Rose, Samuel L ORCID: 0000-0003-4824-4066, Antonyuk, Svetlana V
ORCID: 0000-0002-2779-9946, Sasaki, Daisuke, Yamashita, Keitaro, Hirata, Kunio, Ueno, Go, Ago, Hideo, Eady, Robert R, Tosha, Takehiko, Yamamoto, Masaki et al (show 1 more authors)
(2021)
An unprecedented insight into the catalytic mechanism of copper nitrite reductase from atomic-resolution and damage-free structures.
SCIENCE ADVANCES, 7 (1).
eabd8523-.
Abstract
Copper-containing nitrite reductases (CuNiRs), encoded by nirK gene, are found in all kingdoms of life with only 5% of CuNiR denitrifiers having two or more copies of nirK Recently, we have identified two copies of nirK genes in several α-proteobacteria of the order Rhizobiales including Bradyrhizobium sp. ORS 375, encoding a four-domain heme-CuNiR and the usual two-domain CuNiR (Br2DNiR). Compared with two of the best-studied two-domain CuNiRs represented by the blue (AxNiR) and green (AcNiR) subclasses, Br2DNiR, a blue CuNiR, shows a substantially lower catalytic efficiency despite a sequence identity of ~70%. Advanced synchrotron radiation and x-ray free-electron laser are used to obtain the most accurate (atomic resolution with unrestrained SHELX refinement) and damage-free (free from radiation-induced chemistry) structures, in as-isolated, substrate-bound, and product-bound states. This combination has shed light on the protonation states of essential catalytic residues, additional reaction intermediates, and how catalytic efficiency is modulated.
Item Type: | Article |
---|---|
Depositing User: | Symplectic Admin |
Date Deposited: | 19 Jan 2021 16:33 |
Last Modified: | 18 Jan 2023 23:02 |
DOI: | 10.1126/sciadv.abd8523 |
Open Access URL: | https://advances.sciencemag.org/content/7/1/eabd85... |
Related URLs: | |
URI: | https://livrepository.liverpool.ac.uk/id/eprint/3114202 |