Robust Load Frequency Control for Power System Considering Transmission Delay and Sampling Period



Shangguan, Xingchen, Zhang, Chuan-Ke, He, Yong, Jin, Li, Jiang, Lin ORCID: 0000-0001-6531-2791, Spencer, Joseph and Wu, Min
(2020) Robust Load Frequency Control for Power System Considering Transmission Delay and Sampling Period. IEEE Transactions on Industrial Informatics, 17 (8). p. 1.

[thumbnail of 2020 Star ShangGuang IEEE Industrial Information TXT_TII-20-2437_final.pdf] Text
2020 Star ShangGuang IEEE Industrial Information TXT_TII-20-2437_final.pdf - Author Accepted Manuscript

Download (5MB) | Preview

Abstract

Uncertain transmission delays, sampling periods, parameters uncertainties regarding the power system, load fluctuations, and the intermittent generation of renewable energy sources (RESs) will significantly influence a power system's frequency. This article designs a robust delay-dependent PI-based load frequency control (LFC) scheme for a power system based on sampled-data control. First, a sampled-data-based delay-dependent LFC model of power system is constructed. Then, by applying the Lyapunov theory, and the linear matrix inequality technique, a novel stability criterion is developed for the LFC of the power system by considering the sampling period, and transmission delay of the communication network, which ensures that the proposed scheme operates in large sampling periods, and under transmission delays. Next, an exponential decay rate (EDR) is introduced to guide the design of a robust PI-based LFC scheme. The LFC scheme with robustness is designed by setting a small EDR. The values of EDR are adjusted by the given robust performance evaluation conditions of parameter uncertainties, and H_\infty performance. Finally, case studies are carried out based on a one-area power system, and a three-area power system with RESs. Simulation results show that the proposed LFC scheme performs strong robustness against parameter uncertainties regarding the power system, and communication network, load fluctuations, and the intermittent generation of RESs.

Item Type: Article
Uncontrolled Keywords: Load frequency control (LFC), power system, robust PI controller, sampled-data control, transmission delay
Depositing User: Symplectic Admin
Date Deposited: 07 Oct 2020 09:01
Last Modified: 18 Jan 2023 23:29
DOI: 10.1109/tii.2020.3026336
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3103805