+WR(α)

)
, (41)

where WR(α) is deterministic, which follows from (36). Note that any translation invariant

risk measure ρ (for example a coherent measure, (Artzner et al., 2003; Brandtner et al., 2018)),

we have that

ρ (WT (α)) = ρ

(
M∑
m=0

αm
ST
Stm

)
+WR(α),

since WR(α) is non-stochastic. However, more generally we will use (41), as it allows us to

compute a wider variety of measures.

Utilizing the the relation from Corollary 8

HT (α) =
M∑
m=0

αm
ST
Stm

d
= αM (1 + exp(YM)) ,

and applying the recursive procedure described in Section 4.2, we obtain the cf of YM , φYM (ξ)

from (39). We can then use (31), with φYM (ξ) in place of φY (ξ), to obtain the projected density

with coefficients of YM , {β̄a,n}Nn=1.

We illustrate the calculation of risk for Value-at-Risk in the next section. Other risk mea-

sures, such as moments and expected shortfall (see (Szegö, 2005)), are similarly easy to calculate

using this approach, and also result in closed form approximations.
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4.3.1 Value-at-Risk

Value-at-Risk (VaR) is a conventional risk measure to assess the riskiness of a portfolio, and is

commonly used as a tool for portfolio selection and asset allocation Babat et al. (2018); Staino

and Russo (2019); Ahmadi-Javid and Fallah-Tafti (2019); Cui et al. (2019a). To calculate VaR,

defined by

V aRρ(HT (α)) = inf{x ∈ R : P(HT (α) ≤ x) ≥ ρ}, (42)

we take advantage of one of the nice properties of the linear basis. In particular, define the

cumulative distribution approximation of YM , which is calculated at the grid points {yn}Nn=1

using

F̄n := F̄ (yn) = a−1/2

n−1∑
j=1

β̄a,j +
a−1/2

2
β̄a,n, (43)

and define the boundary coefficients β̄a,0 = β̄a,N+1 = 0. We can then calculate the distribution

at any y ∈ R using

F̄ (y) = F̄ (yn) + a−1/2

[
γβ̄a,n +

γ2

2

(
β̄a,n+1 − β̄a,n

)]
,

γ := a(y − yn), and is defined as F (y) = 1 for y > yN and F (y) = 0 for y < y1. For any VaR

level, ρ ∈ (0, 1), let k ∈ {0 . . . , N} be the unique integer satisfying F̄k ≤ ρ < F̄k+1, and set

dk := β̄a,k+1 − β̄a,k. We then have closed-form expression for VaR (see Cui et al. (2018)) in the

case of the linear basis,

V aRρ(YM) =


yk +

1

a · dk

(
−β̄a,k +

√
β̄2
a,k + 2a1/2 · dk(ρ− F̄k)

)
, dk 6= 0;

yk +
ρ− F̄k

a · (F̄k+1 − F̄k)
, dk = 0.

(44)

From the identity HT (α)
d
= αM (1 + exp(YM)), and the fact that monotone transformations

preserve quantiles,

V aRρ(HT (α)) = αM(1 + exp(V aRρ(YM)))

where for DCA we have αM = W/(M + 1). Similarly, we can calculate V aRρ(WT (α)) =

V aRρ(HT (α)) +WR(α).

To illustrate the recursive PROJ approach for calculating risk, we provide an experiment

for GBM which assess VaR. In Figure 8, we see another manifestation of the risk reduction

of DCA, which is a tighter terminal wealth distribution. The tightness varies smoothly as a

function of θ, which we plot for M = 10 and M = 100.
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Figure 8: GDCA value at risk (VaR), as a function of θ, for ρ ∈ {0.97, 0.98, 0.99}. Left: M = 10.
Right: M = 100. Model: GBM with σ = 0.2, µ = 0.08, T = 1, W = 10.
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Figure 9: S&P500 index (Left) and fed funds rate (Right): 1954/07/01 - 2019/04/11.

5 Empirical Study of Investment Strategies

We now conduct an empirical study to assess the performance of DCA, GDCA, and LS invest-

ment strategies. For the risky asset, we take the S&P500 index (SPX), and for the risk-free rate

we use the federal funds rate, for which the targeted rate is set by the Federal Open Market

committee (FOMC). Both series are observed over the period 1954-07-01 to 2019-04-11, for

a total of 16,305 observations, and both datasets are plotted in Figure 9. We assume that

investments in the risk-free account accrue interest at the prevailing fed funds rate over the

next day. For convenience, we introduce the notation M̄ , to denote the number of investments

per year (in addition to the initial investment), so that M = 1 + M̄ · T (which accounts for the

possible investment at t0). Hence, monthly investing M̄ = 12 results in M = 13 investments
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over one year (T = 1), M = 25 investments over two years (T = 2), and so on.12

Figure 10: Terminal wealth distributions for S&P500 example, T = 4, W = 1. (Left): DCA(1),
(Right): Lump Sum (LS).

For each investment horizon T , we form an empirical distribution of terminal wealth by

sliding the investment window forward in time, two months at a time, which results in N = 382

trials.13 This has the effect of randomizing the starting and ending periods. We denote the

wealth by Wi,T , for trials i = 1, . . . , N . In addition to the Sharpe ratio, mean, and variance of

{Wi,T}Ni=1, we introduce the power utility

u(WT ) =
W 1−γ
T

1− γ
, (45)

which is considered for example in Brennan et al. (2005). Here γ is the coefficient of relative

risk aversion. The investor becomes more risk averse for larger γ. We then define the certainty

equivalent

CEγ :=

(
1

N

N∑
i=1

W 1−γ
i,T

) 1
1−γ

where Wi,T is the terminal wealth calculated for trial i at horizon T , and N is the total number

of trials. The certainty equivalent for a given strategy is the amount of wealth that the investor

would have to receive with certainty at T in order to be indifferent between the certain payoff

and the investment strategy.

We first compare the lump sum (LS) strategy and DCA for three levels of M̄ , which we

denote by DCA(M̄). For example, DCA(1) is a strategy which involves an initial investment

at t0, as well as an investment at the end of each year.14 As a benchmark, we provide a pure

risk-free investing strategy (RF), where the investor earns interest at the risk-free rate which

12For simplicity, we assume that there are 252 trading days in each year, and 21 days in each month.
13Note that these trials have overlapping investment periods, and are thus not an iid random sample.
14Note that DCA(1) is the 50:50 strategy when T = 1.
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resets daily. All strategies start with an initial wealth of W0 = W = 1, so the terminal wealth

is the same as the return. Figure 10 displays the terminal wealth distributions for DCA(1)

(Left) and LS (Right), for T = 4. As expected, the distribution of LS is much wider than that

of DCA(1), offering the potential for greater returns (and losses). The fatter left tail of LS also

implies that the LS is a riskier strategy compared to DCA(1).

Horizon strategy mean std Sharpe CE2 CE4 CE6

T = 1 RF 1.051 0.038 0.000 (0.000) 1.049 (0.002) 1.048 (0.002) 1.047 (0.002)

(12 months) LS 1.084 0.161 0.200 (0.055) 1.058 (0.009) 1.026 (0.012) 0.988 (0.015)

DCA(1) 1.068 0.081 0.200 (0.054) 1.061 (0.004) 1.054 (0.005) 1.047 (0.005)

DCA(6) 1.067 0.088 0.180 (0.054) 1.059 (0.005) 1.051 (0.006) 1.040 (0.007)

DCA(12) 1.067 0.089 0.182 (0.055) 1.059 (0.005) 1.050 (0.006) 1.040 (0.007)

T = 2 RF 1.106 0.078 0.000 (0.000) 1.101 (0.004) 1.096 (0.004) 1.092 (0.004)

(24 months) LS 1.169 0.232 0.254 (0.054) 1.117 (0.014) 1.053 (0.018) 0.978 (0.023)

DCA(1) 1.137 0.123 0.246 (0.056) 1.123 (0.007) 1.107 (0.007) 1.090 (0.009)

DCA(6) 1.137 0.131 0.229 (0.056) 1.120 (0.007) 1.101 (0.009) 1.079 (0.011)

DCA(12) 1.137 0.132 0.230 (0.057) 1.120 (0.007) 1.101 (0.009) 1.078 (0.012)

T = 3 RF 1.167 0.120 0.000 (0.000) 1.156 (0.006) 1.145 (0.005) 1.136 (0.005)

(36 months) LS 1.257 0.300 0.280 (0.051) 1.183 (0.016) 1.101 (0.019) 1.019 (0.021)

DCA(1) 1.212 0.165 0.275 (0.055) 1.189 (0.009) 1.164 (0.010) 1.138 (0.011)

DCA(6) 1.211 0.170 0.265 (0.055) 1.186 (0.009) 1.158 (0.011) 1.127 (0.014)

DCA(12) 1.211 0.171 0.265 (0.057) 1.186 (0.009) 1.158 (0.011) 1.125 (0.014)

T = 4 RF 1.233 0.165 0.000 (0.000) 1.213 (0.008) 1.195 (0.007) 1.179 (0.007)

(48 months) LS 1.356 0.382 0.300 (0.050) 1.254 (0.019) 1.159 (0.020) 1.077 (0.019)

DCA(1) 1.294 0.209 0.302 (0.051) 1.261 (0.011) 1.228 (0.012) 1.193 (0.014)

DCA(6) 1.294 0.213 0.295 (0.054) 1.259 (0.011) 1.222 (0.012) 1.182 (0.016)

DCA(12) 1.294 0.213 0.296 (0.053) 1.259 (0.011) 1.221 (0.013) 1.181 (0.016)

Table 1: Investment strategies for S&P500 example, with initial wealth W = 1.

In Table 1, for each of the horizons T ∈ {1, 2, 3, 4}, we display the top strategy in bold

for each metric (excluding RF, which is simply a benchmark). In addition to each metric,

we display a standard error (in parenthesis), estimated by non-parametric bootstrap from the

terminal wealth distributions. As expected from (17), as well as existing literature such as

Williams and Bacon (1993), LS results in the greatest mean return for each horizon. However,

this greater return is realized at the cost of greater variance, which is consistent with Theorem

5. The tradeoff, as measured by the Sharpe ratio15, favors LS and DCA(1), depending on the

horizon. However, with respect to the power utility certainty equivalents with γ ∈ {2, 4, 6},
15The Sharpe ratio is computed with respect to the risk-free (RF) investment strategy. As the RF strategy

has zero excess return against itself, it has a Sharpe ratio of zero.
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DCA(1) is clearly favorable for every horizon. The margin by which DCA(1) is favored over LS

increases with γ, that is as an investor becomes more risk averse the greater the favorability

of DCA(1) increases. While the mean is very similar for the DCA strategies, we are able to

confirm the theoretical result of Corollary 2 that the mean decreases as M (or M̄) increases.

The tendency for variance to increase (as illustrated in Figure 1) is also reflected in this data

set. We can also see that the mean and variance of the DCA strategies (quickly) approach a

limit as M increases, consistent with Corollary 2 and Corollary 4.

Horizon strategy mean std Sharpe CE2 CE4 CE6

T = 1 DCA(1) 1.068 0.081 0.200 (0.054) 1.061 (0.004) 1.054 (0.005) 1.047 (0.005)

(12 months) LS 1.084 0.161 0.200 (0.055) 1.058 (0.009) 1.026 (0.011) 0.988 (0.015)

GDCA0.25(1) 1.078 0.129 0.200 (0.054) 1.061 (0.007) 1.043 (0.008) 1.021 (0.010)

GDCA0.25(12) 1.084 0.156 0.201 (0.054) 1.058 (0.009) 1.028 (0.011) 0.992 (0.015)

GDCA0.50(12) 1.082 0.148 0.200 (0.054) 1.059 (0.009) 1.032 (0.010) 0.999 (0.014)

GDCA0.75(12) 1.077 0.127 0.195 (0.055) 1.060 (0.007) 1.040 (0.009) 1.016 (0.012)

DCA(12) 1.067 0.089 0.182 (0.056) 1.059 (0.005) 1.050 (0.006) 1.040 (0.007)

T = 2 DCA(1) 1.137 0.123 0.246 (0.055) 1.123 (0.007) 1.107 (0.007) 1.090 (0.009)

(24 months) LS 1.169 0.232 0.254 (0.054) 1.117 (0.014) 1.053 (0.017) 0.978 (0.023)

GDCA0.25(1) 1.160 0.197 0.255 (0.054) 1.122 (0.012) 1.077 (0.015) 1.022 (0.019)

GDCA0.25(12) 1.168 0.229 0.255 (0.054) 1.118 (0.014) 1.055 (0.018) 0.981 (0.023)

GDCA0.50(12) 1.167 0.223 0.254 (0.054) 1.118 (0.013) 1.058 (0.017) 0.987 (0.022)

GDCA0.75(12) 1.161 0.205 0.251 (0.055) 1.120 (0.012) 1.068 (0.016) 1.005 (0.021)

DCA(12) 1.137 0.132 0.230 (0.058) 1.120 (0.008) 1.101 (0.009) 1.078 (0.012)

T = 3 DCA(1) 1.212 0.165 0.275 (0.054) 1.189 (0.009) 1.164 (0.010) 1.138 (0.011)

(36 months) LS 1.257 0.300 0.280 (0.051) 1.183 (0.016) 1.101 (0.020) 1.019 (0.021)

GDCA0.25(1) 1.247 0.264 0.283 (0.052) 1.188 (0.015) 1.122 (0.018) 1.050 (0.021)

GDCA0.25(12) 1.256 0.296 0.281 (0.052) 1.183 (0.016) 1.104 (0.019) 1.022 (0.022)

GDCA0.50(12) 1.254 0.289 0.281 (0.052) 1.184 (0.016) 1.106 (0.019) 1.026 (0.021)

GDCA0.75(12) 1.249 0.271 0.281 (0.052) 1.186 (0.015) 1.114 (0.019) 1.037 (0.021)

DCA(12) 1.211 0.171 0.265 (0.056) 1.186 (0.010) 1.158 (0.011) 1.125 (0.014)

T = 4 DCA(1) 1.294 0.209 0.302 (0.054) 1.261 (0.011) 1.228 (0.011) 1.193 (0.014)

(48 months) LS 1.356 0.382 0.299 (0.050) 1.254 (0.019) 1.159 (0.019) 1.077 (0.019)

GDCA0.25(1) 1.345 0.344 0.304 (0.050) 1.261 (0.017) 1.178 (0.019) 1.101 (0.020)

GDCA0.25(12) 1.355 0.378 0.301 (0.049) 1.255 (0.018) 1.162 (0.019) 1.080 (0.019)

GDCA0.50(12) 1.353 0.371 0.301 (0.049) 1.256 (0.019) 1.164 (0.019) 1.083 (0.020)

GDCA0.75(12) 1.347 0.352 0.301 (0.049) 1.258 (0.018) 1.171 (0.019) 1.091 (0.020)

DCA(12) 1.294 0.213 0.296 (0.054) 1.259 (0.011) 1.221 (0.013) 1.181 (0.016)

Table 2: GCDA investment strategies for S&P500 example, with initial wealth W = 1.

In the second set of experiments, we consider the GDCA strategy, which we also compare to
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DCA(1), DCA(12), and LS to provide a comparison of performance. The notation GDCAθ(M̄)

denotes a strategy with duration parameter θ and investments per year M̄ . As before, LS has

the greatest mean return in most cases, but GDCA0.25(1) is often a close second, and often

outperforms based on the Sharpe ratio, which indicates a more “efficient” exposure to risk.

The certainy equivalence measures still favor DCA(1), but in several cases GDCA0.25(1) is a

dcomparable strategy with respect to CE2, i.e. with moderate risk aversion. Consequently,

one may conclude that, depending on our choice of risk measurement, a strategy in between

LS and standard DCA may offer the best trade-off in terms of risk and return.

6 Conclusion

In this paper, we develop a rigorous and theoretical framework for the analysis of DCA, LS, and

other related investment timing strategies. We present new theoretical insights into the nature

of DCA and averaging-style investment timing strategies. We examine them under non-trivial

and realistic continuous time, stochastic processes, including exponential Lévy models. We

formally confirm many of the DCA properties that have been documented in the literature only

by empirical studies, and provide mathematical insights into the risk, risk-return, and related

performance metrics. A fundamental distributional equivalence linking DCA to arithmetic

averaging of the underlying is obtained, which can be used to calculate risk.

We theoretically prove and demonstrate, with computational experiments and an empirical

study of the S&P500 from 1954 to 2019, that the frequency of DCA investment M has a

fundamental impact on risk, return and risk-return trade-offs. This fact that the fundamental

characteristic M of DCA has been typically overlooked in most empirical (and theoretical)

studies of DCA, as it was implicitly assumed to be insignificant, emphasises the importance

and counterintuitiveness of this result. Consequently, DCA performance analyses need to take

into account M , risk, return and risk-return trade-offs to provide balanced comparison to other

investment strategies. We also provide a general computational framework for calculating risk

and performance measures for different market timing strategies.

In terms of future work, we would like to investigate the impact of transaction costs upon

the investment strategy and risk. This is particularly pertinent given that M plays a signifi-

cant role in the DCA and related investment strategies. Other interesting questions16 are to

investigate how much we lose by doing DCA and most importantly the source of this loss in the

characteristics of the traded assets (mean and/or volatility). We would also like to investigate

the impact of stochastic interest rates, since interest rates fluctuate over time and DCA related

strategies may differ over different time periods. For example, the inclusion of regime-switching

16We would like to thank one of the referees for suggesting these ideas.
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interest rates (and market returns) is a parsimonious way to extend the analysis. Finally, we

would like to investigate portfolio investment with respect to DCA.
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A Characteristic exponent

Model ψL(ξ) ψR(−2i)

BSM −σ2

2
ξ2 ζ + σ2

MJD −σ2

2
ξ2 + λ

(
exp(iξµJ −

σ2
J

2
ξ2)− 1

)
ζ + σ2 + λ[exp (2(µJ + σ2

J))− 2 exp(µJ + 1
2
σ2
J) + 1]

CGMY CΓ(−Y )
(
(M − iξ)Y −MY + (G+ iξ)Y −GY

)
ζ + CΓ(−Y )

(
(M − 2)Y − 2(M − 1)Y +MY + (G+ 2)Y − 2(G+ 1)Y +GY

)
NIG −δ

(√
α2 − (β + iξ)2 −

√
α2 − β2

)
ζ − δ

(√
α2 − (β − 2)2 −

√
α2 − β2

)
Kou −σ2

2
ξ2 + λ

(
pη1
η1−iξ

+ (1−p)η2
η2+iξ

− 1
)

ζ + 2σ2 + λ
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pη1
η1+2

+ (1−p)η2
η2−2

− 1
)

VG −σ2

2
ξ2 − 1

ν
log
(

1− iνθξ + ν
σ2
V

2
ξ2
)

ζ + 2σ2 + 1
ν

log (1 + 2(νθ − νσ2
V ))

Table 3: Characteristic exponents (Lévy symbols) ψL(ξ) and ψR(−2i) for some models. Here
we denote the convexity-corrected drift by ζ := 2(µ−ψL(−i)), where ψL(−i) can be computed
in closed-form from the first column.

B Proofs

Proof of Lemma 2: Noting that E [ST/Stm ] = E [E[ST/Stm ]|Stm ]] = E[eµ(T−tm)] = eµ(T−tm).
Using Lemma 1, we have

E [WT (α)] =
M∑
m=0

αmE
[
ST
Stm

]
+ erTW −

M∑
k=0

αke
r(T−tk)

=
M∑
m=0

αme
µ(T−tm) + erTW −

M∑
k=0

αke
r(T−tk),

and (8) follows. The bounds in (9) follow from (8), together with the observation that(
eµ(T−tm) − er(T−tm)

)
is monotonically decreasing in m whenever µ ≥ r. The final statement

follows by noting that if we shift any amount of wealth from the final period, αM , to any αm
where m < M , E [WT (α)] will increase, again by monotonicity, and the worst expected out-
come of erTW is attained when αM = W .

Proof of Lemma 3: First note that

E
[
eθRt

]
= eψR(−iθ)t = eiµ(−iθ)t+ψL(−iθ)t = eµθt+ψL(−iθ)t,
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and when θ = 1, E
[
eRt
]

= eψR(−iθ)t = eµt. Let Rm := log(Stm/Stm−1), for m = 1, . . . ,M . Let
Xm := exp(Rm+1 + · · ·+RM), we have

V ar(WT (α)) = V ar

(
M∑
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αm
ST
Stm

)
= V ar

(
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αm
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)
(46)
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αmXm
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α2
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∑
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αmαj(E[XmXj]− E[Xm]E[Xj]). (47)

For k ≥ 1, with m+ k ≤M , by independence of increments

E[XmXm+k] = E

[
exp

(
m+k∑
j=m+1

Rj +
M∑

j=m+k+1

Rj

)]

= E

[
exp

(
m+k∑
j=m+1

Rj

)]
E

[
exp

(
2

M∑
j=m+k+1

Rj

)]
= exp(k∆t · ψR(−i)) exp((M −m− k)∆t · ψR(−2i)),

and note that we have

E[Xm] = E[exp(
M∑

i=m+1

Ri)] = exp((M −m)∆t · ψR(−i)).

Moreover,

V ar(Xm) = E[(
M∏

i=m+1

exp(Ri))
2]− (E(

M∏
i=m+1

exp(Ri)))
2

= E
M∏

i=m+1

exp(2Ri)−
M∏

i=m+1

(E(exp(Ri)))
2

= E exp(
M∑

i=m+1

2Ri)−
M∏
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(E(exp(Ri)))
2

= exp((M −m)∆t · ψR(−2i))−
M∏
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Substituting all in (46), we have

V ar

(
M−1∑
m=0

αm
ST
Stm

)

=
M−1∑
m=0

α2
m [exp((M −m)∆t · ψR(−2i))− exp(2(M −m)∆t · ψR(−i))] +

+ 2
∑

0≤m,k≤M−1,m+k≤M

αmαm+k [exp(k∆t · ψR(−i)) exp((M −m− k)∆t · ψR(−2i))]

− 2
∑

0≤m,k≤M−1,m+k≤M

αmαm+k [exp((2M − 2m− k)∆t · ψR(−i))] . (48)

Noting that ψR(−i) = µ, the result follows.

Proof of Theorem 1: Recall that the number of shares purchased at time tm is given by

nm =
αm
Stm

=
W

(M + 1) · Stm
, m = 0, 1, . . . ,M.

Hence we have, the average cost is given by

W

n0 + n1 + . . .+ nM
=

W
W
M+1

∑M
m=0

1
Stm

=
M + 1∑M
m=0

1
Stm

= H(St0 , St1 , . . . , StM ), (49)

where H(x0, x2, . . . , xM) denotes the Harmonic mean of x0, x2, . . . , xM . It is well known that
the Harmonic mean is less than or equal to arithmetic mean. That is,

H(x0, x2, . . . , xM) ≤ 1

M + 1

M∑
m=0

xm.

This completes the proof of the theorem.

Proof of Corollary 2: Applying (8) with tm = m∆t = Tm/M , and αm = W/(M + 1)

E
[
WDCA
T

]
= erTW +

W

M + 1

M−1∑
m=0

(
eµT (1−m/M) − erT (1−m/M)

)
m→M−m

= erTW +
W

M + 1

M∑
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(
eµT (m/M) − erT (m/M)

)
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W
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(
eµT (m/M) − erT (m/M)

)
= erTW +

W
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(
eµT (M+1)/M − 1

eµT/M − 1
− erT (M+1)/M − 1

erT/M − 1

)
.

Next, for the limit we have

E
[
WDCA
T

]
= erTW +

W

M + 1

M∑
m=0

(
eµT (m/M) − erT (m/M)

)
M→∞−→ erTW +W

∫ 1

0

(eµTx − erTx)dx = erTW +W

(
eµT − 1

µT
− erT − 1

rT

)
.
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For the monotonicity, to simplify notation, let a = µT and b = rT , and W = 1, we have

E
[
WDCA
T

]
= erT +

1

M + 1

M∑
m=0

(
ea(m/M) − eb(m/M)

)
= erT +

1

M + 1

M−1∑
m=0

(
ea(m/M) − eb(m/M)

)
+

1

M + 1
(ea − ab)

= erT +
1

M + 1

(
ea − 1

ea/M − 1
− eb − 1

eb/M − 1

)
+

1

M + 1
(ea − ab). (50)

From (50), taking the derivative with respect to M , we have

d

dM
E
[
WDCA
T

]
=

1

M2(M + 1)

[a(ea − 1)ea/M

(ea/M − 1)2
− b(eb − 1)eb/M

(eb/M − 1)2

]
− 1

(M + 1)2

[ (ea − 1)

(ea/M − 1)
− (eb − 1)

(eb/M − 1)

]
− ea − eb

(M + 1)2

=
1

M + 1

( 1

M2

[a(ea − 1)ea/M

(ea/M − 1)2
− b(eb − 1)eb/M

(eb/M − 1)2

]
− 1

(M + 1)

[ (ea − 1)

(ea/M − 1)
− (eb − 1)

(eb/M − 1)

]
− ea − eb

(M + 1)

)
. (51)

Now let f(x) be the following function

f(x) =
1

M2
· x(ex − 1)ex/M

(ex/M − 1)2
− 1

M + 1
· ex − 1

ex/M − 1
− ex

M + 1
, x > 0.

Since the term −ex
M+1

is dominating, it can be checked that f(x) is decreasing17 for all x > 0. In

particular, since a ≥ b, f(a) ≤ f(b). As a result, from (51), it can be seen that
d

dM
E
[
WDCA
T

]
≤

0 for all M . As a result, E
[
WDCA
T

]
is decreasing in term of M . This completes the proof of

the corollary.

Proof of Corollary 3: Without loss of generality, we can assume that W = 1. From Lemma
3 we have

(M + 1)2V ar
[
WDCA
T

]
=

M−1∑
m=0

[exp((M −m)∆t · ψR(−2i))− exp(2(M −m)∆t · µ)] +

+ 2
M−2∑
m=0

M−m−1∑
k=1

[exp(k∆t · µ) exp((M −m− k)∆t · ψR(−2i))]

− 2
M−2∑
m=0

M−m−1∑
k=1

[exp((2(M −m)− k)∆t · µ)] . (52)

17This is obvious for large M , for small M it can be seen from plotting the derivative of f(x).
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Consider the first term of (52),

Π1 :=
M−1∑
m=0

[exp((M −m)∆t · ψR(−2i))− exp(2(M −m)∆t · µ)]

m→M−m
=

M∑
m=1

[exp(m∆t · ψR(−2i))− exp(2m∆t · µ)]

=
M∑
m=0

[exp(m∆t · ψR(−2i))− exp(2m∆t · µ)]

=
exp((M + 1)∆t · ψR(−2i))− 1

exp(∆t · ψR(−2i))− 1
− exp(2(M + 1)∆t · µ)− 1

exp(2∆t · µ)− 1
. (53)

Next, consider the second term of (52), we have

Π2 :=
M−2∑
m=0

M−m−1∑
k=1

[exp(k∆t · µ) exp((M −m− k)∆t · ψR(−2i))]

=
M−2∑
m=0

M−m−1∑
k=1

exp((M −m)∆t · ψR(−2i)) exp(k∆t · (µ− ψR(−2i)))

=
M−2∑
m=0

(
exp((M −m)∆t · ψR(−2i)) exp(∆t · (µ− ψR(−2i)))

· exp((M −m− 1)∆t · (µ− ψR(−2i)))− 1

exp(∆t · (µ− ψR(−2i)))− 1

)
=

exp(∆t · (µ− ψR(−2i)))

exp(∆t(µ− ψR(−2i)))− 1

·
M−2∑
m=0

exp((M −m)∆tψR(−2i)) (exp((M −m− 1)∆t · (µ− ψR(−2i)))− 1) . (54)

In the equation (54) above, the term

M−2∑
m=0

exp((M −m)∆t · ψR(−2i)) (exp((M −m− 1)∆t · (µ− ψR(−2i)))− 1)

= exp(∆tψR(−2i))
M−2∑
m=0

exp((M −m− 1)∆t · µ)−
M−2∑
m=0

exp((M −m)∆t · ψR(−2i))

= exp(∆tψR(−2i))
M−1∑
m=1

exp(m∆t · µ)− exp(2 ·∆t · ψR(−2i))
M−2∑
m=0

exp(m∆t · ψR(−2i))

= exp(∆t(µ+ ψR(−2i)))
exp((M − 1)∆t · µ)− 1

exp(∆t · µ)− 1

− exp(2 ·∆t · ψR(−2i))
exp((M − 1)∆t · ψR(−2i))− 1

exp(∆t · ψR(−2i))− 1
.
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Lastly, consider the third term of (52), similarly to the above we have

Π3 :=
M−2∑
m=0

M−m−1∑
k=1

[exp((2(M −m)− k)∆t · µ)]

=
M−2∑
m=0

exp(2(M −m)∆t · µ)
M−m−1∑
k=1

exp(−2k∆t · µ)

=
M−2∑
m=0

exp(2(M −m)∆t · µ) exp(−∆t · µ)
exp(−(M −m− 1)∆t · µ)− 1

exp(−∆t · µ)− 1

=
exp(−∆t · µ)

exp(−∆t · µ)− 1

M−2∑
m=0

(exp((M −m+ 1)∆tµ)− exp(2(M −m)∆t · µ))

=
exp(−∆t · µ)

exp(−∆t · µ)− 1

(
exp(3∆tµ)

exp((M − 1)∆tµ)− 1

exp(∆tµ)− 1
− exp(4∆t · µ)

exp(2(M − 1)∆t · µ))− 1

exp(2∆t · µ)− 1

)
.

(55)

By combining (53), (54), and (55), we can write the variance as a function in term of M . That
is

V ar
[
WDCA
T

]
=

1

(M + 1)2
(Π1 + 2Π2 − 2Π3) ≥ 0. (56)

Proof of Corollary 4: Without loss of generality, we can assume that W = 1. Recall
from Corollary 3 that

V ar
[
WDCA
T

]
=

W 2

(M + 1)2
(Π1 + 2Π2 − 2Π3) ,

where definitions of Π1,Π2, and Π3 are there defined. Recall that ∆t = T/M , we then have

1

(M + 1)2
Π1 =

1

(M + 1)2

(
exp((M + 1)/M · TψR(−2i))− 1

exp(T/M · ψR(−2i))− 1
− exp(2(M + 1)/M · Tµ)− 1

exp(2T/M · µ)− 1

)
∼ 1

(M + 1)2

(
exp((M + 1)/M · TψR(−2i))− 1

T/M · ψR(−2i)
− exp(2(M + 1)/M · Tµ)− 1

2T/M · µ

)
=

M

(M + 1)2

(
exp((M + 1)/M · TψR(−2i))− 1

TψR(−2i)
− exp(2(M + 1)/M · Tµ)− 1

2Tµ

)
−→ 0 as M →∞. (57)

Similarly,

Π2

(M + 1)2
∼ M2

(M + 1)2

exp(T/M(µ− ψR(−2i)))

T (µ− ψR(−2i))

(
exp(T/M(µ+ ψR(−2i)))

exp((M − 1)/M · Tµ)− 1

Tµ

− exp(2T/MψR(−2i))
exp((M − 1)/M · TψR(−2i))− 1

TψR(−2i)

)
−→ 1

T (µ− ψR(−2i))

(
exp(Tµ)− 1

Tµ
− exp(TψR(−2i))− 1

TψR(−2i)

)
. (58)

39



Lastly, we have

Π3

(M + 1)2
∼ M2

(M + 1)2

exp(−T/Mµ)

−Tµ

(
exp(3T/Mµ)

exp((M − 1)/M · Tµ)− 1

Tµ

− exp(4T/Mµ)
exp(2(M − 1)/M · Tµ)− 1

2Tµ

)
−→ −1

Tµ

(
exp(Tµ)− 1

Tµ
− exp(2Tµ)− 1

2Tµ

)
=
−1

2(Tµ)2
(2 exp(Tµ)− exp(2Tµ)− 1) .

(59)

As a result, we have as M →∞:

V ar
[
WDCA
T

]
−→ 2

T (µ− ψR(−2i))

(
exp(Tµ)− 1

Tµ
− exp(TψR(−2i))− 1

TψR(−2i)

)
+

1

(Tµ)2
(2 exp(Tµ)− exp(2Tµ)− 1) .

From (57),(58) and (59), it can be seen that 1
(M+1)2

Πi, for i = 1, 2, 3 is bounded. Therefore,

the variance V ar
[
WDCA
T

]
is bounded and is dominated by 1

(M+1)2
Π1.

Let

f(M) =
(

exp(ψR(−2i)T )− exp(2µT )
)
− V ar

[
WDCA
T

]
=
(

exp(ψR(−2i)T )− exp(2µT )
)
− 1

(M + 1)2
(Π1 + 2Π2 − 2Π3) .

Since V ar
[
WDCA
T

]
is positive, bounded and is dominated by 1

(M+1)2
Π1, it can be checked that

f(M) is a positive decreasing function. Hence the proof of the theorem follows immediately.

Proof of Theorem 6: Since the matrix H is symmetric and positive definite, the solution
to (23) is guranteed to exist, see Boyd and Vandenberghe (2004). By Theorem 11.5 in Beck
(2014), we can next form the Lagrangian

L =
1

2
V ar (WT (α))− γ1 (E[WT (α)]− µ̂)− γ2

(
M−1∑
m=0

αm −W

)

=
1

2
αTHα− γ1

(
erTW +

M−1∑
m=0

αm
(
eµ(T−tm) − er(T−tm)

)
− µ̂

)
− γ2

(
M−1∑
m=0

αm −W

)

where γ1, γ2 are Lagrangian multipliers. We have, for m = 0, 1 . . . ,M − 1,

∂L

∂αm
=

M−1∑
i=1

αjHmj − γ1

(
eµ(T−tm) − er(T−tm)

)
− γ2 = 0. (60)

∂L

∂γ1

= erTW +
M−1∑
m=0

αm
(
eµ(T−tm) − er(T−tm)

)
− µ̂ = 0. (61)

∂L

∂γ2

=

(
M−1∑
m=0

αm −W

)
= 0. (62)
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From (60), we have

α∗ = H−1 (γ1y + γ21) . (63)

where 1 = (1, 1, . . . , 1)T ∈ RM and y =
(
eµT − erT , eµ(T−t1) − er(T−t1), . . . , eµ(T−tM−1) − er(T−tM−1)

)T
.

The equation (61) gives

µ̂− erTW =
M−1∑
m=0

α∗m
(
eµ(T−tm) − er(T−tm)

)
= yTα∗

= yTH−1 (γ1y + γ21)

= γ1y
TH−1y + γ2y

TH−11. (64)

From (62), we have

W =
M−1∑
m=0

α∗m = 1Tα∗ = 1TH−1 (γ1y + γ21) = γ11
TH−1y + γ21

TH−11. (65)

From (64) and (65), we have
γ1 =

(µ̂− erTW )1TH−11−WyTH−11

(yTH−1y)(1TH−11)− (yTH−11)(1TH−1y)
,

γ2 =
WyTH−1y − (µ̂− erTW )1TH−1y

(yTH−1y)(1TH−11)− (yTH−11)(1TH−1y)
.

(66)

As a result, we have

α∗ = H−1

(
(µ̂− erTW )1TH−11−WyTH−11

(yTH−1y)(1TH−11)− (yTH−11)(1TH−1y)

)
y

+H−1

(
WyTH−1y − (µ̂− erTW )1TH−1y

(yTH−1y)(1TH−11)− (yTH−11)(1TH−1y)

)
1. (67)

This completes the proof of the Theorem.

Proof of Theorem 7: Let Rm := log(Stm/Stm−1), for m = 1, . . . ,M . For an exponential
Lévy process log returns are independent, and we have

M∑
m=0

αm
ST
Stm

=
M−1∑
m=0

αm exp(Rm+1 + · · ·+RM) + αM
ST
StM

=
M−1∑
m=0

αm exp

(
M∑

j=m+1

Rj

)
+ αM ,

where we note Rj
d
= Rk for j, k = 1, . . . ,M , due to uniform monitoring and the fact that Rj
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are Lévy increments, and (R1, . . . , RM)
d
= (RM , . . . , R1). It then follows that

M∑
m=0

αm
ST
Stm

=
M−1∑
m=0

αm exp

(
M∑

j=m+1

Rj

)
+ αM

ST
StM

= αM + eRM
[
αM−1 + eRM−1

[
αM−2 + eRM−2

[
· · ·α2 + eR2

[
α1 + α0e

R1
]]]]

d
= αM + eR1

[
αM−1 + eR2

[
αM−2 + eR3

[
· · ·α2 + eRM−1

[
α1 + α0e

RM
]]]]

= αM
S0

S0

+
M∑
m=1

αM−m exp

(
m∑
j=1

Rj

)

=
1

S0

M∑
m=0

αM−mS0 exp

(
m∑
j=1

Rj

)

=
1

S0

M∑
m=0

αM−mStm .

In particular, we have proved the equivalence in distribution of the quantities

M∑
m=0

αm
ST
Stm

d
=

1

S0

M∑
m=0

αM−mStm . (68)

The result then follows.

Proof of Corollary 8: Note that from (26)

M∑
m=0

αm
ST
Stm

d
=

1

S0

M∑
m=0

αM−mStm

=
(
αM + eR1

(
αM−1 + eR2

(
. . . eRM−1

(
α1 + α0e

RM
))))

= αM

(
1 +

αM−1

αM
eR1

(
1 +

αM−2

αM−1

eR2

(
. . .

α1

α2

eRM−1

(
1 +

α0

α1

eRM
))))

= αM

(
1 + exp

(
log

(
αM−1

αM

)
+R1 + . . .

+ log

(
RM−1 + log

(
1 + exp

(
log

(
α0

α1

)
+RM

)))))
(69)

From the last equality in (69), let

Y1 = log(α0/α1) +RM ,

Ym = log

(
αm−1

αm

)
+RM+1−m + Zm−1, m = 2, . . . ,M.

we have

Ym = log

(
1

αmStM−m

m∑
j=1

αm−jStM−m+j

)
, m = 2, . . . ,M. (70)

from which the equation (38) follows from Theorem 7.
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