Climate change and plant reproduction: trends and drivers of mast seeding change



Hacket Pain, Andrew and Bogdziewicz, Michał
(2021) Climate change and plant reproduction: trends and drivers of mast seeding change. Philosophical Transactions of the Royal Society B: Biological Sciences.

[img] Text
Hacket-Pain_Bogdziewicz_Special_Issue_Climate_Change_Final_Manuscript.pdf - Accepted Version
Access to this file is restricted: awaiting official publication and publisher embargo.

Download (405kB)

Abstract

Climate change is reshaping global vegetation through its impacts on plant mortality, but recruitment creates the next generation of plants and will determine the structure and composition of future communities. Recruitment depends on mean seed production, but also on the interannual variability and among-plant synchrony in seed production, the phenomenon known as mast seeding. Thus, predicting the long-term response of global vegetation dynamics to climate change requires understanding the response of masting to changing climate. Recently, data and methods have become available allowing the first assessments of long-term changes in masting. Reviewing the literature, we evaluate evidence for a fingerprint of climate change on mast seeding and discuss the drivers and impacts of these changes. We divide our discussion into the main characteristics of mast seeding: interannual variation, synchrony, temporal autocorrelation, and mast frequency. Data indicate that masting patterns, are changing, but the direction of that change varies, likely reflecting the diversity of proximate factors underlying masting across taxa. Experiments to understand the proximate mechanisms underlying masting, in combination with the analysis of long-term datasets, will enable us to understand this observed variability in the response of masting. This will allow us to predict future shifts in masting patterns, and consequently ecosystem impacts of climate change via its impacts on masting.

Item Type: Article
Divisions: Faculty of Science and Engineering > School of Environmental Sciences
Depositing User: Symplectic Admin
Date Deposited: 15 Mar 2021 08:29
Last Modified: 01 Apr 2021 11:05
DOI: 10.1098/rstb.2020-0379
URI: https://livrepository.liverpool.ac.uk/id/eprint/3117266