
Thesis submitted in accordance with the requirements of
the University of Liverpool for the degree of

Doctor in Philosophy

Mathematical Models and Monte-Carlo
Algorithms for Improved Detection of
Targets in the Commercial Maritime

Domain

Written by
Lyudmil Zhivkov Vladimirov

Supervised by
Prof. Simon Maskell

Prof. Jason Ralph

Department of Electrical Engineering and Electronics,

University of Liverpool

In Industrial Collaboration with
Dr. Simon Lee

Denbridge Marine Ltd.

June 30, 2020

Abstract

Commercial Vessel Traffic Monitoring Services (VTMSs) are widely used by port
authorities and the military to improve the safety and efficiency of navigation, as
well as to ensure the security of ports and marine life as a whole. Technology based
on the Kalman Filtering framework is in widespread use in modern operational
VTMS systems. At a research level, there has also been a significant interest in
Particle Filters, which are widely researched but far less widely applied to deliver
an operational advantage. The Monte-Carlo nature of Particle Filters places them
as the ideal candidate for solving the highly non-linear, non-Gaussian problems
encountered by modern VTMS systems. However, somewhat counter-intuitively,
while Particle Filters are best suited to exploit such non-linear, non-Gaussian
problems, they are most frequently used within a context that is mostly linear
and Gaussian. The engineering challenge tackled by the PhD project reported
in this thesis was to study and experiment with models that are well placed to
capitalise on the abilities of Particle Filters and to develop solutions that make
use of such models to deliver a direct operational advantage in real applications
within the commercial maritime domain.

i

Acknowledgments

The success and final outcome of this project required a lot of guidance and
assistance from many people and I am extremely privileged to have got this all
along the completion of my thesis.

Firstly, I want to thank my close friends and family for their endless love
and support during this long journey. I am especially grateful to my parents,
Nadezhda and Zhivko, who supported me both emotionally and financially in
times of need, while encouraging me in all of my pursuits, inspiring me to follow
my dreams and teaching me that my job in life was to learn. I would also like to
take this opportunity to commemorate my recently departed grandfather Metodi,
who never failed to lift me up in tough moments with his jokes and kind words.

Continuing, I would like to express my sincere gratitude to both my academic
supervisor Prof. Simon Maskell from University of Liverpool, and my industrial
supervisor Dr. Simon Lee from Denbridge Marine Ltd., for their continuous
guidance and support over the past 5 years, starting even before the start and
continuing even beyond the end of my PhD. I would also like to thank them both
for their patience, empathy, encouragement, motivation, friendship and great
sense of humor over all these years. I have been extremely lucky to have had not
one, but two supervisors who cared so much both on a professional, as well as on
a personal level.

I would also like to thank Mr James Wright, Mr Lykourgos Kekempanos, Dr
Paul Horridge, Dr Yifan Zhou, Dr Flavio De Melo of University of Liverpool
for their invaluable friendship and support. I also thank Mr Joe Cummings, Mr
Michael Denn, Dr Ian McConnell, Mr David Hubberstey, Mr Richard Griffin, Mr
Jonathan Brady, Mr Amjad Shaheed and Mr Tommy Wong of Denbridge Marine
Ltd. for their invaluable support, guidance and assistance during my industrial
placement at the company.

Finally, I would like to thank the Engineering and Physical Sciences Research
Council and the Smith Institute for Industrial Mathematics and System Engineer-

ii

Acknowledgments

ing, not only for facilitating and providing the iCase Studentship award which
allowed me to undertake this research, but also for giving me the opportunity to
attend conferences and meet so many interesting people.

iii

Contents

Abstract i

Acknowledgments ii

Contents iv

1 Introduction 1

1.1 Motivation & Scope . 1

1.2 Organisation of the Thesis . 3

1.3 Original Contributions . 5

2 State-space models 7

2.1 Introduction . 7

2.2 Dynamic models . 8

2.2.1 Random Walk (RW) . 9

2.2.2 Constant Velocity (CV) 10

2.2.3 Integrated Ornstein-Uhlenbeck (IOU) 11

2.2.4 Constant Heading (CH) 12

2.3 Measurement models . 13

iv

Contents

2.3.1 Standard Linear-Gaussian (LG) 14

2.3.2 Gaussian Azimuth-Range (GAR) 14

2.4 Detection models . 15

2.4.1 Constant Detection Rate (CDR) 16

2.4.2 State Dependent Detection Rate (SDDR) 16

2.5 Clutter models . 17

2.5.1 Poisson Rate with Uniform Position (PRUP) 18

2.6 Conclusion . 18

3 Non-Linear, Non-Gaussian Single-Target Tracking 20

3.1 Introduction . 20

3.2 Bayesian Filtering . 21

3.2.1 The Standard Bayes Filter 22

3.2.2 Kalman Filters . 23

3.2.2.1 Linear Kalman Filter 23

3.2.2.2 Extended Kalman Filter 25

3.2.2.3 Unscented Kalman Filter 27

3.2.3 Particle Filter . 30

3.3 Data Association . 34

3.3.1 Optimal Solution . 34

3.3.2 Nearest Neighbour . 36

3.3.3 Probabilistic Data Association 37

3.3.3.1 PDA in Kalman Filters 38

3.3.3.2 Extension of PDA to Particle Filtering 40

3.4 Performance analysis . 42

3.4.1 Non-linear dynamic models 42

3.4.1.1 Single Target, no clutter 43

3.4.1.2 Single Target, with clutter 45

3.4.2 Nonlinear measurement models 48

3.4.2.1 Single Target, no clutter 48

3.4.2.2 Single Target, with clutter 50

v

Contents

3.5 Conclusion . 53

4 Non-Linear, Non-Gaussian Multi-Target Tracking 55

4.1 Introduction . 55

4.2 The Multi-Target Bayes Filter . 56

4.3 Conventional Multi-Target Tracking 58

4.3.1 Measurement Gating . 59

4.3.2 Track Management . 61

4.3.2.1 Track Initiation 61

4.3.2.2 Track Confirmation and Deletion 62

4.3.3 Data association . 64

4.3.3.1 Problem Formulation 64

4.3.3.2 Global Nearest Neighbour 68

4.3.3.3 Joint Probabilistic Data Association 70

4.4 Joint Integrated Probabilistic Data Association 74

4.4.1 Relation between JPDA and JIPDA 76

4.4.2 Prior Association Probabilities 76

4.4.3 Marginalising the Prior Association Probabilities 77

4.4.4 Interpreting the Posterior Association Probabilities 78

4.4.5 Computing the Existence Probabilities 79

4.4.6 Updating the Track Posteriors 80

4.5 The Probability Hypothesis Density Filter 80

4.6 Track Management using Random Finite Sets and Existence Prob-
abilities . 83

4.6.1 Results . 84

4.7 Specifics of Applications to Real Data 88

4.7.1 Dataset . 88

4.7.2 Algorithms . 88

4.7.3 Scenarios . 90

4.7.4 Models . 91

4.7.5 Results . 92

vi

Contents

4.7.5.1 Scenario 1 - Tracking through obscurations . . . 92

4.7.5.2 Scenario 2 - Tracking through dense clutter . . . 100

4.8 Conclusion . 107

5 Parameter Estimation in Dynamical Markov Models 109

5.1 Introduction . 109

5.2 Expectation Maximization . 110

5.2.1 Maximum Likelihood Estimation 110

5.2.2 E Step . 112

5.2.3 M Step . 113

5.2.4 Initial Parameter Settings 114

5.2.5 Checking for convergence 116

5.2.6 Uniqueness of parameter estimates 117

5.3 Experimental Results . 118

5.3.1 Case Study: Segway System 118

5.3.2 Unconstrained Parameters 118

5.3.3 Constrained Measurement Matrix H 119

5.4 Conclusion . 120

6 Maritime Video Detection & Tracking 121

6.1 Introduction . 121

6.2 Problem Formulation . 122

6.3 A Robust CNN-based Ship Detector 124

6.3.1 Object Detection using CNNs 125

6.3.2 Transfer Learning . 126

6.3.3 Experimental methods . 128

6.3.3.1 Dataset . 128

6.3.3.2 TensorFlow . 129

6.3.3.3 Baseline Model Evaluation 129

6.3.3.4 Model Re-training 130

6.3.4 Results . 132

vii

Contents

6.3.4.1 Baseline Models 132

6.3.4.2 Re-Trained Models 132

6.3.5 Conclusions . 134

6.4 Real-Time Camera Motion Error Correction using Optical Flow . 135

6.4.1 Feature Detection . 136

6.4.2 Feature Matching using Optical Flow 138

6.4.3 Affine Transformation . 139

6.4.4 Correcting the Track Estimates 142

6.4.5 Results . 143

6.5 Conclusion . 145

7 Modular Frameworks for Tracking and State Estimation 146

7.1 Introduction . 146

7.2 TrackingX . 147

7.2.1 Class Architecture . 148

7.2.2 Data Types . 149

7.2.2.1 Distributions and States 149

7.2.2.2 Measurements . 150

7.2.2.3 Tracks . 151

7.2.3 State-Space Models . 151

7.2.3.1 Model Interfaces 153

7.2.3.2 Model Types . 154

7.2.4 Filters . 155

7.2.5 Data Associators . 159

7.2.6 Track Managers . 159

7.2.7 Metric Generators . 161

7.2.8 Simulators . 162

7.2.9 Simulation Example . 163

7.3 Stone Soup . 163

7.3.1 Framework architecture 166

7.3.2 Components . 168

viii

Contents

7.3.2.1 Data . 168

7.3.2.2 Tracking Algorithms 169

7.3.2.3 Metrics . 171

7.3.2.4 Data Simulators 171

7.3.2.5 Sensor Models 172

7.3.2.6 Stone Soup Component Implementations 172

7.3.3 Using Stone Soup . 174

7.3.3.1 Run Manager . 174

7.3.3.2 Jupyter Notebooks 175

7.3.3.3 Example Use Case 175

7.3.4 Future Work . 178

7.4 Conclusion . 179

8 Summary, Conclusions and Future Work 180

8.1 Summary and Conclusions . 181

8.2 Future work . 183

References 185

ix

CHAPTER 1

Introduction

1.1 Motivation & Scope

Maritime Traffic Surveillance (MTS) is a crucial field for a large body of in-
ternational institutions and agencies. By definition, MTS involves the effective
observation and understanding of all activities carried out at sea. As such, MTS
incorporates the surveillance of regions of interest (i.e. ports), using various de-
ployments of sensors, with the optimal aim of ensuring the efficiency and safety
of vessel navigation as well as the effective protection of the maritime environ-
ment. Vessel Traffic Services (VTS) then constitute MTS systems which have
been developed by VTS providers and established by the relevant harbour or
port authorities aiming to achieve the above tasks1.

Multi-Target Tracking (MTT) systems form a crucial component of VTS sys-
tems. Their role is to accurately track the positions (and possibly other infor-
mation, such as speed and course) of all vessels, cruising through the regions of
interest, at any given point in time. As a result, a great amount of research has
been undertaken over the years, aimed at identifying MTT techniques that can
provide the means for dealing with the involved uncertainty, with the objective
of making efficient use of all the available data, as well as any prior knowledge,

1Denbridge Marine Ltd., the company that co-funds the PhD project undertaken by the
author, are a local Small-to-Medium sized Enterprise (SME) who focus on the development
and deployment of VTSs across the globe.

1

1.1. Motivation & Scope
Chapter 1. Introduction

received from a given deployment of sensors, so as to effectively estimate and
track the state of both single and multiple moving targets.

Sea clutter, obscured targets and relatively low resolution in both range and
azimuth, constitute some of the major barriers to maritime X/S-band radar de-
tection and tracking [1, 2]. The combined effects of the above pose a great burden
on the effective plot association of targets with data, leading to problems such as
track merging, false tracks and even missed targets. Conventional MTT systems
perform detection by thresholding the data to exclude spurious (low-SNR) tracks,
before tracking is carried out. Nonetheless, such approaches fail to consider the
spatial behaviour of clutter and targets, meaning that they are still prone to
detection errors. A solution to this problem is provided by Track-Before-Detect
(TkBD) algorithms, where detection and tracking are performed simultaneously
on the raw data, allowing for clutter models to be directly incorporated in the
process. Implementation of such techniques however is quite challenging due to
their inherent non-linear/non-Gaussian nature.

Technology based on the Kalman Filtering framework is in widespread use in
modern operational target tracking systems [3, 4, 5]. At a research level, there
has also been a significant interest in Particle Filters [6, 7], which are widely
researched but far less widely applied to deliver an operational advantage. Per-
haps surprisingly, objects are typically modelled as moving with a nearly constant
Cartesian velocity (i.e. integrated independent Brownian motion in latitude and
longitude) and not as moving according to a nearly constant polar velocity (i.e.
speed and heading) [8, 9, 10]. In actual fact, it is possible to devise high-accuracy
solutions to such SDEs and so derive non-linear non-Gaussian dynamic models
suitable for use in multi-target fusion systems. Initial scoping work [11] indicates
that, while standard multi-target tracking systems (e.g. based on the Kalman
Filter) are degraded by the use of such models, Monte-Carlo techniques (e.g. the
Particle Filter) can embrace the non-linear non-Gaussian nature of the models.

The engineering challenge tackled by the PhD project reported in this thesis
is to study and experiment with models that are well placed to capitalise on
the abilities of Particle Filters and to develop solutions that make use of such
models to deliver a direct operational advantage in real applications within the
commercial maritime domain. To develop high performance multi-target tracking
algorithms, one needs to: understand single-target tracking; understand multi-
target tracking; estimate the parameters of models used; have a semi-automated
method for evaluating performance using an independent data source; understand
which parts of the algorithm are responsible for any improvement in performance.
This motivates the work comprising this thesis and is accomplished by:

1. Presenting an in-depth background and review of existing algorithms and

2

1.2. Organisation of the Thesis
Chapter 1. Introduction

methodologies that pertain to the problem of Single-Target Tracking.

2. Experimenting with non-linear, non-Gaussian models and demonstrating
that an operational advantage can be achieved with the use of such models
in a Particle Filtering context.

3. Presenting an in-depth background to Multi-Target Tracking methods and
drawing relations between conventional approaches and the state-of-the-art.

4. Presenting new applications of state-of-the-art algorithms, with particular
focus on applications relating to maritime radar and electro-optical sen-
sors. Demonstrating the good performance of such algorithms for these
applications using a mixture of real and simulated data.

5. Actively engaging with the target tracking community to develop solutions
that improve the ability of future researchers to develop and evaluate the
performance of new target tracking solutions.

1.2 Organisation of the Thesis

Chapter 2 formulates of the fundamental framework of state-space models as
considered in this thesis and introduces readers to the more specific examples of
models that shall be utilised in subsequent chapters. Section 2.2 starts by de-
scribing the format of stochastic dynamic models that describe the evolution of a
target’s state over time, while Section 2.3 concerns itself with the measurement
models used to transform between target and measurement spaces, while mod-
elling the stochastic characteristics of the associated measurement noise. Contin-
uing, Section 2.4 discusses the notion of detection models which are used to model
target detectability across a given surveillance space. Finally, clutter models that
describe the statistical characteristics of clutter are presented and discussed in
Section 2.5.

Chapter 3 builds on the framework of state-space models presented in Chapter
2 and aims to delve into the specifics of the aforementioned Bayesian Filtering and
Data Association problems in the context of Single Target Tracking. Section 3.2
outlines the fundamental concepts of the standard Bayesian Filtering framework,
which are then utilised to formulate the Kalman and Particle Filtering algorithms,
while discussing the various advantages and pitfalls of each approach. Section 3.3
then proceeds to define the Data Association problem in the context of Single-
Target Tracking, while presenting some well founded algorithms that can be used
to solve it. Finally, performance evaluations are performed in Section 3.4, to test
the performance of the presented algorithms.

3

1.2. Organisation of the Thesis
Chapter 1. Introduction

Chapter 4 builds on the concepts of state-space modelling and Single-Target
Tracking presented in the previous chapters, and extends the discussion to the
case of Multi-Target Tracking. Section 4.2 introduces the Multi-Target Bayes Fil-
ter, while drawing relation to the Standard Bayes Filter. Section 4.3 provides a
summary and brief derivation of the algorithms that form the main components
of conventional Multi-Target trackers, with special focus to the utilised Data
Association and Track Management methods. In the same section, the author
presents a discussion on the relation between the Joint Probabilistic Data Associ-
ation (JPDA) and Joint Integrated PDA algorithms, with the aim of highlighting
how the latter can be performed using the same constructs. Section 4.5 continues
by discussing the concept of Random Finite Sets (RFS) and presents a formula-
tion of the Probability Hypothesis Density (PHD) filter as an approximation to
the Multi-target Bayes Filter. Section 4.6 discusses a state-of-the-art radar track
initiation technique which utilises a PHD filter to model the density of uniniti-
ated targets and consecutively propose tracks for initiation on the basis of target
existence probabilities. Preliminary simulation results are presented in Section
4.6.1 to showcase the performance benefits of the PHD track initiator compared
to other mainstay approaches using synthetic data, while Section 4.7 presents a
case study performed on real data collected from a commercial radar, whereby a
more thorough qualitative analysis is performed on a pair of challenging scenarios,
with the aim of demonstrating a real operational advantage.

Chapter 5 elaborates on the problem of parameter estimation in Linear Dy-
namical Systems (LDSs) and demonstrates the applicability of Expectation Max-
imisation to parameter estimation for LDSs with control inputs. The objective is
to present a brief derivation of the complete set of equations required to perform
parameter estimation for a LDS with control inputs, as well as a straightforward
formulation of the relevant algorithmic EM steps. Section 5.2 begins by defining
the complete log-likelihood equation for a generic LDS with control inputs, and
proceeds by presenting a brief derivation of the EM equations, used to achieve
the local optima. Section 5.3 introduces a case study conducted on a segway plat-
form to demonstrate the applicability and achieved performance of the proposed
method. Simulated numerical results are also shown in Section 5.3, along with
graphs indicating the existing correlations between different parameters

Chapter 6 provides a thorough description and review of the literature in the
context of vessel detection and tracking, using video data from active Electro-
Optical (EO) sensors. Section 6.2 initiates the discussions by introducing the
reader to the basic concepts and notation used in this Chapter. Section 6.3 is
then focused on the engineering challenges relating to development of accurate
real-time ship detectors with the use of active EO sensors (cameras). A review
of existing approaches is presented, followed by an introduction to the state-of-

4

1.3. Original Contributions
Chapter 1. Introduction

the-art detectors that base their operation on Convolutional Neural Networks
(CNNs). Under the same section, a custom CNN-based ship detector is intro-
duced, followed by brief report of the followed methodologies and a comprehensive
performance analysis. Continuing, Section 6.4 demonstrates an effective method
for estimating and accounting for the errors induced by the camera motion in
real-time. The use of an active (Pan-Tilt-Zoom) camera, introduces errors due
to the inherent ability of the camera to exhibit motion. Thus, in addition to
the multi-target tracking complexities discussed in Chapter 4, further measures
must be employed in order to ensure that the positions of targets are estimated
accurately, even after the camera has changed its orientation.

Chapter 7 shall focus on presenting work done by the author on developing
and contributing towards the development of open-source frameworks for track-
ing and state estimation. Section 7.3 discusses Stone Soup [12, 13, 14], an open-
source Python framework that is currently under development, stemming from
combined international efforts led by the Defence Science and Technology Labo-
ratory (UK) in direct collaboration with the Defence Research and Development
Canada (Canada), the Air Force Research Laboratory (US), and the University
of Liverpool (UK), to which the author has been an major contributor. Sec-
tion 7.2 introduces an open-source object-oriented MATLAB toolbox, developed
by the author over the course of the PhD project and comprised of efficiently
coded implementations of target tracking algorithms, with the aim of assisting
and accelerating future research within the field.

1.3 Original Contributions

• Contributions to Multi-Target Tracking:

– Presentation and derivation of the relations between the Joint Prob-
abilistic Data Association (JPDA) and Joint Integrated Probabilistic
Data Association (JIPDA) algorithms. (Section 4.4)

– Implementation of a state-of-the-art radar track initiation scheme with
the use of a PHD filter and demonstration of results using a mixture
of real and simulated data. (Sections 4.6 & 4.7)

• Contributions to Parameter Estimation (Chapter 5)2:

– Brief derivation of the complete set of equations required to perform
parameter estimation for a LDS with control inputs, using Expectation

2This work is part of a co-authored paper, to which the author is the leading author.

5

1.3. Original Contributions
Chapter 1. Introduction

Maximisation, as well as a straightforward formulation of the relevant
algorithmic EM steps.

– Presentation of a method for obtaining initial estimates, under the
assumption that the hidden states are fully observable.

– Demonstration of the performance implications stemming from bad
choice of initial estimates, given that no parameters are constrained
throughout the learning process.

– Test results demonstrating the effectiveness of Expectation Maximisa-
tion for parameter estimation of an LDS in a mixed real/simulation
context.

• Contributions to Maritime Video Detection and Tracking:

– Development of a robust detector for improved detection of ships in
Electro-Optical imagery data, using Convolutional Neural Network
models, and demonstration of the achieved operational benefits. (Sec-
tion 6.3)

– Demonstration of an effective method for estimating and accounting
for the errors induced by the camera motion in real-time with the use
of Optical Flow and Affine Transformation estimation. (Section 6.4)

• Contributions to Modular Frameworks for Tracking and State Estimation:

– Active engagement and contribution towards international efforts for
the development of an open-source Python framework (Stone Soup
[14]) that aims to provide researchers and practitioners with the abil-
ity to develop and implement new and existing tracking and state
estimation algorithms for ease of comparison3. (Section 7.3)

– Development of a new unified, re-usable, highly-modular and open-
source object-oriented MATLAB toolbox (TrackingX), comprised of
efficient implementations of state-of-the-art target tracking and state
estimation algorithms. (Section 7.2)

3This work is part of collaborative efforts with scientists and developers from across the
globe, leading to the publication of [14], to which the author has been a major contributor and
co-author.

6

CHAPTER 2

State-space models

2.1 Introduction

State estimation can be viewed as a time series analysis problem, where the goal
is to estimate the state of a (set of) target(s), over a given period of time. As
such, the problem can be conveniently formulated with the use of probabilistic
state-space models. Such probabilistic models can be utilised to describe the
various processes that are taken into account when attempting to estimate the
state of a number of targets within a given surveillance region of interest, based
on corrupted and potentially cluttered or incomplete measurements.

Although real systems are generally considered in continuous time, it is a gen-
eral convention to use discrete time notation to describe the state-space models.
Thus, without loss of generality, we assume that time is discretised and times
of interest fall at time instants tk, k = 1, 2, ..., but the time between timesteps
∆t = tk−tk−1 can vary. At any time instant tk there can exists a variable number
of targets within the surveillance region observed by a fixed deployment of sen-
sors. In this context, the state of a target at time tk, xk ∈ X , forms the hidden
variable of interest and encapsulates the complete information pertaining to the
kinematic characteristics of the target (such as position, speed, orientation, etc).

In a similar manner to the target state, the state of a sensor sk ∈ S contains
all kinematic information available for that sensor, which may vary over time, but

7

2.2. Dynamic models
Chapter 2. State-space models

is assumed to be known in the context of this thesis. Unless stated otherwise, it
is assumed that only a single sensor generates measurements at any time instant.
The data received from a sensor come in the form of measurement scans Yk,
where each measurement scan can be viewed as a set of measurements Yk = {yjk},
j = 0, ...,M , where for j = 0 we have that Yk = ∅. Each measurement yjk ∈ Y
can either be generated by an existing target, in which case it is viewed as a
perturbed transformation of the target state, or can be the result of background
interference (a.k.a. clutter) and/or internal interference of the sensor. In any
case, unless explicitly stated, the origin of each measurement is assumed to be
unknown in the context of this thesis.

This chapter aims to formulate of the fundamental framework of state-space
models as considered in this thesis, as well as present readers to the more spe-
cific examples of models that shall be utilised in subsequent chapters. Section
2.2 starts by describing the format of stochastic dynamic models that describe
the evolution of a target’s state over time, while Section 2.3 concerns itself with
the measurement models used to transform between target and measurement
spaces, while modelling the stochastic characteristics of the associated measure-
ment noise. Continuing, Section 2.4 discusses the notion of detection models
which are used to model target detectability across a given surveillance space.
Finally, clutter models that describe the statistical characteristics of clutter are
presented and discussed in Section 2.5.

2.2 Dynamic models

Dynamic models are used to describe the evolution of the target state with time.
In its generic formulation, a dynamic model encapsulates the statistical process
and the uncertainties involved in the process since the beginning of time (i.e.
1 : k − 1) and is expressed as:

xk = f(x1:k−1, q1:k, y1:k−1) ∼ p(xk|x1:k−1, y1:k−1) (2.1)

where p(xk|.) denotes the dynamic model pdf, which describes the stochastic
dynamics of the tracked process, f : Rnx × Rnq → Rnx is a possibly nonlinear
function of the states x1:k−1 and the process noise q1:k, with nx and nq denoting
the dimensions of the state and process noise vectors, respectively. In addition,
the states of targets are defined on the target state-space X , such that xk ∈ X .

As is standard in the literature [15, 16], it is common to assume that the pro-
cesses described by dynamic models are Markovian. Thus, the Markov property
[17, 18] that is applicable to such models dictates that the state xk−1 is a sufficient

8

2.2. Dynamic models
Chapter 2. State-space models

statistic of the history of states x1:k−1. Thus, the joint distribution of states up
to, and including time tk can be expressed as:

p(x1:k) = p(x1)
k∏

k′=2

p(xk′ |xk′−1) (2.2)

This fact allows for a simplification of the dynamic model equation (2.1), as
follows:

xk = fk|k−1(xk−1, qk) ∼ p(xk|xk−1) (2.3)

where fk|k−1 : Rnx × Rnq → Rnx is the Markovian transition kernel.

2.2.1 Random Walk (RW)

The simplest model that one can consider is that of a Random Walk [19], where
the state at a given time is the state at a previous time plus random noise,
assumed to evolve according to a Brownian motion. Thus, when considering a
1-dimensional (1-D) scenario, the state vector can be represented simply by the
positional component:

xk = xk (2.4)

Velocity can be viewed as white noise, typically considered to be zero-mean
Gaussian over some period ∆t = tk − tk−1, leading to a position that is following
a Random Walk, which is the integral of white noise. The model can then be
described by the following Stochastic Differential Equation (SDE):

dxk = σdwk (2.5)

In the above, wk denotes a standard Brownian motion, with wk ∼ N (0, tk). For-
mulating the above in a similar manner to (2.3), leads to the following expression:

xk = fk|k−1(xk−1, qk) = xk−1 + qk, qk ∼ N
(
0, σ2∆t

)
(2.6)

Extending the Random Walk model to nd dimensions can be achieved by
vertically cascading the state vector, i.e. xk = [x1

k; x2
k; ...; xndk], and process noise,

i.e. qk = [q1
k, q

2
k, ..., q

nd
k]T , where the exponent is used as a dimension identifier,

leading to a vectorised expression of (2.6).

9

2.2. Dynamic models
Chapter 2. State-space models

2.2.2 Constant Velocity (CV)

As opposed to the previous model, most targets can be assumed to exhibit some
consistency of motion, i.e. they tend to maintain a constant velocity. A common
way of representing this is to model the acceleration as white noise, leading to a
velocity that follows Random Walk and a position that is the integral of velocity.
In this model, the state vector for the fundamental 1-D case takes the following
form:

xk = [xk, ẋk]
T (2.7)

and the SDEs that describe the model are given below [19]:

dxk = ẋkdt

dẋk = σdwk
(2.8)

Under the assumption of zero-mean Gaussian noise, the model can be ex-
pressed in terms of (2.3) as follows:

xk = fk|k−1(xk−1, qk) = FCV xk−1 + qk, qk ∼ N (02×1, QCV) (2.9)

where:

FCV =

[
1 ∆t
0 1

]
QCV =

[
∆t3

3
∆t2

2
∆t2

2
∆t

]
σ2

(2.10)

To extend the Constant Velocity model to nd dimensions, the combined state
vector is formed by vertically cascading the state vectors for each dimension, i.e.
xk = [x1

k; x2
k; ...; xndk], where the exponent is used as a dimension identifier. Then,

to comply with (2.9), the combined FCV and QCV matrices are composed as block
diagonal combinations of the fundamental matrices of (2.10), e.g.:

FCV = diag{F 1
CV , F

2
CV , ..., F

nd
CV }

QCV = diag{Q1
CV , Q

2
CV , ..., Q

nd
CV }

(2.11)

where, once again, the exponent values 1, ..., nd are used to denote the dimension
identifiers, rather than powers.

10

2.2. Dynamic models
Chapter 2. State-space models

2.2.3 Integrated Ornstein-Uhlenbeck (IOU)

The Integrated Ornstein-Uhlenbeck model [16] (a.k.a. Constant Velocity model
with Drag [19]) is similar to the previous (CV) model, but also includes a damping
term on the velocity component that leads to an exponential decay of the velocity
over time. This is preferred in some instances, particularly in simulations, as it
admits a steady state velocity, whereas the variance of velocity under the CV
model grows unbounded with time.

The state vector in IOU is identical to that of (2.7), while the model SDEs
are given below [19]:

dxk = ẋkdt

dẋk = −αẋkdt+ σdwk
(2.12)

where α > 0 is the damping (a.k.a. drag) coefficient. As it should be evident
from (2.12), for α = 0 the IOU model reduces to a CV.

Under the common assumption of zero-mean Gaussian noise, the model can
be formulated in terms of (2.3) as follows:

xk = fk|k−1(xk−1, qk) = FIOUxk−1 + qk, qk ∼ N (02×1, QIOU) (2.13)

where we have that [16]:

FIOU =

[
1 1−e−α∆t

α

0 e−α∆t

]
QIOU =

[
Q11 Q12

Q21 Q22

]
σ2

(2.14)

and

Q11 = α−2[∆t− 2α−1(1− e−α∆t) +
1

2
α−1(1− e−2α∆t)]

Q12 = Q21 = α−2[(1− e−α∆t)− 1

2
(1− e−2α∆t)]

Q22 =
1

2
α−1(1− e−2α∆t)

(2.15)

Extension of the OU model to multiple dimensions can be achieved using the
same process described previously for the CV model.

11

2.2. Dynamic models
Chapter 2. State-space models

2.2.4 Constant Heading (CH)

The Constant Heading model [11] describes the motion of targets on a two-
dimensional (Cartesian) plane, under the assumption of nearly constant heading
(hence the name) and absolute velocity. In other words, the CH model assumes
that the absolute velocity and heading of a target follow a Random Walk. Thus,
the absolute acceleration and turn-rate are modelled as white noise components
that evolve according to two independent Brownian motions.

The state vector for the CH model is formed as follows:

xk = [xk, yk, sk, φk]
T (2.16)

where xk, yk denote the position on the x and y axes, respectively, sk =
√
ẋ2
k + ẏ2

k

is the absolute velocity and φk is the heading. The system can then be described
by the following set of SDEs:

dxk = sk cosφdt

dyk = sk sinφdt

dsk = σsdwk

dφk = σφdbk

(2.17)

Due to the non-linear nature of the CH model, a closed-form expression in
terms of linear algebra operations, similar to that of the previous models, does not
exist. It is possible to obtain an approximation under certain assumptions [11],
however the expression and derivation are rather lengthy and thus not considered
here. Nevertheless, we can still express the model in the form of (2.3), as shown
below:

xk = fk|k−1(xk−1, qk) =


xk−1 + sk−1 cosφk−1∆t
yk−1 + sk−1 sinφk−1∆t

sk−1

φk−1

+ qk, qk ∼ N (04×1, QCH)

(2.18)

where QCH = diag{0, 0, σ2
s∆t, σ

2
φ∆t}.

A great advantage of the CH model lies in the offered decoupling between a
target’s speed and relative heading. This fact allows for the noise parameters of
each individual state variable to be configured independently from one another,
allowing for finer parameterisation of the model.

12

2.3. Measurement models
Chapter 2. State-space models

2.3 Measurement models

Measurement models are used to describe the transformation/relationship be-
tween the measurement and target state-spaces. In addition to the above, a
measurement model also describes the statistical characteristics of the noise that
is present in the received measurements.

The generic form and structure of a measurement model can be expressed as:

yk = h(x1:k, r1:k, y1:k−1) ∼ p(yk|x1:k, y1:k−1) (2.19)

where p(yk|.) is the measurement model pdf, hk : Rnx × Rnr → Rny is a possibly
nonlinear function of the state xk and a measurement noise sequence rk

1, with
ny, nr being dimensions of the measurement and measurement noise vectors,
respectively. What is more, measurements are defined on the measurement state-
space Y , such that yk ∈ Y .

Similar to the case of dynamic models, it is often assumed that measurements
are conditionally independent of both past states x1:k−1 and measurements y1:k−1,
thus leading to a simplification of (2.19):

yk = hk(xk, rk) ∼ p(yk|xk) (2.20)

It is also worth noting here that the pdf p(yk|xk) in (2.20) also describes the
measurement likelihood function, used to evaluate the validity of states given a
measurement.

While (2.20) defines the transformation from state-space to measurement-
space (X → Y), it is often desirable to define the reverse function that allows
to perform the transformation from measurement-space to state-space (Y → X),
i.e.:

xk = h−1
k (yk, rk) (2.21)

Although the relation of (2.21) can be very convenient in a number of scenarios,
it is worth noting that it is not always possible to define a closed-form and/or
deterministic expression of the inverse function h−1

k (.).

1To avoid confusion in following discussions, a distinction is made between the notations rk,
used to denote the measurement noise samples, and rk that will be introduced in Section 2.3.2
to denote range.

13

2.3. Measurement models
Chapter 2. State-space models

2.3.1 Standard Linear-Gaussian (LG)

Measurements are often considered to be linear transformations of the state,
that are corrupted by additive zero-mean Gaussian noise. The class of models
used to describe this relation are referred to as Linear-Gaussian and are typically
expressed in terms of (2.20) as follows:

yk = hk(xk, rk) = Hxk + rk, rk ∼ N
(
0ny×1, R

)
(2.22)

where H is a time-invariant nx × ny measurement matrix and R is a ny × ny

measurement noise covariance matrix.

The inverse relation of (2.21) for this class of models can also be defined as:

x̂k = h−1
k (yk, rk) = H+(yk − rk) (2.23)

where H+ denotes the pseudo-inverse of H. The notation x̂k is used due to the
fact that a solution to (2.23) may not exist, or if one exists, it may not be unique.
If, and only if, H is invertible, then H+ = H−1 and x̂k = xk .

When the received measurements form a 1-to-1 representation of (part of) the
state, i.e. Y ⊆ X , the measurement matrix H takes the form of an binary map
matrix. For example, considering an exemplar scenario where the target state is
of the form (2.7), where only the positional component of the state is observable,
the measurement matrix takes the form

H =
[
1 0

]
(2.24)

Furthermore, it is common to assume that the noise on each measurement
coordinate is independent of all other coordinates, meaning that the covariance
matrix R can be viewed as a block diagonal combination of the variance on each
dimension. For the 2-D expansion of (2.7), where only the positional components
of the state are observable, this would lead to R = diag{σ2

x, σ
2
y}, with σx, σy

denoting the standard deviation on the x and y axes, respectively.

2.3.2 Gaussian Azimuth-Range (GAR)

As is often the case in real target tracking applications, measurements are gener-
ated in terms of polar (azimuth, range) coordinates, relative to the state sk ∈ S
of some sensor, where the noise is defined as zero-mean Gaussian on the polar
coordinate frame. This representation is particularly useful when dealing with
data received from active radar or sonar systems.

14

2.4. Detection models
Chapter 2. State-space models

The measurement state-space Y for the model is defined on the Polar co-
ordinate system, whose pole position is aligned with the positional (xs,k, ys,k)
Cartesian coordinates in the sensor state sk, and thus can vary over time. For
purposes of simplicity, we assume that X and S are defined on a common Carte-
sian system and the polar axis of Y aligns with the x-axis of that system. Thus,
the vector of measurements generated by the GAR model is of following form:

yk = [θk, rk]
T (2.25)

where θk an rk denote the azimuth and range reported at time tk, respectively.

Based on the assumption that the target state-space X and sensor state-space
S are defined as super-sets of the same 2-D positional Cartesian space, the model
of interest can be expressed in terms of (2.20) as follows:

yk = hk(xk, rk)

=

[
arctan2(ȳk, x̄k)√

x̄2
k + ȳ2

k

]
+ rk, rk ∼ N

(
02×1,

[
σ2
θ 0

0 σ2
r

])
(2.26)

where x̄k = xk−xs,k, ȳk = yk−ys,k, with (xk, yk) ⊆ xk and (xs,k, ys,k) ⊆ sk denoting
the Cartesian positional coordinates of the target and sensor respectively, while
σθ, σr denote the standard deviation of the noise on for the azimuth and range
components, respectively.

The inverse relation of (2.21) for the GAR model can be defined as:

x̂k = h−1
k (yk, rk)

=

[
r̂k cos(θ̂k) + xs,k
r̂k sin(θ̂k) + ys,k

]
,

(2.27)

where [θ̂k, r̂k]
T = yk − rk. It is worth noting that x̂k = [xk, yk]

T and x̂k ⊆ xk,
as the solution of (2.27) only returns positional information about the target
state xk. Furthermore, the relation of (2.27) is generally known to give biased
and inconsistent estimates for certain levels of the cross-range measurement error
[20]. Unbiased methods for inverting bearing and range have been demonstrated
in [21].

2.4 Detection models

When tracking targets using non-ideal sensors, a common problem that one has
to consider is that of target detectability. Targets can either be detected, and

15

2.4. Detection models
Chapter 2. State-space models

thus generate a detection which is reported by a received measurement scan, or
can go undetected. To model this behaviour it is common practice to use the
notion of a detection model, which can be used to validate the extent to which
any target is detectable.

In their most generic form, detection models can be described by a probability
distribution function (pdf), such that

pdk = p(dk = 1|.) (2.28)

where dk ∈ [0, 1] is a binary random variable, with dk = 1 denoting the successful
detection event at time tk, while pdk measures the probability of detection, evalu-
ated through the detection model pdf p(dk = 1|.). The use of a dotted notation in
the definition of the pdf is intentional, as the pdf can be defined to be conditional
on a number of different variables.

2.4.1 Constant Detection Rate (CDR)

The simplest and most common case of a detection model is one that models the
detection as being constant across the entire search space. In this case (2.28)
reduces to the following equation:

pdk = PD (2.29)

where PD ∈ [0, 1] is the chosen constant detection probability.

The main advantage of the CDR model is its relative simplicity and speed of
evaluation, as it circumvents the evaluation of any pdfs and removes the necessity
of calculating any state or measurement related quantities. As such, CDR is the
most common choice of detection model for simulation purposes. However, a
major drawback of the CDR model is its inability to incorporate any information
regarding known regions of low and/or detectability, thus making it a sub-optimal
choice for real systems.

2.4.2 State Dependent Detection Rate (SDDR)

As opposed to the previous model, the SDDR model allows the detection rate
to vary based on a given quantity of interest. In its most common formulation,
SDDR is defined such that the detection probability is dependent on the state of
a single target. Thus, the model can be expressed in terms of (2.28) as follows:

pdk = p(dk = 1|xk) (2.30)

16

2.5. Clutter models
Chapter 2. State-space models

where p(dk|xk) can take the form of any pdf or pmf, which when evaluated returns
values strictly in the range [0, 1].

A simplistic example of such a model would be in the case where there exists
a well defined detection grid, over a given surveillance region V . Assuming a 1-D
problem, where targets can only be detected within V ∈ [0, 1000] with probability
of 1, and 0 elsewhere, one could define p(dk|xk) as the following pmf:

p(dk|xk) =


1, if dk = 1 and xk ∈ V
1, if dk = 0 and xk /∈ V
0, otherwise

(2.31)

It is also possible to define the SDDR model such that it is dependent on the
state of the sensor sk, as done in [22], and/or the state of a given measurement
yk, however such definitions fall outside of the scope of this thesis and thus shall
not be considered any further.

A major benefit of using the SDDR model is that it allows for the incorpo-
ration of existing maps of the environment that can be used to determine the
probability of detection for any given hypothetical target, measurement and/or
sensor position. This is particularly useful for applications where prior knowledge
exists about regions of the search space, where targets can go undetected and/or
be detected with high probability [23, 22].

2.5 Clutter models

Another common intricacy encountered when tracking multiple targets with non-
ideal sensors is the presence of clutter. Measurement scans received from the
sensor(s) may contain measurements originating from existing targets, i.e. true
detections, as well as spurious measurements, a.k.a. clutter, that can originate
from a number of different sources: background interference and/or internal in-
terference of the sensors. Thus, a received measurement scan Yk can viewed as
the union of the sets of true and clutter detections, i.e.:

Yk = Y C
k ∪ Y ∆

k (2.32)

where Y C
k contains the set of MC

k clutter generated detections, while Y ∆
k contains

the set of M∆
k true detections generated by the targets.

The statistical characteristics of clutter can be represented by appropriately
defined clutter models. Such clutter models are typically defined in the form of

17

2.6. Conclusion
Chapter 2. State-space models

a pair of spatial distribution and spatial density functions:

• A spatial pdf is used to represent the spatial distribution of clutter mea-
surement positions over a given measurement space:

pC(yk) (2.33)

where pC(yk) defines the probability that a given measurement yk originated
from clutter.

• A cardinality pdf is used to model the number of received clutter measure-
ments over the entire surveillance region, such that:

pMC (M) = p(φ = M) (2.34)

where p(φ = M) defines the probability that the number of clutter mea-
surements is equal to M .

2.5.1 Poisson Rate with Uniform Position (PRUP)

The model that is most commonly used in literature to model clutter assumes
that the number of clutter measurements observed at each scan evolves according
to a Poisson distribution with mean clutter rate λFA, while the measurements
are uniformly distributed across the entire search space. When expressed in
terms of the generalised model described by (2.33)-(2.34), this yields the following
expressions:

• Spatial pdf: The spatial pdf is uniform across the space V , with volume V ,
i.e.

pC(yk) = U(yk;V) =
1

V
(2.35)

• Cardinality pdf: The cardinality pdf is modeled as Poisson, with a mean
λFA of total received clutter measurements, i.e.

pMC (M) = Pois(M ;λFA) =
λMFAe

−λFA

M !
(2.36)

2.6 Conclusion

This chapter has presented the set of dynamic, measurement, detection and clut-
ter models that will be used extensively in the chapters that follow. This has

18

2.6. Conclusion
Chapter 2. State-space models

been done with the aim of formulating the fundamental framework of state-space
model equations as considered in this thesis, as well as present readers to the
general notation that will be utilised in subsequent chapters.

19

CHAPTER 3

Non-Linear, Non-Gaussian Single-Target Tracking

3.1 Introduction

For any given surveillance system to serve its purpose, target tracking is a fun-
damental requirement to obtain a clear and complete view of the entities present
in the surveillance region. In the context of Single-Target Tracking (STT), the
basic assumption holds that only a single target of interest is present within the
surveillance area, at any given point in time, and this target is assumed to exist
throughout the entire length of the surveillance process.

A series of noisy measurement scans are reported from a deployed sensor
(e.g. radar), where each scan can contain measurements that may originate from
a number of different sources: the target of interest, background interference
(a.k.a. clutter) and/or internal interference of the sensor. In addition to the
above, the target may go undetected for random intervals of time, thus adding to
the overall complexity of the problem in hand. Based on the above, the problem
to be solved by STT systems involves the process of identifying the measurements
that are likely to have originated from the target, if any, and then utilising such
measurements in order to recursively estimate the state of the target, which
typically encapsulates certain quantities of interest, such as target position and
velocity.

There exists a large body of literature which has studied, and in turn reviewed,

20

3.2. Bayesian Filtering
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

how to develop such target tracking systems [24, 25]. The STT problem in the
presence of clutter and missed detections can typically be broken in two parts.
First is the process of distinguishing which measurements originated from the
target and which were generated by clutter. In the tracking literature this is
referred to as Data Association and there has been extensive research conducted
over the years on developing methods that solve this problem both efficiently and
effectively [26, 27, 28]. Once such valid measurements have been identified, it is
still necessary to process the measurements, so as to filter out the noise that is
inherently introduced by the sensors. A solution to this second problem can be
conveniently provided by Bayesian Filters that can utilise appropriately defined
statistical state-space models to perform Bayesian inference on the information
provided by the measurements.

This chapter builds on the framework of state-space models presented in Chap-
ter 2 and aims to delve into the specifics of the aforementioned Bayesian Filtering
and Data Association problems in the context of Single Target Tracking. Section
3.2 outlines the fundamental concepts of the standard Bayesian Filtering frame-
work, which are then utilised to formulate the Kalman and Particle Filtering al-
gorithms, while discussing the various advantages and pitfalls of each approach.
Section 3.3 then proceeds to define the Data Association problem in the context of
Single-Target Tracking, while presenting some well founded algorithms that can
be used to solve it. Finally, performance evaluations are performed in Section
3.4, to test the performance of the presented algorithms.

3.2 Bayesian Filtering

Bayesian Filtering is only concerned with the simplified problem of estimating
the state xk of a single target, under the fundamental assumption that exactly
one measurement yk is available at each of the discrete time steps tk. As such,
the problem can be conveniently formulated and expressed in terms of Bayesian
inference rules [29] applied on a state-space model defined solely on the dynamic
and measurement model presented in Sections 2.2 and 2.3, respectively. Thus,
making use of the notation introduced in Chapter 2, the goal here is to form
an estimate of the state xk, at every time step tk, using noisy observations y1:k,
acquired up to time tk.

Therefore, at each time tk, Bayesian Filtering is applied with the intent of
obtaining an expression for the posterior distribution of the state of the target
at tk, conditional on all measurements received up to and including time tk. In
mathematical terms, the quantity to be computed is a probability density function

21

3.2. Bayesian Filtering
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

(pdf) of the form
p(xk|y1:k) (3.1)

For most problems, a state estimate is desirable every time that a measure-
ment is received, in which case a recursive Bayesian Filter becomes a convenient
solution. A recursive filtering approach allows for the received measurements to
be processed sequentially, rather than as a batch. Such an approach has the
advantage of circumventing the necessity of maintaining the complete set of es-
timates, as well as reprocessing of existing estimates when a new measurement
becomes available.

3.2.1 The Standard Bayes Filter

Recursive Bayesian Filtering can be performed under three main assumptions:
the system transition function f in (2.1) describes a first-order Markov process
[17, 18], leading to a simplification of (2.1) as (2.3); measurements are assumed
to be conditionally independent of each other over time, leading to (2.20); some
initial information about the state is available, in the form a prior pdf p(x0).
Given that the aforementioned assumptions are satisfied, the pdf p(xk|y1:k) can
be obtained, recursively, using two steps: prediction and update.

The prediction step propagates the last estimate of the state (a.k.a. the prior)
through the dynamic model equation (2.3) so as to generate a prediction of the
state pdf between measurement times. Since the state is usually subjected to
unknown disturbances (modelled as random noise), prediction generally trans-
lates, deforms, and spreads the state pdf. Next, the update stage makes use of
the latest received measurement to update/correct the prediction pdf, through
application of the Bayes theorem, which is the mechanism that allows updating
one’s knowledge about the target state in light of the new measurement.

Algorithm 3.2.1 (Standard Bayesian Filter) The set of recursive equations
necessary to compute the predicted p(xk|xk−1, y1:k−1) and posterior p(xk|y1:k) dis-
tributions are given by the following Bayesian filtering equations.

• Initialisation: The filter is initialised with the prior distribution p(x0).

• Prediction: Given the dynamic model of the target’s motion, p(xk|xk−1),
and the previous filtered estimate, p(xk−1|y1:k−1), the Chapman-Kolmogorov
equation [30] can be used to compute the predicted distribution of xk:

p(xk|xk−1, y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (3.2)

22

3.2. Bayesian Filtering
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

• Update: Given the observation model, p(yk|xk), the measurement yk and
the above computed predicted distribution, the target posterior distribution
p(xk|y1:k) can be calculated using Bayes’ rule:

p(xk|y1:k) =
1

Zk
p(yk|xk)p(xk|xk−1, y1:k−1) (3.3)

where Zk is a normalisation constant, given as:

Zk =

∫
p(yk|xk)p(xk|xk−1, y1:k−1)dxk (3.4)

The recurrence relations of (3.2) and (3.3) form the basis for the Standard
Bayes Filter (SBF), which is the optimal Bayesian solution to the problem of
recursively calculating the exact posterior density p(xk|y1:k). However, the def-
inition of the SBF is generally theoretical, as any attempt of direct analytical
evaluation proves to be intractable[15]. As a result, popular algorithms which
have been developed over the years to provide a solution to the Bayesian Filter-
ing problem, base their operation on either constraining the problem to a subset
of the state-space model, or on the use of approximation methods, or both. Such
techniques will be analysed in the following subsections.

3.2.2 Kalman Filters

3.2.2.1 Linear Kalman Filter

The Kalman Filter (KF) constitutes the optimal closed-form solution to the
Bayesian filtering equations, where the posterior density p(xk|y1:k) is assumed
to be Gaussian. For this assumption to hold throughout the recursions, one fur-
ther constraint of the standard Kalman Filter is that the dynamic and observation
models are required to be linear and Gaussian1:

p(xk|xk−1) = N (xk;Fk−1xk−1, Qk),

∴ xk = Fk−1xk−1 + qk,

p(yk|xk) = N (yk;Hkxk, Rk),

∴ yk = Hkxk + rk

(3.5)

where Fk−1 is the transition matrix of the linear dynamic model, Hk is the linear
measurement model matrix, qk ∼ N (0, Qk) and rk ∼ N(0, Rk) are the process

1For the sake of simplicity, only the cases of additive noise, for the process and measurement
models, will be considered here. See [15] for derivations in non-additive cases.

23

3.2. Bayesian Filtering
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

and measurement noises, which are both assumed to be zero-mean Gaussians
with covariances of Qk and Rk, respectively. The closed form solution to the
Bayesian filtering equations for the linear models of (3.5) can then be evaluated
and the resulting distributions are:

p(xk|xk−1, y1:k−1) = N (xk; x̄k|k−1, V̄k|k−1)

p(yk|y1:k−1) = N (yk;Hkx̄k|k−1, Sk)

p(xk|y1:k) = N (xk; x̄k, V̄k)

(3.6)

Accordingly, the KF recursion can be described in terms of standard Bayesian
Filtering steps, as shown in the Algorithm 3.2.2. The full derivation of the above
equations in a Bayesian context can be found in [15].

Algorithm 3.2.2 (Kalman Filter) The set of recursive equations necessary to
compute the predicted p(xk|xk−1, y1:k−1) and posterior p(xk|y1:k) distributions are
given by the following Kalman Filtering equations.

• Initialisation: The filter is initialised with the prior p(x0) = N (x0; x̄0, V̄0)
and the main recursion is initiated.

• Prediction: The predicted pdf p(xk|xk−1, y1:k−1) = N (xk; x̄k|k−1, V̄k|k−1) can
be calculated as:

x̄k|k−1 = Fk−1x̄k−1,

V̄k|k−1 = Fk−1V̄k−1F
T
k−1 +Qk

(3.7)

• Update: The posterior pdf p(xk|y1:k) = N (xk; x̄k, V̄k) can be found:

ȳk = Hkx̄k|k−1,

Sk = HkV̄k|k−1H
T
k +Rk,

Kk = V̄k|k−1H
T
k S
−1
k ,

x̄k = x̄k|k−1 +Kk(yk − ȳk),

V̄k = V̄k|k−1 −KkSkK
T
k

(3.8)

Since their introduction by Kalman [31, 32], KFs have been among the most
commonly researched and employed tracking algorithms. Out of the box im-
plementations of the Kalman Filter are based on a small set of linear algebra
equations, which makes them relatively simple and incredibly efficient. Applica-
tions of the KF in avionic and maritime target tracking range from GPS tracking
of vessels [33], to airborne radar tracking [34] and missile guidance systems[35].

24

3.2. Bayesian Filtering
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

In the case of linear, Gaussian dynamic and measurement models, as long
as the prior probability density is Gaussian, the Kalman Filter ensures that all
subsequent predicted and updated probability densities will also be Gaussian.
Furthermore, the means and covariances of these densities can be calculated us-
ing basic matrix algebra operations. However, if the problem in hand involves
non-linear models, the above assertion does not hold, thus posing a prohibitive
limitation to the applicability of the filter in problems involving non-linear be-
haviour.

3.2.2.2 Extended Kalman Filter

As mentioned above, the linearity constraints on the dynamics and measurement
models of the standard Kalman Filter prevent direct application of the algorithm
in problems involving non-linear behaviour. One first solution to the problem
is provided by the use of local-point linearisation techniques [33], through ap-
plication of the popular Taylor Series first-order approximation [36]. The term
Extended Kalman Filter (EKF)[24, 37] was later adopted for reference to the
specific incarnation of the Kalman Filter algorithm2.

Given that the dynamic and measurement models are non-linear, and based
on the assumption that the process and measurement noises are additive, the new
model (equivalent to (3.5)) for the EKF can be written as:

xk = fk−1(xk−1) + qk,

yk = hk(xk) + rk
(3.9)

Again, qk ∼ N (0, Qk) and rk ∼ N (0, Rk) are the zero-mean Gaussian process
and observation noises, with covariances of Qk and Rk, respectively. However, the
non-linear state-space models can no longer be expressed in terms of matrices.
As such, the respective non-linear transfer functions, f(.) and h(.), are used
instead. Next, assuming that the posterior density p(xk|y1:k) can be approximated
by a Gaussian, the solutions to the Bayesian Filtering equations can also be
approximated in the same fashion as in (3.6) and the resulting algorithm is shown
below.

Algorithm 3.2.3 (Extended Kalman Filter) The set of recursive equations
necessary to compute/approximate the predicted p(xk|xk−1, y1:k−1) and posterior
p(xk|y1:k) distributions are given by the following Bayesian filtering equations.

2It should be noted here that a second-order approximation EKF exists (namely EKF2
[38]), but the additional complexity has prohibited its widespread use and, thus, has not been
considered here.

25

3.2. Bayesian Filtering
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

• Initialisation: The filter is initialised with the prior pdf p(x0) = N (x0; x̄0, V̄0)
and the main recursion is initiated.

• Prediction: The predicted pdf p(xk|xk−1, y1:k−1) = N (xk; x̄k|k−1, V̄k|k−1) can
be calculated as:

x̄k|k−1 = fk−1(x̄k−1),

V̄k|k−1 = F̂k−1V̄k−1F̂
T
k−1 +Qk

(3.10)

• Update: The posterior pdf p(xk|y1:k) = N (xk; x̄k, V̄k) can be found:

ȳk = hk(x̄k|k−1),

Sk = ĤkV̄k|k−1Ĥ
T
k +Rk,

Kk = V̄k|k−1Ĥ
T
k S
−1
k ,

x̄k = x̄k|k−1 +Kk(yk − ȳk),

V̄k = V̄k|k−1 −KkSkK
T
k

(3.11)

where F̂k−1 and Ĥk are Jacobian matrices, resulting from the local linearisa-
tions of the non-linear model functions, fk−1(.) and hk(.) respectively, and can
be computed using Tayor series approximation:

F̂k−1 =
dfk−1(x)

dx

∣∣∣∣
x=x̄k−1

Ĥk =
dhk(x)

dx

∣∣∣∣
x=x̄k|k−1

(3.12)

Aside from the computation of the Jacobian matrices and the direct propaga-
tion of the prior and predicted means through the respective non-linear models,
the EKF implementation is almost identical to the standard KF approach. A
major advantage of EKF over other non-linear filters is its relative simplicity
compared to the achieved performance. For this reason, EKF has provided so-
lutions to an number of inherently complex and non-linear problems, including
robot localisation and mapping [39], UAV navigation and landing control sys-
tems [40], as well as detection and tracking of moving targets from a mobile UAV
platform [41].

However, this offered convenience does come at a cost, as there are two major
drawbacks which need to be considered [42]. Firstly, the computation of the de-
sired Jacobian matrices is often a non-trivial task, which can lead to significant
implementation difficulties in cases where the dynamic and measurement model

26

3.2. Bayesian Filtering
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

functions are not (easily) differentiable. The second, and possibly most signif-
icant, drawback of the EKF can manifest itself when the algorithm is applied
to problems that involve highly non-linear models. In such circumstances, the
assumptions of local linearity can be extensively violated, leading to substantial
performance degradation and filter instabilities.

3.2.2.3 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) [43, 44] was developed with the intent of
addressing the inherent errors and inaccuracies introduced by EKF, due to the
use of first-order analytic linearisation. Instead of performing analytical lineari-
sation around a single point, the UKF makes use of statistical linear regression
to linearise the non-linear dynamic and measurement functions, through an ap-
propriately selected set of regression points [45].

To achieve the aforementioned, the UKF utilises a method termed as the
Unscented Transform (UT) [42]. The idea behind the UT is to deterministically
select a fixed number of points, referred to as sigma points, from a distribution
of interest, that can be appropriately weighted and used to provide an exact
representation of its mean and covariance. The chosen set of points is then
passed through the desired non-linear function and the resulting set is used to
approximate the mean and covariance of the transformed variable. Using the
above mentioned technique, the UKF is able to accurately capture the posterior
mean and covariance of the transformed distributions, up to the 4rd order of the
Taylor series expansion (compared to 1st order for the EKF) [42]. More on the
UT can be found in [42, 43, 46].

The dynamic and measurement models for the UKF can be defined in the
same manner as in (3.9), where the assumption has been made that the process
and measurement noises are additive. Again, the solutions to Bayesian filtering
equations can be expressed just as in (3.6), where the equalities (“=”) are replaced
by approximations (“≈”). Considering all the above, the description of UKF in
terms of the 3 standard Bayesian filtering steps is provided in the Algorithm 3.2.4.

Algorithm 3.2.4 (Unscented Kalman Filter) The set of recursive equations
necessary to compute/approximate the predicted p(xk|xk−1, y1:k−1) and posterior
p(xk|y1:k) distributions are given by the following Bayesian filtering equations.

• Initiation: The filter is initialised with the prior pdf p(x0) = N (x0; x̄0, V̄0)
and the main recursion is initiated.

• Prediction: The predicted pdf p(xk|xk−1, y1:k−1) = N (xk; x̄k|k−1, V̄k|k−1) can
be calculated in 3 sub-steps derived from the UT:

27

3.2. Bayesian Filtering
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

1. A set of 2n+1 sigma points (X (0:2n)
k−1), including the respective set of

mean and covariance weights (W(0:2n)
m and W(0:2n)

c), is formed as fol-
lows:

X (0)
k−1 = x̄k−1,

X (i)
k−1 = x̄k−1 +

√
n+ λ

[√
V̄k−1

]
i
,

X (i+n)
k−1 = x̄k−1 −

√
n+ λ

[√
V̄k−1

]
i
, i = 0, 1,, 2n

(3.13)

W(0)
m =

λ

n+ λ
,

W(0)
c =W(0)

m + (1− α2 + β),

W(i)
m =W(i)

c =
1

2(n+ λ)
, i = 1, 2,, 2n

(3.14)

2. The propagated set of sigma points X̂ (0:2n)
k is computed using the dy-

namic model function fk−1(.):

X̂ (i)
k−1 = fk−1(X (i)

k−1), i = 0, 1,, 2n (3.15)

3. The predicted mean x̄k|k−1 and covariance V̄k|k−1 are finally computed
as:

x̄k|k−1 =
2n∑
i=0

W(i)
m X̂

(i)
k ,

V̄k|k−1 =
2n∑
i=0

W(i)
c (X̂ (i)

k − x̄k|k−1)(X̂ (i)
k − x̄k|k−1)T +Qk

(3.16)

• Update: Finally, a slight alteration of the previous 3 UT sub-steps is used

to find the posterior pdf p(xk|y1:k) = N (xk; x̄k, V̄k) as follows:

1. A set of 2n+1 sigma points (X̃ (0:2n)
k), including the respective set of

mean and covariance weights (W̃(0:2n)
m and W̃(0:2n)

c), is formed as fol-

28

3.2. Bayesian Filtering
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

lows3:

X̃ (0)
k = x̄k|k−1,

X̃ (i)
k = x̄k|k−1 +

√
n+ λ

[√
V̄k|k−1

]
i
,

X̃ (i+n)
k = x̄k|k−1 −

√
n+ λ

[√
V̄k|k−1

]
i
, i = 0, 1,, 2n

(3.17)

W̃(0)
m =

λ

n+ λ
,

W̃(0)
c = W̃(0)

m + (1− α2 + β),

W̃(i)
m = W̃(i)

c =
1

2(n+ λ)
, i = 1, 2,, 2n

(3.18)

2. The propagated set of sigma points Ŷ(0:2n)
k is computed using the ob-

servation model function hk(.):

Ŷ(i)
k = hk(X̃ (i)

k), i = 0, 1,, 2n (3.19)

3. The updated mean mk and covariance Pk are finally computed as:

ȳk =
2n∑
i=0

W(i)
m Ŷ

(i)
k ,

Sk =
2n∑
i=0

W(i)
c (Ŷ(i)

k − ȳk)(Ŷ(i)
k − ȳk)

T +Rk,

Ck =
2n∑
i=0

W(i)
c (X̃ (i)

k − x̄k|k−1)(Ŷ(i)
k − ȳk)

T ,

Kk = CkS
−1
k ,

x̄k = x̄k|k−1 +Kk(yk − ȳk),

V̄k = V̄k|k−1 −KkSkK
T
k

(3.20)

where n is the dimensionality of the estimated state x, λ = α2(n + κ) − n is
a scaling factor, α and κ are used in order to control the spread of the sigma
points around the mean and β is used to incorporate previous knowledge about
the distribution of x. Typical values for the above parameters are: α = 10−3,
κ = 0 and β = 2(Optimal for Gaussian distributions).

3Some UKF implementations bypass this step and simply set X̃k = X̂k−1 [47]

29

3.2. Bayesian Filtering
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

3.2.3 Particle Filter

All incarnations of the Kalman Filter suffer from the same fundamental limitation
stemming from the assumption that the state of interest is normally distributed.
If this assumption is violated and some multi-modality, skewness or other de-
parture from being Gaussian, is introduced to the pdf, then the distribution of
interest cannot be effectively captured by it’s first two moments (mean and co-
variance) and any attempt to estimate it using any of the aforementioned filters
will lead to extensive errors and possibly tracker failure.

The Particle Filter (PF) [48, 6] makes use of Monte-Carlo approximation
methods to form an approximation to the posterior distribution p(xk|y1:k), by

utilising the diversity of an appropriately weighted set of Np samples {xi,wi}Npi=1,
a.k.a particles, where xik and wi

k are respectively the state and weight of the ith

particle. Given that the weights of the particles are defined such that they sum to
unity, an estimation of the posterior can be conveniently evaluated as a weighted
sum of all the particles, i.e.:

p(xk|y1:k) ≈
Np∑
i=1

wi
kδ(xk − xik) (3.21)

where δ(.) represents the Delta-Dirac function and the weights are normalised
such that

∑
i w

i
k = 1.

The approximation of (3.21) means that it is generally not possible to sample
from this distribution. To circumvent this issue, Particle Filters make use of
importance sampling [6, 49], whereby samples are drawn from a proposal density4,
instead of the target density, and are subsequently weighted. Let p(x) be the
target density from which it is hard to draw samples but can be evaluated, and let
π(x) be the proposal density, which is both easy to sample from and to evaluate.
Thus, given a set of samples xi ∼ π(x), their importance weights can be calculated
as

wi ∝ p(xi)

π(xi)
(3.22)

To derive a recursive expression for the weight update equation, let us start by
considering the full posterior distribution of states x0:k given the measurements
y1:k. By using the Markov properties of the model, we get the following recursion

4With slight abuse of notation, the term density will be interchangeably used throughout
the thesis to refer to either a distribution or a density, as also done in [6].

30

3.2. Bayesian Filtering
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

for the posterior distribution:

p(x0:k|y1:k) ∝ p(yk|x0:k, y1:k−1)p(x0:k|y1:k−1)

= p(yk|xk)p(xk|x0:k−1, y0:k−1)p(x0:k−1|y1:k−1)

= p(yk|xk)p(xk|xk−1)p(x0:k−1|y1:k−1)

(3.23)

If the samples xik are drawn from an importance density π(x0:k|y1:k), given (3.23),
the importance weights can be calculated as follows:

wi
k ∝

p(xi0:k|y1:k)

π(xi0:k|y1:k)
=
p(yk|xik)p(xik|xik−1)p(xi0:k−1|y1:k−1)

π(xi0:k|y1:k)
(3.24)

Continuing, if the importance density is also assumed to be Markovian then we
can re-write π(x0:k|y1:k) as follows:

π(x0:k|y1:k) = π(xk|xk−1, y1:k)π(x0:k−1|y1:k−1) (3.25)

which leads to the following expansion of (3.24):

wi
k ∝

p(yk|xik)p(xik|xik−1)

π(xik|xik−1, y1:k)

p(xi0:k−1|y1:k−1)

π(xi0:k−1|y1:k−1)
(3.26)

Let us now assume that a set of samples xi0:k−1 have already been drawn from the
importance density π(x0:k−1|y1:k−1), with corresponding weights

wi
k−1 ∝

p(xi0:k−1|y1:k−1)

π(xi0:k−1|y1:k−1)
(3.27)

Finally, by considering the recursive formulation of the importance density shown
in (3.25), it is possible to obtain samples xi0:k from π(x0:k|y1:k) by drawing samples
as xik ∼ π(xk|xik−1, y1:k). Therefore, substitution of (3.27) into (3.26), leads to the
final recursive expression for the weight update step:

wi
k ∝

p(yk|xik)p(xik|xik−1)

π(xik|xik−1, y1:k)
wi
k−1 (3.28)

By employing the above techniques, the Sequential Importance Sampling
(SIS) Particle Filter [6] can fully exploit non-linear/non-Gaussian models and
distributions. This enables the algorithm to form a direct approximation to the
Bayesian Filtering equations of (3.2) and (3.3). However, as shown in [49], a com-
mon problem with the SIS variant is that the variance of the importance weights
increases with time, leading to most of the particles having negligible weights.

31

3.2. Bayesian Filtering
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

This phenomenon is known in the literature as particle degeneracy [49, 6] and
implies that large computational efforts are devoted to updating particles whose
contribution to the approximation of (3.21) becomes increasingly small.

A solution to the degeneracy problem is provided by adding a resampling step
to the SIS recursion, leading to the Sequential Importance Resampling (SIR) or,
as commonly known, the Particle Filter recursion. During the resampling process,
particles with high importance weights are duplicated and used to suppress par-
ticles with low weights. There exists a number of different resampling algorithms,
however experience has shown that performance is not significantly affected by
this choice [6]. For more information on resampling strategies, including perfor-
mance evaluations and comparisons, readers are advised to refer to [50, 51]. As
resampling is known to be the bottleneck of the SIR recursion, the process can
either be executed on each iteration, or may be set to execute only when the
number of effective samples falls below a given threshold, as shown in (3.33).

Algorithm 3.2.5 (Particle Filter) The set of recursive equations necessary to
compute/approximate the predicted p(xk|xk−1, y1:k−1) and posterior p(xk|y1:k) dis-
tributions are given by the following Bayesian filtering equations.

• Initiation: An initial set of Np samples is drawn from the prior p(x0), with
uniform weights as:

xi0 ∼ p(x0),

wi
0 =

1

N
, i = 1, 2,, Np

(3.29)

• Prediction: A new set of N samples is drawn from the importance density:

xik ∼ π(xk|xik−1, y1:k), i = 1, 2,, Np (3.30)

• Update: The update step can be broken down to the following 4 sub-steps:

1. The non-normalised weight for each particle can be calculated using
(3.28):

w̃i
k = wi

k−1

p(yk|xik)p(xik|xik−1)

π(xik|xik−1, y1:k)
, i = 1, 2,, Np (3.31)

32

3.2. Bayesian Filtering
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

2. All the weights are normalised such that they sum to unity:

wi
k =

w̃i
k∑Np

i=1 w̃i
k

, i = 1, 2,, Np (3.32)

3. The number of effective samples(Neff) is calculated as:

Neff =
1∑Np

i=1

(
wi
k

)2 (3.33)

4. If the number of effective samples is lower than the set threshold (i.e.
Neff < Neffmin), then resampling can be performed.

A generic PF recursion, involves the same two general steps (i.e. prediction

and update), during which a new posterior particle set {xik,wi
k}

Np
i=1 for time k,

is typically constructed from the set {xik−1,w
i
k−1}

Np
i=1 obtained from the previous

timestep k − 1, using the defined dynamic and measurement models, as well as
the current observation yk. Upon resampling, the weights for all particles are
uniformly distributed and the new particle set {xik,wi

k}
Np
i=1 is formed. A formal

representation of the above is shown in Algorithm 3.2.5.

The choice of appropriate proposal density π(xk|xik−1, y1:k) in (3.30)-(3.31) is a
crucial step in the successful design of a Particle Filter, which also contributes in
reducing the effect of particle degeneracy [6]. Ideally, a proposal density should
be selected that minimises the variance of the importance weights [6, 7]. The
optimal proposal has been shown in [49] to be p(xk|xik−1, y1:k), however it requires
the ability to sample from p(xk|xik−1, y1:k) and to evaluate the integral over the
new state, both of which are generally not straightforward. Examples of cases
where this is possible can be found in [6]. A widespread choice over the years has
been the prior density p(xk|xik−1), giving rise to an incarnation of the algorithm
known as Bootstrap Particle Filter [48, 52, 53, 54], which leads to the following
convenient simplification of (3.31):

wi
k = wi

k−1p(yk|xik) (3.34)

Particle Filters provide significant advantages over the Kalman filtering frame-
work, by discarding the assumptions of Gaussianity of the state and local linearity
of the models. As such, they can be applied to accurately estimate processes with
complex state distributions (e.g. multimodal Gaussians) and non-linear/non-
Gaussian models (e.g. K-distribution and variants [55]), which would otherwise
be highly challenging, if not impossible, to track. The lack of linearisation of the

33

3.3. Data Association
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

dynamic and/or measurement models, combined with the Monte-Carlo nature
of the algorithm, implies that PFs are (optimally) able to fully exploit all the
orders of non-linearity involved in such models, which provides an even greater
improvement in terms of estimation performance, a fact which becomes even more
evident, as the number of particles is increased.

Inevitably, the PF framework has it’s own disadvantages [15]. The higher the
number of particles used to describe the posterior density, the higher the compu-
tational overhead of the algorithm becomes. This fact poses limitations to the ap-
plicability of the algorithm in cases where speed and efficiency are paramount. A
further disadvantage of PFs is a phenomenon known as particle impoverishment.
This problem is introduced by the resampling step of the algorithm and is known
to manifests itself when the process noise in the dynamic model is relatively low.
As such, pure recursive estimation, such as the estimation of static parameters,
using the PF could lead to very poor results. A solution to this issue is provided
by the use of techniques such as regularisation and Rao-Blackwallization [49],
however such approaches tend to add to the overall complexity of the algorithm.

3.3 Data Association

In the presence of missing reports and/or false detections, the standard Bayesian
Filtering equations cannot be directly applied to obtain an estimate of the target
state. This is because Bayesian Filters base their operation on the assumption
that, at any given measurement time, only one association hypothesis is gener-
ated for the target, which relates to the association event between the target
and exactly one received measurement. This poses an issue when a target goes
undetected (i.e. no measurement is available), as well as when more than one
measurements are received. Thus, data association techniques become necessary
in order to deal with the added complexity.

3.3.1 Optimal Solution

At each measurement time tk, a measurement scan Yk = y1
k, . . . , y

Mk
k is received.

Each measurement scan consists of a measurement originating from the target,
if the target is detected, as well as spurious measurements (clutter), that can
originate from background interference and/or internal interference of the sensors.

Provided that a set of Mk measurements is received, there exist Mk + 1 pos-

34

3.3. Data Association
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

sible association hypotheses5 for the target; a single hypothesis for each received
measurement, plus an additional hypothesis for the target going undetected. This
is based on the assumption that, if detected, a target can generate at most one
true measurement in any given scan, and, conversely, each measurement may
have originated from at most one target.

Based on the above definition, let αk be a random variable that denotes the
set of all possible association hypotheses for the target at time tk, that takes
values

αk =

{
0 no measurement originated from the target

j if measurement yjk originated from the target
(3.35)

Based on the above, a series of exhaustive and mutually exclusive associa-
tion hypotheses θjk can be defined, which consider the event that the target is
associated with a given measurement, i.e.

θjk , [αk = j] (3.36)

where the Iverson notation is used; if P is a statement, [P] equals 1 if the statement
is true and 0 otherwise.

Therefore, the posterior state distribution p(xk|Y1:k), conditional on all mea-
surement scans received up to time tk, can be computed by marginalising over
the entire set of association hypotheses, i.e:

p(xk|Y1:k) =
∑
θjk

p(xk|θjk, y
j
k, Y1:k−1)p(θjk|Y1:k) (3.37)

where p(xk|θjk, y
j
k, Y1:k−1) is equivalent to (3.1), albeit presented using different no-

tation to emphasise that the posterior distribution is conditional on the marginal
association hypothesis θjk.

Based on the above definitions, the computation of the association proba-
bilities p(θjk|Y1:k) can be done as shown in [28], albeit using a slightly different

5It is assumed that no gating is performed to reduce the number of possible associations.
Gating will be discussed further in Chapter 4

35

3.3. Data Association
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

notation:

p(θjk|Y1:k) ∝


(1− pd(xk))pMc(Mk)

∏
i∈[1,...,Mk]

pC(yik), j = 0

pd(xk)p(y
j
k|xk)pMc(Mk − 1)

Mk

∏
i∈[1,...,Mk]\j

pC(yik), j = 1, . . . ,Mk

(3.38)

Finally, using the notation of equation (3.37), it should be clear to see that
the standard Bayesian Filtering equations (3.2)-(3.4) can now be employed to
evaluate the conditional distributions p(xk|θjk, y

j
k, Y1:k−1) independently for each

association event θjk, thus allowing for any of the presented Kalman or Particle
Filter algorithms to be applied, subject to linearity and/or Gaussianity restric-
tions.

3.3.2 Nearest Neighbour

It is often desirable, for computational purposes, to only consider the most likely
hypothesis, while ignoring the remaining hypotheses. The computational benefit
is thus achieved by circumventing the necessity of calculating the posterior dis-
tributions relating to the less likely hypotheses. This can be achieved using the
so called Nearest Neighbour (NN) data association algorithm.

In general, the NN algorithm can be formulated in 2 ways: i) probabilistic; and
ii) distance-based. In both formulations, the first step of the algorithm involves
identifying the value of θ̂jk that represents the most likely association hypothesis.
Once this is done, the new posterior is calculated by simplifying equation (3.37)
as follows:

p(xk|Y1:k) = p(xk|θ̂jk, y
j
k, Y1:k−1) (3.39)

The probabilistic formulation of NN is obtained by computing p(θjk|Y1:k) for
all αk = 0, . . . ,Mk and then selecting the most likely hypothesis on the basis of
maximising p(θjk|Y1:k)

θ̂jk = arg max
0≤j≤Mk

[
p(θjk|Y1:k)

]
(3.40)

The distance-based formulation of NN [56] is realised by defining a distance
measure D(xk, y

j
k) between the target state and a given measurement to be used

as a logarithmic approximation of the association probabilities p(θjk|Y1:k). It is

36

3.3. Data Association
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

also necessary to define the threshold value D(xk, ∅) (where we have used the
notation y0

k = ∅) that defines the maximum distance for the missed detection
hypothesis. Commonly used distance measures include the Euclidian or Maha-
lanobis distances, but other measures can also be employed. Thus, the most likely
association hypothesis is selected on the basis of minimising the defined distance
measure, i.e.:

θ̂jk = arg min
0≤j≤Mk

[
D(xk, y

j
k)
]

(3.41)

In general, the distance-based NN algorithm can be significantly faster than
probabilistic NN, as it replaces the (generally) costly evaluation of all the pdfs
in equation (3.38), with a typically cheap, in terms of computation, distance
calculation. However, as is often the case with approximation techniques, the
distance-based NN algorithm can only be guaranteed to be exact, in terms of
the calculated association probabilities, under certain assumptions. For example,
distance-based NN using a Mahalanobis distance metric is only exact in cases
where the state and measurement predictions are unimodal Gaussians.

Nevertheless, both formulations of the NN algorithm suffer from the same fun-
damental problem: making a hard decision about only the most-likely hypothesis
does not guarantee that it is also the correct one. This makes the NN algorithm
a somewhat naive approach to the data association problem. In cases of heavily
cluttered and/or populated environments, NN has proven to be inadequate in
a number of different occasions, causing tracker convergence and stability issues
[27, 57].

3.3.3 Probabilistic Data Association

In contrast to the hard-decision mechanism employed by NN methods, the Prob-
abilistic Data Association (PDA) [58] algorithm adopts a soft decision approach.
In PDA, all association hypotheses contribute to the calculation of the target
posterior, depending on the extent to which they satisfy the prediction. This
is achieved by computing an association probability p(θjk|Y1:k) for each measure-
ment hypothesis, which is then used as a weighting factor in calculating the
target posterior pdf as a mixture over the pdfs produced by considering each of
the association hypotheses independently:

p(xk|Y1:k) =
∑
θjk

p(xk|θjk, y
j
k, Y1:k−1)p(θjk|Y1:k) (3.42)

Computing the association probabilities p(θjk|Y1:k) is done in the same manner

37

3.3. Data Association
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

as the probabilistic NN algorithm, but instead of selecting a single hypothesis to
be used in generating the posterior pdf, all the pdfs are utilised. Thus, the
probabilistic NN algorithm can be viewed as a reduced case of the standard
PDA method. The operation described by equation (3.42) can be performed by
means of mixture reduction algorithms [59, 60] to reduce a mixture of association
hypothesis pdfs, weighted by their respective association probabilities, down to a
unimodal distribution.

3.3.3.1 PDA in Kalman Filters

The Probabilistic Data Association Filter was seminally derived within a Kalman
Filtering (KF) context (KFPDA), and provided a soft decision mechanism for
updating the target state posterior distribution p(xk|Y1:k) under the standard
assumptions of linear Gaussian models. As such, each of the conditional posterior
distributions of (3.38) and (3.42) are Gaussian densities of the form

p(xk|θjk, y
j
k, Y1:k−1) = N (xk;m

j
k, P

j
k) (3.43)

and the posterior density of (3.38) becomes a Gaussian Mixture, with mixture
weights βjk = p(θjk|Y1:k), i.e.

p(xk|Y1:k) =

Mk∑
j=1

βjkN (xk;m
j
k, P

j
k) (3.44)

The parametric version of PDA assumes Poison distributed clutter with spatial
density λ. This assumption is equivalent to the Poisson model of Section 2.5.1.
What is more, a typical assumption, made mostly for notational simplicity, is
that the target detection probability is constant and equal to PD for all target,
similar to the CDR model of Section 2.4.1. As such, a quick derivation of the base
association probability calculation equations (37)-(38) of [58] can be obtained by

38

3.3. Data Association
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

plugging (2.29), (2.35), (2.36) into (3.38), as follows:

βjk ∝


(1− pd(xk))pMc(Mk)

∏
i∈[1,...,Mk]

pC(yik), j = 0

1

Mk

pd(xk)p(y
j
k|xk)pMc(Mk − 1)

∏
i∈[1,...,Mk]\j

pC(yik), j = 1, . . . ,Mk

∝


(1− PD)

λMk
FAe

−λFA

Mk!
V −Mk , j = 0

1

Mk

PDp(y
j
k|xk)

λMk−1
FA e−λFA

(Mk − 1)!
V −Mk+1, j = 1, . . . ,Mk

∝λ
Mk
FAe

−λFA

Mk!
V −Mk


(1− PD), j = 0

PDp(y
j
k|xk)

V

λFA
, j = 1, . . . ,Mk

(3.45)

Therefore, the normalised PDA mixture weights can be computed as

βjk =


1− PD

1− PD +
∑Mk

i=1 L
j
k

, j = 0

Ljk
1− PD +

∑Mk

i=1 L
j
k

, j = 1, . . . ,Mk

(3.46)

where

Ljk ,
N (yjk; ȳk, Sk)PD

λ
(3.47)

and p(yjk|xk) = N (yjk; ȳk, Sk) is the likelihood of measurement yjk given the Gaus-
sian measurement prediction with mean ȳk and innovation covariance Sk, where
we have used the fact that λFA = λV .

In the original derivation of PDA [58], the presented algorithm requires that
the measurement update (3.8) of the standard Kalman Filter is modified, such
as to reduce the mixture over the measurement innovation terms associated with
each hypothesis. Nevertheless, as demonstrated by (3.44), the same process can
be more conveniently performed once the individual posterior estimates of (3.43)
have been obtained, by using the standard Kalman Filter recursion to update
each hypothesis, and then reducing the mixture using the weights in (3.46), as
follows:

x̄k =

Mk∑
j=0

βjkx̄
j
k (3.48)

39

3.3. Data Association
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

V̄k =

Mk∑
j=0

βjk(V̄
j
k + (x̄jk − x̄k)

T (x̄jk − x̄k)) (3.49)

It is worth noting here that even when PDA is applied in the context of
linear-Gaussian models, the over-arching PDA algorithm is ultimately a nonlinear
estimator. Although the estimate update in (3.48) may appear linear, it is in
fact nonlinear because the association probabilities βjk depend on the innovations
according to (3.46). What is more, the mixture reduction process performed
on each update leads to an increase of the covariance of the updated state, a
phenomenon also known as the effect of the measurement origin uncertainty [58].

3.3.3.2 Extension of PDA to Particle Filtering

As mentioned in the previous section, the PDA algorithm is inherently non-linear.
This fact, combined with the Gaussian Mixture reduction that is necessitated by
the nature of the Kalman Filtering PDA approach can introduce significant er-
rors in the estimation performance of the Kalman Filter based PDA, even when
the models considered are linear and Gaussian. A typical example can be il-
lustrated when all the posterior distributions resulting from the update of each
measurement hypothesis appear to have comparable weights, but their means
fall relatively far apart. In this case, even if the individual posteriors are highly
informative, the mixture reduction process can result in much less informative
combined update.

This is where the very nature of Expected Likelihood Particle Filters [28] can
provide huge benefits. From (3.31), it can be observed that the particle weights
depend strongly on p(yk|xik), i.e. the likelihood of the received observation yk with
respect to the particle state xik. However, in the standard Particle Filter recursion,
the weight update step assumes that only one measurement is available at each
time step and thus evaluation of p(yk|xik) is fairly straightforward, given a well
defined measurement model.

In contrast to the scenario of a single target with no-clutter, for which the
standard Particle Filter is suitable, when tracking targets in clutter, the tracker
may be presented with a variable number of different measurements, including
none. In terms of the weight update process, this means that the likelihood
p(Yk|xik) over all measurement hypotheses needs to be evaluated. Thus, the weight

40

3.3. Data Association
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

update equation (3.31) can be redefined as follows:

wi
k = wi

k−1

p(Yk|xik)p(xik|xik−1)

π(xik|xik−1, y1:k)
, i = 1, 2,, Np (3.50)

This is easily achieved by noting that, for the each particle, the joint likelihood
of the measurements at time tk is a mixture distribution, where the expected
likelihood is the weighted sum of the individual likelihoods with the weights
given by PDA. Recalling the definition from the previous section, PDA utilises
the mixture weights βjk, where each entry βjk represents the association probability
p(θjk|Y1:k), which is shown in (3.38) to be proportional to the likelihood of each
hypothesis. Thus, it can easily be shown that the expected likelihood p(Yk|xik)
can be computed via a process akin to the PDA equations (3.45)-(3.46) as

p(Yk|xik) ∝
Mk∑
j=0

βjk (3.51)

The weights βjk can be computed according to (3.45), but a slight modification
needs to be applied to (3.47) in order to consider the fact that the likelihood is
now evaluated for each individual particle as

Ljk ,
N (yjk; ȳik, Rk)PD

λ
(3.52)

where ȳik denotes the predicted measurement for the i-th particle and Rk is the
measurement noise covariance at time tk. It is worth noting here that the use of
a Gaussian likelihood function in (3.52) is only used to maintain similar notation
to (3.47).

Finally, by substituting (3.51) and (3.52) in (3.50), we can obtain a new
expression for the particle weights update equation

wi
k ∝ wi

k−1

[
λ(1− PD) +

∑Mk

j=1N (yjk; ȳik, Rk)PD

]
p(xik|xik−1)

π(xik|xik−1, y1:k)
(3.53)

The above formulation gives rise to an algorithm known as the Expected
Likelihood (EL) Particle Filter [28], which is essentially a PDA implementation
in a Particle Filtering context. In other literature, this PDA implementation is
alternatively reffered to as Monte-Carlo PDA (MCPDA)[61, 62].

There exist a number of benefits associated to the use of MCPDA over the

41

3.4. Performance analysis
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

standard KFPDA. The first benefit stems from the ability of MCPDA to avoid
the necessity for performing the mixture reduction of (3.48)-(3.49). In essence,
even though MCPDA still exhibits an overall increased uncertainty in the pro-
duced posterior, caused by the effect of the measurement origin uncertainty, the
likelihood evaluated for new measurements at each iteration is performed over the
true likelihood density, rather than its Gaussian approximation. Furthermore, as
the core recursion of MCPDA is built upon the standard Particle Filter recursion,
the algorithm exhibits the same benefits over KFPDA when applied to non-linear,
non-Gaussian models, as outlined for the case of Kalman and Particle Filters in
the context of standard Bayesian Filtering in Section 3.2.

3.4 Performance analysis

This section presents results generated by simulating and comparing the perfor-
mance achieved by the various algorithms presented in this chapter. The content
presented in this section aims to demonstrate two things: i) the ability of non-
linear models to describe the motion of objects with greater accuracy in a chosen
scenario, ii) the ability of Particle Filters to outperform any Kalman Filtering
approaches to tracking with such non-linear models.

3.4.1 Non-linear dynamic models

For the purpose of simulations, we consider the scenario of tracking the position
of a single manoeuvring ship, on a two-dimensional Cartesian plane (i.e. with
x, y coordinates). The trajectory followed by the target (see Fig. 3.1) contains
3 non-linear manoeuvres at times tm1 = 7s, tm2 = 73s and tm3 = 93s, with
linear (straight-line) motion between the manoeuvres. The target maintains a
steady absolute speed of 36 knots (≈ 42.5 mph) throughout the entire trajectory.
Noisy positional measurements are received every second and are generated by
adding random, zero-mean Gaussian noise to the ground-truth data, with stan-
dard deviation σm. That is the measurement(s) available at time k are given by
a Linear-Gaussian model, of the form:

yk = [xk, yk]
T + rk︸ ︷︷ ︸

hk(xk,rk)

, rk ∼ N(0, σ2
mI2x2) (3.54)

where xk, yk correspond to the positional coordinates of the target on the 2-
dimensional Cartesian plane and σm denotes the standard deviation of the i.i.d.
Gaussian noise on each coordinate.

42

3.4. Performance analysis
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

Figure 3.1: True trajectory followed by the ship during our experiments. The
start and end positions are denoted by the green and red filled circles respectively,
the ground-truth path of the target is denoted by the dashed line and the red
points show an example set of generated measurements for one simulation run,
with σm = 100m.

3.4.1.1 Single Target, no clutter

The first test-case scenario aims to investigate the benefits of using non-linear
dynamic models under the standard Bayesian Filtering context, in combination
with Particle Filters. Thus, it is assumed that only a single target is present
in the surveillance region, prior information about the target’s initial position
and velocity is available, and at each timestep exactly one noisy measurement is
obtained (i.e. there exist no clutter or missed detections). The trajectory followed
by the target can be observed in Fig. 3.1.

The models employed for the purposes of evaluation are the following:

• A nearly-Constant Velocity (CV) model, with noise diffusion coefficient
σ = 1m/s (see Section 2.2.2). The model assumes that the target’s velocity
on each axis remains nearly-constant between consecutive iterations. It is
described by a set of linear Stochastic Differential Equations (SDEs), where
the rates of change on each dimension are assumed to evolve according to
Brownian motions.

• The nearly-Constant Heading (CH) model, with σs = 1m/s and σφ =
0.16rad/s (see Section 2.2.4). The model decouples the absolute speed and
heading of a target and assumes that both quantities remain nearly constant

43

3.4. Performance analysis
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

between consecutive iterations. The SDEs that govern the CH model differ
to those for the CV in that they are non-linear. Thus, direct application
to a KF context requires the use of one of the two approximation variants,
namely EKF and UKF.

The tracking performance of 5 different algorithm-model pairs has been eval-
uated, as listed below:

• KF-CV: A standard Kalman Filter (KF) using the CV model. EKF, UKF
reduce to the standard KF under linear models.
• PF-CV: A Particle Filter (PF) employing 5000 particles, using the CV

model.
• EKF-CH: A first-order Extended Kalman Filter (EKF) using the CH model.
• UKF-CH: An Unscented Kalman Filter (UKF) using the CH model.
• PF-CH: A Particle Filter (PF) employing 5000 particles, using the CH

model.

The performance evaluation is achieved by comparing the positional Root
Mean Squared Error (RMSE) for each algorithm-model pair, averaged over 50
Monte-Carlo simulation runs, with variable values of measurement noise intensity
σm. Figures 3.2(a)-3.2(d) show the relevant results received from examining four
different variations, by allowing σm to take the values of 25m, 50m, 75m and
100m, respectively.

As it can be observed, during the linear parts of the trajectory, the RMSE
for KF-CV is marginally lower than that for PF-CV, while both are superior to
any CH based algorithms, all of which produce similar levels of RMSE. This ob-
servation implies that the steady-state error of the CV model is lower than that
of the CH model. Following each of the manoeuvres, we can compare the perfor-
mance for each of the algorithms in terms of the overshoot error (i.e. max RMSE
following a manoeuvre) and settling time (i.e. time to converge following a ma-
noeuvre). In this context, PF-CH is found to exhibit superior performance across
all variations of σm, by demonstrating the lowest overshot error and lowest settling
time. The rest of the algorithms rank in the following order: UKF-CH, EKF-CH,
PF-CV, KF-CV. As σm is increased, the RMSE for EKF-CH and UKF-CH can
be observed to increase relative to the RMSE of PF-CH, while approaching (and
even surpassing) the RMSE for KF-CV and PF-CV. Such a behaviour is expected
for EKF and UKF in general, since an increase in σm implies an amplification
of the involved non-linearities, already induced by the target manoeuvres, which
has a detrimental effect to the linear/Gaussian approximations inherent to both
algorithms.

Overall, the above results confirm the expectations relating to the advantages

44

3.4. Performance analysis
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

(a) σm = 25m (b) σm = 50m

(c) σm = 75m (d) σm = 100m

Figure 3.2: RMSE vs Time for each of the 5 algorithms, with 4 different values
of noise intensity σm. The black vertical lines, drawn at tm1 = 7s, tm2 = 73s and
tm3 = 93s, depict the respective times when each of the 3 manoeuvres is initiated.

of Particle Filters and non-linear dynamic models. It can be observed that, even
when examining a very simple scenario, a more accurate (non-linear) dynamic
model can yield significantly better tracking performance, whose benefits are
further complemented by the use of a PF. The advantages of combining PFs
with non-linear models become more obvious when clutter is introduced in the
measurements. Such a scenario will be examined next.

3.4.1.2 Single Target, with clutter

Building up from the results observed in the previous section, this test-case sce-
nario is very much identical in terms of the trajectory followed by the target.
However, in contrast to before, additional (clutter) measurements are introduced
at each measurement scan, while target detectability is modelled according to a
Constant Detection Rate model (see Section 2.4.1, with probability of detection

45

3.4. Performance analysis
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

PD = 0.9. Clutter is assumed to evolve according to a Poisson Rate with Uniform
Position model (see Section 2.5.1), where the number of clutter measurements per
scan is assumed to be Poisson distributed, with mean λFA across the surveillance
volume V , while their positions are uniformly distributed over the entire region.
Figure 3.3 shows a snapshot of an example measurement scan extracted from one
of the simulations.

Figure 3.3: Snapshot of an example measurement scan, with λFA = 50. Clutter
measurements are shown in red, and the true target measurement is shown in
green.

The tracking performance of 4 different algorithms has been evaluated, as follows:

• PDAF-KF-CV: A Probabilistic Data Association Filter (PDAF) using the
CV model and a Kalman Filter (KF) to perform prediction and update of
tracks. EKF, UKF reduce to the standard KF under linear models, and
thus have not been evaluated.
• PDAF-EKF-CH: A Probabilistic Data Association Filter (PDAF) using the

CH model and a first-order Extended Kalman Filter (EKF) to perform
prediction and update of tracks.
• PDAF-UKF-CH: A Probabilistic Data Association Filter (PDAF) using the

CH model and an Unscented Kalman Filter (UKF) to perform prediction
and update of tracks.
• MCPDAF-CH: A Monte-Carlo (MC) Probabilistic Data Association Filter

(PDAF) using the CH model and a Particle Filter (PF) employing 5000
particles to perform prediction and update of tracks..

Due to the increased uncertainty, added to the problem through the inclusion

46

3.4. Performance analysis
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

of missed detections and clutter measurements, it becomes possible for tracks to
diverge from the true trajectory and begin tracking false alarms, leading to a
phenomenon known as track loss. When an algorithm loses track of a target, the
amount by which the estimate diverges from the true trajectory can vary to a
great extent and, thus, the computed RMSE is no longer directly relevant to the
tracking performance of the algorithm. For this reason, performance evaluation
of the individual algorithms is performed using a different metric to the one
employed for the previous test case.

Given a measurement noise intensity σm, we consider that an algorithm loses
track of the target when the RMSE of its estimate is higher than 3σm. A check
is performed on each time step, which indicates whether a track loss event has
occurred for each of the algorithms. Continuing, once a single simulation has
been executed, the track loss probability for each algorithm can be computed as
the fraction of time steps during which a track loss event has occurred, over the
total number of time steps for the simulation. When averaged over a number of
Monte Carlo simulations, the track loss probability gives us a measure of how
likely an algorithm is to lose track of a target, given a set of chosen parameters.
Figures 3.4(a)-3.4(b) show the results obtained by performing two experiments to
compute the track loss probability for each algorithm, with varying measurement
noise intensity σm and clutter rate λFA, respectively for each experiment, averaged
over 50 Monte Carlo simulation runs.

(a) (b)

Figure 3.4: Track loss probability for each of the 4 algorithms, for variable values
of (a) measurement noise intesnity (σm) and (b) mean clutter rate over the entire
surveillance region (λFA).

The ranking order of the four algorithms is the same in both experiments,
which also coincides with the ranking obtained in the previous section for the
equivalent algorithms. The PDAF-KF-CV algorithm has the highest levels of

47

3.4. Performance analysis
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

track loss probability, making it the worst choice out of the four. Second to last
was the PDAF-EKF-CH algorithm, followed by PDAF-UKF-CH. One observation
that can be made here is that, even though EKF-CH and UKF-CH had very sim-
ilar RMSE in the single-target, no clutter scenario, the performance improvement
of PDAF-UKF-CH over PDAF-EKF-CH is much more noticeable here. This can
be explained by the ability of UKF to better capture the posterior’s higher-order
moments relative to EKF, combined with the fact that PDAF, by definition, pro-
duces multi-modal likelihoods (assuming multiple measurements are available).
Finally, the best performing algorithm is the MCPDAF-CH, which demonstrates
incredibly low track loss probability, due to the ability of the underlying PF to
fully capture the multi-modalities explained above, while also avoiding any linear
approximation of the models.

As it can be observed, the advantages stemming from the combination of
particle filtering methods, with non-linear dynamic models, become increasingly
noticeable as the involved uncertainty grows. This is a strong indication that the
performance improvement will be even greater when the complexity of the track-
ing problem is increased, by extending the problem to involve tracking of mul-
tiple (closely-spaced) targets, with unknown initial positions and lifespan, under
highly non-linear/non-Gaussian observation and clutter models. Work conducted
towards achieving this extension is presented in the next section.

3.4.2 Nonlinear measurement models

3.4.2.1 Single Target, no clutter

For the purposes of simulations, we consider the scenario of tracking the position
of a single vessel, on a two-dimensional Cartesian plane, using synthetic radar
data. The simulated trajectory followed by the target (see Figure 3.5) contains 3
non-linear manoeuvres, with linear (straight-line) motion between the manoeu-
vres, and the vessel maintains a steady absolute speed of approx. 36 knots (≈ 42.5
mph), throughout the entire trajectory. The dynamics of the target are assumed
to be governed by a Constant Heading (CH) model (see Section 2.2.4), with
σs = 1m/s2 and σφ = 0.16rad/s.

A Radar sensor is placed at coordinates (0m, 0m), which generates observa-
tions of the target position in terms of azimuth & range, over 185 scans, at a
rate of 3 sec/scan. Measurement noise is modelled using a Gaussian Azimuth-
Range measurement model (see Section 2.3.2), having Gaussian noise in both
azimuth and range, with standard deviations σθ and σr, respectively. That is,

48

3.4. Performance analysis
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

the measurement(s) available at time tk are given by:

yk =

[
arctan2(yk, xk)√

x2
k + y2

k

]
+ rk︸ ︷︷ ︸

hk(xk,rk)

, rk ∼ N
(

0,

[
σ2
θ 0

0 σ2
r

])
(3.55)

Figure 3.5: True trajectory followed by the vessel during our experiments. An
example of the entire history of measurements, generated in a single experiment,
with noise parameters σr = 10 m and σθ = π

45
rad, is also depicted.

The tracking performance of 3 different algorithms has been evaluated, as follows:

• EKF: An Extended Kalman Filter (UKF)[24, 37].
• UKF: An Unscented Kalman Filter (UKF)[43].
• PF: A Particle Filter (PF)[6] employing 5000 particles.

The performance evaluation is achieved by means of comparing the positional
Root Mean Squared Error (RMSE) for each algorithm, averaged over 50 Monte-
Carlo simulation runs, with variable values of noise intensity σr and σθ. From
the results of Table 3.1, it can be observed that, irrespective of the measurement
noise intensity, the PF provides a substantial improvement compared to the other
two algorithms, with UKF ranking second and EKF following closely behind.
The performance differences between the three algorithms become increasingly
apparent as the measurement noise, in either range and/or bearing, is increased.

The observed outcome can be attributed to the linearisation and Gaussian
approximations involved in both EKF (Taylor-Series expansion) and UKF (Un-
scented Transform), respectively, which introduce estimation errors in both algo-

49

3.4. Performance analysis
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

Mean RMSE (m)

Filter
Params σr = 10 m

σθ = π
180

rad
σr = 50 m
σθ = π

180
rad

σr = 10 m
σθ = π

90
rad

σr = 10 m
σθ = π

45
rad

No filter 13.0688 47.3391 47.4761 432.0758
EKF 5.9532 22.8774 14.8999 79.6216
UKF 5.6949 20.8812 14.0779 73.3490
PF 4.7842 15.3307 12.7059 58.5702

Table 3.1: Performance comparison between EKF, UKF and PF for range of
measurement noise parameter values. The computed mean RMSE, averaged over
50 Monte-Carlo simulations is presented, for varying values σr and σθ.

rithms. An example illustration of these phenomena is shown in Figure 3.6. More
specifically, the involved first-order analytic linearisation process causes the EKF
to underestimate the covariance of the measurement noise, leading to a similar
effect on the covariance of its estimates. On the other hand, UKF overcomes this
issue through its utilisation of a deterministicaly selected set of (non-linearly)
transformed (sigma) points to perform statistical linear regression. Even so, the
performance of UKF deteriorates significantly as the approximated density be-
comes increasingly non-Gaussian. Finally, we can see that the PF, by utilising a
Monte-Carlo approximation of the uncertainty, is able to fully capture the mea-
surement noise distribution, thus providing a significant performance benefit over
the other algorithms, as demonstrated by the results.

3.4.2.2 Single Target, with clutter

This section extends the previous experiment by considering clutter and missed
detections, thus necessitating data association. The scenario of interest is the
same as before, however target detectability is modelled according to a Constant
Detection Rate model (see Section 2.4.1), with probability of detection PD = 0.9.
Measurement noise is modelled using a Gaussian Azimuth-Range measurement
model (see Section 2.3.2), having Gaussian noise in both azimuth and range,
with standard deviations σθ = π

180
rad and σr = 10m, respectively. Additionally,

clutter is modelled using to a Poisson Rate with Uniform Position model (see
Section 2.5.1), where the number of clutter measurements per scan is assumed to
be Poisson distributed, with mean λFA across the surveillance volume V , while
their positions are uniformly distributed over the polar search space defined on
the azimuth and range coordinate system, such that pC(yjk) = U([0, 2500], [0, 2π]).

The tracking performance of 3 different algorithms has been evaluated, as follows:

50

3.4. Performance analysis
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

(a) EKF (b) UKF

(c) PF

Figure 3.6: Visualisation of radar measurement noise approximation in EKF,
UKF and PF. The first 4 contours of each distribution, are plotted with red lines.

• PDA-EKF: Probabilistic Data Association, using an EKF as the underlying
filter.
• PDA-UKF: PDA, using a UKF as the underlying filter.
• PDA-PF: PDA, using a PF (with 5000 particles) as the underlying filter.

The performance evaluation is achieved by means of comparing the value of
the Root Mean Squared Error (RMSE) achieved by each algorithm, averaged
over 50 Monte-Carlo simulation runs, with variable values of clutter rate λFA.
From the results of Table 3.2, it can be observed that the merits of combining

51

3.4. Performance analysis
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

PFs with non-linear, non-Gaussian models become increasingly apparent as the
involved uncertainty grows. The jumps of RMSE values, observed in the case of
both PDA-EKF and PDA-UKF, indicates that, for the given clutter rate, these
algorithms lost track of the target, leading to a false track that drifts off and gets
driven solely by clutter measurements.

Mean RMSE (m)

Filter
Params

λFA = 0 λFA = 50 λFA = 250 λFA = 500

PDA-EKF 5.8925 56.4789 108.6974 184.7950
PDA-UKF 5.6689 5.9847 74.6874 98.8756
PDA-PF 4.7925 5.3145 5.5432 7.2534

Table 3.2: Performance comparison between PDA-EKF, PDA-UKF and PDA-PF
for range of clutter parameter values. The computed mean RMSE, averaged over
50 Monte-Carlo simulations is presented, for varying values λFA.

When expressed in its true form, PDA leads to multi-modal estimates, as
the posterior distribution for each target is acquired on the basis of calculating
a weighted average over a set of joint hypotheses, formed by assuming that: i)
a single measurement originated from at most one target; and ii) each target
produces at most a single measurement. Even under the basic assumption of
a Gaussian prior and linear-Gaussian models, the resulting posterior distribu-
tion is a Gaussian mixture, with individual weights corresponding to the joint
association probabilities generated by PDA. In the case of PDA-EKF and PDA-
UKF, the mixture is reduced to a single Gaussian at each timestep, leading to
approximation errors even in the most basic scenario. As previously shown (see
Chapter 2), when non-linear, non-Gaussian models are introduced, the resulting
posterior is no longer guaranteed to result in a Gaussian, thus inducing further
approximation errors in the two algorithms.

The above mentioned phenomenon is illustrated in Figure 3.7, where we can
see that PDA-PF is able to capture the full multi-modality and non-Gaussianity
of the resulting posterior, while the other two algorithms approximate the density
as a reduced single Gaussian, with the mean of both estimates falling in a region
of low probability in the true density. It is also worth noting that the covari-
ance of the estimate formed by PDA-EKF is slightly tighter than that of PDA-
UKF, which is a direct result of the issues associated with EKF underestimating
the measurement (as well as dynamic) model noise covariance, as explained and
demonstrated in Chapter 2.

52

3.5. Conclusion
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

(a) EKF (b) UKF

(c) PF

Figure 3.7: Visualisation of an example single target posterior distribution, as
estimated by PDA-EKF, PDA-UKF and PDA-PF, respectively. The background
intensity of each subfigure shows the true distribution, while the red lines show
the first 4 contours of each distribution.

3.5 Conclusion

This chapter delved into the specifics of the Bayesian Filtering and Data Associa-
tion problems in the context of Single Target Tracking, building on the framework
of state-space models presented in Chapter 2, and presented a review of existing
mainstay algorithms. An introduction was provided to the fundamental concepts
of the standard Bayesian Filtering framework, which were then utilised to formu-

53

3.5. Conclusion
Chapter 3. Non-Linear, Non-Gaussian Single-Target Tracking

late the Kalman and Particle Filtering algorithms, while discussing the various
advantages and pitfalls of each approach. Furthermore, the Data Association
problem was considered in the context of Single-Target Tracking. This discus-
sion was followed by a brief discussion on the Nearest Neighbour and Probabilistic
Data Association algorithms, while in the latter case a clear distinction was made
between the application of the algorithm in a Kalman and Particle Filtering con-
text, respectively. Finally, a review of the algorithms was performed by comparing
the performance achieved by each algorithm in a range of simulated scenarios.
The benefits of combining Particle Filters with non-linear, non-Gaussian dynamic
and measurement models were demonstrated, while in both cases emphasis was
given to the amplification of the achieved enhancement when the problem is ex-
tended to consider clutter and missed detections.

54

CHAPTER 4

Non-Linear, Non-Gaussian Multi-Target Tracking

4.1 Introduction

When the number of considered targets is greater than one, the problem of track-
ing is referred to as Multi-Target Tracking (MTT). Multi-Target Tracking in the
presence of clutter and sensor probability of detection less than unity is more
intricate than the Single-Target Tracking problem. In addition to process and
measurement noise in the dynamic and observation models, respectively, one has
to contend with much more complex sources of uncertainty, such as the mea-
surement origin uncertainty, multi-target data association, false alarms, missed
detections, as well as births and deaths of targets.

In contrast to the Single-Target Tracking case, Multi-Target Tracking aims to
jointly estimate both the number of targets that are present within the surveil-
lance region and their respective states. Both the states of targets, as well as
their number may vary over time, as targets can move unexpectedly and they
can appear or disappear at random. Again, a set of measurements is assumed to
be received at discrete intervals, where each measurement can potentially origi-
nate from clutter, from existing targets that are already known to exist, and/or
from new targets that have appeared in the surveillance area since the last re-
port time. Hence, it becomes apparent that the data association problem in the
case of Multi-Target Tracking becomes increasingly complex, not only because
multiple targets may share measurements, but also due to the added uncertainty

55

4.2. The Multi-Target Bayes Filter
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

of whether such measurements should be attributed to the appearance of new or
fading targets.

Conventional approaches to solving the Multi-Target Tracking problem in-
volve breaking the problem down to a set of well-defined sub-system components,
each tasked with a particular operation [1, 27] (Figure 4.1). This paradigm has
proven successful in providing a solution in a multitude of applications [63, 64,
65, 66]. Recent advancements in the field of Multi-Target Tracking have given
birth to algorithms that circumvent the necessity of decomposing the problem as
is done by convention [67, 68]. Such approaches view the Multi-Target Track-
ing problem as a joint Bayesian estimation problem, and derive their formulation
from the Multi-Target Bayes Filter, building upon the now well established theory
of Random Finite Sets [69, 70].

This chapter builds on the concepts of state-space modelling and Single-Target
Tracking presented in the previous chapters, and extends the discussion to the
case of Multi-Target Tracking. Section 4.2 introduces the Multi-Target Bayes Fil-
ter, while drawing relation to the Standard Bayes Filter. Section 4.3 provides a
summary and brief derivation of the algorithms that form the main components
of conventional Multi-Target trackers, with special focus to the utilised Data
Association and Track Management methods. In the same section, the author
presents a discussion on the relation between the Joint Probabilistic Data Associ-
ation (JPDA) and Joint Integrated PDA algorithms, with the aim of highlighting
how the latter can be performed using the same constructs. Section 4.5 continues
by discussing the concept of Random Finite Sets (RFS) and presents a formula-
tion of the Probability Hypothesis Density (PHD) filter as an approximation to
the Multi-target Bayes Filter. Section 4.6 discusses a state-of-the-art radar track
initiation technique which utilises a PHD filter to model the density of uniniti-
ated targets and consecutively propose tracks for initiation on the basis of target
existence probabilities. Preliminary simulation results are presented in Section
4.6.1 to showcase the performance benefits of the PHD track initiator compared
to other mainstay approaches using synthetic data, while Section 4.7 presents a
case study performed on real data collected from a commercial radar, whereby a
more thorough qualitative analysis is performed on a pair of challenging scenarios,
with the aim of demonstrating a real operational advantage.

4.2 The Multi-Target Bayes Filter

Suppose that at time step tk ∈ N, there exist Nk targets with states x1
k, . . . , x

Nk
k

taking values in the single-target state space X ⊆ IRnx . Then the multi-target

56

4.2. The Multi-Target Bayes Filter
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

state can be represented as a finite set Xk of the form:

Xk = {x1
k, . . . , x

Nk
k } ∈ F(X) (4.1)

where F(X) is the collection of all finite subsets of X . At each timestep, new
targets may appear in the vicinity of the surveillance region S, while existing
targets may either continue to exist or disappear from S. Furthermore, targets
may be detected in a given timestep, but it is also possible that they may go
undetected.

Similarly, suppose that at tk a set of Mk measurements {y1
k, ..., y

Mk
k } are re-

ceived, each taking values in the single-target measurement space Y ⊆ IRny . Then
the multi-target measurement is represented by the finite set Yk as:

Yk = {y1
k, . . . , y

Mk
k } ∈ F(Y) (4.2)

where F(Y) is the collection of all finite subsets of Y .

Measurement scans are composed of detections originating from targets, a.k.a.
true detections, as well as spurious detections, a.k.a. clutter, that can originate
from a number of different sources: background interference and/or internal in-
terference of the sensors. Thus, Yk can be decomposed as follows:

Yk = Y C
k ∪ Y ∆

k (4.3)

where Y C
k contains the set ofMC

k clutter measurements, and similarly Y ∆
k contains

the set of M∆
k detections generated by targets.

Therefore, the objective of the Multi-Target Bayes Filter [71] is then to ob-
tain an expression for the posterior probability density of the multi-target state,
conditional on all measurements received up to and including time tk. In math-
ematical terms, the quantity to be computed is a probability density function
(pdf) of the form:

p(Xk|Y1:k) (4.4)

The Multi-Target Bayes Filter recursion can be obtained by generalising the
standard Bayes Filter recursion discussed in Section 3.2. Thus, the recursion is
again performed using two steps: prediction and update. The prediction step
propagates the last estimate of the multi-target state (a.k.a. the prior) through
the multi-target transition density such as to generate a prediction of the state pdf
between measurement times. Since the state is usually subject to unknown distur-
bances (caused by target birth/death and transition noise), prediction generally
translates, deforms, and spreads the state pdf. Next, the update stage makes use
of the latest received measurement to update/correct the prediction pdf, through

57

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

application of the Bayes theorem, which is the mechanism that allows updating
one’s knowledge about the target state in light of the new measurement.

Algorithm 4.2.1 (Multi-Target Bayes Filter) The set of recursive equations
necessary to compute the predicted p(Xk|Y1:k−1) and posterior p(Xk|Y1:k) distri-
butions are given by the following Bayesian filtering equations.

• Initialisation: The filter is initialised with the prior distribution p(X0).

• Prediction: Given the multi-target transition density p(Xk|Xk−1) and the
prior p(Xk−1|Y1:k−1), the Chapman-Kolmogorov equation [30] can be used
to compute the predicted distribution of Xk:

p(Xk|Xk−1, Y1:k−1) =

∫
p(Xk|Xk−1)p(Xk−1|Y1:k−1)δXk−1 (4.5)

• Update: Given the multi-target measurement likelihood p(Yk|Xk), the mea-
surement set Yk and the above computed predicted distribution, the target
posterior distribution p(Xk|Y1:k) can be calculated using Bayes’ rule:

p(Xk|Y1:k) =
p(Yk|Xk)p(Xk|Xk−1, Y1:k−1)∫
p(Yk|Xk)p(Xk|Xk−1, Y1:k−1)δXk

(4.6)

The recurrence relations of (4.5) and (4.6) form the basis for the Multi-Target
Bayes Filter (MBF), which is the optimal Bayesian solution to the problem of
recursively calculating the exact multi-target posterior density p(Xk|Y1:k). It is
important to note that this recursion is a non-trivial generalisation of (3.2) and
(3.3). This is because the transition density p(Xk|Xk−1) needs to also consider
the uncertainty introduced by the appearance and disappearance of targets, while
the multi-target likelihood p(Yk|Xk) needs to consider the uncertainty relating to
missed detections and false alarms. Furthermore, the integrals in the relations
(4.5) - (4.6) are nonstandard set integrals. Finally, since the multi-target posterior
density p(Xk|Y1:k) is defined over F(X), practical implementations of MBF for
non-linear, non-Gaussian models are challenging and usually limited to a small
number of targets [72, 73]. Methods that have been developed to provide a
solution to the above problems will be analysed in the following subsections.

4.3 Conventional Multi-Target Tracking

Conventional approaches to solving the Multi-Target Tracking problem involve
breaking the problem down to a set of well-defined sub-system components, each

58

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

tasked with a particular operation [1, 27]. This paradigm has proven successful in
providing a solution in a multitude of applications [63, 64, 65, 66]. A structural
overview of an exemplary conventional Multi-Target Tracking system is shown in
Figure 4.1.

Similar to the case of Single-Target Tracking, standard Bayesian Filtering is
applied in order to predict and update the states of targets, based on detection
hypotheses generated via Data Association techniques. However, as already em-
phasised, the Data Association process is now much more involved, as it must be
applied over the joint data association problem of interacting targets, with the
added uncertainty of target existence. To reduce the computational complexity
of the necessary Data Association, an optional Measurement Gating step is per-
formed to limit the number of possible association hypotheses for each target. In
addition to the above, Track Management methods are employed to handle the
appearance and disappearance of targets in the surveillance region.

Figure 4.1: Basic components of a conventional Multi-Target Tracking system.

4.3.1 Measurement Gating

Measurement gating is an approximation technique, introduced as a pre-processing
step on the detections, with the main objective of reducing the computational
complexity of the data association process. In heavily cluttered environments, a
fringe benefit of gating is to limit the clutter measurement density fluctuations
within the gate. This is typically achieved by down-selecting only the most likely
measurements that can be associated to each track, by drawing a validation re-
gion around each target, termed as the target’s gate. The validation region then

59

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

allows for a hard decision to be made about the different valid measurements.
Although the concept of a validation region does not guarantee that a measure-
ment in the gate has originated from the corresponding target, it provides a likely
hypothetical candidate for the association problem.

There exist a multitude of gating methods in the tracking literature [74, 75,
76]. The most commonly employed gating technique uses an ellipsoid to represent
the gate region. At each time step tk, the previous state estimate xk−1 of a given
target is predicted forward using an appropriately defined dynamic model, as
discussed in Section 2.2, giving rise to a prediction xk|k−1. Making use of the
measurement models discussed in Section 2.3, the target’s expected measurement
ȳk mean and the associated covariance matrix Sk can be computed. It is assumed
that the true measurement yk, conditioned on the set of all measurements up to
tk−1, is normally distributed with pdf

p(yk|xk|k−1, Yk−1) = N (yk; ȳk, Sk) (4.7)

Thus, the gate region VG(k, γ) can be defined by an ellipse having a centroid
ȳk and volume VG(k) as

VG(k, γG) = {y : (y − ȳk)
TS−1

k (y − ȳk) ≤ γG}

VG(k) = cnyγ
ny
2
G |Sk|

1
2

(4.8)

where ny denotes the dimensionality of the measurement vector, cny is the volume
of the ny-dimensional unit hypershpere and γG is the set gate threshold. The set
V is defined by a region on the state-space also known as ellipsoid of probability
concentration; that is, the minimum volume that contains a given probability
mass, under the assumption that the uncertainty is normally distributed. The
semi-axes of the ellipsoid are the square-roots of the eigenvalues of γGS.

The left hand side of the inequality condition of (4.8) is the Mahalanobis
distance between some measurement y and the ellipse centroid ȳk. As such, γG
describes the maximum acceptable distance, in terms of the number of standard
deviations from ȳk, that measurements will be considered as valid association
hypotheses for any given track. Provided that the target state and the measure-
ment model are correct, γG is X 2-distributed and can be easily computed given
the desired probability of gating (PG) and the dimensionality of the tracked state.

The process of determining the size of the gate can be crucial for tracking in
highly cluttered environments. The introduction of a relatively small gate can
lead to the exclusion of measurements originating from clutter, but also bears the
danger of ignoring true measurements when the target does not follow closely the

60

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

dynamic model assumptions (e.g. during a manoeuvre). At the same time, using
a large gate may ensure that true measurements are captured by the gate, but
can lead to the inclusion of large number of false or low-probability detections,
which can hinder the computational performance of the system. This thesis will
not delve into the specifics of gate size optimisation, however more information
can be found in [75, 76].

4.3.2 Track Management

As is often the case, prior knowledge of the number of targets, as well as their
initial target position and velocity, is not available to Multi-Target Tracking sys-
tems. Thus, Track Management is essential in order to identify and maintain
tracks for persisting targets. A persisting target is most generally defined as an
object that will persist in the surveillance region for several scans, while satisfying
certain constraints regarding its dynamic behaviour and detectability.

Track Management is typically split into three sub-processes: i) Track Initia-
tion; ii) Track Confirmation; and iii) Track Deletion. A notable exception of this
convention are Track-Before-Detect methods, where Track Initiation and Confir-
mation are typically considered together, although this is not necessarily always
true.

4.3.2.1 Track Initiation

The initiation step is employed in order to set up new tracks from measurements.
This is usually accomplished by spawning new tracks for all measurements that
are deemed as unlikely to have been associated with any existing targets.

In systems where measurement gating is performed, candidate measurements
are typically chosen as ones that have not fallen withing the validation gate of
any existing tracks; that is, they do not satisfy the inequality of (4.8) for any
track. However, this can generally prove problematic in a number of situations.
One example is when tracking closely spaced targets, where measurements from
newly appeared targets will have a high probability of falling within the gates of
existing tracks, meaning that these targets may take a long time to be initiated by
the tracker, or even be missed altogether. Another potential problem can exhibit
itself when the measurement noise generated by the sensors is relatively large, or
when measurement reports are received at sparse intervals. Both scenarios can
lead to a high uncertainty associated with the measurement prediction of targets,
which (as seen from (4.8)) can lead to large target gates, thus posing similar
issues to the previous example.

61

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

An alternative approach, that is also applicable to systems that do not employ
gating measures, is to weight the impact of measurements by the probability that
they are unused by existing tracks. As such, a threshold can be defined on
the joint probability that a measurement is not associated to any targets. Let
p(αik = j|Yk) denote the probability that yjk is associated to the i-th track, then
the probability that measurement yjk is unused by the existing tracks can be
approximated by

p(yjk unused) ≈
Nk∏
i=1

(1− p(αik = j|Yk)) (4.9)

An obvious limitation of this approach is that the joint association probabilities
p(αik = j|Yk) are generally costly to compute. Thus, the above method can only
typically be applied to systems that employ soft data association methods, such
as (J)PDA and variants, as the quantities of interest are computed as part of the
standard algorithm and thus can be readily extracted; the sole purpose of hard
data association, such as (G)NN, is to circumvent the necessity of evaluating
these quantities.

4.3.2.2 Track Confirmation and Deletion

In a large number of cases, especially in highly cluttered scenarios, many of the
tracks spawned during the track initiation process may have originated from false
alarms, thus necessitating the existence of a method for classifying newly spawned
tracks. The concept of Track Confirmation is employed for this exact purpose. As
such, newly initiated tracks, also known as tentative tracks, are typically dealt
separately to persisting, or confirmed, tracks. What is more, once a tentative
track is confirmed, it is not guaranteed to exist forever, and thus, Track Deletion
schemes can be employed to identify and kill off fading tracks.

M-out-of-N

Early ad-hoc track management techniques based their operation on maintaining
a count of M subsequent iterations, out of a N sized window of report intervals,
during which a track has been successfully associated to at least one measurement.
Due to their heuristic rule-based approach, such techniques are commonly referred
to as M-out-of-N methods [77, 10]. With thisM/N measure in hand, confirmation
(Mconf) and deletion (Mdel) thresholds can be set, such as to confirm tracks which
have been successfully detected in Mconf out N iterations, and respectively delete
tracks which have not been detected in Mdel out of N iterations. As it is obvious,

62

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

such techniques do not allow for the direct incorporation of clutter and detection
models, such as the ones discussed in Sections 2.5 and 2.4, meaning that pre-
processing of the sensor data (e.g. using clutter maps) is compulsory for such
techniques to be applied in scenarios involving dense clutter.

Log Likelihood Ratio

Another commonly used technique is a score-based approach, known as the Log
Likelihood Ratio Test [1, 78]. According to this method, each track is assigned a
log likelihood ratio (LLR) score defined as

LLR = log
p(y|H1)

p(y|H0)
= log

PT
PF

(4.10)

where H1, H0 denote the hypotheses that the track corresponds to a true or
false target, with respective probabilities PT and PF , and p(y|Hi) is the proba-
bility density function evaluated with the associated measurement y, under the
assumption that Hi is true. Upon initiation, each track is assigned an initial score
and, on consecutive iterations, the score of each track is increased, or decreased,
depending on the computed likelihood of its associated measurements as

LLRk = LLRk−1 + ∆L (4.11)

where

∆L = log
p(yj

k|H1)

p(yj
k|H0)

(4.12)

Using similar notation to (4.23), an expression for ∆L can be obtained as follows:

∆L = log


(1− pd(xk)PG)pMc(Mk)

∏
i∈[1,...,Mk]

pC(yik), j = 0

pd(xk)p(y
j
k|xk)pMc(Mk − 1)

Mk

∏
i∈[1,...,Mk]\j

pC(yik), j 6= 0
(4.13)

In the case of Poisson distributed clutter with mean λ, and uniform probability
of detection PD, (4.13) can be simplified using a similar process and notation to
the derivation of (4.24) as follows:

∆L = log


(1− PDPG), j = 0

PDp(y
j
k|xk)
λ

, j 6= 0
(4.14)

63

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

Then, carefully selected high and low thresholds (Thigh, Tlow) are used as condi-
tions for confirming and deleting tentative tracks, while a deviation (THD) from
the maximum LLR is used for the deletion of confirmed tracks [1]. Following the
standard LLR definition, these thresholds are defined as follows:

Tlow = log
β

1− α
, Thigh = log

1− β
α

(4.15)

where α is the false track confirmation probability and β the true track deletion
probability. As stated in [1], α can be defined from the system requirements on
false track initiation. For example, if the system generates λFA false alarms per
scan and only NFC false track confirmations are allowed within NS scans, then
one can set

α =
λFA

NSNFC

(4.16)

A typical choice of β is β ≤ 0.1. The choice of β is less important since its
effect on the track confirmation threshold is much smaller. The incorporation
of probability concepts within this approach makes it possible for dynamic and
clutter models to be incorporated within the process, although it can be highly
a challenging task [79].

One main disadvantage of both above described approaches, lies in the fact
that tentative (unconfirmed) tracks are treated in very much the same way as
normal tracks. In most cases, a tentative track is initiated for each unassociated
measurement, which, in highly cluttered environments, bears the threat of devot-
ing the majority of computational resources to tracking spurious tracks. Recent
research [80] has demonstrated the use of the notion of existence probability [81],
logarithmically proportional to LLR, and a modified PF search track, which cir-
cumvents the above problems, but has the limitation that only one track can be
initiated at any time. Further work by the same authors [82], presents an even
more appealing, solution by substituting the search track with a PHD filter and
deriving a simple rule for extracting multiple true tracks from the PHD, at any
given time. A similar approach to the one presented in [82] was also developed
in parallel in [83].

4.3.3 Data association

4.3.3.1 Problem Formulation

Once standard gating procedures have been performed, the set of valid association
hypotheses between a given track and all of its candidate measurements, can be

64

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

conveniently expressed in terms of a validation vector Ωi
k, composed of Mk binary

elements:
Ωi
k = [ωi,1k , ...ω

i,Mk

k] (4.17)

where each ωi,jk for j > 0 serves as an indicator for the event of measurement yjk
falling inside the gate of i-th target

ωi,jk =

{
1, if yjk gated

0, otherwise
(4.18)

Finally, the joint validation matrix Ωk is established as the vertical concate-
nation of all vectors Ωi

k, and lists all valid measurement-to-track associations. As
such, Ωk can be defined as follows:

Ωk =

 Ω1
k

...

ΩNk
k

 (4.19)

For the purposes of this section, unless stated otherwise, the assumption is
posed that the number of targets Nk is known a priori and remains constant
throughout the data association (i.e. no target births/deaths take place). Let αik
be a random variable representing the measurement associated with track i, or 0
if the track is not detected at time tk

αik =

{
j, if measurement yjk associated with track i

0, otherwise
(4.20)

Thus, for each track, αik can take values in j = 1, . . . ,Mk, for which ωi,jk = 1,
while αik = 0 is used to denote the missed detection event.

Similarly, let dik = [αik 6= 0] be a random variable indicating if target i is
detected at time tk

dik =

{
1, if target i was detected

0, otherwise
(4.21)

In this context, the notation Di
k shall be used to denote the event where dik = 1,

while D̄i
k will denote the opposite.

Based on the above, a series of exhaustive and mutually exclusive single-target
association hypotheses θi,jk can be defined, which consider the events that a target

65

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

i is associated with a given measurement j, i.e.

θi,jk ,
[
αik = j

]
(4.22)

where the Iverson notation is used, as defined in (3.36).

For each of the defined single-target hypotheses, the prior association proba-
bility p(θi,jk |Y1:k−1) can be computed as:

p(θi,jk |Y1:k−1) ∝


(1− pd(xik)PG)pMc(Mk)

∏
j′∈[1,...,Mk]

pC(yj
′

k), j = 0

pd(x
i
k)p(y

j
k|xk)pMc(Mk − 1)

Mk

∏
j′∈[1,...,Mk]\j

pC(yj
′

k), j = 1, . . . ,Mk

(4.23)
where, under the assumptions of constant detection probability pd(x

i
k) = PD and

Poisson clutter with mean λ, it can be proven in a similar manner to (3.45) that
(4.23) simplifies to

p(θi,jk |Y1:k−1) ∝


(1− PDPG), j = 0

PDp(y
j
k|xik)
λ

, j = 1, . . . ,Mk

(4.24)

Let Θn
k be a feasible joint association hypothesis, defined as a realisation of the

set of valid track association hypotheses θi,jk , for which the following conditions
must hold:

1. Each measurement yjk can be assigned to at most one track, i.e,

Nk∑
i=1

θi,jk ≤ 1, ∀θi,jk ∈ Θz
k (4.25)

2. Each track is associated to exactly one measurement, including the missed
detection, i.e.,

Mk∑
j=1

θi,jk = 1, ∀θi,jk ∈ Θz
k (4.26)

In other words, a feasible association hypothesis Θn
k can be viewed as a valid

combination of the unit elements in the validation matrix Ωk, which satisfy the
conditions of (4.25)-(4.26). Considering this fact, it becomes obvious that for any
given Ωk, there can exist NΘ

k possible joint hypotheses Θn
k , where n ∈ [1, NΘ

k].

66

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

Thus, the set Θk of all valid association hypotheses can thus be defined as follows:

Θk = [Θ1
k,Θ

2
k,Θ

NΘ
k

k] (4.27)

The probability for a valid association hypothesis Θn
k to occur is proportional

the joint probability over all the marginal association events that pertain to that
hypothesis, i.e.,

p(Θn
k |Y1:k) ∝

∏
θi,jk ∈Θnk

p(θi,jk |Y1:k) (4.28)

For a given joint association Θn
k , let TD be the set of tracks hypothesised as been

successfully detected and let TND denote the set of targets that have been missed.
It is then possible to rewrite (4.28) as

p(Θn
k |Y1:k) ∝

∏
i∈TND

p(θi,0k |Y1:k−1)
∏
i∈TD

p(θ
i,j(i)
k |Y1:k−1) (4.29)

which, under the assumptions of (4.24), leads to

p(Θn
k |Y1:k) ∝

∏
i∈TND

(1− PDPG)
∏
i∈TD

PDp(y
j(i)
k |xik)
λ

(4.30)

where j(i) is used to denote the index of the measurement assigned to target i,
under the joint association Θn

k .

Finally, the posterior association probabilities p(θi,jk |Y1:k) can be computed
by applying the law of total probability over the entire set of joint association
hypotheses, where a given association event θi,jk is valid, i.e.

p(θi,jk |Y1:k) =
1

C

∑
Θnk∈Θk: θi,jk ∈Θnk

p(Θn
k |Y1:k) (4.31)

where C is the total probability normalisation constant

C =
∑

Θnk∈Θk

p(Θn
k |Y1:k) (4.32)

The optimal goal for data association is then to compute the conditional
association probabilities p(θi,jk |Y1:k) for all feasible events θi,jk , which can be utilised

67

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

to update the posterior state distributions p(xik|Yk) of all targets, where

p(xik|Yk) =
∑
θi,jk

p(xik|θ
i,j
k , y

j
k, Yk−1)p(θi,jk |Y1:k) (4.33)

The term p(xik|θ
i,j
k , y

j
k, Yk−1) is equivalent to the standard Bayesian Filtering pos-

terior p(xik|y1:k), albeit expressed using different notation. Thus, the standard
Bayesian Filtering equations (3.2)-(3.4) can be employed to evaluate these den-
sities independently for each association event θi,jk .

4.3.3.2 Global Nearest Neighbour

The Global Nearest Neighbour (GNN) algorithm forms an extension to the Near-
est Neighbour approach. In Section 3.3.2 it was shown that the standard NN
algorithm aims to identify the most likely single-target hypothesis θ̂jk, which is
then utilised to update the track. GNN extends the same concept to the multi-
target case, by identifying the most likely joint association hypothesis Θ̂n

k , and
then using the marginal association hypotheses θi,jk ∈ Θ̂n

k to update all existing
tracks.

The GNN algorithm circumvents the necessity of evaluating all valid joint as-
sociation hypotheses by posing the problem of finding the most likely association
hypothesis as a constrained optimisation problem [25]. In this context, a problem
instance is described by a cost matrix of the form:

C =

 C1,0 . . . C1,Mk

...
. . .

...
CNk,0 . . . CNk,Mk

 (4.34)

Each element Ci,j corresponds to the cost of associating track i with measurement
j, where j = 0 is used to denote the missed detection. In other words, the
costs can be computed by means of a function defined on the set of single-target
association hypotheses, i.e.

Ci,j = fc(θ
i,j
k) (4.35)

Then, a solution to the data association problem can be obtained by means of
identifying the complete assignment of tracks to measurements that give rise to
minimal cost. Formally, let X be a boolean matrix where Xi,j = 1 if row i is
assigned to column j. Then the optimal assignment has cost

min
∑
i

∑
j

Ci,jXi,j (4.36)

68

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

such that each row is assigned to at most one column, and each column to at
most one row, with the exception of column j = 0.

The above generalisation makes it possible for (4.36) to be computed by solv-
ing a linear sum assignment problem, also known as minimum weight matching
in bipartite graphs. Linear sum assignment algorithms have been an active field
of research over the last century, which has given rise to popular methods such
as the Kuhn-Munkres [84, 85] (aka. Hungarian), Auction [86] or JVC [87] al-
gorithms, that are well-studied and known to provide significant gains in terms
computational complexity.

Similar to the case of its single-target equivalent, there generaly exist two
formulations of the GNN algorithm: i) probabilistic; and ii) distance-based. The
distinction between the two formulation is drawn on the basis of how each ap-
proach defines the cost function fc(θ

i,j
k) of (4.35). In the probabilistic case, the

cost is defined as a function of the prior association probabilities p(θi,jk |Y1:k−1) as

fc(θ
i,j
k) = − log p(θi,jk |Y1:k−1) (4.37)

The distance-based formulation of GNN [56] is realised by defining a distance
measure D(xik, y

j
k) between the target state and a given measurement, such that

fc(θ
i,j
k) = D(xik, y

j
k) (4.38)

Commonly used distance measures include the Mahalanobis or Euclidian dis-
tances, but other measures can also be employed.

Once the optimal joint association hypothesis Θ̂n
k has been determined, it’s

member association hypotheses are used to update each track. Thus, only a single
measurement hypothesis is assumed to hold for each track, effectively reducing
the update process to a standard Bayesian update step

p(xik|Y1:k) = p(xik|θ
i,j
k ∈ Θ̂n

k , y
j
k, Y1:k−1) (4.39)

Despite the computational efficiency of the GNN algorithm, it constitutes a
myopic solution to the data association problem, as it only selects and utilises a
single association hypothesis, which is assumed to be optimal. Studies have shown
that this approach suffers from tracking reliability issues, even in environments
with relatively low clutter densities [26, 88, 89].

69

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

4.3.3.3 Joint Probabilistic Data Association

The Joint Probabilistic Data Association Filter [58] (JPDAF) is an extension
of the single-target PDA of Section 3.3.3, which provides a soft decision mech-
anism for updating the target state distributions p(xik|Yk). In JPDAF, all valid
association events θi,jk contribute to the update process proportionately to their
respective conditional association probabilities p(θi,jk |Y1:k), giving rise to the pos-
terior density formulation (4.33).

Enumerating the joint hypotheses

The bottleneck of JPDAF lies in the enumeration and management of all hy-
potheses Θn

k that satisfy the validity conditions of (4.25) and (4.26). This can be
achieved by enumerating all the possible realisations of the validation matrix of
(4.19) that satisfy the assumptions of (4.25) and (4.26). However, being closely
related to the calculation of a matrix permanent, the time complexity of this ap-
proach grows exponentially with the number of targets and measurements. Thus,
application of this method becomes prohibitive in situations that involve a high
number of tracks and/or measurements.

Another common approach is to build a tree of associations possible for each
track. The nodes in the top-most (first) layer in the tree represent the valid set of
measurement assignments for the first target. Similarly, the second layer of nodes
represent the valid measurement assignments for the second target, given the
assignments for the first target. Accordingly, the i-th layer of nodes represents the
valid measurement assignments for the i-th target, given the assignments, up to
and including the (i−1)-th target. So, each node stores the information of which
measurements have been used by all layers down to the layer of the target being
analysed. In order to construct the tree, the targets are processed sequentially
and, for each node of the previous layer, a new node for the current layer is created
for each measurement that does not result in any violation of the constraints.
From the tree of associations, the set of feasible joint association hypotheses is
enumerated by starting from the root and, considering each target (layer) in
turn while navigating the tree towards the leaves. Computing the association
probabilities follows naturally from the structure of the tree, by considering that
each path down the tree corresponds to one feasible joint association hypothesis
Θn
k , where the edges along the path represent the marginal association hypotheses

θi,jk that pertain to Θn
k . This fact allows for the direct application of the relations

in (4.28)-(4.32), while parsing each path, starting from the root node.

Although the tree-based approach provides significant computational advan-
tages, the method suffers from repetitions of identical computations, stemming

70

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

from the existence of morphological redundancies in the generated tree structure,
due to the existence of joint association hypotheses that share common associ-
ation events. To better understand the above, consider an example validation
matrix

Ωk =

1 0 0
1 1 0
0 1 1

 (4.40)

defined according to (4.18)-(4.19). Based on Ωk, it can be derived that there exist
3 tracks (rows) and 3 measurements (columns), where the first measurement is
gated by the first and second track, the second measurement is gated by the
second and third tracks and the third measurement is on only gated by the third
track. For the given problem, there exist NΘ

k = 13 possible joint association
hypotheses that satisfy the conditions of (4.25)-(4.26).

Application of the tree-based approach on the validation matrix of (4.40)
yields to the generation of the hypothesis tree depicted in Figure 4.2. Each node
is labelled with the identifier of the track-layer to which it relates, edge labels
denote the index {i, j} of the measurement hypothesis θi,jk that was considered
to generate each child-node of the i-th layer and leaf-nodes are also labelled with
the identifier of the joint association hypothesis corresponding to each path in
the tree. The redundancies inherent to the tree-based approach can be seen in
Figure 4.2, where many subtrees are systematically repeated to account for the
same remaining association possibilities, but for different associations already
made. This is clear when we notice that, for instance, the trees departing from
the layer of nodes for i = 2 (second layer), are essentially copies of 2 sets of
identical sub-trees.

Efficient Hypothesis Management

It is in fact possible to circumvent the morphological redundancies in the tree-
based approach, while still ensuring an exact solution to the problem is obtained.
An efficient method that accomplishes the above is the Efficient Hypothesis Man-
agement (EHM) algorithm, presented in [90] and further extended in [91]. The
fundamental idea behind EHM is to simplify the enumeration and weight calcu-
lation processes, by eliminating redundant computations related to hypotheses
which share common association events.

In order to eliminate the association redundancies, given the nodes for the
i-th layer, the EHM algorithm enumerates the valid and unambiguous associa-
tions that are possible for the remaining Nk − i layers. This is different to the
standard tree approach that enumerates the set of all valid associations for the

71

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

Figure 4.2: Hypothesis tree generated by applying the tree-based hypothesis enu-
meration approach to the example validation matrix (4.40).

Figure 4.3: Hypothesis net generated by applying EHM to the example validation
matrix (4.40).

72

4.3. Conventional Multi-Target Tracking
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

(i + 1)-th layer, for each of the nodes generated up to the i-th layer, which ren-
ders exponential grow of the number of nodes as a function of the number of
measurements and targets. The resulting structure obtained by applying EHM
is a network that, during its construction, merges the nodes that share the same
subset of possible association events for the Nk− i remaining tracks. The compu-
tational saving becomes clear when the computation of the marginal probabilities
is explicitly formulated as a sequence of operations over the association nodes.
Ultimately, the complexity for computing the marginal probabilities is directly
dependent on the number of nodes (#P-complete), which in turn depend on the
number of measurements and targets.

Computing the association probabilites in the case of EHM is slightly more
intricate. The intent is to perform a sum over all descents of the net that include
a given element equal to the unity in the validation matrix Ωk. All descents must
pass through one of the nodes of the i-th net layer of the network. Thus, the
sum over the joint feasible events can be represented as a sum over the nodes
according to

βi,jk = p(θi,jk |Y1:k) ∝
Nni∑
ni=1

pT (j|ni) (4.41)

where pT (j|ni) are the joint likelihoods for descents that include an edge repre-
senting the association event θi,jk and go through the ni-th node of the i− th track
layer. Nni is the total number of nodes for the j-th layer.

The joint likelihood pT (j|ni) is a quantity calculated for each of the nodes in
the network. For each node ni , it can be effciently calculated as a product of
three terms:

• a term pD,T (i, ni) related to the descents from the node’s parents that have
the measurement j incorporated in the parent-child relationship

• a term p(θi,jk |Y1:k−1) related to the prior association probability for each
single association hypothesis

• a term pU(ni) related to the possible paths for the remaining Nk − i tracks

Based on the above information, the joint likelihoods pT (j|ni) can be computed
by the following equations

pT (j|ni) = pU(ni)p(θ
i,j
k |Y1:k−1)pD,T (i, ni) (4.42)

pD,T (i, ni) =
∑

ni−1∈P(ni),{i−1,j}∈Ei−1,i
ni−1,ni

pD(ni − 1) (4.43)

73

4.4. Joint Integrated Probabilistic Data Association
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

where P(ni) denotes the set of parents of a node ni, while E i−1,i
ni−1,ni

denotes the
edges that connect the parent node ni−1 of the (i− 1)-th layer, to the child node
ni of the i-th layer.

Continuing, the terms pD(ni) and pU(ni) are then calculated by application
of the forward-backward algorithm, performed as a sequential application of a
forward (downward) and backward (upward) pass through the net layers as:

pD(ni) =
∑

ni−1∈P(ni),{i−1,j}∈Ei−1,i
ni−1,ni

p(θi,jk |Y1:k−1)pD(ni−1) (4.44)

pU(ni) =
∑

ni+1∈C(ni),{i,j}∈Ei,i+1
ni,ni+1

p(θi+1,j
k |Y1:k−1)pU(ni+1) (4.45)

where C(ni) denotes the set of children of a node ni and an expression for the
prior association probabilities p(θi,jk |Y1:k−1) has been obtained in (4.23)-(4.24). It
is worth noting here that the same node may appear more than once in the sets
of children and parent of nodes indexed by some ni.

The forward pass is performed first, which involves the calculation of the down-
ward probabilities pD(.), followed by the backward pass to calculate the upward
probabilities pU(.). These probabilities are combined with the prior association
probabilities p(θi,jk |Y1:k−1) of each single association to give the sum of probabili-
ties of all descents through the net for each single association event θi,jk . Making
use of this information, it is now possible to compute the posterior association
probabilities of (4.41).

Figure 4.3 depicts the hypothesis net generated by applying EHM on the
validation matrix of (4.40). Each node is labelled with the identifier of the track-
layer to which it related. Edge labels denote the set of indices {i, j} of the
measurement hypotheses θi,jk that were considered to generate each node in the i-
th layer. By comparing the net of Figure 4.3 to the tree of Figure 4.2, it should be
clear to see the effects of the node redundancy introduced by EHM. The number
of nodes in the original tree amount to 20, while the nodes in the EHM net have
been effectively reduced to 6.

4.4 Joint Integrated Probabilistic Data Associ-

ation

The JPDA algorithm provides an effective solution the problem of multi-target
data association under the presence of clutter and missed detection. However,

74

4.4. Joint Integrated Probabilistic Data Association
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

JPDA is defined under the assumption that the number of targets is known apriori
and remains constant throughout the data association process [58]. Furthermore,
the entire set of JPDA equations are derived with the implicit condition on tar-
get existence, meaning that any information about the existence of targets is
effectively removed.

As a direct consequence to the above, JPDA necessitates the use separate
track management methods that must run along the algorithm to deterministi-
cally initiate, confirm and delete tracks, between iterations. As already discussed
in Section 4.3.2, such track management approaches typically rely on heuristic
methods (e.g. M-out-of-N) that pose certain assumptions that are not guaran-
teed to hold in a real-life scenario, or require the definition of certain thresholds
for confirmation and deletion that are inherently hard to define and tune (e.g.
LLR Test).

The Integrated PDA (IPDA) algorithm has been derived and formulated in
[92, 93], which removes the assumption of target existence and provides data
association formulae that expose the equations required to recursively compute
the probability of target existence in a single-target tracking context. Continuing,
the same authors extended the equations of IPDA to a multi-target tracking
context, giving rise to the Joint IPDA (JIPDA) algorithm [94]. The JIPDA
algorithm, is developed in a similar fashion to the IPDA algorithm. It draws
a clear differentiation between the probability of existence calculation, and the
evaluation of the association probabilities, thus resulting in recursive expressions
for the probability of target existence and data association coefficients, over the
set of joint association hypotheses. The inclusion of the existence probabilities
in JIPDA allows for track confirmation and deletion to be incorporated within
the main algorithm recursion, by setting a threshold on the existence quantities
computed for each track.

Since its initial formulation, JIPDA has been successfully applied to solve a
number of problems [95, 80, 82], albeit [80, 82] using an alternative formulation
of the algorithm, derived in [81]. Despite the differences in notation between [94]
and [81], both approaches eventually conclude with the same set of equations for
updating the target posteriors and existence probabilities as:

p(xik|Ei
k, Y1:k) =

Mk∑
j=0

βi,jp(x
i
k|θ

i,j
k , y

j
k, Ek, Y1:k−1) (4.46)

βi,j = p(θi,jk |E
i
k, Y1:k) =

p(θi,jk , E
i
k|Y1:k)

p(Ei
k|Y1:k)

(4.47)

75

4.4. Joint Integrated Probabilistic Data Association
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

p(Ei
k|Y1:k) =

Mk∑
j=0

p(θi,jk , E
i
k|Y1:k) (4.48)

where a similar notation to [81] is used, although the substitution θi,jk , [αik = j]
from (4.22) is applied to maintain notational consistency with the rest of the
thesis. The relation of (4.47) is equivalent to (10)-(11) of [94], while (4.48) aligns
with (9) of [94]. A clear expression equivalent to (4.46) is not presented in [94],
although the statement is made that the quantities of (4.47) can be used to
perform track estimation in the same way as JPDA, which is exactly what (4.46)
aims to convey.

4.4.1 Relation between JPDA and JIPDA

As shown above, [94] and [81] eventually advocate the same JIPDA recursion.
However, both manuscripts seem to separate the data association process, or
more specifically the process of calculating the joint association probabilities,
performed by JIPDA and JPDA. For example, the authors in [94] emphasise on
the fact that the expressions for the joint association events in JIPDA incorporate
the probabilities of track existence of individual tracks, in contrast to JPDA. It
is possible that this distinction is not intentional, but rather stems from the
approach followed by the different authors to solve the problem of obtaining an
expression for the quantities of (4.46)-(4.48).

In this section, the author aims to show that the very same approach used by
JPDA to compute the association probabilities of (4.31), which are conditional on
target existence, can be re-used in the context of JIPDA, yielding exact solutions
to (4.46)-(4.48). By proving that the above holds true, it is the possible to apply
the same performance optimisation methods introduced in Section 4.3.3.3 for
JPDA (e.g. EHM), to speed up the recursion of JIPDA.

4.4.2 Prior Association Probabilities

Using similar notation to before, equations (32)-(34) of [80], which draws its
notation directly from [81], used to compute the prior association probabilities,

76

4.4. Joint Integrated Probabilistic Data Association
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

can be re-written as :

β̄i,0,0 = p(θi,0k , Ē
i
k|Y1:k−1) = p(D̄i

k|Ēi
k, Y1:k−1)︸ ︷︷ ︸
=1

p(Ēi
k|Y1:k−1) = p(Ēi

k|Y1:k−1)

= (1− p(Ei
k|Y1:k−1)) (4.49)

β̄i,0,1 = p(θi,0k , E
i
k|Y1:k−1) = p(D̄i

k|Ei
k, Y1:k−1)︸ ︷︷ ︸

=1− pd(xik)PG

p(Ei
k|Y1:k−1)

= (1− pd(xik)PG)p(Ei
k|Y1:k−1) (4.50)

β̄i,j,1 = p(θi,jk , E
i
k|Y1:k−1) = p(θi,jk |D

i
k, E

i
k, Y1:k−1) p(Di

k|Ei
k, Y1:k−1)︸ ︷︷ ︸

=pd(xik)PG

p(Ei
k|Y1:k−1)

=
p(yjk|xik)pd(xik)PG

λ
p(Ei

k|Y1:k−1) (4.51)

β̄i,j,0 = p(θi,jk , Ē
i
k|Y1:k−1) = 0 (4.52)

The above equations define a three-dimensional (3-D) table β̄, which repre-
sents the joint association likelihood p(θi,jk , e

i
k|Y1:k−1) over the association θi,jk and

existence variables eik, i.e:

β̄ , p(θi,jk , e
i
k|Y1:k−1) (4.53)

4.4.3 Marginalising the Prior Association Probabilities

By recalling the relation of (4.23), it can be observed that JPDA performs its
operation on the prior association probabilities of the form p(θi,jk |Yk−1). Thus,
making use of (4.53), we can define the likelihood matrix L, which serves as
an input to the joint hypothesis enumeration process of JPDA (e.g. EHM), by
marginalising over the existence variable eik in (4.53), i.e.:

L , p(θi,jk |Y1:k−1) =
∑
eik

p(θi,jk , e
i
k|Y1:k−1)

=

 L1,0 . . . L1,Mk

...
. . .

...
LNk,0 . . . LNk,Mk

 (4.54)

77

4.4. Joint Integrated Probabilistic Data Association
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

where each matrix element Li,j is defined as:

Li,j =


β̄i,0,0 + β̄i,0,1 j = 0

β̄i,j,0 + β̄i,j,1︸︷︷︸
=0

j 6= 0

(4.49)−(4.52)⇒ Li,j =


(1− pd(xik)PGp(Ei

k|Y1:k−1)) j = 0

p(yjk|xik)pd(xik)PG
λ

p(Ei
k|Y1:k−1) j ∈ [1, . . . ,Mk]

(4.55)

It is worth noting here that, even after marginalising, all columns in L, except
the first, are equivalent to the joint likelihoods β̄i,j,1, since from (4.52) we know
that β̄i,j,0 = 0. On the contrary, the first column of L represents the marginal
probability of the target not being detected. This is important since, as we show
in the following sections, it will have an effect on how we compute both the
existence probabilities p(Ei

k|Y1:k) and posterior distributions p(xik|Ei
k, Y1:k).

4.4.4 Interpreting the Posterior Association Probabilities

Once provided with the table of marginal prior association probabilities, defined
by (4.54), the produced output is a matrix β̂ of posterior association probabilities

β̂ =

 β̂1,0 β̂1,1 . . . β̂1,Mk

...
...

. . .
...

β̂Nk,0 β̂Nk,Mk

 (4.56)

where β̂ is normalised over each row, and each element β̂i,j is still marginalised
over the existence variable eik

β̂i,j = p(θi,jk |Y1:k)

= p(θi,jk , E
i
k|Y1:k) + p(θi,jk , Ē

i
k|Y1:k)

(4.57)

In a similar fashion to (4.52), by considering that the association proba-
bility of a non-existing target being associated to a measurement is zero, i.e.
p(θi,jk , Ē

i
k|Y1:k) = 0 for all j 6= 0, we can re-write (4.57) as:

β̂i,j =

{
p(θi,0k , E

i
k|Y1:k) + p(θi,0k , Ē

i
k|Y1:k) j = 0

p(θi,jk , E
i
k|Y1:k) j ∈ [1, . . . ,Mk]

(4.58)

78

4.4. Joint Integrated Probabilistic Data Association
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

4.4.5 Computing the Existence Probabilities

From [80, 81], with slight abuse of notation, we can write that:

p(Ei
k|Y1:k) =

Mk∑
j=0

p(θi,jk , E
i
k|Y1:k) (4.59)

Thus, it becomes clear that, in order to compute the association probabilities,
it is necessary to calculate the respective sum components p(θi,jk , E

i
k|Y1:k). Given

that we have obtained the output matrix β̂, this can be achieved by solving (4.57)
as such:

p(θi,jk , E
i
k|Y1:k) =

{
β̂i,0 − p(θi,0k , Ē

i
k|Y1:k) j = 0

β̂i,j j ∈ [1, . . . ,Mk]
(4.60)

Therefore, for all j ∈ [1, . . . ,Mk], the respective sum components of (4.48) are
equal to the respective association probabilities β̂i,j. However, the same cannot
been done for j = 0, as we need to first calculate the joint p(θi,0k , Ē

i
k|Y1:k).

A first step towards computing p(θi,0k , Ē
i
k|Y1:k) can be achieved by noting that:

p(θi,0k , Ē
i
k|Y1:k)

p(θi,0k , E
i
k|Y1:k)

=
β̄i,0,0
β̄i,0,1

=
1− p(Ei

k|Y1:k−1)

(1− pd(xik)PG)p(Ei
k|Y1:k−1)

= wik (4.61)

where β̄i,0,0 and β̄i,0,1 have been computed in (4.49) and (4.50), respectively. The
above can be understood better by considering that, as explained in Section
4.4.3, JPDA operates on the combined likelihoods, marginalised over the existence
variable eik. This means that the data association process preserves the ratio of
the joint likelihoods/probabilities, conditional on the target not being detected.

Having explained the validity of relation (4.61), we can obtain an expression
for p(θi,0k , Ē

i
k|Y1:k) as follows:

p(θi,0k , Ē
i
k|Y1:k) = wik × p(θ

i,0
k , E

i
k|Y1:k) (4.62)

and substituting the above in (4.60) leads to

p(θi,jk , E
i
k|Y1:k) =


β̂i,0

1 + wik
j = 0

β̂i,j j ∈ [1, . . . , NM]

(4.63)

79

4.5. The Probability Hypothesis Density Filter
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

Finally, by combining (4.59)-(4.62) we can obtain an expression for the exis-
tence probability

p(Ei
k|Y1:k) =

β̂i,0
1 + wik

+

NM∑
j=1

β̂i,j (4.64)

4.4.6 Updating the Track Posteriors

It has already been explained that the updated target posterior distributions,
conditional on target existence, can be written as weighted mixtures over the
measurement association hypotheses, i.e.:

p(xik|Ei
k, Y1:k) =

NM∑
j=0

βi,jp(x
i
k|θ

i,j
k , y

j
k, Ek, Y1:k−1) (4.65)

where
βi,j = p(θi,jk |E

i
k, Y1:k) (4.66)

and p(xik|θ
i,j
k , y

j
k, Ek, Y1:k−1) represents the updated target posterior distribution,

obtained by performing a standard Bayesian Filtering update, using the respective
measurement j.

Thus, in order to evaluate (4.65), it is necessary to obtain an expression for
the mixture weights βi,j. This easily achieved by applying Bayes rule to (4.63)

p(θi,jk |E
i
k, Y1:k) =

p(θi,jk , E
i
k|Y1:k)

p(Ei
k|Y1:k)

(4.67)

Finally, we can expand the above expression to obtain

βi,j ∝


βi,0

1 + wik
j = 0

βi,j j ∈ [1, . . . , NM]

(4.68)

which gives us everything we need to evaluate (4.65).

4.5 The Probability Hypothesis Density Filter

The Probability Hypothesis Density (PHD) filter is a tractable alternative to
the optimal Multi-Target Bayes Filter, seminally derived in a Random Finite Set

80

4.5. The Probability Hypothesis Density Filter
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

(RFS) and Finite Set Statistics (FISST)[96] context [69, 70]. The idea behind the
PHD filter is to approximate and propagate only the first-order moment (i.e. the
Probability Hypothesis Density) of the multi-target state density. In plain terms,
the PHD filter estimates the mean number of targets per given area/volume of
the plane.

Suppose that Xk−1 is a realisation of the multi-target state from time tk−1.
Then the multi-target state for tk can be modelled as an RFS Ξk of the form

Ξk = Sk(Xk−1) ∪Bk(Xk−1) ∪ Γk (4.69)

where Sk(.) is the RFS of surviving targets, Bk(.) is the RFS of new targets
that have been spawned from existing targets, and Γk is the RFS of targets that
have spontaneously appeared at time tk. For the RFSs of surviving and spawned
targets, the transition kernel fk|k−1(Xk|Xk−1) can be used in a manner analogous
to the single-target Markov transition density of (2.3).

Similar to above, given a realisation Xk of the multi-target state, the multi-
target measurement density can be modelled as an RFS Σk of the form

Σk = ∆k(Xk) ∪ Ck(Xk) (4.70)

where ∆k(.) is the RFS of measurements relating to detected targets in Xk, while
Ck(.) denotes the RFS of clutter generated measurements. The likelihood kernel
p(Yk|Xk) can be used to describe the statistical behaviour of Σk, in a manner
similar to the likelihood function of (2.20).

The PHD of a RFS is analogous to the expectation of a random vector. To
overcome the computational limitations of the Multi-Target Bayes Filter, the
PHD filter propagates only the PHD of the multi-target state pdf p(Xk|Y1:k),
defined as:

Dk(x) = DΞk(x) =

∫
δX(x)p(X|Y1:k)δX (4.71)

Given a measurable region A ⊆ X , the PHD is defined such that the measure∫
A

Dk(x)dx (4.72)

is equal to the expected number of targets in A.

It should be noted that Dk(x) does not describe a probability density, since
its integral over the entire target space is not strictly equal to unity, but instead
represents the expected number of targets. Similar to before, the PHD filter in-
volves a pair of prediction and update steps that propagate the intensity function

81

4.5. The Probability Hypothesis Density Filter
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

Dk−1(x) recursively in time. A generic PHD filter recursion is shown in Algorithm
4.5.1.

Algorithm 4.5.1 (Probability Hypothesis Density Filter) The set of re-
cursive equations necessary to compute/approximate the predicted Dk|k−1(x) and
posterior Dk(x) PHD densities are given by the following filtering equations.

1. Initiation: The filter is initialised with the prior PHD D0(x), and the re-
cursion is initiated.

2. Prediction: The predicted PHD density Dk|k−1(x) is computed as follows:

Dk|k−1(x) = γk(x) + 〈 bk|k−1(x|.), pSDk−1, fk|k−1(x|.) 〉 (4.73)

where:

• γk(x) denotes the intensity function of the spontaneous birth targets
RFS

• bk|k−1(x|x′) denotes the intensity function of the spawned targets RFS

• pS(x′) is the probability that a target still exists at time tk given that it
has previous state x′

• fk|k−1(x|x′) is the single-target transition density

• 〈 f, g, h 〉 =
∫
f(x)g(x)h(x)dx

3. Update: The updated PHD density Dk(x) is computed as follows:

Dk(x) = [1− pd(x)]Dk|k−1(x) +
∑
y∈Yk

pd(x)p(y|x)Dk|k−1(x)

κ(x) + 〈 pdp(y|.), Dk|k−1 〉
(4.74)

where:

• κ(y) is the intensity function of the clutter RFS

• pd(x) is the state-dependent probability of detection

• p(y|x) is the single-target measurement likelihood

The PHD filter inherently provides a partial solution to the multi-target track-
ing problem, while circumventing the necessity for many complex procedures,
such as measurement gating, data association and track management (see Sec-
tion 4.3). The term “partial” is used, due to the inability of the PHD filter to
label, and thus distinguish between, different targets. Examples of previous work

82

4.6. Track Management using Random Finite Sets and Existence Probabilities
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

on incorporating such a functionality to PHD filters can be found in [97, 68], how-
ever such approaches are generally based on either clustering or peak-extraction
methods, which are prone to errors. There exist a number of different algorithmic
implementations of the PHD filter, with the most prominent being the closed-
form Gaussian Mixture PHD (GM-PHD) [67, 98] and the approximate Sequential
Monte Carlo PHD (SMC-PHD) [68, 99, 100] algorithms. Due to their relative
flexibility, PHD filters have quickly been adopted to solve a host of practical prob-
lems. These include tracking using bi-static radar data [101], tracking in sonar
images [102, 103], as well as tracking in video [104, 105].

4.6 Track Management using Random Finite Sets

and Existence Probabilities

The content presented herein aims to demonstrate the application of a radar
track initiation technique which utilises a PHD Filter to model the density of
uninitiated targets and consecutively flag “good” quality tracks for initiation.
The method presented here is not new; the seminal work that formulates the
algorithm was performed in [80] and [23], where the authors demonstrated how
a Particle Filter and PHD Filter, respectively, can be utilised to perform track
initiation in a generic multi-target tracking scenario.

In summary, the track initiation scheme presented in [23] utilises a modi-
fied SMC-PHD [68] filter to track and initiate tentative tracks, while confirmed
tracks are tracked via a JIPDA process, akin to the one discussed in Section
4.4, whereby a Particle Filter is used to generate the posteriors conditional on
each measurement hypothesis. Once measurements are passed through the above
process, the probability ρj that the j-th measurement is unused by any of the
confirmed tracks is computed as per (4.9). The authors use this probability as
a weighting factor in the modified SMC-PHD recursion, to account for the fact
that some measurements are used by confirmed tracks.

The difference between the modified SMC-PHD filter, presented in [23], and
a standard SMC-PHD lies in the update step of the filter. More specifically, the
authors propose a modified version of (4.74), that makes use of the weighting

83

4.6. Track Management using Random Finite Sets and Existence Probabilities
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

probability ρj, as follows:

Dk(x) = D0
k(x) +

Mk∑
j=1

Dj
k(x)

= [1− pd(x)]Dk|k−1(x) +

Mk∑
j=1

ρjpd(x)p(yik|x)Dk|k−1(x)

κ(x) + 〈 pdp(yik|.), Dk|k−1 〉

(4.75)

where D0
k(x) and Dj

k(x) are the updated PHD densities, conditional on the null
measurement hypothesis and the j-th measurement respectively.

Using the above notation, it is therefore possible to define the probability pj
that a given measurement relates to an unconfirmed track as follows:

pj =

∫
Dj
k(x)dx (4.76)

The above is justified by noting that
∫
Dj
k(x)dx ≤ 1 for j = 1, . . . ,Mk, since

each measurement can only originate from at most one target. Furthermore, the
expected number of targets producing measurement yjk is equal to the probability
that yjk originated from a true target.

Finally, tracks to be initiated are extracted from the PHD density on the basis
of the following condition:

pj ≥ Pconf (4.77)

where Pconf is the selected confirmation probability threshold.

The track extraction process is performed prior to the PHD update step. First,
candidate measurements to be used for track initiation are identified via (4.77).
Continuing, new (confirmed) tracks are formed for each respective density Dj

k(x),
with existence probability pj, relating to each identified candidate measurement.
Finally, the PHD is updated using (4.75), for the remaining measurement hy-
potheses that do not satisfy (4.77).

4.6.1 Results

For the purpose of simulations, we consider the scenario of tracking the position
of 10 vessels, on a two-dimensional Cartesian plane (i.e. with x, y coordinates).
The simulated trajectories followed by the vessels (see Figure 4.4) all have the
same lifespan and their initial positions are set, but the initial course and speed of
each vessel is chosen randomly. As before, the dynamics of targets are assumed

84

4.6. Track Management using Random Finite Sets and Existence Probabilities
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

to be governed by a Constant Heading (CH) model (see Section 2.2.4), with
σs = 1 m/s2 and σφ = 0.07 rad/s.

Figure 4.4: True trajectories followed by the vessels in a single experiment, with
clutter rate λFA = 500. The output of the last measurement scan is
also depicted.

A Radar sensor is placed at coordinates (0m,0m), which detects targets ac-
cording to a Constant Detection Rate model (see Section 2.4.1) with probability
PD = 0.9 and generates observations of their positions in terms of range & bear-
ing, over 200 scans, at a rate of 3 sec/scan. Measurement noise is modelled
using a Gaussian Azimuth-Range measurement model (see Section 2.3.2), having
Gaussian noise in both azimuth and range, with standard deviations σr = 10 m
and σθ = π

180
rad, respectively. Clutter is modelled using a Poisson Rate with

Uniform Position model (see Section 2.5.1), where the number of clutter mea-
surements per scan is assumed to be Poisson distributed, with mean λFA accross
the surveillance volume V , while their positions are uniformly distributed over
the polar search space defined on the azimuth and range coordinate system, such
that pC(yjk) = U([0, 2500], [0, 2π]).

The tracking performance of 3 different algorithms has been evaluated, as follows:

• PDAF-MofN: M-out-of-N based track management approach, with confir-
mation threshold of Tconf = 8/10 scans and deletion threshold of Tdel = 2/3
scans. Tentative tracks are initiated from any measurements that are not
associated with any known tracks. Once initiated, tentative tracks are pro-
cessed using a Probabilistic Data Association Particle Filter (PDA-PF),

85

4.6. Track Management using Random Finite Sets and Existence Probabilities
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

while confirmed tracks are process using a Joint PDA-PF (JPDA-PF). A
set of 5000 particles is used to approximate the pdf of individual tracks.
• PDAF-LLR: Log Likelihood Ratio (LLR) based track management approach,

with false track confirmation probability α = 10−6, true track deletion prob-
ability β = 0.1 and track deletion threshold THD = −6.7 (see Section
4.3.2). Tentative tracks are initiated from any measurements that are not
associated with any known tracks. A PDA-PF and a JPDA-PF are used to
perform tracking of tentative and confirmed tracks, respectively. A set of
5000 particles is used to approximate the pdf of individual tracks.
• SMC-PHD-EP: A Sequential Monte-Carlo PHD (SMC-PHD) [68] filter is

used to model the intensity of unconfirmed targets. The PHD density is
approximated using 5 ∗ 104 particles and a uniform track birth intensity
γk(x) ∼ 0.2 U(2π rad, 2500 m)1 is used. A track is confirmed when its
estimated probability of existence is higher than 0.9. Confirmed tracks are
then processed using a Joint Integrated PDA-PF (JIPDA-PF), with 5000
particles allocated to each track. Target existence is modelled according to
a Markov Chain One [92, 94] model, with survival probability PS = 0.95,
and a track is deleted when its existence probability becomes lower than
0.1.

The estimation performance evaluation is achieved by means of comparing the
value of the Optimal SubPattern Assignement (OSPA)[106] metric achieved by
each algorithm, averaged over 50 Monte-Carlo simulation runs, with variable val-
ues of clutter rate λFA. The combination of both the localisation and cardinality
error components of OSPA allow us to compare the different approaches based on
both how well they approximate the correct number of targets and how quickly
they respond to the birth or death of targets (cardinality), as well as how well
each method approximates the posterior of each initiated track (localisation)2.
The results of this evaluation are shown in Table 4.1. Furthermore, the computa-
tion time for each approach (only the track management process execution time
is measured), averaged over 50 Monte-Carlo simulation runs, is also evaluated for
varying values of λFA. The simulations were run on a desktop computer with a
3.7GHz 8-core Intel i7 6900k processor with 32GB of maximum available RAM.
Figure 4.5 depicts the evolution of the execution time a each approach as λFA
increases.

1U(x,y) is used do denote a uniform distribution over the space [0, x]× [0, y].
2Without loss of generality, we assume that the OSPA localisation error relating to the

estimation of confirmed tracks is the same accross the different methods, due to the fact that
all methods use the same algorithm (i.e. JPDA-PF) to track the confirmed tracks. Thus, any
variation of OSPA between the different methods is assumed to be related to errors in the
respective track management processes.

86

4.6. Track Management using Random Finite Sets and Existence Probabilities
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

Mean OSPA [lower is better]

Method
Params

λFA = 0 λFA = 100 λFA = 250 λFA = 500

PDAF-MofN 31.846 44.597 72.541 141.874
PDAF-LLR 27.605 32.876 42.125 61.675

SMC-PHD-EP 14.541 18.954 23.785 30.756

Table 4.1: Performance comparison between PDAF-MofN, PDAF-LLR and
SMC-PHD-EP for range of clutter parameter values. The computed
mean OSPA, averaged over 50 Monte-Carlo simulations is presented,
for varying values λFA.

Figure 4.5: Execution time comparison between PDAF-MofN, PDAF-LLR and
SMC-PHD-EP, averaged over 50 Monte-Carlo simulations, for varying
values λFA.

From the results of Table 4.1, it can be observed that the error achieved by
SMC-PHD-EP is consistently lower than that of the other two approaches. Fur-
thermore, as the clutter intensity is increased, the improvement margin becomes
increasingly more evident. It should be noted that for the case of PDAF-MofN
and PDAF-LLR, better results can be achieved by employing a JPDA for the
tentative tracks, however such an attempt would introduce additional compu-
tational costs, to what are effectively already very costly approaches. This can
be clearly observed by analysing the results of Figure 4.5. As the clutter rate
increases, both PDAF-MofN and PDAF-LLR can be seen to exhibit significantly

87

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

higher computation times than SMC-PHD-EP. This can be attributed to the fact
that both PDAF-MofN and PDAF-LLR initiate tentative tracks for all unasso-
ciated measurements, meaning that data association (PDA) must be performed
for an increasing number of false tracks, as clutter is increased. On the contrary,
as the SMC-PHD filter, which is used to track the density of tentative tracks in
SMC-PHD-EP, effectively circumvents the necessity for data association, able to
handle the increase in clutter rate with higher efficiency.

4.7 Specifics of Applications to Real Data

This section presents a qualitative analysis of the performance achieved by var-
ious multi-target tracking approaches, applied on a dataset collected from real
radar sensor. Specific focus is given to the track management aspect of the com-
pared algorithms and a range of parameters is tested for each one. Furthermore,
the performance of each algorithm is qualitatively evaluated on the basis of two
opposing scenarios. The first scenario involves an obscured region, where the
radar sensor does not have a line of sight to the targets. The second scenario is
concerned with a region of high levels of clutter, artificially induced by lowering
the detection threshold of the radar.

4.7.1 Dataset

The dataset used in this section is formed by extracting a radar plot recording a
real Vessel Traffic Service (VTS) site in the UK, serviced by Denbridge Marine3.
The deployed radar unit from which the plots were extracted is a 25kW X-Band
(∼ 10GHz, 3cm wavelength) Magnetron Radar, equipped with an 8ft antenna
that performs full rotations every 2-3 seconds. The length of the dataset extends
over 1 hours, with Sensitivity Time Control (STC) and Constant False Alarm
Rate (CFAR) amplitude thresholds turned on. A plot of the entire dataset is
shown in Figure 4.6.

4.7.2 Algorithms

The tracking performance of 3 different algorithms has been evaluated, as follows:

3Denbridge Marine Ltd. are a Small-to-Medium sized Enterprise (SME), based in Liverpool,
who focus on the development and deployment of VTSs across the globe and also co-funded
the PhD project undertaken by the author, via an iCASE EPSRC award facilited by the Smith
Institute for Industrial Mathematics and Systems Engineering

88

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

Figure 4.6: Full dataset extracted for the purposes of experimentation

• M-out-of-N: Track Management is performed using a M-out-of-N based ap-
proach, whereby Tentative tracks are initiated from any measurements that
are not associated with any known tracks. Data association for confirmed
tracks is performed using JPDA, while the data association algorithm used
to process tentative tracks will vary, depending on the scenario.
• Log-Likelihood Ratio: Track Management is performed using a Log Like-

lihood Ratio (LLR) based approach, whereby tentative tracks are initiated
from any measurements that are not associated with any known tracks.
Data association for confirmed tracks is performed using JPDA, while the
data association algorithm used to process tentative tracks will vary, de-
pending on the scenario.
• SMC-PHD-EP: A Sequential Monte-Carlo PHD (SMC-PHD) [68] filter is

used to model the intensity of unconfirmed targets. The PHD density is
approximated using 5 ∗ 104 particles and a uniform track birth intensity
γk(x) ∼ 0.2 U(2π rad, 2500 m) is used. Confirmed tracks are processed
using JIPDA, where target existence is modelled according to a Markov
Chain One [92, 94] model.

89

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

4.7.3 Scenarios

In the considered dataset, there exist two regions of the surveillance area, which
exhibit artefacts that are typical of real radar tracking scenarios: i) obscured
regions; and ii) regions of high-clutter density. These regions are illustrated in
Figure 4.6 using polygons that encompass the related areas. Due to the fact that
the underlying sensor characteristic in those areas vary to a great extent when
compared to the rest of the surveillance area, successful tracking of targets in
said regions becomes highly challenging. Therefore, specific focus will be given to
studying the behaviour of the various algorithms, when considering these regions.
As such, performance evaluations will be performed based on the following two
scenarios:

1. Tracking through obscurations: Figure 4.7 shows the focus area for this
scenario. The obscured area is marked using a purple rectangle. As it can be
observed, the island that is situated south-west from the highlighted region
falls in the line of sight of the sensor, meaning that targets go undetected
when they cross behind it. Due to this fact, tracks for targets that travel
behind the island will typically be prematurely terminated. The goal in this
case will be to identify a parameter setting that allows for such tracks to
survive and maintain the posterior for targets as they emerge from behind
the island.

Figure 4.7: Focus area for obscuration scenario (Scenario 1)

2. Tracking through dense clutter: Figure 4.8 shows the focus area for this
scenario. The area marked using a red polygon envelops a region which ex-

90

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

hibits heavy levels of clutter in comparison to the rest of the surveillance
area. The clutter inherent to this area results in challenges in track initia-
tion and termination, as well as hindered tracking performance for targets
that pass through. Therefore, a comparison will be made to qualitatively
measure the ability of the various algorithms to maintain sufficient tracking
performance.

Figure 4.8: Focus area for dense-clutter scenario (Scenario 2)

4.7.4 Models

The dynamic motion of targets is assumed to evolve according to an Integrated
Ornstein Uhlenbeck model (see Section 2.2.3), with velocity noise σ = 1m/s on
each coordinate and a damping coefficient of α = 10−2. Radar noise is modelled
using a Gaussian Azimuth Range model (see Section 2.3.2), with standard de-
viations σr = 10 m and σθ = π

180
rad, respectively. Clutter is modelled using a

Poisson Rate with Uniform Position model (see Section 2.5.1), where the num-
ber of clutter measurements per scan is assumed to be Poisson distributed with
mean λFA = 10 across the surveillance volume V , while their positions are uni-
formly distributed over the polar search space defined on the azimuth and range
coordinate system, such that pC(yjk) = U([0, 2500], [0, 2π]). Target detectability
is modelled according to a Constant Detection Rate model (see Section 2.4.1)
with probability PD = 0.8. Finally, to reduce the computational complexity of
the data association processes, ellipsoidal gating is performed (see Section 4.3.1),
with γG = 5, leading to a gating probability PG ≈ 0.92.

91

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

4.7.5 Results

The results will be presented in line with the algorithms and scenarios discussed
in Sections 4.7.2 and 4.7.3, respectively. For each of the discussed scenarios, the
performance of the algorithms will be evaluated against a selection of parame-
ters with the aim of addressing the problems and complications inherent to each
case, while making comparisons between the best performance achieved by each
algorithm. Due to the dataset being collected from a real sensor, rather than
being simulated, the is no ground-truth data available, which would allow us to
perform quantitative evaluations and comparisons. For this reason, a qualitative
approach will be followed, based on observations made on the underlying data.

4.7.5.1 Scenario 1 - Tracking through obscurations

The experiments performed in this section will be based around the first scenario
discussed in Section 4.7.3. The focus area for this scenario and the extent of the
dataset used are illustrated in Figure 4.7. At a first stage, the performance of
each of the algorithms discussed in Section 4.7.2 will be quantified using the base
set of model parameters shown in Section 4.7.4, after which different parameters
will be tested for each algorithm with the aim of alleviating the track continuity
issues that arise.

M-out-of-N

As outlined previously, M-out-of-N track management is performed by main-
taining a count of M subsequent iterations, out of a N sized window of report
intervals, during which a track has been successfully associated to at least one
detection. With this M/N measure in hand, confirmation (Tconf = Mconf/Nconf)
and deletion (Tdel = Mdel/Ndel) thresholds can be set, ss as to confirm tracks
which have been successfully detected in Mconf out Nconf iterations, and respec-
tively delete tracks which have not been detected in Mdel out of Ndel iterations.

The minimal presence of clutter in this scenario allows for the use of Joint
Probabilistic Data Association (JPDA) methods to process tentative and con-
firmed tracks. Hence, to ease notation, the term JPDA-MofN will be used to re-
fer to the overall tracker. The universal threshold for track confirmation is set as
Tconf = 4/5, while the threshold for track deletion was configured as Tdel = 8/10.
Although the two threshold ratios seem similar, it is important to notice the track
confirmation window Nconf is configured to be smaller than the deletion window
Ndel. A small detection window for track confirmation ensures that tracks can

92

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

Figure 4.9: Comparison between PDAF-MofN tracker output with deletion
thresholds Tdel = 4/5 (left) and Tdel = 8/10 (right) for the dataset of Scenario 1.

be confirmed, and therefore be shown to the operator, relatively fast. By exam-
ining Figure 4.7 it can be observed that the levels of clutter are relatively low in
this scenario, meaning that the confirmation window can be kept low. On the
other hand, although not evident in Figure 4.7, missed detections are a frequent
phenomenon. Therefore, use of a larger window for track deletion ensures that
tracks are not prematurely terminated.

To demonstrate the effects of varying the window size, a pair of examples
is generated that examine the tracker output for Tdel = 4/5 and Tdel = 8/10,
respectively. The result are illustrated in Figure 4.9. At can be seen that a
deletion threshold of 4/5 results in an increased amount of fragmented tracks.
On the other hand, although increasing the detection window improves track
fragmentation, it is possible that track jumping can occur, whereby a track’s
covariance is allowed to grow to such an extent that it ends up being misassociated
with a distant detection and leaps to that location. An important observation in
both examples shown in Figure 4.9 is that the existence of the obscuration region
results in all tracks that enter the area to be terminated and then re-initiated
once they emerge on the opposite end. However, as is expected in the case of
Tdel = 8/10, the tracks can be seen to survive for longer, which can be easily
justified by considering that Mdel is larger in this case.

The discussion on the effects of varying the chosen value of Tdel, and mainly
the observation about the survival of tracks when entering the obscuration region,
naturally hints to a potential solution to the problem of maintaining tracks which
cross that area. One first option would be to further increase the value of Mdel,
however, as already noted, doing so for the entire surveillance region bears the risk

93

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

Figure 4.10: Comparison between JPDAF-MofN tracker output with (right) and
without (left) the use of a dynamic deletion threshold for the dataset of Scenario
1.

of introducing more track jumping. Instead, a sensible solution is to introduce a
longer detection window for tracks that are located withing the obscured region.

The correct choice of detection window depends on the length of time that a
given target is obscured. As is obvious, this time is directly related to the speed
of the target as well as the length of its followed path. Unfortunately, neither
of these quantities can be accurately known, however it is possible to obtain an
approximation by introducing certain assumptions. If the assumption is made
that a target maintains nearly constant velocity and heading while travelling
through the obscured region, one can calculate both an estimated path (i.e. a
straight line between the two edges of the obscured region) and consequently
estimate the time Tp taken to follow that path. With this time estimate in hand,
and noting that the time Ts between consecutive scans is constant in rotating
radars, it is therefore possible to dynamically calculate the threshold Mdel for
each track as Mdel = Tp/Ts. Finally, the value for Ndel is computed as Ndel =
Mdel + 0.1Mdel.

The output from a tracker that utilises the process outlined in the previous
paragraph to dynamically estimate a deletion threshold, applied while a target
travels through the obscured region, is shown in Figure 4.10. The deletion thresh-
old outside the obscured region is set to Tdel = 8/10. For reference purposes, the
output from the equivalent tracker without the use of a dynamic threshold is
also shown (this is the same as the output of Figure 4.9 for Tdel = 8/10). As it
can be observed, the addition of a dynamic threshold is successful in maintaining
tracks through the obscured region, while the tracking performance outside this

94

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

region is kept identical to its counterpart. It is worth noting here that due to the
absence of ground-truth data it is not possible to evaluate quantitatively whether
track switching occurs.

Log-Likelihood Ratio

The notion of Log-Likelihood Ration (LLR) for track confirmation and deletion
was discussed in Section 4.3.2. Instead of using heuristically defined parameters
for the confirmation and deletion thresholds, the LLR thresholds are defined based
on a set of parameters that can generally be defined from the system requirements.
More importantly, the calculations for LLR take into account the detection and
clutter characteristics, meaning that the process can be more finely tuned.

Once again, the minimal presence of clutter in this scenario allows for the
use of Joint Probabilistic Data Association (JPDA) methods to process tentative
and confirmed tracks, while the term JPDA-LLR will be used to refer to this
particular tracker configuration. As per general convention [1], we set β = 0.1.
When choosing a value for α, we make use of (4.16). From our model definition of
Section 4.7.4 we have assumed λFA = 10. Continuing, since we want to minimise
false track confirmations, we allow NFC = 1 false track confirmation per NS = 107

scans. Therefore, solving (4.16) for this set of chosen parameters yields α = 10−6.
By utilising (4.15), the above choice of α and β leads to the following thresholds
Tlow ≈ −2.3 and Thigh ≈ 13.7. The value for the deletion threshold THD is
defined by assuming that a track should be deleted if it has not been detected in
5 consecutive scans. From equation (4.14), and using our model parameter values
for PD and PG from Section 4.7.4, we can derive that ∆L0 for a single missed
detection is given by:

∆L0 , log
p(y0

k|H1)

p(y0
k|H0)

= log (1− PDPG) ≈ −1.34 (4.78)

Therefore, we can obtain a value for THD as THD , 5∆L0 = 6.7.

The output of a JPDAF-LLR tracker configured with the above parameter
settings is shown in the left sub-figure of Figure 4.11. The tracker can be seen to
exhibit satisfactory level of performance, without any obvious signs of the track
fragmentation or jumping instances observed in the case of the JPDAF-MofN
configuration. However, the algorithm is not able to maintain tracks that cross
the obscured region. This is an expected outcome, since no provisioning has
been made to account for the fact that targets are significantly more likely to go
undetected while cruising through that area.

95

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

Figure 4.11: Comparison between JPDAF-LLR tracker output with CDR (left)
and SDDR (right) detection model for the dataset of Scenario 1.

One potential solution to the problem of maintaining track of targets through
the obscured region, would be to modify the value of THD in that area, in a
manner similar to the approach followed for the JPDAF-MofN tracker. However,
due to the fact that the LLR computation equations take into account the model
parameters, it is not necessary to resort to such heuristics. Instead, the more
statistically correct approach taken here is to modify the detection probability
for targets that pass through the obscured region. Therefore, a State Dependent
Detection Rate (SDDR) model is employed (see Section 2.4.2), such that:

pd(xk) = p(dk = 1|xk) =

{
0.1, if xk ∈ Vo
0.8, otherwise

(4.79)

where Vo is used to denote the obscured region. The output of the JPDAF-
LLR tracker configured to utilise the above SDDR model is illustrated alongside
its CDR counterpart in Figure 4.11. As it can be observed, the use of a SDDR
model is both an effective and relatively simple (compared to the use of heuristics)
method for ensuring track continuity through the obscured region.

SMC-PHD with Existence Probabilities

The use of a SMC-PHD filter for track initiation, coupled with the notion of ex-
istence probabilities for track confirmation and deletion, was discussed in Section
4.6. For notational purposes we will refer to this algorithm as SMC-PHD-EP.
The method requires two parameters in order to operate, both of which are exis-

96

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

Figure 4.12: Comparison between SMC-PHD-EP tracker output with CDR (left)
and SDDR (right) detection model for the dataset of Scenario 1.

tence probability thresholds. The track confirmation probability Pconf and track
deletion probability Pdel are configured as Pconf = 0.8 and Pdel = 0.1, respec-
tively. Since the definition of these thresholds is fairly intuitive and the expected
outcome of varying their values is relatively obvious, further analysis will not be
performed here.

As done for the previous algorithms, the tracker is first run on the dataset
using the model parameters specified in Section 4.7.4. The output of the tracker
is shown in the left sub-figure of Figure 4.12. In order to deal with the track
continuity issues caused by the obscured region, the same approach is followed
as in the case of the JPDAF-LLR algorithm. Accordingly, the default CDR
detection model is replaced with the SDDR model outlined in (4.79) and the
tracker is re-run on the same dataset. The resulting tracks are illustrated in
the right sub-figure of Figure 4.12, where it can once again be observed that
the algorithm is able to successfully maintain track continuity for the obscured
targets.

Comparison

A comparison is performed between the tracks produced by each of the algorithms
considered above. As there is no ground-truth data, it is not possible to produce
a quantitative comparison. Therefore, a qualitative comparison is performed
by means of visual comparison and an attempt has been made to identify and
highlight observable differences between the different tracker outputs.

Figure 4.20 contains a sub-figure illustrating the tracks produced by each

97

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

(a) JPDAF-MofN (b) JPDAF-LLR

(c) SMC-PHD-EP

Figure 4.13: Visualisation of the resulting tracks produced by the JPDAF-MofN,
JPDAF-LLR and SMC-PHD-EP algorithms for the dataset of Scenario 1.

of the algorithms. The advantages and deficiencies for each tracker are also
highlighted. To better understand the illustrated content, the used terminology
is hereby explained:

• The term Bonus Tracks is used to denote tracks that are generated by the
respective algorithm, but are not found in at least one of the remaining
algorithms. It is noted that a closer observation of the data indicates that
these tracks can be found to conform to data produced by a real target,
rather than clutter.

• The term Track Fragmentation is used to indicate that a track is prema-

98

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

turely terminated and then re-initiated at a later stage.

• The term Jump Track refers to an instance of a track whose covariance is
allowed to grow to such an extent that it ends up being misassociated with
a distant detection and falsely leaps to that location.

• The term Delayed Initiation is used to an instance of a track which is found
to be initiated significantly later than the time indicated by the data, as
well as in comparison to the initiation time of other algorithms.

Overall, the SMC-PHD-EP tracker can be seen to produce tracks that are
at worst as reliable as the tracks produced by the other two trackers. More
specifically, multiple examples of Bonus Tracks are found for faint targets that
are not picked up by the other algorithms. It is worth noting that, by closely
examining tracks that are commonly found in all outputs, no obvious signs are
identified to suggest that the particular algorithm initiates targets earlier that
other algorithms. A minor short-coming of the algorithm is a marginally elevated
number of Track Fragmentation example for tracks relating to what is seemingly
static targets (buoys), as highlighted in Figure 4.13c. A closer examination of
the evolution of the process over time shows that this is caused by missed and
merged detections, which lead to tracks being pre-maturely terminated by the
JIPDA algorithm and re-initiated at a later stage.

Continuing, the JPDAF-MofN is found to exhibit signs of Track Fragmenta-
tion for moving targets, while at the same time an example of a Jump Track can
be observed. These results hint at the inadequacies of the heuristic track deletion
approach followed by the algorithm. More specifically, a potential solution to
tackling the track fragmentation problem would be to further increase the dele-
tion threshold. However, the presence of a Jump Track antithetically suggests
that the deletion threshold should be reduced. It is noted that test have been
performed for a range of other deletion thresholds, for varying values of Mdel and
Ndel, which did not yield any improvement. That being said, one advantage of
the JPDAF-MofN, compared to JPDAF-LLR, is that the tracker is able to ini-
tiate and track a Bonus Track, while its overall track initiation performance for
all remaining tracks is found to be comparable to that of JPDAF-LLR for the
particular scenario.

Finally, the JPDAF-LLR algorithm can be seen to overcome the track frag-
mentation issues identified in the other two trackers, however is found to suffer
from cases of Delayed Initiation and an inability to initiate tracks for faint tar-
gets. When it comes to track fragmentation the JPDAF-LLR algorithm is able
to handle the presence of missed and merged detections more gracefully com-
pared to the other two algorithms, therefore avoiding the premature termination

99

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

of tracks. Overall, the algorithm can be found to be more conservative than the
other two algorithms in terms of track initiation. As discussed previously, the
track initiation threshold Thigh is inversely proportional on the choice of the false
track confirmation probability α. Further tests performed for marginally higher
values of the specific parameter lead to a modest improvement of the Delayed
Initiation example, the tracker was stick unable to acquire any Bonus Tracks,
while an introduction of false tracks was also observed.

4.7.5.2 Scenario 2 - Tracking through dense clutter

The experiments performed in this section will be based around the second sce-
nario discussed in Section 4.7.3. The focus area for this scenario and the extent
of the dataset used are illustrated in Figure 4.8. Let us denote the region of dense
clutter as VHC . At a first stage, the performance of each of the algorithms dis-
cussed in Section 4.7.2 will be quantified using the base set of model parameters
shown in Section 4.7.4, after which different parameters will be tested for each
algorithm with the aim of alleviating the issues that arise.

The presence of a region of dense clutter in this scenario necessitates that an
estimate of the mean clutter rate in that region is obtained. From an empirical
observation of the dataset, it has been observed that the ratio of the number of
clutter generated detections MC

k to the number of true detections M∆
k at each

timestep is significantly high. As it is not possible to obtain an exact value for
this ratio, the value γ = MC

k /M
∆
k = 10 is used as an approximation. Using this

value, it is possible to obtain an approximation to the mean number of clutter
measurements λ̄HC at each scan within that region, as follows:

λ̄HC = λHCVHC =
1

NS

NS∑
k=1

(1− γ−1)Mk ≈ 50 (4.80)

where, λHC is the estimated clutter density per unit volume of VHC , VHC is the
total volume of VHC , and NS is the total number of measurement scans. The
above value for λ̄HC is important, as it will be used to parameterise the clutter
model for tracks that travel within VHC in the following subsections.

M-out-of-N

The presence of dense clutter in this scenario renders the use of Probabilistic Data
Association (PDA) methods to process tentative and confirmed tracks impossible.
This is due to the fact that new tracks are initiated for all unassociated measure-

100

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

Figure 4.14: Visualisation of the examined dataset (left) and the GNN-MofN
tracker output with uniform clutter rate (right).

ments, leading to a combinatorial explosion in the case of these algorithms. For
this reason, a Global Nearest Neighbour approach is used to process tentative
tracks. To ease notation, the term GNN-MofN will be used to refer to this par-
ticular tracker configuration. As before, the confirmation and deletion thresholds
are initially set to Tconf = Mconf/Nconf = 4/5 and Tdel = Mdel/Ndel = 8/10,
respectively.

The output of the tracker configured with the initial set of parameters specified
above, and uniform clutter rate λFA = 10, is shown in Figure 4.14. From the
results of Figure 4.14 it quickly becomes evident that the dense clutter results
in the introduction of a high number of false tracks in the marked region. The
presence of a high number of false tracks indicates that the track confirmation
threshold needs to be appropriately adjusted to avoid premature confirmation
of tracks. This is necessary for M-out-of-N based approaches, since the track
initiation process does not take into account the clutter model parameters.

In order to identify an optimal setting for the Tconf , a set of trial runs was
performed for a range of different values. The candidate values were selected by
settingMconf = c∗4 andNconf = c∗5, where c is a proportionality constant, taking
values c = 2, 3, 4, 5. In each of the trial runs, the mean clutter rate for tracks
within VHC is also set to λ̄HC = 50. The tracks generated by the tracker for the
various confirmation thresholds are shown in Figure . As expected, increasing the
threshold values leads to a progressive reduction of the amount of false tracks.
However, at the same time, the tracker can also be seen to gradually become
unable to confirm some of the true tracks, while a subset of the successfully
confirmed tracks are found to have their estimated trajectory shortened. The best

101

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

trade-off parameter was found to be c = 4, where the majority of the false tracks
are eliminated, while maintaining a satisfactory quality for confirmed tracks.

(a) c = 2 (b) c = 3

(c) c = 4 (d) c = 5

Figure 4.15: Visualisation of GNN-MofN tracker output for various values of
confirmation threshold Tconf = (c ∗ 4)/(c ∗ 5) in the high-clutter region. The
confirmation threshold for the remainder of the surveillance area is kept constant
at Tconf = 4/5 for all runs.

Log-LikeLihood Ratio

Since the LLR approach shares the same track initiation scheme as the M-out-
of-N method, whereby new tentative tracks are initiated from all unassociated
measurements, the use of JPDA for processing the tentative tracks leads to in-

102

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

Figure 4.16: Visualisation of the examined dataset (left) and the GNN-LLR
tracker output with uniform clutter rate (right).

tractable results. Hence, a GNN algorithm is once again utilised here to maintain
tractable performance, and the notation GNN-LLR will be used to refer to this
particular tracker configuration.

The tracker output for uniform clutter rate λFA = 10 and track management
parameters set as α = 10−6, β = 0.1 and THD = 6.7 is shown in Figure 4.16.
As expected, the tracker exhibits an elevated number of false tracks in the high-
clutter region, caused by the increased number of false alarms, which are not
captured correctly by the existing clutter model. In the interest of reducing the
number of false tracks in the region of dense clutter, we first apply the regional
clutter rate λ̄HC = 50 for that area. The resulting tracker output is shown in
Figure 4.17a, where it can be observed that the majority of the false tracks are
removed, without affecting greatly the quality of the true tracks. Continuing, an
attempt is made to further improve on the performance of the tracker by decreas-
ing the value of of the false track confirmation probability α to 10−8, thus resulting
in an increase of the confirmation threshold, which now becomes Thigh = 20.61.
The tracks generated by the tracker using the modified confirmation threshold
are visualised in Figure 4.17b. As expected, this modification has resulted in a
reduction of the amount of false tracks, at the expense however of some cases of
delayed track initiation and potentially missed tracks.

SMC-PHD with Existence Probabilities

Unlike the previous track management approaches, which necessitated the use of
data association algorithms to process tentative tracks and were therefore greatly

103

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

(a) λ̄HC = 50 and α = 10−6 (b) λ̄HC = 50 and α = 10−8

Figure 4.17: Comparison between the output of the GNN-LLR tracker for the
examined dataset of Scenario 2 for a range of parameters: (a) Regional clutter
rate λ̄HC = 50 and α = 10−6; (b) Regional clutter rate λ̄HC = 50 and α = 10−8.

hindered computationally by the presence of dense clutter, this method manages
to maintain tractable performance through its use of an SMC-PHD filter to track
the density of tentative tracks. This is due to the inherent ability of the SMC-
PHD filter, like all PHD filters, to circumvent the computationally intensive data
association procedures (see Section 4.5). As before, the notation SMC-PHD-EP
will be used to refer to this particular tracker configuration.

The tracker output for uniform clutter rate λFA = 10 and track confirmation
and deletion probabilities set as Pconf = 0.8 and Pdel = 0.1, respectively, is shown
in Figure 4.18. Once again, it can be observe that the use of a uniform clutter
rate results in a high number of false tracks being generated by the tracker in with
the region of dense clutter. Therefore, the tracker is configured with the regional
clutter rate λ̄HC = 50 for the region of clutter and the trial is repeated. The
tracks generated by the tracker using this particular parameterisation is shown
in Figure 4.19a, where it can be clearly seen that the amount of false tracks has
been significantly reduced. In an attempt to further minimise the presence of false
tracks, a final trial run is performed for which the confirmation probability is set to
Pconf = 0.9 for tracks that are evaluated for confirmation within the region of high
clutter. Figure 4.19b illustrates the tracker output for this run. Although it is not
clearly obvious from the respective figure, the increased confirmation threshold
does result in a minor delay of track confirmation, however the reduction of false
tracks is evidently more noticeable. Therefore, it is concluded this particular
setting of parameters yields the most reliable results.

104

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

Figure 4.18: Visualisation of the examined dataset (left) and the SMC-PHD-EP
tracker output with uniform clutter rate (right).

(a) λ̄HC = 50 and Pconf = 0.8 (b) λ̄HC = 50 and Pconf = 0.9

Figure 4.19: Comparison between the output of the SMC-PHD-EP tracker for the
examined dataset of Scenario 2 for a range of parameters: (a) Regional clutter rate
λ̄HC = 50 and Pconf = 0.8; (b) Regional clutter rate λ̄HC = 50 and Pconf = 0.9.

Comparison

A comparison is performed between the tracks produced by each of the algorithms
considered above, for the respective set of optimal parameters in each case. As
before, since there is no ground-truth data, it is not possible to produce a quan-
titative comparison. Therefore, a qualitative comparison is performed by means
of visual evaluation and an attempt has been made to identify and highlight ob-

105

4.7. Specifics of Applications to Real Data
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

servable differences between the different tracker outputs. Figure ?? contains a
sub-figure illustrating the tracks produced by each of the algorithms. The advan-
tages and deficiencies for each tracker are also highlighted. To avoid repetition,
readers are advised to refer to the explanation provided in the Comparison sub-
section of Section 4.7.5.1 for a reference to the terminology used to refer to the
various identified features.

Overall, the GNN-MofN tracker (Figure 4.20a) can be seen to produce inferior
results compared to the other two algorithms. The tracker is found to exhibit
the highest number of false tracks, while also suffering from elevated levels of de-
layed initiation and missed tracks. As previously discussed and illustrated (Figure
4.15), any attempt to increase the confirmation threshold, so as to further reduce
the amount of generated false tracks, results in an increase in the number of
missed true tracks, as well as a performance deterioration due to delayed initi-
ation. Furthermore, even outside the region of high clutter, the algorithm can
be seen to produce a substantial amount of fragmentation, while at the same
time demonstrating an inability to correctly initiate and maintain tracks for faint
targets.

The GNN-LLR tracker (Figure 4.20b) manages to overcome some of the issues
met by the GNN-MofN tracker. The algorithm shows a significant improvement,
compared to the GNN-MofN case, in terms of the amount of generated false
tracks in the region of dense clutter. Continuing, although some cases of delayed
initiation are still observable, their effect is marginally alleviated, while no obvious
cases of jump tracks were observed. Some cases of bonus tracks are identified for
seemingly faint targets which were not picked up by the GNN-MofN tracker, while
there exists (at least) one bonus track that is not found in either of the other two
trackers. Finally, track fragmentation issues are observed, including some missed
true tracks, which are seen to be less severe than those observed in the case of
GNN-MofN, but more prominent when compared to SMC-PHD-EP.

The best performance is found to be demonstrated by the SMC-PHD-EP
algorithm (Figure 4.20c). Firstly, the amount of false tracks in the region of dense
clutter has been effectively reduced to a single case, which could potentially also
be related to a true static target (buoy). Furthermore, the tracker was found
to not exhibit any obvious signs of delayed initiation, especially when compared
to the other two approaches. Tracking performance in relation to faint targets
is also found to be superior to the other two algorithms. The most prominent
example is seen in the presence of a well maintained bonus track at the bottom of
Figure (Figure 4.20b), which, although marginally fragmented, cannot be found
in any of the outputs from the other trackers. Finally, some examples of track
fragmentation can be observed, however all cases can be seen to occur for tracks

106

4.8. Conclusion
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

generated from faint targets, which can either also be found in the other plots or
they relate to true tracks not generated by the other algorithms altogether.

(a) GNN-MofN (b) GNN-LLR

(c) SMC-PHD-EP

Figure 4.20: Visualisation of the resulting tracks produced by the GNN-MofN,
GNN-LLR and SMC-PHD-EP algorithms for the dataset of Scenario 2.

4.8 Conclusion

This chapter extended the discussion from Chapter 3 to the case of Multi-Target
Tracking. An introduction to the Multi-Target Bayes Filter was presented, while
drawing relation to the Standard Bayes Filter. A structural overview of conven-
tional Multi-Target trackers was presented, with special focus to the utilised Data

107

4.8. Conclusion
Chapter 4. Non-Linear, Non-Gaussian Multi-Target Tracking

Association and Track Management methods. Along the same discussion, the au-
thor presented drew a relation between the Joint Probabilistic Data Association
(JPDA) and Joint Integrated PDA algorithms, highlighting how the latter can be
performed using the same constructs. Furthermore, a formulation of the Proba-
bility Hypothesis Density (PHD) filter as an approximation to the Multi-target
Bayes Filter was briefly discussed. Finally, the author demonstrated the appli-
cation of a radar track initiation technique which utilises a PHD filter to model
the density of uninitiated targets. Simulation results were shown that showcased
the merits of the approach, followed by a demonstration of results achieved by
applying the method to real data extracted from a commercial radar.

108

CHAPTER 5

Parameter Estimation in Dynamical Markov Models

5.1 Introduction

Kalman Filters [31] are in widespread use in a plethora of fields, from the esti-
mation of stock prices and monetary aggregates, to the navigation, tracking and
control of mobile robots. A highly challenging task in all of the above applications
is the accurate modelling of the dynamics that govern the evolution of the pro-
cesses to be estimated. Linear Gaussian state-space models [107] are widely used
to describe the dynamics of Linear Dynamical Systems (LDSs), and the term
“modeling” in this context refers to the estimation of the optimal state-space
parameters, which define a given model.

In general, Linear Gaussian state-space models can be described by the fol-
lowing equations:

xk =Fxk−1 +Buk + qk, qk ∼ N (0, Q) (5.1)

yk =Hxk + rk, rk ∼ N (0, R) (5.2)

where yk is the corrupted measurement at time tk, xk is the hidden state variable,
uk is a control input, qk and rk are the process and measurement noise compo-
nents, assumed to be i.i.d. zero-mean Gaussians with corresponding covariances
Q and R, while F , H and B denote the time-invariant transition, measurement
and control gain matrices, respectively.

109

5.2. Expectation Maximization
Chapter 5. Parameter Estimation in Dynamical Markov Models

Ghahramani & Hinton [108] and Digalakis et al. [109] demonstrate the ap-
plicability of the EM algorithm [110] to parameter estimation for a LDS, but
only provide a derivation of the equations in the case of no control inputs (i.e.
Buk , 0). Holmes [111] do include a control input in their notes, but only con-
sider the special case of a stochastic exponential growth model, where F and H
reduce to identity matrices, and assumes Buk = B to be constant. Gibson &
Ninness [112] present a robust method for estimating the parameters of a more
generic case of multivariable dynamical systems using EM, however a derivation
of the reduced set of equations, which conform to the more specific scenario with
which this paper is concerned, is not straight-forward. Similar work, to the one
presented herein, has also been done by Blocker [113], however some terms ap-
pear to be missing from the proposed solutions to the EM equations, potentially
resulting from the use of approximations, which have not been explicitly stated.

The content presented herein is derived from and incorporates text from a
paper that has been prepared for submission to the IEEE Signal Processing Let-
ters, for which the author is the main author. In this chapter, the objective is
to present a brief derivation of the complete set of equations required to perform
parameter estimation for a LDS with control inputs, as well as a straightforward
formulation of the relevant algorithmic EM steps. Section 5.2 begins by defining
the complete log-likelihood equation for a generic LDS with control inputs, and
proceeds by presenting a brief derivation of the EM equations, used to achieve
the local optima. Section 5.3 introduces a case study conducted on a segway plat-
form to demonstrate the applicability and achieved performance of the proposed
method. Simulated numerical results are also shown in Section 5.3, along with
graphs indicating the existing correlations between different parameters. Finally,
conclusions are drawn and discussed in Section 5.4.

5.2 Expectation Maximization

5.2.1 Maximum Likelihood Estimation

The process of learning a LDS using the EM algorithm involves finding the set of
parameters θ = {F,B,H,Q,R} that maximize the log-likelihood function L(θ):

L(θ) , log pθ(y1:N , x1:N |u1:N) (5.3)

where y1:N = y1 . . . yN , and similarly for x1:N and u1:N .

Making use of the Markov property implicit in the models shown in (5.1) and
(5.2), an expression for L(θ) can be obtained in the form of (5.4), as shown below:

110

5.2. Expectation Maximization
Chapter 5. Parameter Estimation in Dynamical Markov Models

L(θ) = log p(x1) +
N∑
k=2

log pθ(xk|xk−1, uk)

+
N∑
k=1

log pθ(yk|xk)

=− 1

2
(x1 − µ1)V −1

1 (x1 − µ1)T − 1

2
log |V1|

−
N∑
k=2

1

2
(xk − Fxk−1 −Buk)Q

−1(xk − Fxk−1 −Buk)
T

−
N∑
k=1

1

2
(yk −Hxk)R

−1(yk −Hxk)
T − N

2
log |R|

− N − 1

2
log |Q| − N(Dx +Dy)

2
log 2π

(5.4)

where pθ(.) denotes a pdf evaluated based on the set of parameters in θ, p(x1) =
N (x1;µ1, V1) is the initial hidden state distribution, pθ(yk|xk) = N (yk;Hxk, R)
is the measurement model pdf, pθ(xk|xk−1, uk) = N (xk;Fxk−1 +Buk, Q) is the
dynamic model pdf and Dx, Dy denote the dimensionality of the hidden state
variable and the measurement data, respectively.

Once an initial set of parameters θ1 is identified, application of the EM algo-
rithm is performed by recursive repetition of Estimation and Maximisation steps,
until the algorithm converges to the optimal set of parameters. On each iteration
of the EM algorithm, the optimised set of parameters θ̂ = {F̂ , Ĥ, B̂, Q̂, R̂} can
be estimated on the basis of maximising the lower-bound Q(θ) of L(θ), i.e. :

Q(θ) = E[L(θ)|y1:N] (5.5)

θ̂ = arg max
θ
Q(θ) (5.6)

Sections 5.2.2-5.2.3 introduce the main set of equations and operations in-
volved in executing the Estimation (E) and Maximisation (M) steps, respectively.
In Section 5.2.4, a method is presented for obtaining a good set of initial estimates
θ1, while Section 5.2.5 discusses an approach to determine when the algorithm
has converged. For an in-depth explanation and derivation of (5.4)-(5.6) the
reader is advised to refer to [114]. Assuming that all parameters within θ are
independent random variables, the above maximisation process can be simplified

111

5.2. Expectation Maximization
Chapter 5. Parameter Estimation in Dynamical Markov Models

and computed separately for each parameter, as we show in Section 5.2.3.

5.2.2 E Step

The Estimation (E) step is employed with the aim of obtaining maximum likeli-
hood estimates of the hidden state distribution pθ(x1:k|y1:k, u1:k), over the entire
time epoch k = 1 : N . In the case of Linear Gaussian state-space models, a
closed-form solution to the above estimation problem is provided by the well
known Kalman Filter & Smoother equations. These are described below.

Firstly, a feed-forward pass is performed, using the standard Kalman Filter
[31] equations to compute the filtered estimates, as follows:

x̄k|k−1 = F x̄k−1 +Buk (5.7)

V̄k|k−1 = FV̄k−1F
T +Q (5.8)

Kk = V̄k|k−1H
T (HV̄k|k−1H

T +R)−1 (5.9)

x̄k = x̄k|k−1 +Kk(yk −Hx̄k|k−1) (5.10)

V̄k = (I −KH)V̄k|k−1 (5.11)

where x̄k|k−1, V̄k|k−1 denote the predicted estimates, while x̄k, V̄k denote the filtered
estimates at time tk, and the recursion is initialised by setting x̄1 = µ1, V̄1 = V1.

Once the filtered estimates have been attained, a backward recursion can be
performed, using the Rauch-Tung-Striebel (RTS) smoothing equations [115], in
order to compute the maximum likelihood (a.k.a. smoothed) estimates x̂k =
E[xk], V̂k = V ar(xk), Pk = E[xkx

T
k] = V̂k + x̂kx̂

T
k and Pk,k−1 = E[xkx

T
k−1] =

V̂k,k−1 + x̂kx̂
T
k−1, as follows:

Jk−1 = V̄k−1F
T (V̄k|k−1)−1 (5.12)

x̂k−1 = x̄k−1 + Jk−1(x̂k − x̄k|k−1) (5.13)

V̂k−1 = V̄k−1 + Jk−1(V̂k − V̄k|k−1)Jk−1
T (5.14)

V̂k,k−1 = V̄kJk−1
T + Jk(V̂k+1,k − FV̄k)Jk−1

T (5.15)

where V̂k,k−1 is the lag one covariance, with:

V̂N,N−1 = (I −KNH)FV̄N−1 (5.16)

112

5.2. Expectation Maximization
Chapter 5. Parameter Estimation in Dynamical Markov Models

5.2.3 M Step

The Maximization (M) step is performed with the aim of estimating the set of
parameters θ that maximize the log-likelihood function Q(θ). With the assump-
tion that all parameters within θ are independent random variables and that the
likelihood, conditional on each parameter, is Gaussian, i.e. concave, its global
maximum can be identified by taking the partial derivative, with respect to each
parameter, and setting it equal to zero. Below we present the equations used to
update the parameters on each EM iteration:

• Prior mean µ1 and covariance V1:

µ1 = x̂1

V1 = V̂1

(5.17)

• State Transition Matrix F :

∂Q
∂F

=
N∑
k=2

(Pk,k−1 − FPk−1 −Bukx̂
T
k−1)

∴ F̂ =

(
N∑
k=2

(Pk,k−1 −Bukx̂
T
k−1)

)(
N∑
k=2

Pk−1

)−1 (5.18)

• Similarly for the Measurement Matrix H and Control Matrix B:

Ĥ =

(
N∑
k=1

ykx̂
T
k

)(
N∑
k=1

Pk

)−1

(5.19)

B̂ =

(
N∑
k=2

(x̂ku
T
k − F x̂k−1uTk)

)(
N∑
k=2

uku
T
k

)−1

(5.20)

113

5.2. Expectation Maximization
Chapter 5. Parameter Estimation in Dynamical Markov Models

• Process Variance Matrix Q:

∂Q
∂Q−1

= − (N − 1)Q+
N∑
k=2

(
Pk + FPk−1F

T

− Pk,k−1F
T − FPk−1,k − x̂ku

T
kB

T −Bukx̂
T
k

+ F x̂k−1uTkB
T +Buku

T
kB

T +Bukx̂
T
kF

T
)

∴ Q̂ =
1

N − 1

N∑
k=2

(
Pk + FPk−1F

T − Pk,k−1F
T

− FPk−1,k − FPk−1,k − x̂ku
T
kB

T −Bukx̂
T
k

+ F x̂k−1uTkB
T +Buku

T
kB

T +Bukx̂
T
kF

T
)

(5.21)

• Similarly for the Measurement Variance Matrix R:

R̂ =
1

N

N∑
k=1

(yky
T
k − ykx̂

T
kH

T −Hx̂ky
T
k +HPkH

T) (5.22)

where, in (5.18)-(5.22) we have used the fact that ∂E[x]
∂y

= E
[
∂x
∂y

]
. The reader

should note that (5.17)-(5.22) are similar but different to the results in [113]
and equivalent to those in [112], albeit articulated using the form considered in
[108, 109, 111, 115].

5.2.4 Initial Parameter Settings

The effectiveness of EM depends highly on the provided set of initial parameters
θ1 = {F1, H1, B1, Q1, R1}. Bad setting of initial parameters may lead to incorrect
results, while suitable initial value setting could significantly improve convergence
speed. Thus, according to good statistical practice, if some prior knowledge
about the system’s parameters exists, the best course of action is to perform
initialisation based on this information.

Below we present a method for obtaining initial estimates, assuming the hid-
den states are fully observable, i.e. Dx = Dy.

• State Transition Matrix F1: As the time interval between timesteps is min-
imised, the inter-step state variation is also reduced, causing the state tran-
sition matrix to approach the identity matrix. Thus, we set F1 as follows:

114

5.2. Expectation Maximization
Chapter 5. Parameter Estimation in Dynamical Markov Models

F1 = IDx (5.23)

where IDx is an identity matrix of size Dx.

• Measurement Matrix H1: As is often the case, raw data from sensors are
utilised without scaling. Thus, H1 can be initialised as follows:

H1 = IDy (5.24)

• Control Matrix B1: Utilising (5.23)-(5.24) and assuming that wk = 0, rk = 0
in (5.1)-(5.2), B1 can be computed as follows:

B1 =
1

N − 1

N−1∑
k=1

yk+1 − yk
uk + ε

(5.25)

• Process & Measurement Noise Matrices Q1 & R1 [111]:

ỹk =
k+3∑
i=k

yi,∀k ∈ [1, Ñ], Ñ = N − 3 (5.26)

Q1 =
1

3

[
V ar(ỹ4:Ñ − ỹ1:Ñ−3)− V ar(ỹ2:Ñ − ỹ1:Ñ−1)

]
(5.27)

R1 =
1

2

[
V ar(ỹ2:Ñ − ỹ1:Ñ−1)−Q1

]
(5.28)

• Prior mean µ1 and covariance V1:

µ1 = y1 (5.29)

V1 = R1 (5.30)

It should also be possible to use (5.27) and (5.28) to estimate Q1 and R1 first,
then proceed to estimate B1 by performing independent Monte-Carlo simulations
to sample wk, rk, thus removing the wk = 0 and rk = 0 assumption. The same
process could also be followed in cases where either Q1 or R1 are known a priori.
Although possible, this would lead to a slightly more complex form of (5.25),
while potentially introducing a correlation between the estimation accuracy of
B1 and that of Q1 and R1, and therefore this approach has not been considered
here.

It is important to also note that the above parameter settings are derived based
on the assumption that hidden states are fully observable and, consequently, on

115

5.2. Expectation Maximization
Chapter 5. Parameter Estimation in Dynamical Markov Models

the identity assumptions for F1 and H1. Even though this can be a reasonable
assumption for a vast number of low-dimensional problems, the effectiveness of the
above process can be greatly impacted by both the number and the dimensionality
of the parameters to be estimated.

5.2.5 Checking for convergence

Convergence of EM has been proven in [110, 116] where it was shown that, under
mild conditions, the algorithm is guaranteed to converge to a local maximum on
the log-likelihood plane. Despite this fact, the time required for optimal conver-
gence can vary greatly depending on the problem, or could even be infeasible, due
to machine precision errors that may occur during the log-likelihood computation.

To avoid such pitfalls, a mechanism can be put in place to detect when the
algorithm tends to converge. One very common criterion, and also the one utilised
in this paper, is based on setting a convergence threshold dlmin on the difference
dli between the incomplete data likelihood l(θk), evaluated at two consecutive
EM iterations, i and i− 1, such that the algorithm is halted when dli falls bellow
dlmin:

l(θi) ,
N∑
k=1

log pθk(yk|xk|k−1) ∝ −N
2

log |Sk|

− 1

2

N∑
k=1

(yk −Hkx̄k|k−1)S−1
k (yk −Hkx̄k|k−1)T

(5.31)

where x̄k|k−1 is defined in (5.7), Sk = HkV̄k|k−1H
T
k +Rk is the innovation (predicted

measurement) covariance at time tk, and the algorithm is allow to run while:

dli = l(θi)− l(θi−1) ≥ dlmin (5.32)

However, it is worth noting that convergence of the EM algorithm does not
guarantee globally optimal results, unless the problem is such that the log-
likelihood function is concave. As shown in [116], under certain conditions, the
algorithm may not even converge to local optima, instead getting trapped at ex-
isting stationary points. The above presented convergence criteria may make this
problem even more profound, by causing premature convergence in cases where
the log-likelihood function contains regions of negligible slope. Nevertheless, this
is considered a reasonable trade-off between speed and accuracy, which can be
avoided all together by a carefully selected convergence threshold.

116

5.2. Expectation Maximization
Chapter 5. Parameter Estimation in Dynamical Markov Models

5.2.6 Uniqueness of parameter estimates

By analysing (5.1) and (5.2), it should become evident that, given xk−1 and uk,
there exist an infinite number of parameter combinations that can yield the same
measurement yk. To demonstrate this fact, consider the case where a (non-zero)
scaling parameter c̃ is introduced in (5.1), such that x̃k = c̃xk. Then, (5.1) - (5.2)
can be rewritten as follows:

x̃k = (c̃F) xk−1 + (c̃B) uk + q̃k, q̃k ∼ N (0, c̃2Q) (5.33)

yk =
H

c̃
x̃k + r̃k, r̃k ∼ N (0,

R

c̃2
) (5.34)

This phenomenon results in the introduction of multiple extended modes in
the log-likelihood plane, the number of which is related to the number of possible
values of c̃. An example visualisation of this phenomenon is depicted in Fig. 5.1,
where it should be clear to see that the correlation between H̃ and B̃ follows
closely the relations expressed in (5.33)-(5.34).

Figure 5.1: Log-likelihood plot (a) and contours (b) evaluated at a range of values
for parameters H̃ and B̃, given H = 1 and B = 0.002.

With this in mind, we can see that if none of the parameters are known a
priori, the EM algorithm can converge to any of an infinite number of possible
combinations of the parameters. What is more, the choice of initial parameter
settings will have a significant effect on the results, as EM will naturally converge
to the nearest local maximum.

To circumvent this issue, one of the parameters in θ can be constrained
throughout the learning process, thus placing a bound on the value of c̃. In

117

5.3. Experimental Results
Chapter 5. Parameter Estimation in Dynamical Markov Models

many cases, this can be achieved if the sensor characteristics are known (e.g.
from a specification document), in which case H̃ and/or R̃ can be inferred.

5.3 Experimental Results

5.3.1 Case Study: Segway System

To benchmark the proposed algorithm, a real segway SISO system is used to
generate a series of control inputs uk, corresponding to the power supplied to the
servo-motors to ensure that the platform maintains a near upright position (such
that the model is well approximated as linear). The state-space model is formed
such that the hidden state xk corresponds to the angular (tilt) acceleration of the
platform, while yk relates to noisy measurements of (a function of) xk, received
via an accelerometer mounted on the platform.

For the purposes of benchmarks, measurements yk are in fact generated via
simulation. Although it would be possible to extract real measurements from the
platform, evaluating the performance of the algorithm would be challenging: the
very reason for developing this method is that, for the platforms we have access
to, we do not have precise sensor characteristics. To overcome this issue, the
extracted control inputs are used, along with preset values for θtrue, to simulate
the system and extract both yk and ground truth data for xk.

The set of initial parameters, used to initialise the algorithm in each of the
experiments, is generated according to the process described in Section 5.2.4.
Although we believe that this approach may have some generic utility, we do
recognise that it might be specific to the models considered herein. Finally,
convergence of the algorithm is judged based on (5.32), with dlmin = 10−5.

5.3.2 Unconstrained Parameters

The first set of tests is performed based on the assumption that no prior infor-
mation about the parameters is available. Thus, all parameters are left uncon-
strained throughout the learning process. Each row in Table 5.1, corresponds to a
different experiment, each performed over 100 Monte-Carlo runs, using a distinct
combination of ground truth parameter settings. For each experiment, both the
initial and estimated parameter values are shown, as well as a 95% confidence
interval.

A first observation can be made with respect to the generated initial parameter

118

5.3. Experimental Results
Chapter 5. Parameter Estimation in Dynamical Markov Models

estimates, which can be seen to fall in close proximity to the true values in all but
the last experiment, where both Htrue and Ftrue violate the identity assumption of
(5.23)-(5.24). Continuing, we observe that the parameter estimation performance
varies between experiments. This can be attributed to the issues discussed Section
5.2.6. More specifically, as all parameters are left unconstrained, the algorithm
can converge to a number of different parameter combinations, the choice of which
is highly influenced by the initial parameters. As a result, we can observe that
the worst estimation performance is achieved by the last experiment, where the
initial estimates fall far from the true values.

Table 5.1: Parameter Estimation with Unconstrained Parameters

F H B Q R

True 1.0000 1.5000 -0.0020 0.0100 0.0100

Initial 1.0000 1.0000 0.010078± 118.1959% 0.0005624± 4.2004% 0.13866± 3.4714%

Estimated 0.99994± 0.019496% 0.95575± 4.7373% −0.0031427± 5.2108% 0.024897± 11.5474% 0.0099215± 7.9157%

True 1.0000 0.5000 -0.0020 0.0100 0.100

Initial 1.0000 1.0000 0.0034921± 99.4673% 0.00019431± 4.9819% 0.11409± 3.231%

Estimated 0.99996± 0.015934% 0.92417± 7.5458% −0.0010899± 9.2494% 0.0029329± 19.9756% 0.10001± 3.1343%

True 0.5000 0.5000 0.2000 0.1000 0.1000

Initial 1.0000 1.0000 0.013139± 2.7159% 0.098559± 0.25174% 39.057± 0.23256%

Estimated 0.50007± 0.14394% 4.9347± 1.7161% 0.020267± 1.7325% 0.0010173± 17.5247% 0.1± 5.6792%

5.3.3 Constrained Measurement Matrix H

In this set of experiments, it is assumed that the measurement matrix H is known,
and therefore it is constrained to its true value throughout the learning process.
Thus, the goal here is to estimate all other parameters, given that H is fixed.
The same experiments as before are repeated and the results are shown in Table
5.2. Once again, both the initial and estimated parameter values are shown,
complemented by a 95% confidence interval.

From the achieved results, it becomes evident that the performance of the
system has greatly improved. All parameters, including B and Q are estimated
much more accurately and the correlation between initial and final estimates has
been removed. Although some estimation errors still exist, their magnitude has
largely decreased compared to Section 5.3.2.

119

5.4. Conclusion
Chapter 5. Parameter Estimation in Dynamical Markov Models

Table 5.2: Parameter Re-estimation with Constrained H

F H B Q R

True 1.0000 1.5000 -0.0020 0.0100 0.0100

Initial 1.0000 1.5000 0.0078661± 144.3946% 0.00056028± 4.1486% 0.13834± 3.2502%

Estimated 0.99992± 0.018887% 1.5000 −0.0019989± 1.63% 0.0099151± 5.1499% 0.010109± 6.936%

True 1.0000 0.5000 -0.0020 0.0100 0.1000

Initial 1.0000 0.5000 0.0035615± 102.8949% 0.00019377± 4.5276% 0.11397± 2.9011%

Estimated 0.9999± 0.021135% 0.5000 −0.0020143± 3.9625% 0.0096162± 13.9098% 0.09993± 2.6947%

True 0.5000 0.5000 0.2000 0.1000 0.1000

Initial 1.0000 0.5000 0.013116± 2.6062% 0.098566± 0.24239% 39.0574± 0.22044%

Estimated 0.50014± 0.13681% 0.5000 0.19996± 0.096441% 0.097487± 17.6467% 0.10055± 5.8327%

5.4 Conclusion

In conclusion, this chapter demonstrates the applicability of EM to parameter
estimation for LDSs with control inputs. A derivation of the complete set of
equations required to perform the estimation process has been presented, as well
as a straightforward formulation of the relevant algorithmic steps. Also, an in-
tuitive way of generating initial parameter estimates was introduced, given that
certain assumption hold, and the performance implications of such initial esti-
mates was discussed, given that no parameters are constrained throughout the
learning process. The performance of the presented algorithm has been evaluated,
based on a case study performed on a real segway system. The presented results
show that the proposed technique achieves acceptable results, where the estima-
tion performance can be greatly improved, if one (or more) of the parameters are
known a priori.

120

CHAPTER 6

Maritime Video Detection & Tracking

6.1 Introduction

One major component of modern VTS systems is the video component. Research
into video surveillance systems is one of the most active topics in computer vision
[117], which has received increasing attention over the past decade [118]. Over
this period, there have been a plethora of applications stemming from the need to
develop efficient maritime video surveillance systems. The Autonomous Maritime
Surveillance System (AMASS)[119] is European project aiming at the develop-
ment of an autonomous surveillance system equipped with FLIR cameras. The
AVITRACK[120], MAAW[121] and ARGOS[117] systems are other examples of
surveillance systems based on cameras. Other applications have also emerged,
which allow for the fusion of visual information with data acquired from a de-
ployment of other sensors (e.g. radars, AIS e.t.c.). The AMFIS[122], ASV[123]
and AIVS3[124] systems are all examples of such applications. Although there
has been an increased focus on performing vessel detection and tracking through
the use of port surveillance cameras, little work has been done, to the best of
the author’s knowledge, on developing systems that perform automated image
capturing of vessels that are present in a given port.

Automatic Identification and Data Capture (AIDC) systems have grown in-
creasingly popular over the years, with numerous successful applications in the
Defence and Security sector, due to their inherent ability to accumulate, organise

121

6.2. Problem Formulation
Chapter 6. Maritime Video Detection & Tracking

and distribute valuable information and intelligence, with the added benefit of ac-
celerating, or even avoiding altogether, the labourious and heavily-beaurocratic
manual data collections, as well as removing the elements of human error and
health risk. Aside from the immediate benefit in terms of crime control and
prevention in the present time, AIDC systems facilitate the means for gradually
gathering and constructing a substantial dataset - in our case imagery - which
can be further utilised in the research and development of ever more effective
automated (vessel) classification and identification systems in the future.

This chapter aims to summarise the work performed by the author in the
domain of Maritime Video Detection & Tracking. Section 6.2 initiates the dis-
cussions by introducing the reader to the basic concepts and notation used in
this Chapter. Section 6.3 is then focused on the engineering challenges relat-
ing to development of accurate real-time ship detectors with the use of active
Electro-Optical sensors (cameras). A review of existing approaches is presented,
followed by an introduction to the state-of-the-art detectors that base their op-
eration on Convolutional Neural Networks (CNNs). Under the same section, a
custom CNN-based ship detector is introduced, followed by brief report of the
followed methodologies and a comprehensive performance analysis. Continuing,
Section 6.4 demonstrates an effective method for estimating and accounting for
the errors induced by the camera motion in real-time. The use of an active (Pan-
Tilt-Zoom) camera, introduces errors due to the inherent ability of the camera
to exhibit motion. Thus, in addition to the multi-target tracking complexities
discussed in Chapter 4, further measures must be employed in order to ensure
that the positions of targets are estimated accurately, even after the camera has
changed its orientation.

6.2 Problem Formulation

We define our state-space system on the 2-dimensional coordinate frame defined
by the image plane of received video frames. Following standard practice, given a
video frame Ik of dimensions (Iwidth, Iheight), the origin (0, 0) of the coordinate sys-
tem is placed in the top-left corner of the image, with the positive X-axis running
from left-to-right, while the positive Y-axis running in a top-to-bottom orienta-
tion. An example frame, along with appropriate illustrations of the employed
coordinate system is provided in Figure 6.1.

Based on the above mindset, target states at time tk are assumed to be repre-
sented by 2D bounding boxes, defined on the aforementioned coordinate frame,

122

6.2. Problem Formulation
Chapter 6. Maritime Video Detection & Tracking

(0,0) Iwidth

...

w

h

(x,y)

...

I h
ei
gh
t

frame

Figure 6.1: Example image frame and detection

as follows:
xk = [xk, ẋk, yk, ẏk, wk, hk]

T (6.1)

where x, y denote the X-Y coordinates of the bounding box top-left corner, w, h
denote the width and height of the box and ξ̇ is used to denote the first order
derivative of a given value ξ. Without loss of generality, target motion on each
axis can be assumed to follow a 2-D nearly Constant Velocity model (see Section
2.2.2), while the size (width, height) of a target can be modelled according to
i.i.d. Random Walk (see Section 2.2.1) processes.

At each time tk, a set of noisy detections Yk = {y1
k, . . . , y

Mk
k } is received, where

each yjk is of the form

yk = [xk, yk, wk, hk]
T (6.2)

Thus, the transformation between measurements and target states, can be as-
sumed to be described by a 4-D Linear-Gaussian model (see Section 2.3.1), with
a pair of i.i.d. Gaussian noise components for the positional (xk, yk) and size (wk,
hk) dimensions.

False detections are modelled according to a Poisson Rate with Uniform Po-
sition (see Section 2.5.1) clutter model, with Poisson distributed number of false
alarms per frame, with expected rate of λFA, and Uniformly distributed position
and size across the entire frame Ik. What is more, target detectability is modelled
according to a Constant Detection Rate (see Section 2.4.1) model, with detection
probability PD.

123

6.3. A Robust CNN-based Ship Detector
Chapter 6. Maritime Video Detection & Tracking

6.3 A Robust CNN-based Ship Detector

Most common approaches to vessel detection depend on either motion estimation
[125] and/or background segmentation [123]. However, motion-based vessel de-
tection can experience difficulties when a boat is anchored or is on direct course
toward the camera, due to the small amount of inter-frame variation, while in the
case of background segmentation, the stochastic motion of waves tends to intro-
duce statistical irregularities in the background, causing increased false alarms.
Both of the aforementioned techniques have the strict requirement of the cam-
era(s) being stationary, meaning that a trade-off needs to be made between max-
imum resolution and area coverage, in single-sensor scenarios.

In [126, 127, 128] the authors present a method for visual ship detection and
tracking in open sea, specifically designed to work with streams acquired from
non-stationary passive cameras mounted on buoys. Although effective in the given
scenario, the method is based on two limiting assumptions: i) the camera is placed
in the open sea where the background contains mostly the horizon, meaning that
it is clear of other objects which may be falsely detected as ships; and ii) detected
objects are assumed to always be present above the horizon, which, although true
in the case of buoys floating on the the sea surface, it is not a valid assumption
on the case of overlooking PTZ cameras. Continuing, other approaches exist
that have addressed the issue of non-stationary automated active cameras [129,
130], however they suffer from certain limitations: i) they involve computation
of complex features, i.e. HOG, requiring the use of hardware acceleration with
programmable components, such as FPGAs, to achieve real-time performance; ii)
they impose certain assumptions, e.g. detection is performed based on only the
cabin of ships [130].

An alternative method for vessel detection has been demonstrated via the
application of ensemble classifiers, trained offline with Haar wavelet features
[131, 132], to achieve real-time detection of vessels in video frame sequences,
received from a user-controlled (non-automated) Pan-Tilt-Zoom (PTZ) camera.
Although Haar-feature cascade classifiers [133] have been reasonably successful
in detecting objects such as faces [134] and pedestrians [135], these objects have
generally very little geometrical shape variation. On the other hand, boats can
come in a vast variety of sizes and shapes, meaning that (optimally) a differ-
ent cascade needs to be trained for each different vessel type, such as to avoid
over-generalising the trained cascade, which in turn leads to increased amounts
of false detections. Continuing, even in cases of generally homogeneous objects,
an additional disadvantage of Haar classifiers is their sensitivity to out-of-plane
rotation. This is caused by the fact that, when rotated, the aspect ratio changes

124

6.3. A Robust CNN-based Ship Detector
Chapter 6. Maritime Video Detection & Tracking

for most 3-D objects. Thus, training a single detector to handle all orientations
does not work, and, once again, the general approach is to train a detector for
each orientation of the object.

6.3.1 Object Detection using CNNs

The rapid development of high performance parallel computing over the past two
decades has lead to the rebirth of Artificial Neural Networks (ANNs) as an active
research topic, with relatively recent advancements in the field giving rise to the
use of Convolutional Neural Networks (CNNs) for image classification and object
detection. Such recent advancements build upon the extraction and incorporation
of powerful deep features [136], which came to light and grew to prominence
through ImageNet classification competition [137]. Object detection algorithms
that lead this wave, while demonstrating impressive results on PASCAL Visual
Object Classes (VOC) [138] challenge, included algorithms such as R-CNN[139]
and OverFeat [140].

There exist two main frameworks of generic object detectors: i) Region Pro-
posal based; and ii) Regression/Classification based. The former follows the
traditional two-stage object detection pipeline, which starts by generating re-
gion proposals and then classifying each proposal into different object categories.
The later perceives object detection as a regression/classification problem and
adopts a fully convolutional approach to generate categories and locations in a
single-stage. Computationally efficient approaches, such as You Only Look Once
(YOLO) [141][142] and Single Shot Detector (SSD) [143], adopt the single-stage
paradigm to achieve object detection in a single step. When initially perceived,
such detectors sacrificed small amounts of accuracy for a substantial increase in
computation speed. In more recent years, the introduction of even larger datasets,
such as the Microsoft Common Objects in Context (COCO)[144], has lead to the
development of faster two-stage detectors that can be efficiently trained and ap-
plied on these datasets. Examples of such detectors include Fast Region-based
CNN (Fast-RCNN) [145], in which convolutions are shared across different region
proposals to achieve computational gains, and Faster-RCNN [146] that extends
Fast-RCNN by introducing a Region Proposal Network (RPN), employed to gen-
erate high quality region proposals shown to improve detection performance. A
thorough analysis and trade-off comparisons, in terms of speed and accuracy, of
modern CNN object detectors can be found in [147, 148].

125

6.3. A Robust CNN-based Ship Detector
Chapter 6. Maritime Video Detection & Tracking

6.3.2 Transfer Learning

As elaborated in the previous section, deep learning in the domain of object de-
tection has made considerable progress in recent years. There exist various object
detection networks, with state-of-the-art performance, that have been developed
and tested over the years. This has enabled scientists to tackle complex problems
and yield astounding results.

Traditionally deep learning networks are designed to work in isolation. They
are trained to perform a specific task, while the models have to be rebuilt from
scratch once the feature-space distribution changes. However, as is typical for
deep learning systems, a vast amount of data and training time are required to
perform training, while, generally, data availability is scarce and comprehensive
data acquisition is non-trivial. To tackle this problem, the concept of trans-
fer learning has been widely employed by researchers and applied practitioners.
Transfer learning is the idea of overcoming the isolated learning paradigm and
utilising knowledge acquired from solving one task, to solve other related ones.
It is a popular approach in deep learning where pre-trained models are used as
the starting point for training models that solve a different problem. Therefore,
the idea is that one can re-purpose, or transfer, learned knowledge (e.g. features,
weights etc.) from previously trained models for training newer models on a
different target dataset and/or task.

Most modern object detection CNNs can generally be decoupled as a se-
ries of inner (convolutional) layers that perform feature extraction, and ‘meta-
architecture’ layer(s) being responsible for generating the weights pertaining to
each object class (classification) and the image locations of detected objects (local-
isation) [148]. An example of this decoupling is shown in Figure 6.2 for the SSD
and Faster-RCNN algorithms. More specifically, both SSD and Faster-RCNN
used VGG-16 [149] (up to “Conv5” layer) as their base network for feature ex-
traction in their respective seminal papers [143, 146]. Therefore, although the
classification and localisation processes may vary across different algorithms, the
feature extraction layers are a common theme shared by all algorithms.

Popular feature extraction networks include VGG-16 [149], Inception v1-v4
[150, 151, 152] and ResNet [153]. Studies have shown that in such networks the
first layers tend to learn a standard set of general features, resembling Gabor
filters or colour blobs, which occur regardless of the cost function and image
dataset [136, 154]. As one progresses further into the network layers, the features
tend to become more tightly coupled to the chosen dataset and task, with the
final layer features being specific to the objective in hand. For example, in a
network an N-dimensional output layer that has been trained toward a supervised
classification problem, each of the outputs will be the specific weights attributed

126

6.3. A Robust CNN-based Ship Detector
Chapter 6. Maritime Video Detection & Tracking

Feature Extractor

(vgg,	incep+on,	
resnet,	etc)	

Box
Regression

Multiway
Classification

Detection Generator

(a) SSD

Multiway
Classification

Box
Refinement

Box Classifier
Feature Extractor

(vgg,	incep+on,	
resnet,	etc)	

Box
Regression

Objectness
Classification

Proposal Generator

(b) Faster RCNN

Figure 6.2: High level diagrams of the detection meta-architectures [148]

to each class. The above notions of general and specific features form the basis
for transfer learning.

Transfer learning is usually performed by copying the first (base) layers of a
pre-trained network, i.e. the layers that carry the general features, to the first
layers of a new target network. Once this is done, the remaining layers of the
target network are randomly initialised and trained using the target dataset.
During the re-training, the transferred feature layers can be left frozen, meaning
that their weights are not affected by the training process. Alternatively, it is
possible to fine-tune the base layers by allowing the errors from the re-training
process to be back-propagated into these layers. Fine-tuning, if done correctly,
can lead to performance improvements, however it is also possible that allowing
a network to be fine tuned can cause over-fitting.

The choice of whether or not to fine-tune the first layers of the target network
depends on the size of the target dataset and the number of parameters [154].
If the target dataset is small and the number of parameters is large, fine-tuning
may result in over-fitting. Since this is typically the case, the features are often
left frozen. On the other hand, if a large target dataset is available and/or the
number of parameters is relatively small, meaning that over-fitting is unlikely
to occur, then the base features can be fine-tuned to improve performance. Of
course, if the target dataset is very large, there would be little need to perform
transfer learning in the first place, because the lower level filters could just be
learned from scratch on the target dataset.

127

6.3. A Robust CNN-based Ship Detector
Chapter 6. Maritime Video Detection & Tracking

Open Images v4 Self-collected Total
Train 22,927 1,143 24,070
Test 2,548 126 2,674

Total 25,475 1,269 26,744

Table 6.1: Breakdown of the dataset used for training and evaluation

6.3.3 Experimental methods

6.3.3.1 Dataset

The process of experimentation and development of object detectors necessitates
the existence of a comprehensive dataset of images that forms the basis for train-
ing and evaluation. For the purposes of this task, two main sources of data have
been acquired. Firstly, the latest release of the Open Images [155] (v4) dataset
was utilised and, following appropriate pre-processing, a set of 25,475 pre-labeled
images of boats were extracted to complement the training process. In addition,
a custom collection of 1,269 images was captured using a commercial maritime
surveillance camera owned and operated by Denbridge Marine Ltd., located at
Fort Perch Rock, New Brighton.

Acquisition of the custom dataset was performed via an automated process,
which utilised the output of a pre-existing tracking system, developed by Den-
bridge Matine Ltd, which fused radar and AIS data to obtain accurate track po-
sition estimates. The developed automated image acquisition process consisted
of the following steps: 1) Unobscured targets, within a radius of 1km from the
camera, were identified; and 2) The camera was panned to the estimated location
of the unobscured closest target, taking photos at 4 different levels of zoom (0, 20,
40 and 60%) and 10 distinct distance levels (100, 200,..., 1000m). Identification
of unobscured targets was performed by utilising land polygons, extracted form
Keyhole Markup Language (KML) map files, and asserting that no land polygons
intersect the line of sight to a given target. Once the custom dataset had been
collected, a manual process of labelling was performed, such that the locations of
the ships are marked within each image.

The final combined dataset constisted of 26,744 annotated images. A training
dataset was the formed by randomly selecting 90% of the total images, while
the remaining 10% was set aside for testing and evaluation purposes. Figure 6.3
demonstrates some samples extracted from the generated dataset and Table 6.1
shows a summary of the utilised training and test datasets.

128

6.3. A Robust CNN-based Ship Detector
Chapter 6. Maritime Video Detection & Tracking

Figure 6.3: Samples extracted from the training and evaluation dataset. The
ground truth annotations are depicted using green rectangles.

6.3.3.2 TensorFlow

Training and performance evaluation of the various object detection networks was
performed using TensorFlow [156]. TensorFlow is an interface for expressing ma-
chine learning algorithms, and an implementation for executing such algorithms,
recently developed by Google. As part of the framework, TensorFlow offers a
range of pre-trained object detection networks that allow scientists and practi-
tioners to swiftly experiment with and develop custom object detectors. A list
of all available pre-trained models can be found in [157]. The majority of the
available models have been trained on either the COCO [144] or Open Images
[155] datasets, both of which include a collection of images that contain anno-
tations for boats, among a wide variety of other classes, such as vehicles (boats,
cars, motorcycles, trains, etc.), household appliances (tv, laptop, fridge, etc.) and
even animals. This ensures that detectors trained on the above datasets, have
the potential of identifying such object in images, but more importantly the inner
network layers contain classifiers that have been trained on features pertaining
to these classes of objects.

6.3.3.3 Baseline Model Evaluation

Before committing to a specific detector on which to perform training, the per-
formance of a number of existing detectors was evaluated, in terms of their re-
spective ability to detect ships. The models selected for evaluation were chosen
on the basis of providing a satisfactory trade-off between speed and accuracy, as
documented in [148, 157]. As such, three models were selected for evaluation:

• SSD Inception: A SSD meta-architecture using the Inception V2 feature
extractor.

• SSD ResNet : A SSD meta-architecture using the ResNet-50 feature extrac-

129

6.3. A Robust CNN-based Ship Detector
Chapter 6. Maritime Video Detection & Tracking

tor.

• Faster-RCNN Inception: A Faster-RCNN meta-architecture using the In-
ception V2 feature extractor.

Based on the review presented in [148], the SSD and Faster-RCNN detectors
have been selected as they represent the two ends of the scale when it comes
to accuracy and speed, with SSD being faster but also marginally less accurate,
while R-FCN [158] can be seen to always fall between the two. Continuing, the
Inception V2 feature extractor has been found to be significantly faster than
its counterparts, while still demonstrating relative accuracy. Nevertheless, as
the ResNet feature extractor was shown to provide a significant advantage over
the other feature extractors, with comparable accuracy performance across SSD,
Faster-RCNN and F-RCN, the combination of SSD and ResNet has also been con-
sidered, due to the significant speed advantages of the SSD. A clear demonstration
of the above arguments can be found in the performance graphs of Figures 4 and
7 in [148].

6.3.3.4 Model Re-training

Having evaluated the detection performance of the baseline models on the training
dataset, we proceed by re-training the models using our custom dataset. For each
model, we perform training in two distinct ways:

1. Fine-tuning (FT): The models are fine-tuned by allowing the errors to be
back-propagated through the entire network of each model.

2. Feature-extraction (FE): The feature extraction layers for each model are
frozen, meaning that only the layers responsible for classification and local-
isation are trained.

TensorFlow uses a modular approach to structuring object detection networks.
Most notably, a clear distinction is made between Feature Extractors and Box
Predictors. As their name suggests, Feature Extractors are responsible for ex-
tracting features from images. They accept an image tensor as an input and
output a list of feature map tensors. On the other hand, Box Predictors are
tasked with the objective of performing classification and localisation of objects
within the image. They take a high level image feature map as input and produce
two predictions: a tensor encoding box locations; and a tensor encoding classes for
each box. This modularity is particularly convenient when performing FE train-
ing. As we explain in more detain further down, FE training can be achieved by
freezing all layers pertaining to the Feature Extractor of each respective model.

130

6.3. A Robust CNN-based Ship Detector
Chapter 6. Maritime Video Detection & Tracking

The training parameters for each of the networks were mostly kept identical
to the default TensorFlow settings used during pre-training, matching the param-
eter settings used in [148]. All models were configured to employ three different
data augmentation methods: random image crop, random horizontal flip and
random colour distortion. Other training parameters, specific to each model, are
summarised below:

• SSD Inception:

– Features are extracted from Mixed 4c and Mixed 5c, and four addi-
tional convolutional layers are appended with decaying resolution with
depths 512, 256, 256, 128 respectively. ReLU6 is used as the non-linear
activation function for each convolutional layer.

– Loss optimisation is performed using an RMSprop optimiser.

– The initial learning rate is set to 0.001, with an exponential decay
factor of 0.95 every 800k steps.

– During FE training, the variables pertaining to layers included under
FeatureExtractor/InceptionV2/InceptionV2 are frozen.

• SSD ResNet:

– Features are extracted from the last layer of the conv5 (block4) block
and five convolutional layers with decaying spatial resolution are ap-
pended with depths 512, 512, 256, 256, 128, respectively.

– Loss optimisation is performed using an Momentum optimiser.

– A warm up stage of 2k steps is initially employed, during which the
learning rate grows linearly from 0.0013333 to 0.004, followed by a
cosine decay schedule until step 25k.

– During FE training, the variables pertaining to layers inside Feature-
Extractor/ResNet v1 50 are frozen.

• Faster-RCNN Inception:

– Features are extracted from the Mixed 4e layer with stride size of 16
pixels, following which the feature maps are cropped and resized to
14x14.

– Loss optimisation is performed using an Momentum optimiser.

– A manual schedule is used for adjusting the learning rate. The initial
learning rate is set to 2e-5, which is reduced to 2e-6 after 900k steps.

131

6.3. A Robust CNN-based Ship Detector
Chapter 6. Maritime Video Detection & Tracking

– During FE training, the feature extractors of both the RPN and the
box predictor are frozen by freezing all variables pertaining to lay-
ers under FirstStageFeatureExtractor/InceptionV2 and SecondStage-
FeatureExtractor/InceptionV2 respectively.

6.3.4 Results

Performance evaluation of the various models is performed by means of two met-
rics. Firstly, the mean Average Precision (mAP) [159, 160] with an Intersection
over Union (IoU) threshold of 0.5 is computed, which provides a measure of de-
tection accuracy. Secondly, the computational cost of each method was evaluated
by calculating the average computation time per detection, per image. The eval-
uation was performed on a desktop computer with a 3.7GHz 8-core Intel i7 6900k
processor, with 32GB of maximum available RAM, and a nVidia GTX1070Ti
graphics card, clocked at 1683 MHz, with 8GB of VRAM.

6.3.4.1 Baseline Models

At a first stage, the performance of all three pre-trained detectors was evaluated
against the test dataset of Table 6.1. The results of the above evaluation process
are depicted in Figure 6.4. Our results confirm our expectations and follow closely
the results of [148]. More specifically, the best accuracy is achieved by the SSD
ResNet detector, followed by SSD Inception and lastly Faster-RCNN Inception,
while in terms of speed, the SSD Inception detector comes first, with the SSD
ResNet coming second and Faster-RCNN falling last. However, it is important
to note that the detection performance is relatively poor, as the minimun mAP
value can be seen to come at 11%, with a maximum value that falls just below
30%.

6.3.4.2 Re-Trained Models

The performance of the re-trained detectors has been evaluated using the same
metrics as in the case of the pre-trained detectors and the results are shown in
Figure 6.5. From the results, it becomes apparent that the performance achieved
by the new detectors is significantly superior to the pre-trained versions. As
expected, all detectors show an increase in detection accuracy, while at the same
time exhibiting faster computation times.

In both the FE and FT re-trained models, training of the box prediction layers
results in the models being better placed at classifying and localising the objects

132

6.3. A Robust CNN-based Ship Detector
Chapter 6. Maritime Video Detection & Tracking

0 20 40 60 80 100 120

SSD ResNet

Faster RCNN Inception

SSD Inception

 30

 11

 15

 116

 125

 74
mAP@0.5 (%)
Time (ms)

Figure 6.4: Plot of mean Average Precision (mAP) vs computation time for the
pre-trained models.

of interest, when compared to the pre-trained models. The localisation benefits
achieved in the case of the FE models follows from the training performed on the
box prediction and RPN layers in the SSD and Faster-RcNN meta-architectures,
respectively. Furthermore, it also becomes evident that all FT models exhibit su-
perior performance compared to their FE trained counterparts. This observation
can be attributed to the fact that in the case of the FT models the layers of the
feature extractors are also allowed to be trained on the dataset. Therefore, the
features extracted by these layers form a better representation of the inherent
features of ships, which results in the generation of more accurate predictions, in
turn resulting in significant classification performance gains.

The gains in computational performance can be attributed to the reduced
complexity of the classification layers in the network. In the re-trained models,
the classification problem is effectively reduced to detecting a single class, hence
the activation maps produced by the extracted features lead to a reduced number
of predictions that need to be processed by each algorithm (convolution filters
for SSD and RPN for Faster-RCNN). Furthermore, as there is only a single class
to be detected, the amount of computations performed by the final Softmax
function, which calculates the classification probabilities, is effectively minimised
to a single weighted sum of the outputs from the previous layer, as opposed to
approximately 90 for the pre-trained models.

From the presented results, it can be concluded that the SSD Inception (FT)
detector provides the optimal trade-off between accuracy and speed, with a mAP
of 87% and average computation time of 25ms. Although the SSD ResNet (FT)
detector can be seen to exhibit the best accuracy, the achieved speed of 80ms
limits the applicability of the method for real-time detection. Example detections
generated using the developed detector are shown in Figure 6.6.

133

6.3. A Robust CNN-based Ship Detector
Chapter 6. Maritime Video Detection & Tracking

0 20 40 60 80

SSD ResNet

Faster RCNN Inception

SSD Inception

 70

 60

 77

 92

 84

 87

 80

 34

 25

mAP@0.5[FT] (%)
mAP@0.5[FE] (%)
Time (ms)

Figure 6.5: Plot of mean Average Precision (mAP) vs computation time for the
re-trained models.

Figure 6.6: Example ship detections achieved using the developed Re-Trained
SSD Inception v2 detector.

6.3.5 Conclusions

In conclusion, this section demonstrates a custom trained CNN ship detector,
that can be readily applied to detect ships in imagery data from an off-the-shelf
commercial maritime surveillance camera. A brief review of the various com-
ponents of CNN object detection networks has been performed, followed by a
discussion on the different transfer learning approaches commonly employed by
practitioners. A custom dataset has been collected from a commercial maritime
camera and used to train a set of 3 mainstay object detection networks. The
training parameters used for each algorithm has been documented for future ref-
erences and a quantitative comparison has been performed between the perfor-
mance achieved by each network. The survey concluded that fine-tuning of the
networks produced significantly better results, across all examined algorithms,
when compared to constrained training of the feature extraction layers for the

134

6.4. Real-Time Camera Motion Error Correction using Optical Flow
Chapter 6. Maritime Video Detection & Tracking

considered dataset. Furthermore, it has been found that the combination of an
SSD meta-architecture, combined with the Inception v2 feature extraction net-
work, exhibits the optimal trade-off between speed and accuracy. The particular
ship detector is able to detect ships in video streams in real-time, achieving speeds
up to 40 frames per second. This speed surpasses the frame rate of most commer-
cial camera units, whose typical rate is at 30 frames per second. The achieved
accuracy performance of 87% mAP, ensures that the detector exhibits minimal
missed detections and false alarms, thus setting a firm detection foundation on
which tracking and state estimation algorithms can be applied.

6.4 Real-Time Camera Motion Error Correc-

tion using Optical Flow

Tracking multiple targets with the use active, a.k.a. Pan-Tilt-Zoom (PTZ), cam-
eras in a commercial maritime environment introduces a significant challenge.
When the orientation and/or focal-length of the camera are adjusted by an op-
erator, the space that is observable by the camera changes, meaning that any
information pertaining to the state of tracks becomes invalid. This problem is
frequently formulated in terms of a closed-loop feedback system, where the ori-
entation (Pan-Tilt) and Focal Length (zoom) of the sensor are readily available.
However, in most commercial security applications the sensors are often placed
at remote locations, while the central processing is performed on a mainframe
server, typically located in a secure location that is not in close proximity to
the sensors. Thus, communication between the server and the sensor relies on
the use of physical network infrastructure at best, while wireless communication
mediums, such as microwave links, are more that often employed. What is more,
most off-the-shelf surveillance cameras are developed with the intent of being op-
erated by a human operator, where tele-operation is achieved via relative speed
commands generated by a joy-stick. Thus, increased focus is devoted to the de-
velopment of efficient and low-latency video feeds to the operator, while feedback
from the camera is seldom guaranteed to be delivered quickly and accurately.

The delay between the received video stream and the feedback reported by
the camera can vary significantly due to network delays, while video frames can
also be dropped due to connectivity problems. The combination of network in-
duced lag, and the lack of accurate and/or timely feedback introduces significant
delays between the receival intervals of video data and camera feedback. Thus, it
becomes near impossible to correct the errors in real-time by relying on the cam-
era feedback information, meaning that significant errors in the tracking process

135

6.4. Real-Time Camera Motion Error Correction using Optical Flow
Chapter 6. Maritime Video Detection & Tracking

are inevitable. This has a detrimental effect on tracking performance, since even
the slightest change of the state of the camera can have a massive effect on the
track positions between any two consecutive frames. A typical example of this
problem is demonstrated in Figure 6.7, where two consecutive video frames are
shown, along with the respective track estimates, corresponding to the observed
surveillance region before and after a camera motion command is executed.

Figure 6.7: Example frames, along with annotated track estimates, before and
after a camera command execution.

In this section, a method is presented for estimating and correcting the errors
relating to motion of the camera in real-time, by formulating the problem of
frame-to-frame variation as an affine transformation problem. First, a feature
detector is applied to extract a set of “good” features, along with their respective
locations, from the previous frame. Then, Optical Flow is employed to track and
locate the detected feature locations in the new frame, following which the two
sets of matching features are utilised in order to estimate the affine transformation
between the two frames. Finally, the estimated affinity coefficients are used to
correct the posterior state distributions of known tracks, such as to compensate
for the errors introduced by the movement of the camera.

6.4.1 Feature Detection

In the context of image processing, feature detection is the process of defining
a set of features which provide an efficient and meaningful representation of the
image, thus enabling the reduction of resources necessary to accurately describe
the contained information. The goal is to locate points in the image that lie along
some defined boundaries. There generally exist three different types of features:
textural (such as spatial frequency, patterns, homogeneity, etc.), spectral (such

136

6.4. Real-Time Camera Motion Error Correction using Optical Flow
Chapter 6. Maritime Video Detection & Tracking

as colour, size, ratio etc.) and geometric features (corners, edges, blobs etc.).

The chosen feature extraction approach, outlined in this section, is based on
detecting corner features. Corners are among the most useful features that can
be extracted from an image. Formally defined, corners are regions in the image
with large variation in intensity in all the directions. They typically correspond to
well-distinguishable, often unique, characteristics corresponding to discontinuities
in the physical, photometrical and geometrical properties of objects. For this
reason, corner features are widely used in a multitude of detection and tracking
applications [161, 162, 163].

An effective and efficient method for corner feature detection was presented
in [164] and further improved in [165]. Without loss of generality, let I denote
the image of interest and assume that is a 2-D grayscale image. Now, consider
taking an image patch over some area (x, y) of I and displacing it by (dx, dy) in
all directions. Then, the difference in intensity caused by the performed displace-
ments can be computed as a weighted sum of squared differences, between the
patches formed by the displacements, as

E(x, y) =
∑
dx,dy

w(dx, dy) [I(x+ dx, y + dy)− I(dx, dy)]2 (6.3)

where w(.) denotes a window function (e.g. Box or Gaussian filter) that slides
over the image, giving weights to pixels underneath. By applying Taylor-series
Expansion [36] to the term I(x+ dx, y + dy), (6.3) can be re-writen as

E(x, y) ≈ [x, y]M [x, y]T (6.4)

where M is the structure tensor, given by

M =
∑
dx,dy

w(dx, dy)

[
IxIx IxIy
IxIy IyIy

]
(6.5)

with Ix, Iy denoting the partial derivatives of I.

In general, corners can be identified as points that exhibit a large variation
of the function E in all directions. More specifically, a closer analysing of the
eigenvalues λ1, λ2 of the tensor M for a given point p with coordinates (x, y),
yields the following scenarios:

1. If λ1 ≈ 0 and λ2 ≈ 0, then p has not features of interest.

2. If λ1 ≈ 0 and λ2 � λ1, then the point lies on an edge.

3. If both λ1 � 0 and λ2 � 0, then the point is a corner point.

137

6.4. Real-Time Camera Motion Error Correction using Optical Flow
Chapter 6. Maritime Video Detection & Tracking

Finally, making use of the above defined criteria, a corner point can be iden-
tified if the following condition holds [165]:

min (λ1, λ2) > λT (6.6)

where λT is defined such that λ1 � 0 and λ2 � 0.

The above documented process then allows us to extract a set of distinguish-
able feature points Fk−1 from a given frame Ik−1 at time tk−1. The next section
discusses how the locations of a set of matching feature points Fk can be efficiently
estimated in the next frame Ik at time tk, using Optical flow.

6.4.2 Feature Matching using Optical Flow

Optical flow is defined as the pattern of apparent motion of pixels between two
consecutive frames, caused by the movement of an object on the image plane.
The method provides a succinct representation of both the regions of the image
undergoing motion and the velocity of motion in those region. Optical flow is
a well established concept that has been extensively researched over the past
few decades [166, 167], while a definitive account of the mathematical concepts
relating to Focus of Expansion (FoE), forming the basis of Optical Flow, can be
dated back to 1980 [168]. Since then, the method has been widely applied in
the tracking domain, with particular interest in problems involving the detection
of moving objects [169, 170, 171] and background estimation/segmentation [172,
173]. Furthermore, Optical flow methods have recently been applied to perform
video stabilisation and mosaicing in problems involving non-stationary cameras
[174, 175].

For the purposes of this section, let Ik and Ik−1 denote the two consecutive
image frames and, without loss of generality, assume that they are 2-D grayscale
images where the quantity Ik(x, y) returns the grayscale value of Ik at the frame
coordinates (x, y). Now, consider that a point (x, y) in Ik−1 has moved by a
distance (dx, dy) and is now located at coordinates (x + dx, y + dy) of Ik. Also
let dt = tk− tk−1 denote the time elapsed between times tk and tk−1. The goal of
Optical Flow is then to find the velocity vector

V = [Vx, Vy]
T =

[
dx

dt
,
dy

dt

]T
(6.7)

which defines the image velocity, a.k.a. the optical flow, such that

Ik−1(x, y) = Ik(x+ dx, y + dy) (6.8)

138

6.4. Real-Time Camera Motion Error Correction using Optical Flow
Chapter 6. Maritime Video Detection & Tracking

If the assumption is made that the elapsed time dt is relatively small, taking
Taylor-series expansion of the term relating to Ik leads to

Ik(x+ dx, y + dy) = Ik−1(x, y) +
∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂t
dt (6.9)

which can then be substituted in (6.8), giving rise to the Optical Flow equation:

IxVx + IyVy = −It (6.10)

or making use of vector notation:

SV = −It (6.11)

where S = ∇IT , while Vx, Vy are the velocity vectors defined in (6.7) and

Ix =
∂I

∂x
; Iy =

∂I

∂y
; Iy =

∂I

∂t
(6.12)

The relation of (6.11) defines a single system with two unknowns, meaning
that it cannot be directly solved. One popular method that solves the above
problem is the so called Lucas-Kanade method [176], where the point (x, y) is
expanded using a N × N patch of N2 points defined around (x, y), which are
all assumed to have the same velocity. By doing so, the previously problematic
system is now expanded to an overdetermined system of N2 equations with 2
unknowns, meaning that S and It of (6.11) are expanded to N2 rows.

Finally, a Least Squares solution to the expanded system of (6.11) can be
found by multiplying the equation by ST , followed by an inversion of the product
STS, such that:

V = −(STS)−1ST It (6.13)

Therefore, given a set of feature points Fk−1 in Ik−1, with positions P(Fk−1),
it is possible to obtain a set of matched points Fk in Ik, whose coordinates P(Fk)
are approximated as:

P(Fk) = P(Fk−1) + V dt (6.14)

6.4.3 Affine Transformation

An affine transformation (or affinity) is defined as a transformation that preserves
collinearity and ratios of distances; that is, all points that form a line prior to
an affinity, still lie on a line after transformation (collinearity) and the midpoint

139

6.4. Real-Time Camera Motion Error Correction using Optical Flow
Chapter 6. Maritime Video Detection & Tracking

of a line segment remains the midpoint after transformation. In this context,
the term affine indicates a special class of projective transformations that do not
move any objects from the affine space IR3 to the plane at infinity or conversely.
Thus, affine transformations can be used to express rotation, translation and/or
scale operations between two vectors in terms of a system of linear equations.
More specifically, rotation and scaling are both linear transformations that can
be expressed as matrix multiplications, while translation is viewed as a vector
addition.

Let y ∈ Y be a vector that results from an affine transformation of x ∈ X ,
then formally this can be expressed as

y = f(x) = Ax + d (6.15)

where f : X → Y is the affine map, A is a linear map representing scaling and
rotation, while d is the translation vector. Alternatively, the above relation can
be expressed using augmented matrices as[

y
1

]
= A

[
x
1

]
=

[
A d

0 . . . 0 1

] [
x
1

]
(6.16)

where A is called the affinity matrix.

Now, let us consider two consecutive frames (e.g. Figure 6.7) Ik and Ik−1, of
equal size (Iwidth, Iheight), where Ik−1 corresponds to the frame at time tk−1 and
Ik at time tk. Each frame can then be viewed as a 2-D matrix, where Ik(x, y)
returns the value of the corresponding pixel located at frame coordinates (x, y).

Continuing, suppose that the track estimates in Figure 6.7 can be defined in
terms of a vector xik, containing the pixel coordinates of the vertices defining the
bounding box containing the i-th track, as follows:

xik =
[
ximin, y

i
min, x

i
max, y

i
max

]T
(6.17)

where ximin, ximax denote the x coordinates of the left and right box vertices, while
yimin, yimax denote the y coordinates of the top and bottom vertices. Note that
(6.17) can be obtained from (6.1) by setting ximin = xik, x

i
max = xik+wik, y

i
min = yik

and yimax = yik + hik.

Making the assumption that the camera follows a pinhole camera model1,
and that the observed scene remains mostly static between tk and tk−1, it is
possible to deduce that Ik is the product of an affine transformation applied on

1A pinhole camera model ensures that no distortions are applied to the observed image as
a result of the camera lens.

140

6.4. Real-Time Camera Motion Error Correction using Optical Flow
Chapter 6. Maritime Video Detection & Tracking

Ik−1. This should become more apparent by considering that, subject to linearity
assumptions, a pan motion of the camera results in a horizontal translation of
the image, tilt motion results in a vertical translation, while zooming introduces
scaling.

Let Fk−1 =
[
f1
k−1, . . . , f

n
k−1

]T
denote a set of feature points extracted from

Ik−1, where fik−1 contains some information that distinguishes the point from all

other points. Now, assume that a set Fk = [f1
k , . . . , f

n
k]
T

of matching points is
identified in Ik, such that fik = fik−1, for all i ∈ [1, n]. Also, let P : F → IR2 be
a function that maps feature points to their respective (x, y) coordinates on the
image plane, e.g.:

P(fik) = [xik, y
i
k]
T (6.18)

Considering the above, and making use of the affinity relations of (6.15), we can
define a relation between the coordinates P(Fk) of a given set of features in Ik
and the corresponding coordinates P(Fk−1) of the matching features in Ik−1 as

P(Fk) = AP(Fk−1) + d (6.19)

Equivalently, by noting that the state of (6.17) can be viewed as the (x, y)
coordinates of the corresponding frame pixels that lie underneath each vertex, we
can generalise the previous statement to deduce that the state xik of a given track
i can be viewed as an affine transformation of the state xik−1, giving rise to the
following state correction equation:

xik = Axik−1 + d (6.20)

Therefore, if the affine transformation between two consecutive frames can be
determined, it should be possible to correct for the errors induced by the motion
of the camera on the track states by utilising (6.20), while circumventing the
necessity of considering the camera feedback. A solution to this problem can be
obtained by attempting to solve (6.19), given a pair of matching feature sets Fk
and Fk−1, extracted from two consecutive frames. In Section 6.4.1 we discussed
how the set of features Fk−1 can be extracted from frame Ik−1, while Section
6.4.2 showed discussed how to approximate the locations of a set of matching
features Fk in Ik. However, due to the involved approximations, Fk may not be
directly related to Fk−1 as per (6.19), and thus it is not possible to deduce the
affinity coefficients directly. Instead, an approximation to the coefficients can be
obtained using robust model fitting methods, such as RANSAC [177].

141

6.4. Real-Time Camera Motion Error Correction using Optical Flow
Chapter 6. Maritime Video Detection & Tracking

6.4.4 Correcting the Track Estimates

Having obtained an expression for the state of a track following the transformation
through (6.17), it is also necessary to derive an expression for correcting the
posterior distribution from the previous timestep. It is important to note that
the correction process is executed upon receival of a new frame at time tk, but
before the tracks are processed by the tracker for estimation purposes. This
necessitates the introduction of new notation, to avoid confusion with the notation
used in previous chapters. Thus, let p(xk−1|k−1|Yk−1) denote the target posterior
distribution produced at tk−1, prior to any transformation, with p(xk−1|Yk−1)
denoting, as per previous notation, the transformed posterior that is forwarded
to the tracker. For the purposes of this discussion, the track index i is dropped
for notational simplicity.

If a Particle Filter is used to perform filtering, then, as discussed in Section
3.2.3, the posterior from tk−1 is approximated using a set of weighted particles,
as follows:

p(xk−1|k−1|Yk−1) ≈
Np∑
i=1

wi
k−1|k−1δ(xk−1|k−1 − xik−1|k−1) (6.21)

Then, the transformed posterior p(xk−1|Yk−1) can be obtained by applying (6.20)
to each particle, while maintaining the same weights, i.e.,

p(xk−1|Yk−1) ≈
Np∑
i=1

wi
k−1δ(xk−1 − xik−1) (6.22)

where

xik−1 = Axik−1|k−1 + d

wi
k−1 = wi

k−1|k−1

(6.23)

In the case of Kalman Filters, we know from Section 3.2.2 that the state
distribution at any given point is approximated as a Gaussian distribution. Thus,
the posterior generated at tk−1 is a pdf of the form

p(xk−1|k−1|Yk−1) = N (xk−1|k−1;µk−1|k−1,Σk−1|k−1) (6.24)

where µk−1|k−1, Σk−1|k−1 represent the mean and covariance of the pdf, respec-
tively. The mean µk−1|k−1 can be transformed in an identical manner to the
particles in the case of the Particle Filter, however the covariance Σk−1|k−1 must

142

6.4. Real-Time Camera Motion Error Correction using Optical Flow
Chapter 6. Maritime Video Detection & Tracking

be scaled to reflect the effects of the affine transform on the uncertainty of the
state. Thus, the transformed posterior is computed as follows:

p(xk−1|Yk−1) = N (xk−1;µk−1,Σk−1) (6.25)

where

µk−1 = Aµk−1|k−1 + d

Σk−1 = AΣk−1|k−1A
T

(6.26)

6.4.5 Results

To benchmark the proposed algorithm, a real commercial Pan-Tilt-Zoom camera
unit was used to generate video streams while the camera is manually steered
to follow vessels cruising near the sensor. Once the streams are extracted, a
collection of suitable frames are identified and manual annotation is performed
to form the ground-truth bounding boxes, denoting where targets should appear
within each frame. Following the above approach, a collection of 100 image pairs
is used as the basis of evaluation. An illustration of the feature matching process
for 3 example image pairs is shown in Figure 6.8. Furthermore, an illustration of
the corrected track estimates for the same 3 examples is shown in Figure 6.9.

Figure 6.8: Features matched between two frames using the proposed approach

Once the ground-truth data has been extracted, the performance is evaluated
by applying the algorithm on the pairs on images and computing the localisation

143

6.4. Real-Time Camera Motion Error Correction using Optical Flow
Chapter 6. Maritime Video Detection & Tracking

Figure 6.9: Examples of corrected track estimates using the proposed approach.
The top row shows the first frame, while the second shown the second frame.
Green colour is used to depict the ground-truth track estimates, blue colour is
used for the corrected estimates and red is used for the non-corrected estimates.

component of the OSPA [106] metric. The OSPA metric is configured with pa-
rameters p = 2 and c = 500, while a euclidian distance is employed as the base
metric. The computed metric values are then compared against the metric val-
ues computed when the method is not applied (NA). In addition, a comparison is
made against the proposed method (OF), where feature detection and matching is
performed using Optical Flow, and other well known feature matching techniques
that utilise ORB [178], SIFT [179] and SURF [180] features respectively.

The results presented in Figure 6.10 showcase the performance achieved by
the proposed method. As expected, all examined approaches (OF, ORB, SIFT,
SURF) can be seen to reduce significantly the OSPA error when compared to the
case where no correction method is applied (NA). Therefore, it can be concluded
that estimating the inter-frame affine transformation, based on features extracted
across frames, is an adequate approach for correcting the errors introduced by
camera motion. Continuing, for the specific evaluation dataset, the results show
that the proposed approach (OF) performs marginally better than all other meth-
ods. Although this cannot (and should not) be used to make any strong claims
about the employed feature matching method, it does serve as an indication that
the proposed method is expected to perform comparatively well for the given
application. Nevertheless, the results relating to efficiency are certainly conclu-
sive. The OF algorithm provides at least a tenfold reduction in computation

144

6.5. Conclusion
Chapter 6. Maritime Video Detection & Tracking

Figure 6.10: Plot of OSPA vs computation time. The proposed method is denoted
by OF and NA denotes the case where no correction is applied. The acronyms
SURF, SIFT and ORB denote the methods where feature matching is performed
using the respective algorithm.

time, thus allowing the proposed method to be applied in real-time, without hav-
ing a significant effect on the computational requirements of the overall tracking
process.

6.5 Conclusion

This chapter summarised the work performed by the author in the domain of
commercial Maritime Video Detection & Tracking. A review of existing EO ship
detection approaches was presented followed by an introduction to the state-of-
the-art detectors that base their operation on Convolutional Neural Networks
(CNNs). Under the same section, a robust CNN-based ship detector was intro-
duced, that utilises a pre-trained CNN model that is subsequently trained on a
custom dataset of images to provide an operational advantage. Finally, an effec-
tive method was introduced for estimating and accounting for the tracking errors
induced by camera motion in real-time, in the absence of camera feedback.

145

CHAPTER 7

Modular Frameworks for Tracking and State Estimation

7.1 Introduction

Tracking and state estimation methods are widely researched and applied in a
variety of domains that include astronomy, air surveillance, maritime situational
awareness, economics and biology. As follows, there exist a multitude of tracking
and state estimation methods that have been developed over the years, each with
its own strengths and deficiencies in terms of accuracy, scalability, computational
complexity and other factors. What is more, novel algorithms are continuously
being developed and claims are often made that variants of existing algorithms
perform better than previous iterations. As newly developed algorithms are be-
coming increasingly complex, researchers and skilled practitioners are faced with
the challenge of implementing and systematically evaluating these state-of-the-
art algorithms on a daily basis. In order for academics and skilled practitioners
to assess the performance of such algorithms, it is paramount for one to pro-
duce robust implementations of the algorithms being compared, while oftentimes
this would necessitate studying and implementing unfamiliar and complex algo-
rithms to achieve this goal. However, the process of evaluating and identifying
the algorithm that is best for each particular application is becoming increasingly
difficult, while it is near impossible for those with little experience to make this
determination.

As a direct consequence of the above, there is an evergrowing necessity for

146

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

the development of unified frameworks for tracking and state estimation, that
shall allow academics and practitioners to swiftly develop and evaluate the per-
formance of different algorithms. Only a small number of such frameworks are
known to exist, which generally suffer greatly from strict modularity and flexi-
bility constraints, making them hard to learn and use. As an additional hurdle,
most existing frameworks are released under closed-source proprietary licences,
meaning that there are high costs associated to using these frameworks, while
it is nigh impossible to look under-the-hood such as to extend their function-
ality. Also, industrial-scale dataset owners, who might not be experts in the
mathematics of tracking, need to be able to run their data through multiple algo-
rithms quickly in order to compare the performance of the algorithms and select
the best algorithm for their application without being influenced or biased by
personal favourites.

This chapter shall focus on presenting work done by the author on developing
and contributing towards the development of open-source frameworks for track-
ing and state estimation. Section 7.2 introduces an open-source object-oriented
MATLAB toolbox, developed by the author over the course of the PhD project
and comprised of efficiently coded implementations of target tracking algorithms,
with the aim of assisting and accelerating future research within the field. Section
7.3 discusses Stone Soup [12, 13, 14], an open-source Python framework that is
currently under development, stemming from combined international efforts led
by the Defence Science and Technology Laboratory (UK) in direct collaboration
with the Defence Research and Development Canada (Canada), the Air Force
Research Laboratory (US), and the University of Liverpool (UK), to which the
author has been an major contributor.

7.2 TrackingX

There exist a few MATLAB toolkits that offer tracking capabilities. The Tracker
Component Library (TCL) [181] is an open-source library of common routines
that go into target-tracking algorithms written in MATLAB, with some func-
tions written in C and C++ with MATLAB interfaces. Indeed, TCL incorporate
a collection of highly efficient tracking routines, that span across various fields, in-
cluding astronomy, magnetism, navigation and others, however it does not offer
a unified interface of types and classes that allow for straight-forward compo-
nent interchangeability. Continuing, the MATLAB Sensor Fusion and Tracking
Toolbox (SFTT) [182] includes multi-object trackers, sensor fusion filters, motion
and sensor models, and data association algorithms that let users evaluate fusion
architectures using real and synthetic data. While SFTT offers a lot of useful

147

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

functionality, it still suffers from the same issues of component interchangeabil-
ity, while it also requires a substantial purchase fee.

TrackingX is a unified, re-usable and highly-modular and open-source object-
oriented MATLAB toolbox, comprised of efficient implementations of state-of-
the-art target tracking and state estimation algorithms. The toolbox has been
developed by the author, over the course his PhD project, with the objective to
enable researchers and practitioners to swiftly prototype and evaluate tracking
algorithms. The great advantage of TrackingX is that it is completely open-source
and free to use 1, while its class architecture and interfaces of are being designed
so that components of the same class provide a common interface to all classes
that utilise them, thus allowing for a virtual plug & play functionality.

7.2.1 Class Architecture

The philosophy behind TrackingX is to develop an open-source framework with
modular, interchangeable components to enable the rapid prototyping and test-
ing of tracking and state estimation algorithms. The toolkit is designed with the
intention that users can easily develop their own components, or re-use existing
ones, such as to swiftly prototype and evaluate tracking algorithms, with the
added ability to mix and match components. In support of this idea, the Track-
ingX architecture has been built on the principles of modularity and uniformity
of external interfaces.

TrackingX is object-oriented and makes use of encapsulation, abstraction and
inheritance, where tracking algorithms are built as hierarchical objects. Abstrac-
tion is achieved by defining an abstract class for each type of component which
specifies the external interface for that class; that is, the parameters and functions
an object of that class must make available to the rest of the framework. Contin-
uing, new component classes can be derived as extensions of existing (abstract)
classes, thus inheriting the specified properties and functions of their parent/ex-
tended class. This approach ensures that encapsulation is achieved, meaning that
derived objects are interchangeable (within certain limits), and that other frame-
work components can utilise them, without the necessity of knowing the details
of their implementation. In support of the aforementioned modularity and com-
mon external interfaces, TrackingX objects are built based on a class inheritance
hierarchy.

1Subject to obtaining a valid MATLAB license.

148

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

StateX

+ Vector: vector

+ Timestamp: vector

+ Metadata: vector

DensityX

+ NumVariables:scalar

+ pdf(): matrix/scalar

+ random(): matrix/scalar

GaussianDensityX

+ Mean: vector

+ Covar: matrix

...

+ fitToSamples(): tuple

GaussianMixtureDensityX

+ Components: list(GaussianDensityX)

...

+ fitToSamples(): tuple

...

ParticleDensityX

+ Particles: vector

+ Weights: matrix

...

+ resample(): tuple

...

GaussianStateX

...

...

GaussianMixtureStateX

...

...

ParticleStateX

...

...

...

Figure 7.1: Class structure of DensityX and StateX components

7.2.2 Data Types

7.2.2.1 Distributions and States

TrackingX defines a DensityX class that serves as the abstract class for all
densities. The DensityX interface defines that a valid implementation of the
class must define the property NumVariables, which represents the number of
random variables which the density incorporates, and the methods random() and
pdf() that provide an interface for sampling from and evaluating the density,
respectively.

A StateX abstract class is defined in TrackingX that forms the basis for rep-
resenting target states. A valid StateX object must define an Vector property,
which returns an estimate for the state in the form of an n-dimensional vector.
In addition, an optional Timestamp can be attached to the StateX object, such
that it can be used when performing time-series analysis. Finally, the StateX
class is defined as a subclass of the MATLAB dynamicprops class, which means
that it is possible to add custom properties to an instance depending on the
needs of each application. The class architecture (see Figure 7.1) is defined such
that target states are defined as sub-classes of StateX and a given subclass of
DensityX.

A first subclass example of DensityX is GaussianDensityX, that repre-
sents a Gaussian density, thus requiring the definition of Mean and Covar proper-

149

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

ties, relating to the mean and covariance of the distribution. An optional Weight
property can also be specified, whose default value is equal to 1. The Weight prop-
erty can be used as an intensity indicator, where any value different that 1 would
indicate that the object is not a probability density. A second example, that
showcases component re-usability, is the GaussianMixtureDensityX class,
that represents a Gaussian Mixture density. A GaussianMixtureDensityX
object is essentially a combination of appropriately weighted GaussianDensi-
tyX objects. Finally, a ParticleDensityX class is defined that incorporates
the notion of a density that is approximated via the use a set of appropriately
weighted set of particles (samples). An important feature of TrackingX is that is
allows for different densities to be instantiated on the basis of other densities. For
example, it is possible to instantiate a ParticleDensityX object, let us call it
B, by specifying a target object A, that is a subclass of DensityX, together with
the desired number of particles. Then, the constructor of the ParticleDensityX
class, will utilise the random() method of A to sample a set of equally weighted
number of particles, thus giving rise to the new ParticleDensityX object B.

Continuing, examples of StateX subclasses include the GaussianStateX,
GaussianMixtureStateX and ParticleStateX classes, derived from Gaus-
sianDensityX, GaussianMixtureDensityX and ParticleDensityX, re-
spectively. By doing so, the above defined state objects can inherit the properties
and functions of the underlying DensityX constructs. Thus, a GaussianSta-
teX object can be queried for its mean and covariance, while a ParticleSta-
teX can be queried for its particles and weights. Furthermore, this architecture
provides the same functionality as outlined in the previous paragraph, whereby
different StateX objects can be instantiated from other types of StateX ob-
ject. Following the same example as before, a ParticleStateX object can be
constructed from a GaussianStateX object, and vice-versa. This is an impor-
tant feature that adds to the interchangeability nature of TrackingX, which will
be discussed in more detail in Section 7.2.4.

7.2.2.2 Measurements

Measurements in TrackingX are implemented as a concrete sub-class of the Sta-
teX type, via the MeasurementX class. By doing so, MeasurementX ob-
jects inherrit the Vector property, which is used to store the measurement vector,
as well as the optional Timestamp and Metadata properties. The class also in-
cludes an optional Model property, that is of type StateSpaceModelX and con-
tains information relevant to the model used to generate the measurement. This
is particularly useful in a multi-sensor scenario, where the noise characteristics, or
even the entire measurement model, may be different for each particular sensor.

150

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

Furthermore, an optional Tag property allows for a unique tag to be attached to
each measurement, if such a functionality is necessary. Finally, MeasurementX
objects are also sub-classes of the MATLAB dynamicprops class, meaning that
it is possible to attach dynamic properties as and when necessary.

7.2.2.3 Tracks

TrackingX provides a construct for Tracks via the TrackX data type. TrackX
objects define 4 main properties, of which only the first is required: i) States ;
ii) Filter ; iii) Score; iv) Tag. The States property is a list of StateX objects,
that is used to store the state history (trajectory) of a given track. Continuing,
TrackX objects can be optionally assigned a FilterX object, stored in the
Filter property, that is used to perform filtering of the track state throughout
its lifetime. This is in accordance to the way that FilterX objects are defined
in TrackingX (see Section 7.2.4), whereby each FilterX object is considered as
a Finite-state-Machine, with memory. An optional Score property is used by
tracks to store a quality indicator (e.g. an existance probability, or log-likelihood
ratio). If unique identification of tracks is necessary, the Tag property allows
for such an identifier to be maintained by each TrackX object. Finally, the
TrackX is derived from the dynamicprops MATLAB class, meaning that new
class properties can be added to any TrackX instance as and when needed.

7.2.3 State-Space Models

TrackingX makes use of the concept of state-space models, similar in a sense
to how they were described in Chapter 2. The base class for all models is the
ModelX abstract class. The derivatives of the ModelX class are all abstract
classes that can be split in two main categories: i) model-types; and ii) inter-
faces. The model-type derivatives of the ModelX class are then further split
into five types, where each type relates to a different class of models that, when
aggregated, formulate the state-space model, represented by the container class
StateSpaceModelX , on which a given tracking algorithm operates. On the
other hand, the interface derivatives of ModelX are defined with the aim of en-
forcing a common interface to the sub-classes of the model-type derivatives. The
above architecture is summarised in Figure 7.2.

151

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

ModelX

...

+ feval(): mat

...

TransitionModelX

+ NumStateDims: int

...

MeasurementModelX

+ NumMeasDims: int

+ NumStateDims: int

+ Mapping: vector

...

ControlModelX

+ NumControlDims: int

+ NumStateDims: int

+ Mapping: vector

...

DetectionModelX

+ NumStateDims: int

...

ClutterModelX

+ NumMeasDims: int

...

GaussianModelInterfaceX

+NoiseDensity: GaussianDensityX

+ covar(): matrix

StochasticModelInterfaceX

+ NoiseDensity: DensityX

+ pdf(): mat

+ random(): mat

LinearModelInterfaceX

...

+ matrix(): matrix

NonLinearModelInterfaceX

...

+ jacobian(): matrix

InvertibleModelInterfaceX

...

+ finv(): matrix

StateSpaceModelX

+ Transition: TransitionModelX

+ Measurement: MeasurementModelX

+ Control: ControlModelX

+ Detection: DetectionModelX

+ Clutter: ClutterModelX

Figure 7.2: Class structure of State-Space Model components

152

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

7.2.3.1 Model Interfaces

The interface derivatives of ModelX are used to enforce the interface of the
different models. Using a crude generalisation, models can typically be concep-
tualised as a function f : X → Y , which we call the model function, that applies
some form of transformation to an input vector x ∈ X to generate the output
y ∈ Y , i.e.:

y = f(x, ξ) (7.1)

where ξ is used to indicate that the model function can accept other inputs. Thus,
the ModelX class requires that all concrete sub-classes provide in implementa-
tion of the function feval(), which essentially performs the operation described by
the model function. Expanding on the same concept, linear models are a class of
models where the model function involves the multiplication of a matrix, called
the model matrix, with the input vector, e.g.:

y = f(x, ξ) = A(ξ)x . . . (7.2)

To accommodate for this, the LinearModelInterfaceX class enforces that a
linear model class implements a matrix() function, which when evaluated returns
the model matrix. In cases where the model function is non-linear, the model
becomes non-linear and thus NonLinearModelInterfaceX requires that such
models implement the jacobian() function that returns the first-order Taylor ap-
proximation to the model matrix.

In cases where the model function is invertible, then the function f−1 : Y → X ,
called the model inverse function, can be defined such that

x = f−1(y, ξ) (7.3)

Therefore, for such invertible models the InvertibleModelInterfaceX enforces
that the function finv() is implemented, which performs the operation described
by the model inverse function.

It is also possible that a given model may be stochastic; as a matter of fact
this is almost always the case. In this case, random perturbation/noise is applied
when a given input is propagated through the model function, where the noise
characteristics can be described by some density. For the time being TrackingX
only supports stochastic models with additive noise, where the model function is
given as:

y = f(x, ξ) = f ′(x, ξ) + noise (7.4)

Therefore, the StochasticModelInterfaceX interface enforces that stochastic
models have a NoiseDensity property, that is of type DensityX, and implement

153

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

the random() and pdf() functions, which allow for the generation of random noise
samples from the NoiseDensity, and the evaluation of the density pertaining to
the NoiseDensity, respectively. By default, the StochasticModelInterfaceX
provides an implementation for random() and pdf() by calling the NoiseDen-
sity.random() and NoiseDensity.pdf(), although it is possible to override them.
Finally, the GaussianModelInterfaceX interface is a subclass of Stochas-
ticModelInterfaceX , where the NoiseDensity is expected to be of type Gaus-
sianDensityX , and a default implementation of the method covar() is provided,
which again can be overridden.

7.2.3.2 Model Types

TrackingX considers five different model types: i) Transition/Dynamic; ii) Mea-
surement; iii) Control; iv) Detection; v) Clutter. An in-depth discussion about
the different types of models can be found in Section 2.

Dynamic models

Dynamic models in TrackingX are represented via the TransitionModelX class.
In this context, the function feval() implements the relation of (2.1). Examples of
implemented dynamic models in TrackingX include ConstantVelocityX (see
Section 2.2.2), OrnsteinUhlenbeckX (see Section 2.2.3) and ConstantHead-
ingX (see Section 2.2.4). The TransitionModelX class requires that all sub-
classes include the property NumStateDims, which relate to the number of state
dimensions that the model considers.

Measurement models

Measurement models are represented via the MeasurementModelX class, where
the feval() function implements the relation of (2.19). Examples of implemented
measurement models include LinearGaussianX (see Section 2.3.1) and Gaus-
sianAzimuthRangeX (see Section 2.3.2). Both presented examples are also
invertible and thus provide an implementation for the finv() function, which im-
plements the relation of (2.21). The MeasurementModelX requires that all
sub-classes include the following properties: i) NumMeasDims : The dimensional-
ity of the considered measurement vector; ii) NumStateDims : The dimensionality
of the state vector transformed by the model; iii) Mapping : A mapping that re-
lates indices of measurement vector to indices of the state vector.

154

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

Detection models

Detection models are represented via the DetectionModelX class. In this class
of models, the feval() function implements the relation of (2.28). The detection
models implemented thus far in TrackingX are ConstantDetectionRateX (see
Section 2.4.1) and StateDependentDetectionRateX (see Section 2.4.2).

Clutter models

Clutter models are represented via the ClutterModelX class. Due to the in-
herent stochastic nature of clutter2, ClutterModelX is defined such that it
directly implements a StochasticModelX interface. As a matter of fact, fol-
lowing the discussions of Section 2.5, ClutterModelX are expected to exhibit
stochastic behaviour in both the spatial distribution of clutter, as well as the
clutter intensity (i.e. number of expected clutter points). Thus the random()
and pdf() functions for this class include an additional expected input to specify
the distribution to which each function relates. More details can be found in the
documentation of each class. The only existing TrackingX clutter model is the
PoissonRateUniformPositionX (see Section 2.5.1).

7.2.4 Filters

TrackingX includes a comprehensive collection of state-of-the-art Bayesian Fil-
tering algorithms. In the TrackingX architecture, the base class for all filters is
the FilterX class. The structure of FilterX enforces the following: i) All fil-
ters have a Model property, that is of type StateSpaceModelX and contains all
information pertaining to the state-space model; ii) All filters must provide imple-
mentations of initialise(), predict() and update(); iii) All filters have state related
properties StatePrior, StatePrediction, MeasurementPrediction and StatePoste-
rior, all of which must be sub-classes of the StateX class. An explanation for
the various state properties is provided below:

• StatePrior : The StatePrior property aims to encapsulate all information
pertaining to the distribution p(xk−1|y1:k−1)3; that is the posterior distri-
bution from time tk−1, that serves as a prior at time tk. The StatePrior
property is initialised upon object construction, or a call to the initialise()

2So far the author has not come across s a scenario where the clutter is deterministic
3The single-target, single-measurement prior notation p(xk−1|y1:k−1) is used for simplicity,

but depending on the type of filter it should be considered as equivalent to p(xk−1|Y1:k−1) or
p(Xk−1|Y1:k−1). The same applies for all other distributions.

155

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

method, and its value is updated at the start of each call to the predict()
method.

• StatePrediction: The StatePrediction property aims to encapsulate all in-
formation pertaining to the distribution p(xk|y1:k−1), that is the predicted
distribution at time tk. The StatePrediction is updated after each call to
the predict() method.

• MeasurementPrediction: The MeasurementPrediction property aims to en-
capsulate all information pertaining to the distribution p(yk|y1:k−1), that is
the expected distribution of measurements at time tk. The Mesurement-
Prediction is updated after each call to the predict() method.

• StatePosterior : The StatePrediction property aims to encapsulate all infor-
mation pertaining to the distribution p(xk|y1:k); that is the posterior state
distribution at time tk. The StatePosterior is updated after each call to the
update() method.

By default, FilterX objects are designed with the intention to be utilised as
(Markov-Chain) State Estimators that operate on a given problem as determin-
istic Finite State Machines (FSMs), with self-contained memory. In other words,
it is expected that for most problems, a FilterX object will go through any
heavy parameterisation once, after which it shall be used to recursively execute a
prediction-update state estimation loop. FilterX objects aim to preserve all the
inter-state information they require such that they can execute the next recursion
step, without being provided with information they already know. For example,
although it is possible to do so, it is not necessary to provide a prior each time
the predict() method is used, as the filter will utilise its StatePosterior property
(generated from the last call to the update() method) as its prior, thus storing
it in the StatePrior property. That said, it is possible to provide a prior as an
input argument to a predict() call, in which case the filter object will overwrite its
memory with the provided information. The same stands for the StatePrediction
and MeasurementPrediction properties when it comes to the update() method.

The full list of filters implemented in TrackingX, along with annotated rela-
tions between them, is depicted in Figure 7.3. As mentioned previously, FilterX
is the base Abstract class for all filter objects. Next, three different abstract sub-
classes are defined: i) KalmanFilterX ; ii) ParticleFilterX ; and iii) PHD-
FilterX. All classes that are direct sub-classes of the KalmanFilterX and
ParticleFilterX base classes (with the exclusion of the BernoulliParticle-
Filter) are interchangeable. A summary of the functionality provided by each
type of filter is provided below.

156

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

FilterX

+ Model: StateSpaceModelX

+ StatePrior: StateX

+ StatePrediction: StateX

+ StatePosterior: StateX

+ MeasurementPrediction: StateX

+ initialise(): void

+ predict(): void

+ update(): void

KalmanFilterX

+ StatePrior: GaussianStateX

....

....

ParticleFilterX

+ StatePrior: ParticleStateX

+ Resampler: ResamplerX

....

ExtendedKalmanFilterX

....

....

UnscentedKalmanFilterX

....

....

UnscentedParticleFilterX

+ Predictor: UncentedKalmanFilterX

...

ExtendedParticleFilterX

+ Predictor: ExtendedKalmanFilterX

...

SMC_PHDFilterX

...

...

GM_PHDFilterX

+ StatePrior: GaussianMixtureStateX

+ Filter: KalmanFilterX

...

PHDFilterX

...

...

TOMeMBerPoissonGMFilterX

+PoissonFilter: GM_PHDFilterX

+BernoulliFilter: KalmanFilterX

...

...

BernoulliParticleFilterX

...

...

BootstrapParticleFilterX

...

...

LinearKalmanFilterX

....

....

Single Hypothesis Filter

Multi Target Filter

Abstract class

Uses
Inheritance

Multi Hypothesis Filter

Figure 7.3: Class structure of TrackingX filter components

The KalmanFilterX class is the base class for all Kalman Filters, thus
enforcing that all state related information (StatePrior, StatePrediction, Mea-
surementPrediction, StatePosterior) is stored in the form of GaussianStateX
objects. The class makes use of MATLAB’s Property Access Methods to ensure
that, should a KalmanFilterX sub-class be provided with state information of a
type different than GaussianStateX, an attempt is made to convert it into such
a type (using the state interchangeability functions discussed in Section 7.2.2.1),
returning an error if it fails. Furthermore, the KalmanFilterX class provides

157

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

an implementation for the update() method which, given a StatePrediction and
a MeasurementPrediction, is equivalent for all sub-classes. Then, the Linear-
KalmanFilterX (see Algorithm 3.2.2), ExtendedKalmanFilterX (see Al-
gorithm 3.2.3) and UnscentedKalmanFilterX (see Algorithm 3.2.4) classes
simply implement the predict() method which is different between the 3 algo-
rithms.

The ParticleFilterX class is the base class for all Particle Filters, thus
enforcing that all state related information is stored in the form of ParticleSta-
teX objects. The class makes use of MATLAB’s Property Access Methods to
ensure that, should a ParticleFilterX sub-class be provided with state infor-
mation of a type different than ParticleStateX, an attempt is made to con-
vert it into such a type (using the state interchangeability functions discussed
in Section 7.2.2.1), returning an error if it fails. The BootstrapParticle-
FilterX is an implementation of Algorithm 3.2.5, where the importance density
is set to p(xk|xk−1). The ExtendedParticleFilterX and UnscentedParti-
cleFilterX sub-classes utilise an ExtendedKalmanFilterX and Unscented-
KalmanFilterX, respectively, to get an approximation to the optimal proposal
p(xk|x0:k−1, y1:k). Finally, the BernoulliParticleFilterX is an implementation
of a single-target Bernoulli Particle Filter, as documented in Algorithm 2 of [183].

The PHDFilterX class is the base class for all Probability Hypothesis Den-
sity (PHD) filter implementations in TrackingX. Unlike the base classes discussed
so far, the PHDFilterX class does not enforce any restictions in terms of the
state information, but defines properties such as the BirthIntensityFunction and
SurvivalProbability (see γk and pS in Algorithm 4.5.1, respectively) that are re-
quired by the algorithm. The SMC PHDFilterX is a Particle-based imple-
mentation of the PHD filter (thus it inherits its state related information from
ParticleFilterX), whose algorithm is a direct implementation of the one docu-
mented in Section 3.4 of [68]. The GM PHDFilterX class is a GaussianMixture
implementation of the PHD Filter and therefore enforces that all state related
information are of type GaussianMixtureStateX. An additional functionality
of the GM PHDFilterX is that it is able to utilise any of the KalmanFil-
terX sub-classes to perform prediction and update operations on the individual
GaussianStateX components of its state. The algorithmic implementation of
the GM PHDFilterX is extracted from Section 3.2 of [67].

Finally, a GaussianMixture implementation of the Track-Oriented Marginal
MeMBer-Poisson Filter proposed in [83], is provided via the TOMeMBerPois-
sonGMFilterX. Although fully functional, the specific class is still in a de-
velopment stage and thus it has not been fully incorporated in the TrackingX
architecture. The class essentially maintains 2 sets of state related information,

158

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

each represented using a GaussianMixtureStateX. The first is related to the
density of undetected targets, which is tracked using a GM PHDFilterX, and
the second is related to the set of “confirmed” (or detected) targets, where each
component is predicted and updated using a KalmanFilterX subclass.

7.2.5 Data Associators

TrackingX includes implementations of a number of Data Association algorithms.
In the TrackingX architecture, the base class for all data associators is the
DataAssociatorX class and the main requirement enforced by the base class is
that all sub-classes implement a method called associate(). This method should
expect 2 required arguments: i) TrackList : A list of TrackX objects, ii) Mea-
surementList : A list of MeasurementX objects. The output of the associate()
method is a list of association hypotheses that can be used to update each track
in the TrackList.

At the time of writing this thesis, TrackinX includes implementations of 5
Data Association algorithms (see Figure 7.4, all of which have been thoroughly
documented in this thesis. The first algorithm is the NearestNeighbour-
DataAssocX, that implements the Nearest Neighbour approach discussed in
Section 3.3.2. Continuing the GlobalNearestNeighbourDataAssocX class is
derived from the NearestNeighbourDataAssocX class and provides an im-
plementation of the Global Nearest Neighbour algorithm discussed in Section
4.3.3.2. Similarly, an implementation of the Probabilistic Data Association al-
gorithm discussed in Section 3.3.3 is provided by the ProbabilisticDataAs-
socX class, which also forms the base class for JointProbabilisticDataAssoc
that implements the Joint Probabilistic Data Association algorithm of Section
4.3.3.3. Finally, and based on the notes presented in Section 4.4, the Joint Inte-
grated Probabilistic Data Association algorithm is implemented via the JointIn-
tegratedProbabilisticDataAssocX class that extends JointProbabilistic-
DataAssocX. All of the above classes can be seamlessly interchanged within all
TrackingX components that utilise them.

7.2.6 Track Managers

Track Management is handled in TrackingX through appropriately defined Track-
InitiatorX and TrackDeletorX sub-classes. As discussed in Section 4.3.2, the
approaches to track management can vary greatly. The role of TrackInitiatorX
is then to utilise unassociated detections, such as to initiate and confirm tracks
though the expected initialise() method. Then TrackDeletorX can be used to

159

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

DataAssociatorX

+ Model: StateSpaceModelX

+ TrackList: list(TrackX)

+ MeasurementList list(MeasurementX)

...

+ associate(): mat

...

ProbabilisticDataAssocX

...

...

JointProbabilisticDataAssocX

...

...

NearestNeighbourDataAssocX

...

...

GlobalNearestNeighbourDataAssocX

...

...

JointIntegratedProbabilisticDataAssocX

+ SurvivalProbability: scalar

...

...

Figure 7.4: Class structure of TrackingX data association components

160

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

delete confirmed tracks by calling its delete() method.

TrackingX includes implementations of 3 track initiators. The first is the
MofNTrackInitiatorX , which is based on the M-out-of-N approach discussed
in Section 4.3.2. The MofNTrackInitiatorX makes use of the ability to ap-
pend dynamic properties to TrackX objects by defining a new property Detec-
tionHistory, which is a binary vector of length M , that indicates whether a given
track of successfully detected. The second track initiator is the LLRTrackIni-
tiatorX, which implements the Log Likelihood Ratio Test approach discussed
in Section 4.3.2. On each call, the LLRTrackInitiatorX computes the Log
Likelihood Ratio (LLR) for each track, and makes updates the Score property
of TrackX objects. Both the MofNTrackInitiatorX and LLRTrackInitia-
torX classes have been designed such as to allow seamless interchangeability of
the DataAssociatorX and FilterX classes used to perform data association
and filtering of tentative tracks. Finally, the third track initiator is the Phd-
TrackInitiatorX that implements the PHD track initiation scheme discussed
in Section 4.6, whereby a PHDFilterX object is used to filter the density of
tentative tracks. The PhdTrackInitiatorX allows users to specify the type
of FilterX that should be configured and attached to the Filter property of
initiated TrackX objects.

TrackingX also includes 2 implementations of TrackDeletorX classes. The
first is a PropertyBasedDeletorX, which allows users to specify a condition for
deletion which is applied to a selected property of TrackX objects. The nature
of this track deleter provides users with a lot of flexibility and can also be used
as the base class for defining more specific TrackDeletorX implementations.
For example, the PropertyBasedDeletorX can be configured to delete tracks
whose Score property falls below a given threshold, which could also be formalised
into a ScoreBasedTrackDeletorX class. The second TrackDeletorX imple-
mentation is the TimeBasedDeletorX. Once provided with a given duration,
the TimeBasedDeletorX identifies the last time a given TrackX object was
successfully updated with a measurement and deletes the object if the elapsed
time is higher that the specified duration.

7.2.7 Metric Generators

TrackingX also includes provisioning for metric generators that can be used to
evaluate performance during simulations. This functionality is provided though
the base class MetricGeneratorX. The definition of this class specifies that
each subclass must provide an implementation for an evaluate() methods, which
when provided with two lists of TrackX objects, one relating to ground-truth

161

7.2. TrackingX
Chapter 7. Modular Frameworks for Tracking and State Estimation

tracks and on to estimated tracks, outputs a metric that indicates the estimation
accuracy.

At the time of writing, TrackingX provides two solid implementations of the
MetricGeneratorX class. The first is the OSPAMetricGeneratorX, which
implements the Optimal Sub-Pattern Assignment (OSPA) metric [106]. The sec-
ond implementation is the GOSPAMetricGeneratorX, that implements the
Generalised OSPA (GOSPA) [184], using an adapted version of the MATLAB
implementation provided by the supplementary materials of [185].

7.2.8 Simulators

TrackingX enables users to simulate both ground-truth data, as well as measure-
ments based on such ground-truth data. This is achieved by the GroundTruth-
SimulatorX and MeasurementSimulatorX classes respectively.

The GroundTruthSimulatorX class defines the base class for simulators
that generate ground-truth data related to one or more targets moving through
the detection area. The objective of for ground-truth simulators is to generate po-
sition data at defined intervals, based on the dynamic behaviour specified through
a given TransitionModelX. TrackingX includes an implementation of a Single-
TargetGroundTruthSimulatorX and a MultiTargetGroundTruthSimu-
latorX which can be used to generate ground-truth for a single and multiple
targets, respectively. The SingleTargetGroundTruthSimulatorX accepts
a single TrackX object, that should contain an initial state, and outputs the
same object, whose trajectory has been simulates and stored in the States prop-
erty of the object. The MultiTargetGroundTruthSimulatorX performs the
same operation, but for a list of TrackX objects. In both cases, the lifetime of
tracks can either be specified deterministically, via the inclusion of a TimeOfDeath
property for each track, or can be allowed to be determined by the simulator by
specifying a SurvivalProbability.

The MeasurementSimulatorX class defines the base class for simulators
that simulate detections by a sensor, whose measurement model characteris-
tics are specified through a given MeasurementModelX. The SingleTar-
getMeasurementSimulatorX class is a solid implementation of the Mea-
surementSimulatorX, that aims to generate detections for a single ground-
truth target and does not consider the existence of clutter and missed detec-
tions. The MultiTargetMeasurementSimulatorX extends the SingleTar-
getMeasurementSimulatorX to a multi-target scenario in the presence of
clutter and missed-detections, whose properties are specified by user defined
ClutterModelX and DetectionModelX implementations, respectively. Both

162

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

simulators accept ground truth data as inputs in the form of a TrackX object
or a list of TrackX object respectively, and output measurements in the form of
a list of MeasurementX objects for each discrete time interval.

7.2.9 Simulation Example

A simple use-case example is demonstrated here to showcase the usage of Track-
ingX. The overall structure of the different TrackingX components is shown in
Figure 7.5. A MultiTargetGroundTruthSimulatorX is used to generate
ground-truth data for 10 targets, which is then forwarded to a MultiTarget-
MeasurementSimulator that generates detections based on the ground-truth
data. Continuing, a Tracker loop is defined that makes use of a PHDTrack-
InitiatorX, that initiates confirmed tracks, each parameterised with a Parti-
cleFilterX, from the intensity of a SMC PHDFilterX, a PropertyBased-
Deleter , that deletes tracks based on their Score property, and a JointInte-
gratedProbabilisticDataAssocX to perform Data Association. Finally, the
tracks generated from the Tracker loop, together with the ground-truth tracks,
are forwarded to a GOSPAMetricGeneratorX , that evaluates the accuracy
of the tracker and returns a GOSPA metric. Figure 7.6 shows an example plot
output from the tracking process, while Figure 7.7 shown a plot of the GOSPA
metric evaluated over the course of the simulation.

7.3 Stone Soup

Stone Soup [12, 13, 14] is an open-source Python framework that aims to provide
researchers and practitioners with the ability to develop and implement new and
existing tracking and state estimation algorithms for ease of comparison. The
content presented herein is derived from and incorporates text published in [14],
licensed under the Open Government License [186], that announces the beta
release of Stone Soup, to which the author has been a major contributor and
co-author4.

Development efforts for Stone Soup are led by the UK Defence Science and
Technology Laboratory (Dstl) and have thus far included contributions from the
Defence Research and Development Canada (DRDC), the US Air Force and Re-
search Laboratory (AFRL) and the University of Liverpool (UoL). These efforts
have been part of the first Stone Soup development phase; the Consortium phase.

4As Stone Soup is still under development at the time of writing this thesis, the structural
composition of Stone Soup may deviate from what is reported herein.

163

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

ConstantVelocityX
Type:TransitionModelX

GaussianAzimuthRangeX
Type:MeasurementModelX

ConstantDetectionRateX
Type:	DetectionModelX

PoissonRateUniformPositionX
Type:ClutterModelX

StateSpaceModelX

ParticleFilterX
Type:FilterX

SMC_PHDFilterX
Type:FilterX

ParticleStateX
Type:StateX

ParticleStateX
Type:StateX

PHDTrackInitiatorX
Type:TrackInitiatorX

MultiTargetGroundTruthSimulatorX
Type:GroundTruthSimulatorX

MultiTargetMeasurementSimulatorX
Type:MeasurementSimulatorX

Tracker

JointIntegratedProbabilisticDataAssocX
Type:DataAssociatorX

GOSPAMetricGeneratorX
Type:MetricGeneratorX

PropertyBasedDeletorX
Type:TrackDeletorX

Ground-truth Tracks

Measurements

Tracks

Data Flow
Import

GOSPA Metric

Figure 7.5: Architecture of TrackingX Use Case

(a) Positions of estimated tracks (b) Intensity of PhdTrackInitiatorX

Figure 7.6: Plot output of TrackingX simulation example

164

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

Figure 7.7: GOSPA metric output for the example simulation

This phase extended from the Stone Soup program commencement in 2017 until
the open source release date in April 2019. In this phase, the consortium of con-
tributors came together to define the requirements and develop the Stone Soup
framework. Work in this stage was focused on building the framework and the
components for a few exemplar tracking scenarios; work on additional components
was left primarily until the second phase.

The second phase (ongoing) of the Stone Soup project is the Open phase,
which began in April 2019 when Stone Soup was open-sourced to the tracking
community as the beta version (V0.1b1). During this phase, is is expected that
the main contributors to the project will be academic researchers, who contribute
components to the project in order to receive academic recognition. These con-
tributions will be reviewed by the Stone Soup development committee (consisting
of members from Dstl and DRDC) for merging into the main Stone Soup branch;
however, it is possible for individual researchers to maintain and develop custom
Stone Soup code repositories for their own projects.

Stone Soup is initially targeted at two different groups of users. The first
is academics conducting research into tracking and state estimation. Academics
will be able to implement new tracking algorithms in Stone Soup, evaluate their
performance against built-in metrics, and compare the results with those of other
tracking algorithms. This will lend credence to claims of improved performance
in published research, and facilitate rapid replication by others in the academic

165

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

community.

The second group is the users, owners or processors of real world datasets or
sensor systems. Members of this group may have data that they wish to exploit,
but they do not necessarily have deep expertise in multiple tracking methods.
Stone Soup allows this group to construct the appropriate experiment to test
many algorithms against their data to determine which algorithm best suits their
application. Stone Soup will provide a quick-start tracker builder that will assist
these users in creating experiments without requiring a deep knowledge of the
tracker components being used.

For instance, users could test a new tracking algorithm against the body of
existing algorithms, or they could run real-world or simulated sensor data through
multiple tracking algorithms to determine which is best for their application. Al-
though the project is open-source, it can be downloaded and used to implement
proprietary algorithms, or to evaluate proprietary/classified data. Stone Soup
is designed with modular components, which allows users to rapidly assemble
different combinations of components (including in new and unexpected configu-
rations) to build the best tracker for their application.

7.3.1 Framework architecture

The philosophy behind Stone Soup is very similar to that of the TrackingX
framework discussed in Section 7.2. It aims to enable users to test, verify, and
benchmark a variety of multi-sensor and multi-object estimation algorithms. The
framework is built in Python, with the intent of providing support for integra-
tion of tracking algorithms in other high-level languages, such as MATLAB, C
and C++. In order to achieve these goals, Stone Soup is comprised of a frame-
work with modules related to Data, Algorithms, Metrics, Simulators, and Sensor
Models (Figure 7.8). The central theme of the Stone Soup design philosophy is
interchangeability. The framework is designed with the idea that users can easily
insert their own components (e.g. predictors, updaters, associators, data readers,
etc.) into existing Tracker constructs, with the added ability to mix and match
components in new and unexpected ways. In support of this goal, the Stone Soup
code architecture has been built on the principles of modularity and uniformity
of external interfaces.

Stone Soup is object-oriented and makes use of encapsulation, abstraction
and inheritance, where trackers are built as hierarchical objects. For example,
a Tracker object may contain Track Initiator , Track Deleter , Detector ,
DataAssociator , and Updater objects (Figure 7.10). An abstract class is de-
fined for each object which specifies the external interface for that class; that is,

166

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

Figure 7.8: Stone Soup framework architecture. [14]

the parameters and functions an object of that class must make available to the
outside world (abstraction). As an example, the Updater abstract class specifies
that any derived object must have a property of type MeasurementModel , and
that it must have a function update() that returns a State object. Therefore,
all implementations of Updater objects in Stone Soup (e.g. KalmanUpdater ,
ExtendedKalmanUpdater , ParticleUpdater , etc.) must have the speci-
fied properties and functions (inheritance). This approach ensures that different
Updater objects are interchangeable (within limits), and that the Tracker can
utilise them without knowing the details of their implementation (encapsulation).

In order to support this modularity and common external interfaces, Stone
Soup objects are built based on a class inheritance hierarchy (Figure 7.9). Stone
Soup contains a Base abstract class, which is an empty class, and all other Stone
Soup classes are descended from this. All implementations of a given abstract
class must be children of that abstract class, which defines the common external
interface for that abstract class. Whenever a new object is instantiated, Stone
Soup will verify that the instantiation call includes all of the properties that are
required by that class and all ancestors in the hierarchy; this check helps enforce
the interchangeability of the Stone Soup modules.

It should be noted the partial inheritance hierarchy in Figure 7.9 has been
designed to be simple and easy to understand for new users, and it is not definitive;
contributors to Stone Soup are free to suggest changes and develop alternative
abstract classes and inheritance hierarchies.

167

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

Figure 7.9: An incomplete view of the Stone Soup class inheritance hierarchy.
[14]

7.3.2 Components

7.3.2.1 Data

The basis of most tracking and state estimation algorithms is sensor detection
data (with the notable exception of Track-Before-Detect methods). Stone Soup is
capable of both generating simulated target and detection data, as well as ingest-
ing real-life data from arbitrary external sources. Both options offer advantages
for different reasons. Simulated data is useful for the rapid implementation and
testing of new tracking algorithms. Such simulated data gives access to both
the ground-truth target information (e.g. position, velocity, etc.), as well as the
sensor detections. This is useful because the majority of metrics require ground-
truth information in order to evaluate the accuracy of the tracking algorithms.
Real-life data is useful for testing tracking algorithms against real-world situa-
tions (as opposed to laboratory situations) in order to evaluate which algorithm
performs the best in a particular situation. However, as is often the case, real data
typically come without the ground-truth data required by certain performance
metrics.

Stone Soup contains several models that can be used to simulate target (e.g.
airplane, ship) movement in order to generate simulated datasets. This simulated
data represents the ground-truth data, which is later detected by sensor detection
models; these models add uncertainty to the measurements representing the error
associated with real sensor measurements. This simulated motion is generated by

168

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

a number of 1-dimensional transition models, which can be combined into higher-
dimensional transition models that describe the targets movement. The process
for generating simulated data is described in more detail in Section 7.3.2.4.

Stone Soup provides options for writing simulated detection data to an out-
put file, and reading this data back into Stone Soup. This is useful because
the simulated data is generated using a Python generator, which generates data
just-in-time rather than pre-generating it. This approach saves computer mem-
ory space for large simulated datasets, but it also means that, by default, the
dataset does not persist. For users who wish to save the simulated data (e.g. to
run the same simulated dataset against multiple tracking algorithms), these file
writing/reading options provide persistent access to the data. The class YAML-
Writer writes simulated data to an output file in the YAML format, and the
class YAMLReader reads this data back into Stone Soup format.

Stone Soup has been developed to support data from many types of real-
world sensors. Working with this data typically requires a Reader class that
reads sensor data from an input stream. It also often requires a Feeder class
that translates data from the sensors measurement space into Stone Soups state
space, orders out-of-sequence data chronologically, and removes duplicate data.
Stone Soup provides several reader and feeder classes, but users of Stone Soup
can easily write their own to serve their specific applications.

7.3.2.2 Tracking Algorithms

The core of Stone Soup is the tracking functionality. A Tracker is the top-level
algorithm that utilises several other algorithmic components to generate Tracks
from Detections. Stone Soup has been designed to make these components as
modular as possible, allowing users to interchange them to evaluate new com-
ponents and test different combinations. Figure 7.10 shows the types of these
components and the dependency relationships between them. The base Tracker
object requires Initiator , Deleter , Detector , DataAssociator , and Up-
dater components. Different Trackers can handle a single or multiple targets
moving through the space, and can identify and discard clutter.

The Initiator initialises new Track objects from a provided set of Detec-
tion objects, that are determined not to be part of another Track ; it sets up the
initial parameters that allow the Track position to be predicted into the future.
The Deleter kills a Track after certain conditions have been met which indicate
that the Track has been lost. For example, a Track may be deleted if it has not
been detected for a certain number of time steps, or the uncertainty associated
with its prediction is very large for the same reason.

169

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

Figure 7.10: Stone Soup module structure and information flow. [14]

The Detector provides a stream of Detections to the Tracker . The data
source for the Detector is a detection simulator (for simulated data), real data
read from a file or a data stream, or any other data input methods that users
would like to develop. In order to use simulated data, the user may employ a
ground truth data simulator that utilises a transition model to model the mo-
tion of the targets. The simulated ground-truth generated by this simulator is
then processed by detection simulator, which uses a measurement model that
approximates how a sensor detects the ground-truth data (with uncertainty of
detection location, missed detections, etc.). As discussed in Section 7.3.2.3, both
the ground-truth and the detections generated by the measurement model are
used as inputs to the various Stone Soup metrics.

The Predictor and Updater are the foundation of any tracking scheme;
they implement the functionality of the underlying basic filter. While Stone Soup
currently contains implementations of a few basic filters, this is an area with rich
opportunities for development by the academic/user community. Typically, a
Predictor and Updater with matching approaches must be paired (e.g. both
Kalman, both Particle).

The data association function of a tracker with which the tracking community
is likely to be familiar is encapsultated in Stone Soup using two different com-
ponents: the Hypothesiser and the DataAssociator . Roughly speaking, the
data association process associates Detections with Tracks (Targets). In Stone
Soup, the Hypothesiser calculates the measures (e.g. distance, probability) be-

170

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

tween the Detections and predicted Track states on which this decision is based,
and the DataAssociator makes this decision. We realize that different classes
of tracking algorithms calculate and represent the state of the system in different
ways. As befits a project that is under continuous development, accomodations
for this fact are ongoing. Readers should refer to Section 7.3.4 for future plans
in this area. Users who are implementing new tracking algorithms in Stone Soup
are recommended to look at existing implementations to help them decide the
best approach to implementing their own algorithm.

7.3.2.3 Metrics

One of the main goals of Stone Soup is to compare the performance of different
tracking algorithms. Currently, Stone Soup provides support for metrics that
evaluate the accuracy of tracking algorithms. These metrics accept the output
of a Tracker operating over a dataset and evaluate how well the Tracks (what we
think happened) match the ground truth (what actually happened).

There are three major components related to Stone Soup metrics (Figure
7.10). The MetricManager parses and stores the Tracks and ground truth
produced by the Tracker (and any other outputs produced by future Tracker
implementations), and calls the metrics that have been assigned to it. Several of
the metrics for Tracker performance measure how well the identified Tracks match
the ground truth. In order to measure this, Stone Soup uses an Associator to
associate Tracks and ground truth. The metrics themselves are calculated by
MetricGenerators . These classes accept the Tracker outputs and return the
calculated metrics. Stone Soup provides implementations of several industry-
standard metrics; users are also free to implement other metric suites and add
them to the Stone Soup code base.

7.3.2.4 Data Simulators

In the case where Stone Soup users do not have real datasets available to test
tracking algorithms, Stone Soup provides simulators that can generate realis-
tic Detection datasets. Simulating Detections is a 2-step process: 1) generate
ground truth data based on transition models, and 2) model the sensor state and
behaviour as it detects the ground truth Targets.

The Stone Soup GroundTruthSimulators generate data related to one or
more Targets moving through the detection area. They generate position data
at defined time steps, and the Target motion is based on user-selected transition
models. The DetectionSimulators simulate detections by a sensor platform

171

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

whose characteristics are specified by the user-specified measurement model. The
simulator accepts ground truth data as inputs, and outputs Detections as well
as Clutter measurements based on the state of the measurement model. Detec-
tions can be generated using a generic sensor model or one of the sensor models
discussed in Section 7.3.2.5.

Simulated data is important for fully exploring the capabilities of different
tracking algorithms because ground truth data is needed for several of the the
Stone Soup metrics and real sensor data often does not include ground truth
data.

7.3.2.5 Sensor Models

Stones Soup contains a SensorPlatform class that represents a mobile platform
that can move in 2D or 3D space to represent the motion of an aircraft, ship, or
other mobile sensor. The platform motion can consist of any of the motion models
that have been previously described. A platform can contain multiple sensors to
model a variety of real-world platforms; e.g. a platform containing both an EO/IR
sensor and a radar sensor. The sensors can be mounted at arbitrary positions on
the platform.

Stone Soup contains a generic sensor model as well as several sensor models
that simulate the physics of sensor detections in greater detail. These sensor
models replicate the characteristics, strengths, and weaknesses of distinctive real-
world sensors so users can analyse the performance of different tracking algorithms
against sensor-specific datasets.

Each sensor on a platform contains an instance of a measurement model. The
measurement model is responsible for transforming the models state vector into a
measurement vector. The measurement models also specify the noise properties of
the measurement; e.g. noise covariance, so that these can be used in the tracking
filter to update the state estimates. The measurement model can also be used to
generate a set of noisy measurements drawn from a Gaussian distribution; these
measurments can be used in the particle filter implementations.

7.3.2.6 Stone Soup Component Implementations

The objective of the Stone Soup development team prior to the April 2019 open
source release date was to develop a framework to which the tracking community
can contribute their own implementations of different algorithms. However, as
part of the initial development, the Stone Soup development team implemented a
few tracking algorithms along with their component parts as a starting point. We

172

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

expect that these implementations will serve as a base case that other contributors
can build upon and make their own contributions to the project. A listing of the
beta release components can be found in Table 7.1.

Simulator Deleter
SingleTargetGroundTruthSimulator CovarianceBasedDeleter
MultiTargetGroundTruthSimulator UpdateTimeStepsDeleter
SimpleDetectionSimulator UpdateTimeDeleter

File Reader Predictor
JSON AISDetectionReader KalmanPredictor
CSVDetectionReader ExtendedKalmanPredictor
YAMLReader UnscentedKalmanPredictor

ParticlePredictor
File Writer
YAMLWriter Updater

KalmanUpdater
Feeder ExtendedKalmanUpdater
MetadataReducer UnscentedKalmanUpdater
TimeBufferedFeeder ParticleUpdater
TimeSyncFeeder

Hypothesiser
Transition Models DistanceHypothesiser
CombinedLinearGaussianTransitionModel FilteredDetectionsHypothesiser
LinearGaussianTimeInvariantTransitionModel PDAHypothesiser
ConstantVelocity
ConstantAcceleration Data Associator (tracker)

Singer NearestNeighbour
SingerApproximate GlobalNearestNeighbour
ConstantTurn SimplePDA

JPDA
Measurement Models
LinearGaussian Tracker
RangeBearingElevationGaussianToCartesian SingleTargetTracker
RangeBearingGaussianToCartesian MultiTargetTracker
BearingElevationGaussianToCartesian MultiTargetMixtureTracker

Sensor models Metric Manager
RadarRangeBearing SimpleManager
RadarRotatingRangeBearing

Metric Generator

173

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

(mobile) Platform models BasicMetrics

SensorPlatform GOSPAMetric [184]
OSPAMetric [106]

Initiator TwoDPlotter
SinglePointInitiator SIAPMetrics [187]
LinearMeasurementInitiator
GaussianParticleInitiator Measure

Euclidean
Data Associator (metrics) EuclideanWeighted

EuclideanTrackToTrack Mahalanobis
EuclideanTrackToTruth SquaredGaussianHellinger

GaussianHellinger

Table 7.1: Component implementations in Stone Soup (April 2019).

7.3.3 Using Stone Soup

7.3.3.1 Run Manager

The process for building a Stone Soup Tracker to run an experiment can be
complex and time-consuming if performed manually (see supplemental materials
associated with Section 7.3.3.3). We expect that members of the Stone Soup user
community will want to run large blocks of experiments. They may wish to run
experiments on a given Tracker with certain components swapped or parameters
varied over a range in order to find the optimal combinations.

Alternatively, they may wish to run a Monte Carlo simulation that runs the
same experiment many times with different input data in order to see how the
Tracker performs over a wide variety of situations. In order to reduce the work-
load for building and running these types of experiments, Stone Soup provides a
Run Manager (available a few weeks after the initial beta release) that can auto-
matically build, run, and collect the results from a large block of experiments.

The Tracker and Metrics configurations to be used in an experiment are en-
coded into an experiment configuration file, along with the conditions for running
the experiment multiple times or varying one or more of the components or model
parameters. This experiment configuration file is then fed into the Run Manager,
which can build and run all of the Trackers specified. The Run Manager then
collects the results and metrics from the experiments and then exports them to
an output file for further processing and analysis.

174

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

7.3.3.2 Jupyter Notebooks

Stone Soup comes with extensive documentation regarding its component parts
and how they fit together to build Tracker experiments. However, sometimes
the best way to learn is through example and demonstration. The Stone Soup
development team makes extensive use of Jupyter Notebooks [188] which combine
Python code with supplemental explanations into a format that can be executed
using a web browser as a graphical frontend.

The Stone Soup beta release provides a library of Jupyter Notebooks that
demonstrate different use cases and show how Stone Soup components fit together
to build Tracker experiments. Members of the Stone Soup user community can
experiment with these Notebooks in order to learn how Stone Soup works, and
they can modify the code in order to integrate their own components developed
for use in the Stone Soup framework, or to import their own datasets.

7.3.3.3 Example Use Case

The Jupyter Notebook One of the Jupyter Notebooks in the Stone Soup library
[189] entitled “Stone Soup SPIE Use Case.ipynb” demonstrates a simple use case
for the Stone Soup framework. This use case showcases the different components
used to build a Stone Soup Tracker and how they fit together. In this exam-
ple (Figure 7.11), a Tracker operates over a simulated dataset, and metrics are
calculated indicating how well the Tracker performed.

The Tracker used in this scenario is a Kalman Filter-based Tracker. It uses
basic Stone Soup implementations such as the Nearest Neighbour data associator,
Mahalanobis Distance hypothesiser, track initiator, and data simulator, as well
as the Kalman Predictor and Updater. The data simulator generates ground
truth Target location data and detections from the simulated sensor; the Tracker
consumes this data and then outputs the Tracks calculated by the Tracker. The
results are processed by a MetricManager; it uses several MetricGenerators to
calculate metrics over the calculated Tracks, as well as a Track to Truth data
associator that measures how well the calculated Tracks match the ground truth.

Figure 7.12 shows the graphical representation of the Tracks produced by a
particular run of this Use Case. Table 7.2 shows the numerical results of the
Basic Metrics and the SIAP Metrics calculated by this run, and Figure 7.13
shows the OSPA distance calculated by the OSPA Metrics at each time step over
the course of the experiment.

175

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

Figure 7.11: Architecture of Stone Soup Use Case.

Metric Use Case Value
Number of Tracks 63
Number of Targets 55
Track-to-Target ratio 1.145456
SIAP A 1.0
SIAP C 0.963925
SIAP LS 0.898119
SIAP LT 1527.50
SIAP S 0.118734

Table 7.2: Metrics for a particular run of the Use Case.

176

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

Figure 7.12: Graphical output of Kalman MultiTargetTracker.

Figure 7.13: OSPA distance metric for a particular run of the Use Case over the
time span of the experiment.

177

7.3. Stone Soup
Chapter 7. Modular Frameworks for Tracking and State Estimation

7.3.4 Future Work

Following the Stone Soup open-source release in April, 2019, it is anticipated that
members of the tracking community will begin to contribute implementations of
trackers and various components to the project. One focused mechanism for this
will be the working group established under the International Society for Infor-
mation Fusion (ISIF), called the Open Source Tracking and Estimation Working
Group (OSTEWG) (https://isif-ostewg.org/), of which the author is an active
member. This group aims to form a community focused on development and
use of algorithms in Stone Soup for an annual use/data-case and to present the
results at a Special Session at each ISIF Fusion Conference.

In addition to this, the current Stone Soup development team has plans for
a few critical additions. Currently, the primary means of building and running
Stone Soup experiments is through Jupyter Notebooks. It is expected that this
will be a natural and comfortable interface for academic researchers; however,
this interface will not meet the needs of all potential Stone Soup users. Members
of the defence or security community who bring large sensor datasets to Stone
Soup may not have a background in tracking or software development, so they
will need a simpler way to build and run experiments.

A major planned addition to Stone Soup moving forward will be the User
Interface (UI). This will be developed as a web browser-based Graphical UI that
can be used to interact with Stone Soup. The UI will have three main components.
The Experiment Builder will allow users to select Stone Soup components to
build Trackers and experiments. The Builder will also provide a wizard to guide
users with minimal experience in tracking through the process of building an
experiment. The Run Manager section of the UI will interact with the Stone
Soup RunManager to run experiments and collect the output Tracks and metrics.
The Results Viewer will allow users to view and interact with the results of
the experiments. It will show plots of the Detections/Tracks generated by the
experiment, it will display metrics results, and it will contain a Playback Viewer
that will allow the user to step through the experiment by timestep. This UI will
be one of the major efforts of the Stone Soup development team moving forward.

Most of the tracking components currently implemented in Stone Soup deal
with radar-type sensor detection data. Another area in the tracking space that has
not yet been addressed is Wide-Angle Motion Imagery (WAMI). WAMI systems
contain multiple high-pixel cameras that perform surveillance on a large area (tens
or hundreds of square kilometres) and then stitch the images together in order to
track and analyse the behaviour of a large number of individuals, vehicles, etc.
WAMI systems provide much richer intelligence than single camera platforms
with a narrower field of view. Moving forward, we plan to add support for WAMI

178

7.4. Conclusion
Chapter 7. Modular Frameworks for Tracking and State Estimation

tracking into Stone Soup.

The Stone Soup architecture is currently oriented towards tracking algorithms
that represent the state of the system as a set of Tracks, where new Detections
are associated to a single Track. However, some tracking algorithms do not main-
tain distinct Tracks but instead represent the state of the system as a Gaussian
Mixture (e.g. the Gaussian Mixture Probabiliistic Hypothesis Density (GMPHD)
filter). Thus, the Stone Soup architecture is currently under review, so as to bet-
ter accommodate these types of algorithms, and it is expected that these changes
will be merged into the Stone Soup code base in the near future. Once these
modifications have been made, an implementation of the GMPHD filter will also
be made available.

The tracking academic community has developed many variants of the main
tracking algorithms. There are tweaks to algorithms to improve their accuracy
in certain situations, and there are upgrades to improve the running time of the
algorithms. As an example, one of the tracking algorithms currently implemented
in Stone Soup is the Joint Probabilistic Data Association Filter (JPDAF). As part
of its operation, JPDAF calculates the probabilities related to every permutation
of associations between Detections and Tracks. In a Target-dense environment,
an enumerative approach to this calculation will soon fall prey to combinatorial
explosion. Different researchers have developed approaches to performing these
calculations in less than exponential time, an example of which is the EHM
algorithm discusse in Section 4.3.3.3. Part of the future work on Stone Soup will
be to implement select variants of tracking algorithms to demonstrate these types
of gains in processing speed.

7.4 Conclusion

This chapter presented work done by the author on developing and contributing
towards the development of open-source frameworks for tracking and state esti-
mation. Section 7.3 discussed Stone Soup [12, 13, 14], an open-source Python
framework for tracking and state estimation, to which the author has been an
major contributor. Section 7.2 introduced an open-source object-oriented MAT-
LAB toolbox, developed by the author over the course of the PhD project and
comprised of efficiently coded implementations of target tracking algorithms, with
the aim of assisting and accelerating future research within the field.

179

CHAPTER 8

Summary, Conclusions and Future Work

The engineering challenge tackled by the PhD project reported in this thesis
was to study and experiment with models that are well placed to capitalise on
the abilities of Particle Filters and to develop solutions that make use of such
models to deliver a direct operational advantage in real applications within the
commercial maritime domain. This was accomplished by:

1. Presenting an in-depth background and review of existing algorithms and
methodologies that pertain to the problem of single-target tracking. (Sec-
tions 3.2-3.3)

2. Experimenting with non-linear, non-Gaussian models and demonstrating
that an operational advantage can be achieved with the use of such models
in a Particle Filtering context. (Section 3.4)

3. Presenting an in-depth background to multi-target tracking methods and
drawing relations between conventional approaches and the state-of-the-art.
(Chapter 4)

4. Presenting new applications of state-of-the-art algorithms, with particular
focus on applications relating to maritime radar and electro-optical sensors.
Demonstrating the good performance of such algorithms for these applica-
tions using a mixture of real and simulated data. (Sections 4.6, 6.3 and
6.4)

180

8.1. Summary and Conclusions
Chapter 8. Summary, Conclusions and Future Work

5. Actively engaging with the target tracking community to develop solutions
that improve the ability of future researchers to develop and evaluate the
performance of new target tracking solutions. (Chapter 7)

8.1 Summary and Conclusions

Chapter 2 presented the set of dynamic, measurement, detection and clutter
models that form the basis of the algorithms and applications considered in the
thesis. This was achieved by formulating the fundamental framework of state-
space model equations as considered in this thesis, as well as present readers to
the general notation that was utilised.

Chapter 3 delved into the specifics of the Bayesian Filtering and Data Associa-
tion problems in the context of Single Target Tracking, building on the framework
of state-space models presented in Chapter 2. An introduction was provided to
the fundamental concepts of the standard Bayesian Filtering framework, which
were then utilised to formulate the Kalman and Particle Filtering algorithms,
while discussing the various advantages and pitfalls of each approach. Further-
more, the Data Association problem was considered in the context of Single-
Target Tracking. This discussion was followed by a brief discussion on the Nearest
Neighbour and Probabilistic Data Association algorithms, while in the latter case
a clear distinction was made between the application of the algorithm in Kalman
and Particle Filtering context. Finally, performance evaluations were performed
that demonstrated the performance benefits of combining Particle Filters with
non-linear, non-Gaussian dynamic and measurement models, while in both cases
an emphasis was made on the amplification of the achieved enhancement when
the problem is extended to consider clutter and missed detections.

Chapter 4 extended the discussion from Chapter 3 to the case of Multi-Target
Tracking. An introduction to the Multi-Target Bayes Filter was presented, while
drawing relation to the Standard Bayes Filter. A structural overview of con-
ventional Multi-Target trackers was presented, with special focus to the utilised
Data Association and Track Management methods. Along the same discussion,
the author presented drew a relation between the Joint Probabilistic Data Asso-
ciation (JPDA) and Joint Integrated PDA algorithms, highlighting how the latter
can be performed using the same constructs. Furthermore, a formulation of the
Probability Hypothesis Density (PHD) filter as an approximation to the Multi-
target Bayes Filter was briefly discussed. Finally, the author demonstrated the
application of a state-of-the-art radar track initiation technique which utilises a
PHD filter to model the density of uninitiated targets and consecutively propose

181

8.1. Summary and Conclusions
Chapter 8. Summary, Conclusions and Future Work

tracks for initiation on the basis of target existence probabilities. Preliminary
simulation results were presented to showcase the performance benefits of the
PHD track initiator compared to other mainstay approaches using synthetic data
and a case study was performed on real data collected from a commercial radar,
whereby a more thorough qualitative analysis was presented on a pair of chal-
lenging scenarios, with the aim of demonstrating a real operational advantage.

Chapter 5 demonstrated the applicability of the Expectation Maximisation
to parameter estimation for LDSs with control inputs. A derivation of the com-
plete set of equations required to perform the estimation process was presented,
as well as a straightforward formulation of the relevant algorithmic steps. Also,
an intuitive way of generating initial parameter estimates was introduced, given
that certain assumption hold, and the performance implications of such initial
estimates was discussed, given that no parameters are constrained throughout
the learning process. The performance of the presented algorithm has been eval-
uated, based on a case study performed on a real segway system. The presented
results show that the proposed technique achieves acceptable results, where the
estimation performance can be greatly improved, if one (or more) of the param-
eters are known a priori. The content presented in this chapter was derived from
and incorporated text from a paper that has been prepared for submission to the
IEEE Signal Processing Letters, for which the author is the main author.

Chapter 6 summarised the work performed by the author in the domain of
Maritime Video Detection & Tracking. Section 6.2 initiated the discussions by
introducing the reader to the basic concepts and notation. Section 6.3 was then
focused on the engineering challenges relating to development of accurate real-
time ship detectors with the use of active Electro-Optical sensors (cameras). A
review of existing approaches was presented, followed by an introduction to the
state-of-the-art detectors that base their operation on Convolutional Neural Net-
works (CNNs). Under the same section, a robust CNN-based ship detector was
introduced, that utilises a pre-trained CNN model that is subsequently trained
on a custom dataset of images to provide an operational advantage. Continuing,
Section 6.4 demonstrated an effective method for estimating and accounting for
the errors induced by the camera motion in real-time. The use of an active (Pan-
Tilt-Zoom) camera, introduces errors due to the inherent ability of the camera
to exhibit motion. Thus, in addition to the multi-target tracking complexities
discussed in Chapter 4, further measures must be employed in order to ensure
that the positions of targets are estimated accurately, even after the camera has
changed its orientation. The presented method formulates the problem of frame-
to-frame variation as an affine transformation problem. First, a feature detector is
applied to extract a set of “good” features, along with their respective locations,
from the previous frame. Then, Optical Flow is employed to track and locate

182

8.2. Future work
Chapter 8. Summary, Conclusions and Future Work

the detected feature locations in the new frame, following which the two sets
of matching features are utilised in order to estimate the affine transformation
between the two frames. Finally, the estimated affinity coefficients are used to
correct the posterior state distributions of known tracks, such as to compensate
for the errors introduced by the movement of the camera. The performance of the
algorithm was compared against other well known feature matching techniques
that utilise ORB [178], SIFT [179] and SURF [180] features respectively.

Finally, Chapter 7 presented work done by the author on developing and
contributing towards the development of open-source frameworks for tracking
and state estimation. Section 7.3 discussed Stone Soup [12, 13, 14], an open-
source Python framework for tracking and state estimation, to which the author
has been an major contributor. The content presented in relation to Stone Soup
was derived from and incorporated text published in [14], licensed under the Open
Government License [186], to which the author has been a major contributor and
co-author. An overview of the various components and structures that make
up the Stone Soup architecture was provided, followed by an example use-case
scenario that demonstrated its functionality. Continuing, section 7.2 introduced
an open-source object-oriented MATLAB toolbox, developed by the author over
the course of the PhD project reported in this thesis, and comprised of efficiently
coded implementations of target tracking algorithms, with the aim of assisting
and accelerating future research within the field. An in-depth analysis of the
TrackingX architecture was performed, with particular focus on the interface that
enables the various components to be swiftly interchanged such as to allow for
effortless prototyping and evaluation. Finally, an example use-case was presented
to demonstrate the functionality of the developed framework.

8.2 Future work

• Track-Before-Detect solutions and the (Poisson) Multi-Bernoulli Mixture
Filter : Following more experimentation with the track initiation technique
of Section 4.6, it was found that in certain scenarios of dense clutter, tracks
would be initiated prematurely. This problem can be attributed to the
“short memory” effect of the PHD filter, as discussed in [190, 191]. An
avenue of research that took place in the late stages of the PhD was to utilise
state-of-the-art algorithms, such as the Poisson Multi-Bernoulli Mixture
Filter [192], or the Trajectory PHD filter [193], with the aim of delaying the
initiation of tracks that have a poor history of measurement associations.
Although a substantial part of the work was performed, time limitations
prevented this ambitious plan from fully materialising. Upon submission

183

8.2. Future work
Chapter 8. Summary, Conclusions and Future Work

of the thesis, the author will remain with the university, as a post-doctoral
researcher, and continue to work closely with the primary supervisor (Prof.
Simon Maskell) and Denbridge Marine.

• Automated Maritime Image Capturing and Surveillance System: The work
presented in Chapter 6 was inspired by an identified commercial requirement
for Denbridge Marine, for the development of an automated system that can
detect the periods at which a camera is unused and proceed to automate its
control, with the aim of extracting high quality snapshots of vessels, from
various viewing angles. The development of such a system will provide the
means for constructing a database of images, which can be further utilised
for future identity verification of vessels and even made available to the
relevant maritime bodies and authorities. Once again, a substantial amount
of work was performed on this cohort, however progress was halted during
the last year of the PhD due to technical difficulties with the equipment
for experimentation. Thus, although an experimental system has partly
been developed that is able to track and focus on targets of interest, its
performance has not reached the desired performance levels, so the author
decided not to include it in the main body of the thesis. Nevertheless, as
mentioned before, it is the author’s intention to continue to pursue this
goal, even after the submission of the thesis.

• A Track-Before-Detect Method for Qualitative Detection of Small Targets
using Radar and PTZ Cameras : Having the ability to accurately detect and
track vessels in images shall provide the benefit of adding an additional (and
otherwise unused) sensor, to the overall tracking system, whose detection
data can be fused with data coming from Radar and AIS, to provide an
improvement in terms of both detection and tracking performance. One
important application would be in the case of low SNR radar detections
(e.g. small vessels). In such cases, where ambiguity exists as to whether a
target is present in a certain region, the camera could be used for qualitative
verification. Additionally, once developed, such a system can be utilised as
a further means of generating positional ground truth data for vessels, in
cases where AIS data are not available. This is another potential avenue
for research and experimentation in the months to come.

• Paper publications : The author recognises that the amount of publications
that have stemmed from the PhD project at the time of writing the thesis
is not rich. As the thesis should suggest, this is not due to lack of devel-
opment or innovations, but it is a direct consequence of the broadness of
topics investigated by the author, which necessitated for a longer time to
be devoted on gaining a firm understanding of the broader concepts that

184

8.2. Future work
Chapter 8. Summary, Conclusions and Future Work

relate to each field. Nevertheless, there are plans for publications once the
thesis is submitted: a paper shall be prepared and published that outlines
the MATLAB toolbox (TrackingX) developed by the author; both of the
afore-mentioned avenues for future work (previous two bullet points) are
not far from materialisation and it is both the author’s, as well as the su-
pervisor’s (Prof. Simon Maskell), intention to continue to pursue these,
with the ultimate aim of generating publications.

185

References

[1] S. Blackman, R. Popoli, Design and Analysis of Modern Tracking Systems.
Norwood, MA 02062: Artech House, 1999.

[2] J. N. Briggs, Target Detection by Marine Radar. Radar, Sonar & Naviga-
tion, Institution of Engineering and Technology, 2004.

[3] L. P. Perera, P. Oliveira, and C. Guedes Soares, “Maritime traffic monitor-
ing based on vessel detection, tracking, state estimation, and trajectory pre-
diction,” IEEE Transactions on Intelligent Transportation Systems, vol. 13,
no. 3, pp. 1188–1200, 2012.

[4] P. Braca, R. Grasso, M. Vespe, S. Maresca, and J. Horstmann, “Application
of the jpda-ukf to hfsw radars for maritime situational awareness,” in 2012
15th International Conference on Information Fusion, pp. 2585–2592, 2012.

[5] K. Laws, J. Vesecky, and J. Paduan, “Monitoring coastal vessels for environ-
mental applications: Application of kalman filtering,” in 2011 IEEE/OES
10th Current, Waves and Turbulence Measurements (CWTM), pp. 39–46,
2011.

[6] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on
particle filters for online nonlinear/non-gaussian bayesian tracking.,” IEEE
Transactions on Signal Processing, vol. 50, no. 2, pp. 174 – 188, n.d.

[7] A. Doucet and A. Johansen, “A tutorial on particle filtering and smoothing:
Fifteen years later,” Handbook of Nonlinear Filtering, vol. 12, 01 2009.

186

References
References

[8] M. G. Rutten, N. J. Gordon, and S. Maskell, “Recursive track-before-detect
with target amplitude fluctuations,” IEE Proceedings - Radar, Sonar and
Navigation, vol. 152, no. 5, pp. 345–352, 2005.

[9] Y. Boers and J. N. Driessen, “Multitarget particle filter track before detect
application,” IEE Proceedings - Radar, Sonar and Navigation, vol. 151,
no. 6, pp. 351–357, 2004.

[10] F. Heymann, J. Hoth, P. Banys, and G. Siegert, “Validation of radar im-
age tracking algorithms with simulated data,” TransNav, the International
Journal on Marine Navigation and Safety of Sea Transportation, vol. 11,
pp. 511–518, 09 2017.

[11] P. A. Kountouriotis and S. Maskell, “Maneuvering target tracking using an
unbiased nearly constant heading model.,” 2012 15th International Confer-
ence on Information Fusion, p. 2249, 2012.

[12] P. Thomas, J. Barr, B. Balaji, and K. White, “An open source framework
for tracking and state estimation (’Stone Soup’),” Signal Processing, Sen-
sor/Information Fusion, and Target Recognition XXVI, vol. 10200, 2017.

[13] P. Thomas, J. Barr, S. Hiscocks, C. England, S. Maskell, B. Balaji, and
J. Williams, “Stone Soup: An Open-Source Framework for Tracking and
State Estimation,” International Society for Information Fusion (ISIF)
Perspectives, vol. 1, no. 2, pp. 1–38, 2019.

[14] D. Last, S. Hiscocks, J. Barr, D. Kirkland, M. Rashid, S. B. Li,
L. Vladimirov, and P. Thomas, “Stone soup: announcement of beta re-
lease of an open-source framework for tracking and state estimation,” April
2019.

[15] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge University Press,
2013.

[16] L. Stone, R. Streit, T. Corwin, and K. Bell, Bayesian Multiple Target Track-
ing, Second Edition. Radar/Remote Sensing, Artech House, 2013.

[17] A. Markov, “Extension of the Limit Theorems of Probability Theory to
a Sum of Variables Connected in a Chain,” The Notes of the Imperial
Academy of Sciences of St. Petersburg, Dec. 1907.

[18] C. Graham, Markov Chains: Analytic and Monte-Carlo Computations.
John Wiley & Sons Ltd., 2014.

187

References
References

[19] S. Maskell, Sequentially Structured Bayesian Solutions. University of Cam-
bridge, 2004.

[20] D. Lerro and Y. Bar-Shalom, “Tracking with debiased consistent converted
measurements versus ekf,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 29, pp. 1015–1022, July 1993.

[21] Mo Longbin, Song Xiaoquan, Zhou Yiyu, Sun Zhong Kang, and Y. Bar-
Shalom, “Unbiased converted measurements for tracking,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 34, pp. 1023–1027, July
1998.

[22] P. Horridge, “Tracking with inter-visibility variables,” IET Conference Pro-
ceedings, pp. 59–68(9), January 2008.

[23] P. Horridge and S. Maskell, “Using a probabilistic hypothesis density filter
to confirm tracks in a multi-target environment,” in Proc. 6th Workshop
on Sensor Data Fusion, Berlin, Germany, Citeseer, 2011.

[24] Y Bar-Shalom, X. Rong Li, T. Kirubarajan, Estimation with Applications
to Tracking and Navigation: Theory Algorithms and Software. Hoboken,
New Jersey: John Wiley & Sons Ltd., 2004.

[25] S. Maskell, “Statistical Methods for Target Tracking,” Wiley Encyclopedia
of Computer Science and Engineering, Mar. 2009.

[26] Y. Bar-Shalom and E. Tse, “Tracking in a cluttered environment with prob-
abilistic data association,” Automatica, vol. 11, no. 5, pp. 451 – 460, 1975.

[27] Y. Bar-Shalom and T. E. Fortmann, Tracking and data association. [elec-
tronic resource]. Mathematics in science and engineering: v. 179, Boston :
Academic Press, c1988., 1988.

[28] A. Marrs, S. Maskell, and Y. Bar-shalom, “Expected likelihood for tracking
in clutter with particle filters,” in in Proceedings of SPIE Signal and Data
Processing of Small Targets, pp. 230–239, 2002.

[29] A. J. Haug, Bayesian Estimation and Tracking: A Practical Guide. John
Wiley & Sons Ltd., 2012.

[30] J. F. C. Kingman, “On the chapman-kolmogorov equation,” Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, vol. 276, no. 1259, 1974.

188

References
References

[31] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Prob-
lems,” Transactions of the ASME Journal of Basic Engineering, vol. 82,
1960.

[32] R. E. Kalman, R. S. Bucy, “New Results in Linear Filtering and Prediction
Theory,” Transactions of the ASME Journal of Basic Engineering, vol. 83,
1961.

[33] G. L. Smith, S. F. Schmidt, L. A. McGee, “Application of statistical filter
theory to the optimal estimation of position and velocity on board a cir-
cumlunar vehicle,” National Aeronautics and Space Administration, Wash-
ington, D.C., 1962.

[34] J. B. Pearson and E. B. Stear, “Kalman filter applications in airborne
radar tracking,” IEEE Transactions on Aerospace and Electronic Systems,
vol. AES-10, pp. 319–329, May 1974.

[35] B. Uhrmeister, “Kalman filters for a missile with radar and/or imaging sen-
sor.,” Journal of Guidance, Control, and Dynamics, vol. 17, no. 6, pp. 1339–
1344, 1994.

[36] T., Mitchell, “1st-order Taylor-Series Approximations and Cost-Functions,”
Scandinavian Journal Of Economics, vol. 92, no. 3, pp. 513 – 524, 1990.

[37] A. H. Jazwinski, Stochastic processes and filtering theory [by] Andrew H.
Jazwinski. Academic Press New York, 1970.

[38] F. Gustafsson and G. Hendeby, “Some relations between extended and un-
scented kalman filters.,” IEEE Transactions on Signal Processing, p. 545,
2012.

[39] G. Klanar, L. Tesli, and I. krjanc, “Mobile-robot pose estimation and envi-
ronment mapping using an extended kalman filter,” International Journal
of Systems Science, vol. 45, no. 12, pp. 2603–2618, 2014.

[40] J. R. Hervas, M. Reyhanoglut, and T. Hui, “Nonlinear automatic landing
control of unmanned aerial vehicles on moving platforms via a 3d laser
radar.,” AIP Conference Proceedings, vol. 1637, no. 1, pp. 907 – 917, 2014.

[41] C. G. Prevost, A. Desbiens, and E. Gagnon, “Extended kalman filter for
state estimation and trajectory prediction of a moving object detected by an
unmanned aerial vehicle,” in 2007 American Control Conference, pp. 1805–
1810, July 2007.

189

References
References

[42] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach for
filtering nonlinear systems,” in American Control Conference, Proceedings
of the 1995, vol. 3, pp. 1628–1632 vol.3, Jun 1995.

[43] S. J. Julier and J. K. Uhlmann, “A new extension of the kalman filter to
nonlinear systems,” pp. 182–193, 1997.

[44] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, “A new method for the
nonlinear transformation of means and covariances in filters and estima-
tors,” IEEE Transactions on Automatic Control, vol. 45, no. 3, pp. 477–482,
2000.

[45] T. Lefebvre, H. Bruyninckx, and J. De Schuller, “Comment on ”a new
method for the nonlinear transformation of means and covariances in filters
and estimators” [with authors’ reply],” IEEE Transactions on Automatic
Control, vol. 47, pp. 1406–1409, Aug 2002.

[46] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estima-
tion.,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401 – 422, 2004.

[47] E. A. Wan and R. V. D. Merwe, “The unscented kalman filter for nonlinear
estimation,” in Adaptive Systems for Signal Processing, Communications,
and Control Symposium 2000. AS-SPCC. The IEEE 2000, pp. 153–158,
2000.

[48] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-gaussian bayesian state estimation,” IEE Proceedings F -
Radar and Signal Processing, vol. 140, pp. 107–113, April 1993.

[49] A. Doucet, S. Godsill, and C. Andrieu, “On sequential monte carlo sam-
pling methods for bayesian filtering.,” STATISTICS AND COMPUTING,
vol. 10, no. 3, pp. 197 – 208, n.d.

[50] T. Li, M. Bolic, and P. M. Djuric, “Resampling methods for particle filter-
ing: Classification, implementation, and strategies,” IEEE Signal Process-
ing Magazine, vol. 32, pp. 70–86, May 2015.

[51] J. D. Hol, T. B. Schon, and F. Gustafsson, “On resampling algorithms
for particle filters,” in 2006 IEEE Nonlinear Statistical Signal Processing
Workshop, pp. 79–82, Sept 2006.

[52] J. V. Candy, “Bootstrap particle filtering,” IEEE Signal Processing Maga-
zine, vol. 24, no. 4, pp. 73–85, 2007.

190

References
References

[53] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P. . Nordlund, “Particle filters for positioning, naviga-
tion, and tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 2,
pp. 425–437, 2002.

[54] S. Godsill, “Particle filtering: the first 25 years and beyond,” in ICASSP
2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 7760–7764, 2019.

[55] H. Griffiths, “Sea clutter: Scattering, the k distribution and radar per-
formance (ward, k.d., et al.; 2006) [book review],” IEEE Aerospace and
Electronic Systems Magazine, vol. 22, pp. 28–28, Jan 2007.

[56] X. Rong Li and Y. Bar-Shalom, “Tracking in clutter with nearest neighbor
filters: analysis and performance,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 32, pp. 995–1010, July 1996.

[57] I. J. Cox, “A review of statistical data association techniques for motion
correspondence,” International Journal of Computer Vision, vol. 10, no. 1,
pp. 53–66, 1993.

[58] Y. Bar-Shalom, F. Daum, and J. Huang, “The probabilistic data association
filter,” IEEE Control Systems, vol. 29, pp. 82–100, Dec 2009.

[59] D. J. Salmond, “Mixture reduction algorithms for target tracking in clut-
ter,” vol. 1305, 1990.

[60] D. F. Crouse, P. Willett, K. Pattipati, and L. Svensson, “A look at gaus-
sian mixture reduction algorithms,” in 14th International Conference on
Information Fusion, pp. 1–8, July 2011.

[61] J. Vermaak, S. J. Godsill, and P. Perez, “Monte carlo filtering for multi
target tracking and data association,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 41, pp. 309–332, Jan 2005.

[62] A. F. Tchango, V. Thomas, O. Buffet, A. Dutech, and F. Flacher, “Track-
ing multiple interacting targets using a joint probabilistic data association
filter,” in 17th International Conference on Information Fusion (FUSION),
pp. 1–8, July 2014.

[63] T. Fortmann, Y. bar shalom, and M. Scheffe, “Sonar tracking of multiple
targets using joint probabilistic data association. ieee journal of oceanic
engineering, oe-8, 173-184,” Oceanic Engineering, IEEE Journal of, vol. 8,
pp. 173 – 184, 08 1983.

191

References
References

[64] T. E. Fortmann, Y. Bar-Shalom, and M. Scheffe, “Multi-target tracking
using joint probabilistic data association,” in 1980 19th IEEE Conference
on Decision and Control including the Symposium on Adaptive Processes,
pp. 807–812, Dec 1980.

[65] M. Schuster, J. Reuter, and G. Wanielik, “Probabilistic data association for
tracking extended targets under clutter using random matrices,” in 2015
18th International Conference on Information Fusion (Fusion), pp. 961–
968, July 2015.

[66] F. Folster and H. Rohling, “Data association and tracking for automotive
radar networks,” IEEE Transactions on Intelligent Transportation Systems,
vol. 6, pp. 370–377, Dec 2005.

[67] B. N. Vo and W. K. Ma, “A closed-form solution for the probability hypoth-
esis density filter,” in 2005 7th International Conference on Information
Fusion, vol. 2, pp. 8 pp.–, July 2005.

[68] B. ngu Vo and S. Singh, “Sequential monte carlo implementation of the phd
filter for multi-target tracking,” in In Proceedings of the Sixth International
Conference on Information Fusion, pp. 792–799, 2003.

[69] R. P. S. Mahler, “Multitarget bayes filtering via first-order multitarget mo-
ments,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39,
pp. 1152–1178, Oct 2003.

[70] R. Mahler, “A Theoretical Foundation for the Stein-Winter Probability Hy-
pothesis Density (PhD) Multi-Target Tracking Approach,” in Proceedings
of the 2000 MSS National Symposium on Sensor and Data Fusion, 2002.

[71] R. P. S. Mahler, Statistical Multisource-Multitarget Information Fusion.
Norwood, MA, USA: Artech House, Inc., 2007.

[72] B. Ristic and B.-N. Vo, “Sensor control for multi-object state-space estima-
tion using random finite sets,” Automatica, vol. 46, no. 11, pp. 1812–1818,
2010.

[73] M. Vihola, “Rao-blackwellised particle filtering in random set multitarget
tracking,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43,
pp. 689–705, April 2007.

[74] V. D. Nguyen and T. Claussen, “Reducing computational complexity of
gating procedures using sorting algorithms,” in Proceedings of the 16th In-
ternational Conference on Information Fusion, pp. 1707–1713, July 2013.

192

References
References

[75] T. Cheng, X. R. Li, and Z. He, “Comparison of gating techniques for ma-
neuvering target tracking in clutter,” in 17th International Conference on
Information Fusion (FUSION), pp. 1–8, July 2014.

[76] X. Wang, S. Challa, and R. Evans, “Gating techniques for maneuvering
target tracking in clutter,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 38, pp. 1087–1097, Jul 2002.

[77] H. Roufarshbaf and J. K. Nelson, “A bayesian tree-search track initiation
algorithm for dim targets,” in 2013 47th Annual Conference on Information
Sciences and Systems (CISS), pp. 1–5, March 2013.

[78] D. Svensson, F. Govaers, M. Ulmke, and W. Koch, “Target existence prob-
ability in the distributed kalman filter,” in 2013 Workshop on Sensor Data
Fusion: Trends, Solutions, Applications (SDF), pp. 1–5, Oct 2013.

[79] D. Musicki, “Track score and target existence,” in 2006 9th International
Conference on Information Fusion, pp. 1–7, July 2006.

[80] P. Horridge and S. Maskell, “Searching for, initiating and tracking multiple
targets using existence probabilities,” in 2009 12th International Conference
on Information Fusion, pp. 611–617, July 2009.

[81] J. Vermaak, S. Maskell, and M. Briers, “A unifying framework for multi-
target tracking and existence,” in 2005 7th International Conference on
Information Fusion, vol. 1, pp. 9 pp.–, July 2005.

[82] P. Horridge and S. Maskell, “Using a probabilistic hypothesis density filter
to confirm tracks in a multi-target environment,” in 2011 Jahrestagung der
Gesellschaft fr Informatik, October 2011.

[83] J. L. Williams, “Marginal multi-bernoulli filters: Rfs derivation of mht,
jipda, and association-based member,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 51, pp. 1664–1687, July 2015.

[84] H. W. Kuhn, “The hungarian method for the assignment problem,” in 50
Years of Integer Programming, 2010.

[85] J. Munkres, “Algorithms for the assignment and transportation problems,”
Journal of the Society for Industrial and Applied Mathematics, vol. 5, no. 1,
pp. 32–38, 1957.

[86] D. P. Bertsekas and D. A. Castanon, “The auction algorithm for the trans-
portation problem,” Annals of Operations Research, vol. 20, no. 1, pp. 67–
96, 1989.

193

References
References

[87] D. B. Malkoff, “Evaluation of the jonker-volgenant-castanon (jvc) assign-
ment algorithm for track association,” Proc. SPIE, vol. 3068, pp. 228–239,
1997.

[88] R. J. Fitzgerald, “Development of practical pda logic for multitarget track-
ing by microprocessor,” in American Control Conference, 1986, pp. 889–
898, June 1986.

[89] Z. Hu, H. Leung, and M. Blanchette, “Evaluation of data association
techniques in a real multitarget radar tracking environment,” Proc. SPIE,
vol. 2561, pp. 509–518, 1995.

[90] S. Maskell, M. Briers, and R. Wright, “Fast mutual exclusion,” Proc. SPIE,
vol. 5428, pp. 526–536, 2004.

[91] P. R. Horridge and S. Maskell, “Real-time tracking of hundreds of targets
with efficient exact jpdaf implementation.,” in FUSION, pp. 1–8, IEEE,
2006.

[92] D. Musicki and R. Evans, “Integrated probabilistic data association in clut-
ter with finite resolution sensor,” in Proceedings of 32nd IEEE Conference
on Decision and Control, pp. 912–917 vol.1, Dec 1993.

[93] D. Musicki, R. Evans, and S. Stankovic, “Integrated probabilistic data asso-
ciation,” IEEE Transactions on Automatic Control, vol. 39, pp. 1237–1241,
June 1994.

[94] D. Musicki and R. Evans, “Joint integrated probabilistic data association:
Jipda,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40,
pp. 1093–1099, July 2004.

[95] D. Musicki and R. Evans, “Clutter map information for data association
and track initialization,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 40, pp. 387–398, April 2004.

[96] R. P. S. Mahler, “Random-set approach to data fusion,” Proc. SPIE,
vol. 2234, pp. 287–295, 1994.

[97] L. Lin, Y. Bar-Shalom, and T. Kirubarajan, “Track labeling and phd filter
for multitarget tracking,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 42, pp. 778–795, July 2006.

[98] B. N. Vo and W. K. Ma, “The gaussian mixture probability hypothesis
density filter,” IEEE Transactions on Signal Processing, vol. 54, pp. 4091–
4104, Nov 2006.

194

References
References

[99] B. N. Vo, S. Singh, and A. Doucet, “Sequential monte carlo methods
for multitarget filtering with random finite sets,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 41, pp. 1224–1245, Oct 2005.

[100] T. Zajic, R. B. Ravichandran, R. P. S. Mahler, R. K. Mehra, and M. J.
Noviskey, “Joint tracking and identification with robustness against un-
modeled targets,” Proc. SPIE, vol. 5096, pp. 279–290, 2003.

[101] M. Tobias and A. D. Lanterman, “Probability hypothesis density-based
multitarget tracking with bistatic range and doppler observations,” IEE
Proceedings - Radar, Sonar and Navigation, vol. 152, pp. 195–205, June
2005.

[102] D. Clark, B.-N. Vo, and J. Bell, “Gm-phd filter multitarget tracking in
sonar images,” Proc. SPIE, vol. 6235, pp. 62350R–62350R–8, 2006.

[103] D. E. Clark and J. Bell, “Bayesian multiple target tracking in forward scan
sonar images using the phd filter,” IEE Proceedings - Radar, Sonar and
Navigation, vol. 152, pp. 327–334, October 2005.

[104] N. T. Pham, W. Huang, and S. H. Ong, “Tracking multiple objects using
probability hypothesis density filter and color measurements,” in 2007 IEEE
International Conference on Multimedia and Expo, pp. 1511–1514, July
2007.

[105] E. Maggio, E. Piccardo, C. Regazzoni, and A. Cavallaro, “Particle phd
filtering for multi-target visual tracking,” in 2007 IEEE International Con-
ference on Acoustics, Speech and Signal Processing - ICASSP ’07, vol. 1,
pp. I–1101–I–1104, April 2007.

[106] D. Schuhmacher, B. T. Vo, and B. N. Vo, “A consistent metric for per-
formance evaluation of multi-object filters,” IEEE Transactions on Signal
Processing, vol. 56, pp. 3447–3457, Aug 2008.

[107] S. Roweis and Z. Ghahramani, “A unifying review of linear gaussian mod-
els,” Neural Computation, vol. 11, no. 2, pp. 305–345, 1999.

[108] Z. Ghahramani and G. E. Hinton, “Parameter Estimation for Linear Dy-
namical Systems,” tech. rep., University of Toronto, 1996.

[109] V. Digalakis, J. R. Rohlicek, and M. Ostendorf, “ML estimation of a
stochastic linear system with the EM algorithm and its application to speech
recognition,” IEEE Transactions on Speech and Audio Processing, vol. 1,
pp. 431–442, Oct 1993.

195

References
References

[110] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[111] E. Holmes, “An EM algorithm for maximum likelihood estimation given
corrupted observations,” tech. rep., University of Washington & National
Marine Fisheries Service, 2006.

[112] S. Gibson and B. Ninness, “Robust maximum-likelihood estimation of mul-
tivariable dynamic systems,” Automatica, vol. 41, no. 10, pp. 1667 – 1682,
2005.

[113] A. W. Blocker, “An EM algorithm for the estimation of a ne state-space
systems with or without known inputs,” 2008.

[114] T. B. Schön, “An explanation of the expectation maximization algorithm,
report no. lith-isy-r-2915,” tech. rep., 2009.

[115] H. E. Rauch, C. T. Striebel, and F. Tung, “Maximum Likelihood Esti-
mates of Linear Dynamic Systems,” Journal of the American Institute of
Aeronautics and Astronautics, vol. 3, pp. 1445–1450, Aug. 1965.

[116] C. F. J. Wu, “On the convergence properties of the em algorithm,” The
Annals of Statistics, vol. 11, no. 1, pp. 95–103, 1983.

[117] D. BLOISI and L. IOCCHI, “Argos a video surveillance system for boat
traffic monitoring in venice,” International Journal of Pattern Recognition
and Artificial Intelligence, vol. 23, no. 07, pp. 1477–1502, 2009.

[118] S. Fefilatyev, D. Goldgof, M. Shreve, and C. Lembke, “Detection and track-
ing of ships in open sea with rapidly moving buoy-mounted camera system,”
Ocean Engineering, vol. 54, pp. 1 – 12, 2012.

[119] W. Krger and Z. Orlov, “Robust layer-based boat detection and multi-
target-tracking in maritime environments,” in 2010 International Water-
Side Security Conference, pp. 1–7, Nov 2010.

[120] F. Fusier, V. Valentin, F. Brémond, M. Thonnat, M. Borg, D. Thirde,
and J. Ferryman, “Video understanding for complex activity recognition,”
Machine Vision and Applications, vol. 18, no. 3, pp. 167–188, 2007.

[121] K. M. Gupta, D. W. Aha, R. Hartley, and P. G. Moore, “Adaptive maritime
video surveillance,” Proc. SPIE, vol. 7346, pp. 734609–734609–12, 2009.

196

References
References

[122] A. Brkle and B. Essendorfer, “Maritime surveillance with integrated sys-
tems,” in 2010 International WaterSide Security Conference, pp. 1–8, Nov
2010.

[123] A. Samama, “Innovative video analytics for maritime surveillance,” in 2010
International WaterSide Security Conference, pp. 1–8, Nov 2010.

[124] H. Wei, H. Nguyen, P. Ramu, C. Raju, X. Liu, and J. Yadegar, “Auto-
mated intelligent video surveillance system for ships,” Proc. SPIE, vol. 7306,
pp. 73061N–73061N–12, 2009.

[125] B. J. Rhodes, N. A. Bomberger, M. Seibert, and A. M. Waxman, “Seecoast:
Automated port scene understanding facilitated by normalcy learning,” in
MILCOM 2006 - 2006 IEEE Military Communications conference, pp. 1–7,
Oct 2006.

[126] S. Fefilatyev and D. Goldgof, “Detection and tracking of marine vehicles in
video,” in ICPR 2008 19th International Conference on Pattern Recogni-
tion(ICPR), vol. 00, pp. 1–4, Dec. 2009.

[127] S. Fefilatyev, D. B. Goldgof, and C. Lembke, “Tracking ships from fast
moving camera through image registration,” 2010 20th International Con-
ference on Pattern Recognition, pp. 3500–3503, 2010.

[128] S. Fefilatyev, D. Goldgof, M. Shreve, and C. Lembke, “Detection and track-
ing of ships in open sea with rapidly moving buoy-mounted camera system,”
Ocean Engineering, vol. 54, pp. 1 – 12, 2012.

[129] R. Wijnhoven, K. van Rens, E. G. T. Jaspers, and P. H. N. de With,
“Online Learning for Ship Detection in Maritime Surveillance,” in Thirty-
first Symposium on Information Theory in the Benelux, pp. 73–80, May
2010.

[130] M. J. H. Loomans, P. H. N. de With, and R. G. J. Wijnhoven, “Robust
automatic ship tracking in harbours using active cameras,” 2013 IEEE
International Conference on Image Processing, pp. 4117–4121, 2013.

[131] D. Bloisi, L. Iocchi, M. Fiorini, and G. Graziano, “Camera based target
recognition for maritime awareness,” in 2012 15th International Conference
on Information Fusion, pp. 1982–1987, July 2012.

[132] D. Bloisi, L. Iocchi, M. Fiorini, and G. Graziano, “Automatic maritime
surveillance with visual target detection,” in Proceedings of the Inter-
national Defense and Homeland Security Simulation Workshop (DHSS),
(Rome, Italy), pp. 141–145, 2011.

197

References
References

[133] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference
on, vol. 1, pp. I–511–I–518 vol.1, 2001.

[134] P. Viola and M. J. Jones, “Robust real-time face detection,” International
Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[135] S. Zhang, C. Bauckhage, and A. B. Cremers, “Informed haar-like features
improve pedestrian detection,” in The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2014.

[136] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th Inter-
national Conference on Neural Information Processing Systems - Volume
1, NIPS’12, (USA), pp. 1097–1105, Curran Associates Inc., 2012.

[137] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 248–255, June 2009.

[138] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” International Journal of
Computer Vision, vol. 88, pp. 303–338, Jun 2010.

[139] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” in 2014
IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–
587, June 2014.

[140] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“Overfeat: Integrated recognition, localization and detection using convo-
lutional networks,” CoRR, vol. abs/1312.6229, 2013.

[141] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jun 2016.

[142] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 6517–6525, 2017.

[143] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” Lecture Notes in Computer
Science, p. 2137, 2016.

198

References
References

[144] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollr,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” Lecture
Notes in Computer Science, p. 740755, 2014.

[145] R. Girshick, “Fast r-cnn,” 2015 IEEE International Conference on Com-
puter Vision (ICCV), Dec 2015.

[146] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, p. 11371149, Jun 2017.

[147] Z. Zhao, P. Zheng, S. Xu, and X. Wu, “Object detection with deep learning:
A review,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 30, no. 11, pp. 3212–3232, 2019.

[148] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and et al., “Speed/accuracy trade-
offs for modern convolutional object detectors,” 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jul 2017.

[149] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014.

[150] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 1–9, 2015.

[151] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2818–2826, 2016.

[152] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-first AAAI conference on artificial intelligence, 2017.

[153] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, June 2016.

[154] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?,” CoRR, vol. abs/1411.1792, 2014.

199

References
References

[155] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija, A. Kuznetsova,
H. Rom, J. Uijlings, S. Popov, S. Kamali, M. Malloci, J. Pont-Tuset,
A. Veit, S. Belongie, V. Gomes, A. Gupta, C. Sun, G. Chechik, D. Cai,
Z. Feng, D. Narayanan, and K. Murphy, “Openimages: A public dataset
for large-scale multi-label and multi-class image classification.,” Dataset
available from https://storage.googleapis.com/openimages/web/index.html,
2017.

[156] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on het-
erogeneous systems,” 2015. Software available from tensorflow.org.

[157] TensorFlow, “Tensorflow detection model zoo.” https://github.

com/tensorflow/models/blob/master/research/object_detection/

g3doc/detection_model_zoo.md, Jul 2019. Accessed: 2019-08-27.

[158] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-
based fully convolutional networks,” in Proceedings of the 30th International
Conference on Neural Information Processing Systems, NIPS’16, (USA),
pp. 379–387, Curran Associates Inc., 2016.

[159] E. Zhang and Y. Zhang, Average Precision, pp. 192–193. Boston, MA:
Springer US, 2009.

[160] L. LIU and M. T. ÖZSU, eds., Mean Average Precision, pp. 1703–1703.
Boston, MA: Springer US, 2009.

[161] Z. Kim, “Real time object tracking based on dynamic feature grouping with
background subtraction,” in 2008 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1–8, IEEE, 2008.

[162] A. A. Argyros, K. E. Bekris, and S. C. Orphanoudakis, “Robot homing
based on corner tracking in a sequence of panoramic images,” in Proceedings
of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. CVPR 2001, vol. 2, pp. II–II, IEEE, 2001.

[163] R. K. C. Billones, A. A. Bandala, E. Sybingco, L. A. G. Lim, A. D. Fil-
lone, and E. P. Dadios, “Vehicle detection and tracking using corner feature

200

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

References
References

points and artificial neural networks for a vision-based contactless appre-
hension system,” in 2017 Computing Conference, pp. 688–691, July 2017.

[164] C. Harris and M. Stephens, “A combined corner and edge detector,” in
Procedings of the Alvey Vision Conference 1988, Alvey Vision Club, 1988.

[165] Jianbo Shi and Tomasi, “Good features to track,” in 1994 Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–
600, June 1994.

[166] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial In-
telligence, vol. 17, no. 1, pp. 185 – 203, 1981.

[167] J. Heikkonen, “Recovering 3-d motion parameters from optical flow field
using randomized hough transform,” Pattern Recognition Letters, vol. 16,
no. 9, pp. 971 – 978, 1995.

[168] H. C. Longuet-Higgins and K. Prazdny, “The interpretation of a moving
retinal image.,” Proceedings of the Royal Society of London. Series B, Bi-
ological sciences, vol. 208 1173, pp. 385–97, 1980.

[169] Y. Mae, Y. Shirai, J. Miura, and Y. Kuno, “Object tracking in cluttered
background based on optical flow and edges,” in Proceedings of 13th Inter-
national Conference on Pattern Recognition, vol. 1, pp. 196–200 vol.1, Aug
1996.

[170] M. Lucena, J. M. Fuertes, and N. P. de la Blanca, “Using optical flow for
tracking,” in Progress in Pattern Recognition, Speech and Image Analysis
(A. Sanfeliu and J. Ruiz-Shulcloper, eds.), (Berlin, Heidelberg), pp. 87–94,
Springer Berlin Heidelberg, 2003.

[171] A. K. Chauhan and P. Krishan, “Moving object tracking using gaussian
mixture model and optical flow,” International Journal of Advanced Re-
search in Computer Science and Software Engineering, vol. 3, no. 4, 2013.

[172] D. D. Doyle, A. L. Jennings, and J. T. Black, “Optical flow background
estimation for real-time pan/tilt camera object tracking,” Measurement,
vol. 48, pp. 195 – 207, 2014.

[173] R. S. Rakibe and B. D. Patil, “Background subtraction algorithm based
human motion detection,” International Journal of scientific and research
publications, vol. 3, no. 5, pp. 2250–3153, 2013.

201

References
References

[174] S. Liu, L. Yuan, P. Tan, and J. Sun, “Steadyflow: Spatially smooth optical
flow for video stabilization,” in 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4209–4216, June 2014.

[175] A. Lim, B. Ramesh, Y. Yang, C. Xiang, Z. Gao, and F. Lin, “Real-time
optical flow-based video stabilization for unmanned aerial vehicles,” Journal
of Real-Time Image Processing, Jun 2017.

[176] B. D. Lucas and T. Kanade, “An iterative image registration technique with
an application to stereo vision,” in Proceedings of the 7th International Joint
Conference on Artificial Intelligence - Volume 2, IJCAI’81, (San Francisco,
CA, USA), pp. 674–679, Morgan Kaufmann Publishers Inc., 1981.

[177] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated car-
tography,” Commun. ACM, vol. 24, pp. 381–395, June 1981.

[178] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient
alternative to sift or surf,” pp. 2564–2571, 11 2011.

[179] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, pp. 91–110, Nov 2004.

[180] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust fea-
tures,” vol. 3951, pp. 404–417, 07 2006.

[181] D. F. Crouse, “The tracker component library: free routines for rapid proto-
typing,” IEEE Aerospace and Electronic Systems Magazine, vol. 32, pp. 18–
27, May 2017.

[182] MATLAB, “Sensor fusion and tracking toolbox.” https://uk.mathworks.

com/help/pdf_doc/fusion/fusion_ug.pdf. Accessed: 2019-08-31.

[183] B. Risti, B.-N. Vo, B.-N. Vo, and A. Farina, “A tutorial on bernoulli filters:
Theory, implementation and applications,” IEEE Transactions on Signal
Processing, vol. 61, 07 2013.

[184] A. S. Rahmathullah, . F. Garca-Fernndez, and L. Svensson, “Generalized
optimal sub-pattern assignment metric,” in 2017 20th International Con-
ference on Information Fusion (Fusion), pp. 1–8, July 2017.

[185] Á. F. Garćıa-Fernández and L. Svensson, “Spooky effect in optimal ospa
estimation and how gospa solves it,” arXiv preprint arXiv:1908.08815, 2019.

[186] “Open government licence.”

202

https://uk.mathworks.com/help/pdf_doc/fusion/fusion_ug.pdf
https://uk.mathworks.com/help/pdf_doc/fusion/fusion_ug.pdf

References
References

[187] H. D. S. J. Karoly, J. W. Wilson and J. W. Maluda, “Single Integrated
Air Picture (SIAP) Attributes Version 2.0,” Tech. Rep. Technical report
ref. SIAP SE TF-TR-2003-029, Joint Single Integrated Air Picture (SIAP)
System Engineering Task Force – Arlington, VA 22203, August 2003.

[188] Project Jupyter, “Jupyter.” https://jupyter.org/. Accessed: 2019-03-
14.

[189] Dstl, “Stone soup jupyter notebooks repository.” https://github.com/

dstl/Stone-Soup-Notebooks. Accessed: 2019-09-02.

[190] G. Davidson, Random finite sets for multitarget tracking with applications.
PhD thesis, University of Oxford, 2011.

[191] O. Erdinc, P. Willett, and Y. Bar-Shalom, “Probability hypothesis den-
sity filter for multitarget multisensor tracking,” in 2005 7th International
Conference on Information Fusion, vol. 1, pp. 8 pp.–, July 2005.

[192] Á. F. Garćıa-Fernández, J. L. Williams, K. Granstrm, and L. Svensson,
“Poisson multi-bernoulli mixture filter: Direct derivation and implemen-
tation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54,
pp. 1883–1901, Aug 2018.

[193] Á. F. Garćıa-Fernández and L. Svensson, “Trajectory probability hypoth-
esis density filter,” 2018 21st International Conference on Information Fu-
sion (FUSION), pp. 1430–1437, 2018.

203

https://jupyter.org/
https://github.com/dstl/Stone-Soup-Notebooks
https://github.com/dstl/Stone-Soup-Notebooks

	Abstract
	Acknowledgments
	Contents
	Introduction
	Motivation & Scope
	Organisation of the Thesis
	Original Contributions

	State-space models
	Introduction
	Dynamic models
	Random Walk (RW)
	Constant Velocity (CV)
	Integrated Ornstein-Uhlenbeck (IOU)
	Constant Heading (CH)

	Measurement models
	Standard Linear-Gaussian (LG)
	Gaussian Azimuth-Range (GAR)

	Detection models
	Constant Detection Rate (CDR)
	State Dependent Detection Rate (SDDR)

	Clutter models
	Poisson Rate with Uniform Position (PRUP)

	Conclusion

	Non-Linear, Non-Gaussian Single-Target Tracking
	Introduction
	Bayesian Filtering
	The Standard Bayes Filter
	Kalman Filters
	Linear Kalman Filter
	Extended Kalman Filter
	Unscented Kalman Filter

	Particle Filter

	Data Association
	Optimal Solution
	Nearest Neighbour
	Probabilistic Data Association
	PDA in Kalman Filters
	Extension of PDA to Particle Filtering

	Performance analysis
	Non-linear dynamic models
	Single Target, no clutter
	Single Target, with clutter

	Nonlinear measurement models
	Single Target, no clutter
	Single Target, with clutter

	Conclusion

	Non-Linear, Non-Gaussian Multi-Target Tracking
	Introduction
	The Multi-Target Bayes Filter
	Conventional Multi-Target Tracking
	Measurement Gating
	Track Management
	Track Initiation
	Track Confirmation and Deletion

	Data association
	Problem Formulation
	Global Nearest Neighbour
	Joint Probabilistic Data Association

	Joint Integrated Probabilistic Data Association
	Relation between JPDA and JIPDA
	Prior Association Probabilities
	Marginalising the Prior Association Probabilities
	Interpreting the Posterior Association Probabilities
	Computing the Existence Probabilities
	Updating the Track Posteriors

	The Probability Hypothesis Density Filter
	Track Management using Random Finite Sets and Existence Probabilities
	Results

	Specifics of Applications to Real Data
	Dataset
	Algorithms
	Scenarios
	Models
	Results
	Scenario 1 - Tracking through obscurations
	Scenario 2 - Tracking through dense clutter

	Conclusion

	Parameter Estimation in Dynamical Markov Models
	Introduction
	Expectation Maximization
	Maximum Likelihood Estimation
	E Step
	M Step
	Initial Parameter Settings
	Checking for convergence
	Uniqueness of parameter estimates

	Experimental Results
	Case Study: Segway System
	Unconstrained Parameters
	Constrained Measurement Matrix H

	Conclusion

	Maritime Video Detection & Tracking
	Introduction
	Problem Formulation
	A Robust CNN-based Ship Detector
	Object Detection using CNNs
	Transfer Learning
	Experimental methods
	Dataset
	TensorFlow
	Baseline Model Evaluation
	Model Re-training

	Results
	Baseline Models
	Re-Trained Models

	Conclusions

	Real-Time Camera Motion Error Correction using Optical Flow
	Feature Detection
	Feature Matching using Optical Flow
	Affine Transformation
	Correcting the Track Estimates
	Results

	Conclusion

	Modular Frameworks for Tracking and State Estimation
	Introduction
	TrackingX
	Class Architecture
	Data Types
	Distributions and States
	Measurements
	Tracks

	State-Space Models
	Model Interfaces
	Model Types

	Filters
	Data Associators
	Track Managers
	Metric Generators
	Simulators
	Simulation Example

	Stone Soup
	Framework architecture
	Components
	Data
	Tracking Algorithms
	Metrics
	Data Simulators
	Sensor Models
	Stone Soup Component Implementations

	Using Stone Soup
	Run Manager
	Jupyter Notebooks
	Example Use Case

	Future Work

	Conclusion

	Summary, Conclusions and Future Work
	Summary and Conclusions
	Future work

	References

