A Universal Multi-Platform 3D Printed Bioreactor Chamber for Tendon Tissue Engineering



Henstock, James, Laird, Elizabeth and Janvier, Adam Jaques
(2020) A Universal Multi-Platform 3D Printed Bioreactor Chamber for Tendon Tissue Engineering. Journal of Tissue Engineering, 11.

[img] Text
JTE Janvier.pdf - OA Published Version

Download (1MB) | Preview

Abstract

A range of bioreactors use linear actuators to apply tensile forces in vitro, but differences in their culture environments can limit a direct comparison between studies. The widespread availability of 3D printing now provides an opportunity to develop a ‘universal’ bioreactor chamber that, with minimal exterior editing can be coupled to a wide range of commonly used linear actuator platforms, for example, the EBERS-TC3 and CellScale MCT6, resulting in a greater comparability between results and consistent testing of potential therapeutics. We designed a bioreactor chamber with six independent wells that was 3D printed in polylactic acid using an Ultimaker 2+ and waterproofed using a commercially available coating (XTC-3D), an oxirane resin. The cell culture wells were further coated with Sylgard-184 polydimethylsiloxane (PDMS) to produce a low-adhesion well surface. With appropriate coating and washing steps, all materials were shown to be non-cytotoxic by lactate dehydrogenase assay, and the bioreactor was waterproof, sterilisable and reusable. Tissue-engineered tendons were generated from human mesenchymal stem cells in a fibrin hydrogel and responded to 5% cyclic strain (0.5 Hz, 5 h/day, 21 days) in the bioreactor by increased production of collagen-Iα1 and decreased production of collagen-IIIα1. Calcification of the extracellular matrix was observed in unstretched tendon controls indicating abnormal differentiation, while tendons cultured under cyclic strain did not calcify and exhibited a tenogenic phenotype. The ease of manufacturing this bioreactor chamber enables researchers to quickly and cheaply reproduce this culture environment for use with many existing bioreactor actuator platforms by downloading the editable CAD files from a public database and following the manufacturing steps we describe.

Item Type: Article
Uncontrolled Keywords: Bioreactor, 3D printing, tendon, MSC, hydrogel
Depositing User: Symplectic Admin
Date Deposited: 01 Sep 2020 09:05
Last Modified: 14 Sep 2022 11:50
DOI: 10.1177/2041731420942462
Open Access URL: http://doi.org/10.1177/2041731420942462
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3095781