Magnetic Field Measurement and Analysis for the Muon g-2 Experiment at Fermilab



Albahri, T, Anastasi, A, Badgley, K, Baeßler, S, Bailey, I, Baranov, VA, Barlas-Yucel, E, Barrett, T, Bedeschi, F, Berz, M
et al (show 163 more authors) (2021) Magnetic Field Measurement and Analysis for the Muon g-2 Experiment at Fermilab. Phys. Rev. A, 103. 042208 - 042208.

[img] Text
2104.03201v1.pdf - OA Published Version

Download (11MB) | Preview

Abstract

The Fermi National Accelerator Laboratory has measured the anomalous precession frequency $a^{}_\mu = (g^{}_\mu-2)/2$ of the muon to a combined precision of 0.46 parts per million with data collected during its first physics run in 2018. This paper documents the measurement of the magnetic field in the muon storage ring. The magnetic field is monitored by nuclear magnetic resonance systems and calibrated in terms of the equivalent proton spin precession frequency in a spherical water sample at 34.7$^\circ$C. The measured field is weighted by the muon distribution resulting in $\tilde{\omega}'^{}_p$, the denominator in the ratio $\omega^{}_a$/$\tilde{\omega}'^{}_p$ that together with known fundamental constants yields $a^{}_\mu$. The reported uncertainty on $\tilde{\omega}'^{}_p$ for the Run-1 data set is 114 ppb consisting of uncertainty contributions from frequency extraction, calibration, mapping, tracking, and averaging of 56 ppb, and contributions from fast transient fields of 99 ppb.

Item Type: Article
Uncontrolled Keywords: hep-ex, hep-ex, nucl-ex
Divisions: Faculty of Science and Engineering > School of Physical Sciences
Depositing User: Symplectic Admin
Date Deposited: 13 Apr 2021 07:21
Last Modified: 20 Oct 2021 20:10
DOI: 10.1103/PhysRevA.103.042208
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3119138