Accelerated nucleophilic substitution reactions of dansyl chloride with aniline under ambient conditions via dual-tip reactive paper spray



Sarih, Norfatirah Muhamad, Romero-Perez, David, Bastani, Behnam, Rauytanapanit, Monrawat, Boisdon, Cedric, Praneenararat, Thanit, Tajuddin, Hairul Anuar, Abdullah, Zanariah, Badu-Tawiah, Abraham K and Maher, Simon
(2020) Accelerated nucleophilic substitution reactions of dansyl chloride with aniline under ambient conditions via dual-tip reactive paper spray. SCIENTIFIC REPORTS, 10 (1). 21504-.

Access the full-text of this item by clicking on the Open Access link.

Abstract

Paper spray ionization (PSI) mass spectrometry (MS) is an emerging tool for ambient reaction monitoring via microdroplet reaction acceleration. PSI-MS was used to accelerate and monitor the time course of the reaction of dansyl chloride with aniline, in acetonitrile, to produce dansyl aniline. Three distinct PSI arrangements were explored in this study representing alternative approaches for sample loading and interaction; conventional single tip as well as two novel setups, a dual-tip and a co-axial arrangement were designed so as to limit any on-paper interaction between reagents. The effect on product abundance was investigated using these different paper configurations as it relates to the time course and distance of microdroplet travel. It was observed that product yield increases at a given distance and then decreases thereafter for all PSI configurations. The fluorescent property of the product (dansyl aniline) was used to visually inspect the reaction progress on the paper substrate during the spraying process. Amongst the variety of sample loading methods the novel dual-tip arrangement showed an increased product yield and microdroplet density, whilst avoiding any on-paper interaction between the reagents.

Item Type: Article
Depositing User: Symplectic Admin
Date Deposited: 10 Dec 2020 11:34
Last Modified: 18 Jan 2023 23:18
DOI: 10.1038/s41598-020-78133-4
Open Access URL: https://www.nature.com/articles/s41598-020-78133-4
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3109867