Linear read-once and related Boolean functions

Lozin, Vadim, Razgon, Igor, Zamaraev, Viktor ORCID: 0000-0001-5755-4141, Zamaraeva, Elena and Zolotykh, Nikolai
(2018) Linear read-once and related Boolean functions. DISCRETE APPLIED MATHEMATICS, 250. pp. 16-27.

[img] Text
1805.10159v1.pdf - Submitted version

Download (239kB) | Preview


It is known that a positive Boolean function f depending on n variables has at least n + 1 extremal points, i.e. minimal ones and maximal zeros. We show that f has exactly n + 1 extremal points if and only if it is linear read-once. The class of linear read-once functions is known to be the intersection of the classes of read-once and threshold functions. Generalizing this result we show that the class of linear read-once functions is the intersection of read-once and Chow functions. We also find the set of minimal read-once functions which are not linear read-once and the set of minimal threshold functions which are not linear read-once. In other words, we characterize the class of linear read-once functions by means of minimal forbidden subfunctions within the universe of read-once and the universe of threshold functions. Within the universe of threshold functions the importance of linear read-once func- tions is due to the fact that they attain the minimum value of the specification number, which is n + 1 for functions depending on n variables. In 1995 Anthony et al. conjec- tured that for all other threshold functions the specification number is strictly greater than n + 1. We disprove this conjecture by exhibiting a threshold non-linear read-once function depending on n variables whose specification number is n + 1.

Item Type: Article
Additional Information: Submitted to Discrete and Applied Mathematics. arXiv admin note: text overlap with arXiv:1706.01747
Uncontrolled Keywords: Threshold function, Read-once function, Linear read-once function, Nested canalyzing function, Canalyzing function, Chow function
Depositing User: Symplectic Admin
Date Deposited: 07 Sep 2020 08:05
Last Modified: 18 Jan 2023 23:35
DOI: 10.1016/j.dam.2018.05.001
Related URLs: