Inhibition of ATM Increases the Radiosensitivity of Uveal Melanoma Cells to Photons and Protons

Hussain, Rumana N ORCID: 0000-0001-8208-5009, Coupland, Sarah E ORCID: 0000-0002-1464-2069, Khzouz, Jakub, Kalirai, Helen ORCID: 0000-0002-4440-2576 and Parsons, Jason L ORCID: 0000-0002-5052-1125
(2020) Inhibition of ATM Increases the Radiosensitivity of Uveal Melanoma Cells to Photons and Protons. Cancers, 12 (6). p. 1388.

[img] Text
Hussain et al Rev.docx - Author Accepted Manuscript

Download (1MB)


Treatment of uveal melanoma (UM) is generally successful, with local primary tumour control being at 90%–95%. Localized radiotherapy in the form of plaque brachytherapy or proton beam radiotherapy is the most common treatment modality in the UK. However, the basic mechanisms of radiation response, DNA repair and tissue reactions in UM have not been well documented previously. We have investigated the comparative radiosensitivity of four UM cell lines in response to exogenous radiation sources (both X-rays and protons), and correlated this with DNA repair protein expression and repair efficiency. We observed a broad range of radiosensitivity of different UM cell lines to X-rays and protons, with increased radioresistance correlating with elevated protein expression of ataxia telangiectasia mutated (ATM), a protein kinase involved in the signaling and repair of DNA double strand breaks. The use of an ATM inhibitor in UM cell lines enhanced radiosensitivity following both X-ray and proton irradiation, particularly in cells that contained high levels of ATM protein which are otherwise comparatively radioresistant. In proton-irradiated compared with non-irradiated primary enucleated UM patient samples, there was no significant difference in ATM protein expression. Our study therefore suggests that ATM is a potential target for increasing the radiosensitivity of more resistant UM subgroups. View Full-Text

Item Type: Article
Uncontrolled Keywords: ATM, DNA damage, DNA repair, ionizing radiation, protons, uveal melanoma
Depositing User: Symplectic Admin
Date Deposited: 04 Jun 2020 08:10
Last Modified: 18 Jan 2023 23:50
DOI: 10.3390/cancers12061388
Related URLs: