
1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3067757, IEEE
Transactions on Visualization and Computer Graphics

Quality of Service Impact on Edge Physics Simulations for VR
Sebastian Friston1, Elias Grif�th 2, David Swapp1, Caleb Irondi2, Fred Jjunju2, Ryan Ward2,

Alan Marshall2 and Anthony Steed1

Abstract �Mobile HMDs must sacri�ce compute performance to achieve ergonomic and power requirements for extended use.
Consequently, applications must either reduce rendering and simulation complexity - along with the richness of the experience - or
of�oad complexity to a server. Within the context of edge-computing, a popular way to do this is through render streaming. Render
streaming has been demonstrated for desktops and consoles. It has also been explored for HMDs. However, the latency requirements
of head tracking make this application much more challenging. While mobile GPUs are not yet as capable as their desktop counterparts,
we note that they are becoming more powerful and ef�cient. With the hard requirements of VR, it is worth continuing to investigate
what schemes could optimally balance load, latency and quality. We propose an alternative we call edge-physics: streaming at
the scene-graph level from a simulation running on edge-resources, analogous to cluster rendering. Scene streaming is not only
straightforward, but compute and bandwidth ef�cient. The most demanding loops run locally. Jobs that hit the power-wall of mobile
CPUs are off-loaded, while improving GPUs are leveraged, maximising compute utilisation. In this paper we create a prototypical
implementation and evaluate its potential in terms of �delity, bandwidth and performance. We show that an effective system which
maintains high consistencies on typical edge-links can be easily built, but that some traditional concepts are not applicable, and a
better understanding of the perception of motion is required to evaluate such a system comprehensively.

Index Terms�virtual reality, streaming, edge-computing

1 INTRODUCTION

Mobile Head Mounted Displays (HMDs) endeavour to support high
quality VR, but ultimately must trade-off power for ergonomics, acces-
sibility and battery life. Consequently, developers face more constraints
in delivering rich experiences on these platforms than on traditional
ones such as desktops. A potential solution is streaming: treating the
HMD as a thin client where signi�cant computation is off-loaded to
the cloud. Modern examples include game-streaming services such
as Google Stadia, but similar solutions have existed for several years
in different vertical markets (e.g. SGI’s Visual Area Networking, or
Microsoft’s Azure Remote Rendering).

Typically, the cloud service renders images that are streamed to a
client as video. ForHMDs, such systems must �t bandwidth constraints
while guaranteeing viewpoint response-times of less than16 ms. This
is challenging even without network transport delay, as video encoding
and decoding are expensive operations. It has been questioned whether
even next-generation technologies can reconcile these constraints [23].

It is worth considering then, what other schemes may support an
optimal balance of power, latency and Quality of Experience (QoE).
Scene-graph streaming has been an approach to Distributed Virtual
Environments (DVEs) since their inception [54], but clients usually
require complex prediction and synchronisation to overcome poor net-
work Quality of Service (QoS) [3]. This is because they are designed
to operate over wide area networks, where delays can reach 10s-100s
of milliseconds. These functions are complex, and such clients would
not be considered ‘thin’.

In this paper we re-evaluate scene-graph streaming within the context
of edge-computing. In edge-computing, a high-quality connection
brings resources close to a device, allowing a powerful remote processor
to respond more quickly than a weak local one. This highQoScreates
the potential for alternative ways to buildDVEs. Whereas traditional
DVEs and games require complex local clients to overcome poorQoS,
an edge-physics client takes on a role analogous to a cluster node,
turning the HMD back into a thin client.

� 1Department of Computer Science, University College London.
� 2Department of Electrical Engineering and Electronics, University of

Liverpool.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identi�er: xx.xxxx/TVCG.201x.xxxxxxx

Unlike con�gurations such as render streaming, scene-graph stream-
ing allows keeping loops with the tightest latency requirements, such as
head tracking, local to the device. Intensive jobs that stress the power
budget of mobile CPUs are off-loaded. Mobile GPUs, however, are
increasingly power ef�cient and can be leveraged to maximise total
compute resources for the best experience.

In this paper, we implement a framework that explores what we
termedge physics. Complex simulations typical of high-end games are
of�oaded to an edge-computing resource, and the results streamed as
scene graph changes. The types of computation considered are designed
to be more complex than a mobileHMD could reasonably support. We
use our framework to explore practical tradeoffs in this con�guration,
and evaluate it in terms of �delity, bandwidth and performance.

In many ways edge physics is analogous to cluster rendering, but
with important differences. A typical edge physics con�guration will
use heterogenous platforms, have clients autonomously handle user
input, and will connect over a shared and more highly variable network
(running over, e.g., WiFi6 or 5G) than would be available to a cluster.
We �nd resultingQoS�uctuations undermine traditional latency com-
pensation through prediction, but that overall performance suggests this
con�guration is very promising.

2 RELATED WORKS

2.1 Streaming Virtual Reality
Many recent works consider streaming pre-recorded or dynamically
rendered VR through 360 video. Pohl et al [42] described an end-to-end
system using current-generation technology, and compared compres-
sion techniques and commerical offerings. One of the latest is Shi et
al’s [47], which streamed subsets of panoramas as FFMPEG encoded
video from edge-nodes over LTE or WiFi.

To reduce bandwidth, modern systems are usually view-dependent.
The viewer’s gaze is used to send a subset of the scene, or to optimise
sampling of the scene, such that bandwidth is dedicated to what is most
salient. For example, Zhou et al [55] used non-traditional projections
to vary information density. Ozcinar et al [39] used visual attention
maps to control tile delivery. This does however create a dependency
between server response time, visual quality and speed. If the server
does not respond quickly enough to viewpoint changes, the user will see
visual artefacts. Authors have tried to compensate for this in different
ways. For example, Rossi et al [45] used gaze path prediction to
load an optimal set of tiles, while Shi et al [47] used overscanning.
The trade-off becomes between bandwidth and uncertainty. Video

Authorized licensed use limited to: University of Liverpool. Downloaded on April 07,2021 at 15:00:54 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3067757, IEEE
Transactions on Visualization and Computer Graphics

underlies a number of commerical streaming applications, such as
NVidia Shield [35], Valve’s SteamLink [52] and Google Stadia [8].

However, video is far from the only representation to be considered
for streaming VR. Lamboray et al [24] were one of the �rst to suggest
streaming point-video. Recently, Park et al [40] applied 2D techniques
such as view-dependent transmission and tiling to voxel streaming.
Gu·eziec et al [9] presented a framework for streaming with VRML. Ol-
brich & Pralle [37] streamed virtual realty ‘movies’ at the triangle level.
Hladky et al [16] and Mueller et al [33] streamed shaded primitives. Lin
et al [28] repurposed JPEG compression for 3D geometry, including
support for lossy compression. Hnidek [17] presented a ‘semi-reliable’
protocol for real-time 3D data, which selectively re-transmitted lost
packets based on information content, without delaying others.

Another approach is command streaming, which streams instruc-
tions at a level comparable to the graphics API. WireGL [19] streamed
OpenGL commands to virtualise a distributed graphics architecture.
PolyStream uses command streaming to support cloud based 3D con-
tent. The motivation is not to reduce bandwidth, but the cost of support-
ing the GPUs necessary to deliver video, which is a primary challenge
for the cloud gaming industry [43].

At the scene graph level, streaming overlaps with traditionalDVEs.
In fact, cluster rendering was one of the original use-cases forDVEs,
where they provided transparent APIs for scaling systems beyond a
single workstation [53] [15] [29]. This led to distribtued scene-graph
libraries such as blue-c [34] and Wolverine [4], and concepts such
as the scene-graph-as-a-bus [54], that underlieDVEs as collaborative
systems.

2.2 Prediction
At the scene-graph level, prediction is used for both bandwidth reduc-
tion (through dead reckoning) and latency compensation. Singhal &
Cheriton [49] were one of the �rst to use position history with adaptive
convergence in remote rendering. Lau & Lee [25] modelled the error
budget of a predictor and classi�ed four error sources: model mismatch,
noise, quantization and time precision, which authors have addressed
in different ways.

Kim & Kim [22] demonstrated improved accuracy using a Kalman
�lter. LaViola [26] proposed Double Exponential Smoothing (DESP)
which used linear regression. Stakem & AlRegib [50] proposed
Exponential Smoothing (ES), which combined numerical differenc-
ing (backwards) with Eulers method (forwards). BothDESPandES
show similar performance to a Kalman �lter, but require parameter tun-
ing. Hanawa & Yonekura [12] [13] [14] used a Taylor Series expansion
running on the server in order to achieve smaller sampling intervals and
so higher precision. Aggarwal et al [1] proposed synchronising clocks
to improve accuracy, while Tumanov et al [51] proposed proactive lag
compensation based on the estimated latency to a client. These are just
a few examples of the many works addressing predictor error.

Almost all these examples use some variant of Euler’s method or re-
gression per-dimension. This can work, but makes certain assumptions.
Further, the return of increasing complexity is limited. For example,
Singhal & Cheriton [49] and Lau & Lee [25] demonstrate sensitivity to
unmodelled terms, however Hanawa & Yonekura [12] showed better
results with lower polynomial-order models. Meng et al [31] noted
the context sensitivity of this and proposed a hybrid system that would
switch order dynamically.

2.3 Smart Clients
For internet-based applications, the performance of independent, per-
object predictors alone is typically too low because real applications
have many highly non-linear inputs, such as collision responses and
stochastic user input. Internet-basedDVEs typically use contextual
and domain knowledge to compensate for large latencies. For example,
Cronin et al [5] proposed trailing state synchronisation, which ran multi-
ple parallel simulations for immediate context switching. This provided
similar features torollback, often used in online �ghting games [44].
Li et al [27] and Shi et al [48] proposed using potential �elds to predict
player motion. Ohlenburg [36] extended dead-reckoning to include
collision responses. Bernier [3] describes the latency compensation in

Half Life. Clients ran local simulations while mirroring user input to a
remote simulation that integrated input from all players. Local simula-
tions provided instantaneous feedback between receving authoritative
updates from the server. This is typical of modernDVEs and games
which must remain responsive over the high latencies of the public
internet. Following the dead reckoning principle: the more duplication
between client and server, the longer they can go without communicat-
ing, but the more power the client must expend. This reveals a trade-off:
power vs. distance.

2.4 Edge Computing
Edge computing is a concept in distributed computing which brings
resources close to the client. As Hu et al [18] demonstrate, edge
computing can bene�t CPU intensive applications as powerful remote
processors can respond faster than weak local ones if complemented
by a suf�ciently fast connection.

One complementary technology generating interest is 5G.
Lai et al [23] assert that high quality mobile VR is delay limited. The
QoSsuf�cient for desktop games is insuf�cient for VR, which requires
much lower latencies. (e.g.16 msfor head tracking). The capabilities
of 5G may meet these requirements, and authors are already examin-
ing its potential for streamed VR [10] [38] [6]. The state-of-the-art is
Furion [23], which splits a virtual scene between local and remote ren-
derers. Furion’s authors are more pessimistic than most about streaming
video alone however, and show through careful analyses that theQoS
requirements for VR will saturate even next-generation networks.

Therefore, when we consider the potential of next-generation net-
works for streamed VR, it is still pertinent to ask: what should be
streamed?

3 EDGE PHYSICS

Edge physics supports high quality VR on low-power devices by stream-
ing at the scene-graph level. Both client and server have a logical repre-
sentation of the scene state. The client also has a visual representation.
The server runs the simulation & logic and sends state updates. The
client is responsible for updating the camera and rendering. A diagram
of the process is shown in Figure 1. Edge physics has a number of
advantages: the protocol is simpler than for command streaming. There
is no compression or decompression delay as with video. Bandwidth is
superior to video streaming for most use-cases. The visual quality is al-
ways pixel-perfect, and the same stream can broadcast to heterogenous
clients. Edge physics exchanges the same variables as commonDVEs
and games, but relies on the edge-con�guration’s networkQoSrather
than a local simulation to maintain QoE (as in, e.g. [3]).

Fig. 1: Logical �ow diagram for prototypical implementation

Scene-streaming may provide a near optimal balance of computing
power. Mobile CPUs have a low per-core ‘power wall’ due to thermal
constraints. This will most disadvantage single-threaded tasks such as
physics simulation. Despite this there are still improvements needed to
support next-gen applications [11]. Mobile CPUs are also more likely

Authorized licensed use limited to: University of Liverpool. Downloaded on April 07,2021 at 15:00:54 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3067757, IEEE
Transactions on Visualization and Computer Graphics

to be loaded with compute intensive tasks such as inside-out tracking.
Mobile GPUs however are becoming more powerful, driven in part by
machine vision and deep neural network applications (e.g. DeepSense
[20]). Beyond ef�ciency, we can also exploit the sum of the computing
power available across two machines. We demonstrate a scene complex
enough that a desktop PC cannot maintain VR frame-rates on it own.
However, coupling it to an Oculus Quest for visualisation allows it to
be viewed comfortably.

More importantly for VR, edge physics offers a good distribution
of latency. Sensitivity to latency depends on modality. Head tracking
latency thresholds are on the order of16 msor less [21]. Higher level
perceptions are more task dependent, and can be more tolerant. For
example Morice et al [32] found in a ball bouncing task that perception-
action coupling was changed between30 msto 90 ms, but only at50 ms
did users change control modes, and only at70 msdid they perceive
a change. In edge physics, head tracking responses are computed
locally, and maintain visual quality regardless of speed. Only logical
cues are subject to link delays, and though delayed, the state is always
consistent.

Edge physics could be a low-overhead way to build co-located col-
laborative VR. Edge physics is not an alternative to a smart client
however. The compute distribution relies on the visualiser being a
dumb terminal, which is enabled only by a good local connection as
part of the edge-computing con�guration.

Figure 2 compares the distribution of responsibilities between dif-
ferent architectures. The distances between the Simulation, Render
and Display stages have different sensitivities. The cloud icon size is
indicative of these delays. The long-range links in a traditionalDVE
are likely to have large latencies over the internet, while edge-nodes
will be lower, on the order of building-scale latencies.

For a typicalDVE which operates over long distances, some sim-
ulation code (the ‘smart client’) must be duplicated. In Figure 2 we
indicate that similar simulation code often runs on both client and
server, so for N clients, there are N+1 copies of the code. The appli-
cation also requires a con�ict resolution protocol. Render Streaming
and Edge Physics are concerned with the local con�guration. Neither
precludes additional, traditional long distance synchronisation.

For example, a nearby render streaming node may responsible for
simulation and rendering for a client, while also being networked to a
central server to support multi-player gaming. An edge physics node
may also have a more complex upstream synchronisation scheme to a
centrally managed simulution.

In this paper however we focus on the downstream connection,
between edge server and one or more clients. This is analogus to cluster
rendering. However, our implementation is built to be complementary
to the existing scene-graph API and to support heterogenous clients,
rather than building an application around a distributed API. Further,
cluster rendering is usually performed on a dedicated wired network.
The shared, typically wireless, networks of variable architecture used
for edge-computing have qualitatively different properties.

To explore the potential of edge physics, we construct a prototype
implementation and evaluate it in terms of consistency and performance,
as well as investigate the effect of design decisions such as prediction.

4 IMPLEMENTATION

4.1 Overview and Architecture

We implemented a proof-of-concept in Unity 2019.2.6. Unity processes
acted as both the server and client(s). A deskop PC was used as a server.
Two additional PCs and an Oculus Quest (an Android mobile platform)
acted as clients (Figure 3). The server only has to run the physics loop
in real-time, so can be less powerful than a typical VR desktop.

The scene was duplicated in each process, with physics simulations
disabled on the clients and rendering disabled on the server. Objects
were assigned GUIDs at design time. Static geometry was shared ahead
of time in the application binary. The server had control of all dynamic
objects. For example, the 1600 balls in Subway (Section 5.1). The
server would compute their dynamics, collision responses, etc, and
transmit their resulting state at points in time to the clients.

Fig. 2: Comparison of process distribution between a typical DVE,
render steaming and edge physics.

Fig. 3: Message �ow diagram of edge-physics network

This is suf�cient for visualisation, but effective VR requires the
world to be responsive. Clients had control of the viewpoint and
any avatar geometry (such as hand models). Grasping was supported
through spring constraints between hand controllers and objects [46].
Three constraints were created per controller to facilitate torque. Spring-
constraints are good mechanisms, because forces are integrated locally
making them less sensitive toQoSthan force-re�ection. They support
L1-L3 collaboration (multiple users affecting the same object at the
same time [30]), and most algorithms such as haptics are based on
Hooke’s Law in any case.

4.2 Messaging
The whole system de�ned only two types of message: a spring con-
straint update and object state update. These were 48 and 52 bytes
respectively (Table 1). Messages were packed into UDP datagrams, and
generated and consumed using blitting. UDP datagrams were limited
to 508 bytes in order to minimise fragmentation and reduce packet loss.
Our networking code required a further 8 byte overhead, meaning 9
state updates could be sent per datagram (though they were packed
dynamically).

Unity uses a component-based programming model. Seperate ob-
jects were created for handling state and constraint messages. Conse-
quently, message types were not mixed within datagrams. Our network-
ing code routed datagrams to speci�c objects using the scene graph [54].
The interpreted type depended on the destination.

Messages were generated in the physics loop at a �xed interval and
complete datagrams transmitted on a separate thread via a lock-free
queue. The timestamp member was used as instrumentation for our
evaluation, and to discard out-of-order packets which would otherwise
introduce spatial jitter. The timestamp was the server’s time to100 ns.
High-precision time APIs are now available on modern desktop OSs,
allowing the system clock to be used. Low-power clients may not have
high-precision time APIs, but they only need to compare timestamps.

Authorized licensed use limited to: University of Liverpool. Downloaded on April 07,2021 at 15:00:54 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3067757, IEEE
Transactions on Visualization and Computer Graphics

State Update Constraint Update
Type Property Type Property
Int32 Id Int32 Id
Int64 Timestamp Int64 Timestamp
Vector3 Position Vector3 LocalAnchorPosition
Vector3 Velocity Vector3 RemoteAnchorPosition
Quaternion Rotation Int32 IsConnected

Float SpringCoef�cient
Float SpringDamper

Table 1: Message de�nitions

Whether a powerful remote processor can outperform a weaker local
one depends on the speed of the connection to it. Our implementation
therefore optimised for latency above all else. No blocking calls were
used in the main-thread, logic & control-�ow such as type interpretation
was embedded in the routing, and strong typing was used to facilitate
processing through direct memory copies.

4.3 Prediction

In pre-trials we captured server data from our two evaluation envi-
ronments (Section 5.1) and evaluated various predictors. We found
position-history based Euler extrapolation had the highest accuracy
without interaction, and hold-last-sample with, over delays up to
100 ms. Consistent with previous works, higher-order predictors ended
up introducing more error than they compensated. Accordingly, we
implemented three prediction modes: Hold-Last-Sample (H) and single-
order Euler where states were extrapolated from time of message receipt
(L) or transmission (G). The behaviour of the three modes is shown in
Figure 4.

Fig. 4: Diagram of expected predictor behaviour. In Hold Last Sample,
the client shows snapshots of the server state, delayed by the transport
latency. In Local mode, the state includes a velocity term, so motion
is extrapolated between updates, but the state is still delayed by the
transport latency. In Global mode, the clocks are synchronised and so
the client can compensate for transport delay when extrapolating the
state of the server.

4.4 Example

As an example of a typical con�guration, we show a subway scene
(Figure 6) with 1600 objects falling through the environment. The
physics simulation alone takes12 msper frame. A VR-capable desktop
PC can show it at 50 fps, bound by the CPU. Using edge physics,
we explore this environment on an Oculus Quest connected via WiFi.
The desktop runs the physics and transmits updates at 50 Hz. The
Quest maintains its native 72 Hz frame rate, using local prediction to
upsample the physics. The bandwidth was 47 Mbps and the latency
50 mson average between a message being generated and parsed. This
is the one-way delay for the physics updates only; recall the head and
hand tracking loops run locally, and at 72 Hz are less than 14 ms.

Pro�le Latency (ms) Jitter (ms) Packet Loss (%)
1 0 0 0
2 10 1 0.1
3 50 5 1
4 100 10 2
5 250 30 5

Table 2: Quality of Service Pro�les

5 EVALUATION

We evaluate the potential of edge physics by testing our system with
different con�gurations under differentQoS. Our primary measure
was consistency. Simulations of rich environments will include many
collisions and other effects that result in highly dynamic object trajecto-
ries. Inconsistencies will be revealed in the differences between these
trajectories. The server has the true state, so consistency was measured
as Eucliden distance between object positions at �xed wall-clock times.
There is nothing special about how positions are handled, so measures
should generalise to other continous parameters. Consistency is impor-
tant because the �delity of the local view determines how effectively a
user can perceive and manipulate the world.

Additionally, we measure system metrics such as latency and fram-
erate, in order to understand the source of inconsistency and to validate
our apparatus works as expected.

Currently there are no absolute thresholds to de�ne success. We
would consider an edge-physics system successful if it avoids intro-
ducing any artefacts not present in an equivalent native system. It is
reasonble to expect additional inconsistencies may be tolerable how-
ever, depending on the nature of any motion artefacts introduced. In
this initial work though, we aim only to understand what these artefacts
may be, and where they come from.

5.1 Environments

We use two prototypical environments. The �rst (Room, Figure 5) is
a room-scale scene with interactive objects. Interaction between two
users and the environment was recorded and played back for each trial.
Expert users were recorded ensuring L3 interaction was captured, such
as handover and collaborative lifting of stacked objects. Note that while
one or more users may introduce constraints, these are always evaluated
at the server, so the consistency measure is always the same: between
the server and one client. The second (Subway, Section 4.4, Figure 6)
consisted of a large number of objects falling through a complex world.
This environment had no interaction, so all motion should be purely
physics-based. Therefore only one client was connected for the trials
in Subway.

5.2 Apparatus

Three computers were connected via our building’s 1G Ethernet net-
work. A parallel network synchronised their clocks to within a
microsecond using PTP. One was nominated as the server, which
also hosted a software network emulator. Edge physics traf�c was
routed through the emulator, then over the building’s network to the
clients. The emulator inserted delays and dropped packets to reduce
theQoSaccording to one of �ve pro�les (Table 2). The emulator op-
erated at the UDP datagram level. Delay per datagram was given by
Latency+ Jitter � N (0;1). Packet Loss was the uniform probablility
of a datagram being discarded.

Our intent was to use this apparatus to measure the impact ofQoSon
our primary measure, consistency. We �rst pro�led our system to ensure
it was operating as expected (Section 6.1). Then theQoSwas degraded
to examine in what ways consistency was undermined (Section 6.2).
Based on the results from these tests, we introduced additional condi-
tions to evaluate the effects of Update Rate (Section 6.3). Finally we
measure the computational overhead of our implementation, and make
some observations about bandwidth consumption (Sections 7 & 8).

Authorized licensed use limited to: University of Liverpool. Downloaded on April 07,2021 at 15:00:54 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3067757, IEEE
Transactions on Visualization and Computer Graphics

Fig. 5: Room environment

Fig. 6: Subway environment

6 NETWORK QUALITY

Our �rst objective was to determine how consistency degrades with
QoS, and whether prediction can ammeliorate it. Unlike in tightly
controlled networks, it is expected that different edge clients may have
differentQoSconnections to the same server, and could therefore have
quite different experiences. Futher unlike, e.g. clusters, users interact
through their client, using it to generate constraints, and clients are
deliberately not synchronised in order to support heterogenity. We
suspect therefore even though there is one server with the ground truth,
the different experiences of two clients could still affect the global
simulation. To test this we include both symmetric and asymmetric
network pro�les. In total, we de�ned 27 conditions: 9QoSpairs with
3 predictor modes each (Table 3). We run Room under conditions
1-27 with both clients, and Subway under conditions 1-15 with client 2
only. We recorded approximately 90 and 15 seconds of data for Room
and Subway respectively, per trial. All metrics - consistency, latency,
framerate - were captured for each trial.

6.1 Latency Breakdown
We use the Tracepoints method [7] to measure the latency between
generating and processing an edge physics message. This method
tracks messages through the system, taking high precision timestamps
as they go using the PTP-synchronised system clocks.

During each trial, the latency of each recieved message was recorded.
Figure 7 plots the latencies for the RoomQoSconditions. The boxes
show the IQ range and the crosses the outliers. Each pair of plots
per-condition corresponds to the two clients. For clarity, conditions are
also distinguished by colour based on their prediction mode. Larger
copies of all plots are available in the supplementary materials.

We see that the latencies for each client closely follow the condition’s
QoSpro�les. For the asymmetrical conditions, 4-15, Client 2 (right)
shows an increase in latency withQoSpro�le, while Client 1’s (left)
latency remains stable. The change in prediction mode has no effect, as
expected. In the symmetrical conditions, 1-3 & 16-27, measurements
are consistent between clients. This is expected as the client load is low,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
0

100

200

300

400

H
L
G

 --
 --
 --

Fig. 7: Message latencies (in ms) for RoomQoStrials for both clients,
for each experimental condition. For clarity, predictor conditions
(H,L,G) are also distinguished by colour. Larger copies of all plots are
available in the supplementary materials.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
0

50

100

150

200

250

Fig. 8: Box-plot of FPS samples taken during the RoomQoStrials
for each condition. Samples were taken each frame. Each (per condi-
tion) triple corresponds to the server (left) and clients (two rightmost).
Additional colour coding of predictor modes as in Figure 7.

so there is less sensitivity to client compute power. The measurements
do include the time to receive updates on the main thread however, so
it would not be unexpected if they deviated on mismatched clients.

The baseline latency - measured for Clients withQoSpro�le 1 - was
an average of15 ms. The Tracepoints method allows measuring the
latency of intervening stages. To evaluate the sources of latency we
measure three additionalQoSpro�les, with latency, but no jitter or
packet loss (Table 4). From this we can see the majority of the delay
is waiting at the client for the next frame. For performance reasons
messages are processed in the physics loop, which runs at 15 ms inter-
vals. It may be expected based on this, that frame-quantisation could
hide network latency. As the5 mspro�le (middle column, Table 4)
shows however, this is not the case. Quantisation is not deterministic
so any network delay affects the probability of being quantised to the
subsequent frame.

We also record the FPS of each node (Figure 8). The �rst of each
triple is the server, and the other two the clients. We see the frame-
rate is consistent across all conditions, as expected. We see that the
clients maintain VR frame-rates (�rst quartile above 120 fps). We also
see that client frame-rates are higher than the server’s, suggesting that
clients could not run the application alone, as the more powerful server
itself cannot reach the same frame-rate. The outliers show a number
of transient drops, likely due to unexpected system load spikes and
operations such as garbage collection. As clients are asynchronous
however they maintain their frame-rate and tracking latency irrespective
of server interruptions.

These latency and frame-rate measures con�rm our apparatus is
operating as expected.

Authorized licensed use limited to: University of Liverpool. Downloaded on April 07,2021 at 15:00:54 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Liverpool. Downloaded on April 07,2021 at 15:00:54 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Liverpool. Downloaded on April 07,2021 at 15:00:54 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Liverpool. Downloaded on April 07,2021 at 15:00:54 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Liverpool. Downloaded on April 07,2021 at 15:00:54 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Liverpool. Downloaded on April 07,2021 at 15:00:54 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Liverpool. Downloaded on April 07,2021 at 15:00:54 UTC from IEEE Xplore. Restrictions apply.

