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ABSTRACT 

Acute pancreatitis (AP) is a severe and potentially fatal disease caused predominantly by alcohol 

excess and gallstones, which lacks a specific therapy. The role of Receptor-Interacting Protein 

Kinase 1 (RIPK1), a key component of programmed necrosis (Necroptosis), is unclear in AP. 

We assessed the effects of RIPK1 inhibitor Necrostatin-1 (Nec-1) and RIPK1 modification 

(RIPK1K45A: kinase dead) in bile acid (TLCS-AP), alcoholic (FAEE-AP) and caerulein 

hyperstimulation (CER-AP) mouse models. Involvement of collateral Nec-1 target indoleamine 

2,3-dioxygenase (IDO) was probed with the inhibitor Epacadostat (EPA). Effects of Nec-1 and 

RIPK1K45A were also compared on pancreatic acinar cell (PAC) fate in vitro and underlying 

mechanisms explored. Nec-1 markedly ameliorated histological and biochemical changes in all 

models. However, these were only partially reduced or unchanged in RIPK1K45A mice. Inhibition 

of IDO with EPA was protective in TLCS-AP. Both Nec-1 and RIPK1K45A modification inhibited 

TLCS- and FAEE-induced PAC necrosis in vitro. Nec-1 did not affect TLCS-induced Ca2+ entry 

in PACs, however, it inhibited an associated ROS elevation. The results demonstrate protective 

actions of Nec-1 in multiple models. However, RIPK1-dependent necroptosis only partially 

contributed to beneficial effects, and actions on targets such as IDO are likely to be important. 

Keywords: Acute Pancreatitis; Receptor-Interacting Protein Kinase 1; RIPK1; Necrostatin-1; 

Necroptosis; Cell death; Indoleamine 2,3-dioxygenase; Epacadostat 
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INTRODUCTION 

Acute pancreatitis (AP) is a painful, debilitating inflammatory disease with a 

significant mortality. The incidence of AP has increased in recent decades and places a 

considerable burden on health-care provision [1]. Core to the development of AP is damage to 

exocrine tissue, with extensive parenchymal necrosis that determines clinical outcome; in 

severe cases a systemic inflammatory response syndrome (SIRS), multiple organ failure and 

patient death may ensue. However, our understanding of cell death mechanisms in AP is 

incomplete and currently there is no specific therapy for the disease; identification and 

development of novel approaches is therefore paramount [2].  

Studies have demonstrated that a variety of AP precipitants including bile acids, non-

oxidative ethanol metabolites (fatty acid ethyl esters: FAEEs) and cholecystokinin 

hyperstimulation, raise cytosolic Ca2+ in the pancreatic acinar cell (PAC) in a sustained manner, 

causing opening of the mitochondrial permeability transition pore (MPTP), mitochondrial 

depolarization, rundown of ATP production and necrosis [3-5]. Necrosis is considered a largely 

uncontrolled event that results in lysis of the cell membrane, allowing escape of cellular 

contents into the interstitial compartment. Necroptosis, a programmed form of necrosis, has the 

same endpoint as necrosis but is differentiated by integral activation of receptor interacting 

protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL). It 

constitutes a regulated cell death programme in response to activation of death receptors, Toll- 

and NOD-like receptors, T cell receptors, genotoxic stress and viruses [6]. RIPK1 involvement 

has been shown in necroptosis-associated disease, including myocardial infarction, stroke, 

neurodegeneration and ischaemia-reperfusion injury [7-9] 

However, relatively few studies have addressed the involvement of necroptosis in AP; 

so far these have produced mixed results, with many relying on a single experimental model. 

Genetic knockout studies have shown that RIPK3-/- mice were protected from caerulein (CER)-

AP and taurolithocholic acid sulphate (TLCS)-AP [10-12], while MLKL-/- ameliorated CER-AP 

[13]. In contrast, RIPK1KD/KD D138N and RIPK1 P-loop deficient RIP1Δ/Δ mice were not protected 

from CER-AP [12,14]. Similarly, there have been differing outcomes in studies assessing 

pharmacological inhibition of necroptosis. For example, the RIPK1 inhibitor necrostatin-1 

(Nec-1) was unprotective in CER-AP, and moreover increased pancreatic damage when 

combined with the pan-caspase inhibitor zVAD [15]. Conversely, protective effects of Nec-1 
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have been reported in CER-AP, TLCS-AP [10] and L-arginine-induced pancreatitis [16], 

although to-date no studies have examined the effects of Nec-1 and the role of necroptosis in 

alcoholic AP. Interestingly, although Nec-1 has been widely used as an inhibitor of RIPK1, it 

possesses other targets including indoleamine 2,3-dioxygenase (IDO), an enzyme involved in 

tryptophan metabolism. Recent seminal work by the Mole group has demonstrated the 

importance of the kynurenine pathway, downstream of IDO, in the development of AP both in 

patient and animal studies and is considered a promising therapeutic target [17,18]. 

Here we have evaluated the involvement of RIPK1 in AP using a RIPK1 kinase-dead 

(RIPK1K45A) mouse and pharmacological inhibition in three in vivo models reflecting the 

principal aetiologies, including our recent alcoholic AP model (FAEE-AP)[4]. These were 

combined with respective in vitro cell death assays. The results demonstrate that while Nec-1 

treatment markedly ameliorated AP in all models, RIPK1 kinase modification caused only 

partial or no protection, indicating only a minor role of RIPK1-mediated necroptosis. 

Pharmacological inhibition of IDO was protective in AP and actions of Nec-1 on collateral 

targets are likely to be important for its beneficial effects. 

 

MATERIALS AND METHODS  

Animals  

For in vivo and in vitro experiments, 8-10 weeks old male C57BL/6J mice (Charles 

River Ltd. Margate, Kent, UK) and male RIPK1K45Amice were used. RIPK1K45A mice were 

generously provided by GlaxoSmithKline [19]. Genotyping of mice was performed using 

standard PCR with a primer set (69277flp-JEM2, 5'-

CTCTGATTGCTTTATAGGACACAGCACTAAGC-3'; 69278flp-JEM2, 5'-

GTCTTCAGTGATGTCTTCCTCGTATATTTCTCAAG-3'; 473bp for the Wild-type allele, 

575bp for the RIPK1K45A allele). 

Experimental acute pancreatitis 

TLCS-AP was induced by pancreatic ductal infusion of 3 mM TLCS at 5 l/min for 

10 minutes via an infusion pump as described previously [20]; FAEE-AP was induced by 2 
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hourly intraperitoneal injections of 1.35 g/kg ethanol and 150 mg/kg palmitoleic acid 

(POA)[4],and mice sacrificed 24 hours later. CER-AP was induced by 7 hourly intraperitoneal 

cerulein injections at a dose of 50 mg/kg [3] and mice sacrificed 12 hours later. In all models, 

analgesia was administered using 0.1 mg/kg buprenorphine hydrochloride (Temgesic, Reckitt 

and Coleman, Hull, England). All experimental protocols were approved by the local ethics 

committee (University of Liverpool). Nec-1 (Sigma-Aldrich, N9073) was dissolved in 10% 

DMSO + 90% PEG 400 and administered at a dose of 56 mg/kg consistently for 12/24 hours 

via subcutaneous osmotic mini-pump (Charles River UK, Ltd, ALZET osmotic mini-pumps 

(2001D)). Epacadostat (EPA) (Selleck Chemicals, INCB24360) was dissolved in 10% DMSO 

+ 90% PEG 400 and delivered through osmotic mini pump at the dose of 50 mg/kg [21]. 

Osmotic mini-pumps for treatments (Nec-1, EPA) were inserted into the mice 0.5 h after TLCS-

AP induction, after the 2nd injection of POA in FAEE-AP and after the 3rd injection of caerulein 

in CER-AP [22].  

Histological analysis and biochemical measurements of acute pancreatitis 

Pancreatic tissue was collected and fixed in 10% formalin, embedded in paraffin and 

stained with H&E. Scoring was performed on 10 random fields by 2 blinded investigators 

independently grading edema, inflammatory cell infiltration, and acinar necrosis (scale; 0 - 3) 

as described previously [3] and data presented as the mean ± SEM (≥ 5 mice/group). Pancreatic 

trypsin activity was determined with an established protocol [22] using trypsin peptide Boc-

Gln-Ala-Arg-MCA substrate (Peptides International, Louisville, KY) with excitation at 380 nm 

and emission at 440 nm. Serum amylase was determined using a Roche Analyzer; serum 

interleukin (IL)-6 was determined by enzyme-linked immunosorbent assay (R&D Systems); 

myeloperoxidase (MPO) activity was measured according to an established protocol [22]using 

a plate reader, calculated as the difference between 0 and 3 minutes at an absorbance 

wavelength of 655 nm. Histological and biochemical responses were normalized to control 

changes after AP induction in C57BL/6J mice for each model, to compare the effects of Nec-1 

treatment or RIPK1K45Amodification across AP models. 

Cell preparation and solutions 

Freshly isolated murine PACs were obtained from the pancreas of 8-10 week-old 

C57BL/6J or RIPK1K45Amice using a standard collagenase digestion procedure [4]. The 
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extracellular solution contained (mM): 140 NaCl, 4.7 KCl, 1.13 MgCl2, 1 CaCl2, 10 D-glucose, 

and 10 HEPES. The final pH of the solution was adjusted to pH 7.35. All experiments on 

isolated PACs were performed no more than 4 h after isolation unless otherwise stated. 

Immunofluorescence  

Freshly isolated murine PACs were added to poly-L-lysine coated 35mm glass bottom 

dishes and left to adhere for 30 mins at room temperature (RT). Cells were then fixed in 4% 

paraformaldehyde for 20 mins, permeabilized with 0.2% Triton X-100 for 5 mins, blocked with 

10% goat serum and 1% bovine serum albumen in PBS for 1 hr at RT (BSA; Sigma-Aldrich, 

A3294), then incubated with primary antibodies against RIPK1 (Mouse Anti-RIP from BD 

Transduction Lab: BD610458, 1:200), RIPK3 (Rabbit Anti-RIP3 from Abcam: ab152130; 

1:100) 1 hr at RT then incubated with corresponding secondary antibody(s), Goat anti-mouse 

(H + L) lgG (Alexa Fluor 488, A-11001 Invitrogen,1:1000) and Goat anti-rabbit (H + L) lgG 

(Alexa Fluor 647, A-21244 Invitrogen, 1:500), for 30 mins at RT in the dark. Cells were 

preserved in Azide PBS prior to imaging.  

Western blotting 

Isolated PACs were unstimulated or treated with TLCS for 0 h, 2 h and 4 h at 37°C. 

Protein was extracted by radioimmunoprecipitation assay (RIPA) buffer (Sigma-Aldrich, 

R0278) containing protease inhibitor cocktail (Thermo Scientific, 87785), phosphatase cocktail 

2 (Sigma-Aldrich, P5726) and phosphatase cocktail 3 (Sigma-Aldrich, P0044) rotated for 30 

min and centrifuged at 16,000 g for 15 min at 4 °C. Protein concentration was determined by 

the BCA assay (ThermoFisher Scientific). Proteins were separated by SDS-PAGE using a 

NuPAGETM 4%-12% Bis-Tris Protein Gels (ThermoFisher scientific) and transferred onto 

nitrocellulose membranes. Non-specific binding was blocked by 3% (w/v) non-fat milk in PBS 

for 1 hour. Blots were then incubated at 4 °C overnight with primary antibody to cytochrome 

C (BD PharmingenTM: 556433, 1:500), Calnexin (Sigma, C4731, 1:1000), RIPK1 (Mouse Anti-

RIP from BD Transduction Lab: BD610458, 1:200), RIPK3 (Rabbit Anti-RIP3 from Abcam: 

ab152130; 1:200) in 3% (w/v) non-fat milk in PBS. After the first antibody, the membranes 

were washed once with 0.05%-tween in PBS and 3 times with PBS (5 min each). Then they 

were incubated for 1 h with corresponding peroxidase-labelled secondary antibody in 3% (w/v) 

non-fat milk in PBS. Blots were developed for visualization using an enhanced 
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chemiluminescence (ECL) detection kit (Thermo Scientific) through a Bio-Rad ChemiDocTM 

XRS+ System. The pixel intensities of the bands were calculated using ImageLab software. 

Measurement of necrosis and apoptosis 

Confocal imaging was performed using a Zeiss LSM710 system. Freshly isolated 

murine PACs were stimulated with either TLCS (500 M) or POAEE (100 M) at room 

temperature for 30 min with or without Nec-1 (30 µM). The total cell number was detected by 

Hoechst 33342 (10 µg/mL; excitation 364 nm, emission 405-450 nm; Molecular Probes, 

H3570) and necrosis measured by Propidium Iodide (PI) (10 g/ml; excitation 488 nm, 

emission 630-693 nm; Sigma, P4170). The total number of cells showing PI uptake in each 

group was counted from at least 12 random fields and presented as a percentage of the total cell 

number. Freshly isolated murine PACs were incubated with CellEvent® Caspase 3/7 green 

(Life Technologies, C10423) with or without Nec-1 (30 µM) for 30 mins at 37°C and then 

stimulated with TLCS (500 M) or POAEE (100 M) to induce apoptosis over an 8 h period 

(excitation filter 540 nM; emission filter 590 nM) in POLARstar Omega Plate Reader (BMG 

Labtech, Germany). 

Measurement of cytosolic calcium and reactive oxygen species  

Fluorescence imaging was performed using an Olympus IX71 based inverted imaging 

system (Till Photonics GmbH, Germany). Freshly isolated murine PACs were loaded with 

Fura2-AM (3 M; excitation at 340 and 380 nm, emission recorded with 510 nm filter) to 

measure cytosolic calcium ([Ca2+]c). The cells were attached to cover slips coated with poly-L-

lysine (0.01%) and placed in an open chamber on the microscope stage and perfused with 

extracellular solution (see above) to obtain a stable baseline (180-200s). For ROS 

measurements, PACs were loaded with 5 μM chloromethyl-2,7-dichlorodihydrofluorescein 

diacetate (CM-H2DCFDA) with and without Nec-1 for 30 mins at 37°C. Cells were placed into 

a 96 well plate-reader and ROS production measured in response to stimulation with AP toxins 

at 37°C for 5 hours (excitation 488 nm and emission 520 nm; POLARstar Omega Plate Reader; 

BMG Labtech, Germany).  

Statistical analysis  

In order to compare results from the three in vivo AP models together, responses after 
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AP induction in WT were averaged and normalization (to 100) was performed for each model: 

(intervention group/AP induction in WT）x 100. Prism 5.0 software (GraphPad Software Inc., 

La Jolla, CA) was used to perform statistical analyses, using ANOVA with Tukey post-hoc test 

or a Student T-test as appropriate. Results are presented as mean ± SEM obtained from three 

or more independent experiments. P values of <0.05 were considered to indicate significant 

differences. 

 

RESULTS  

Effects of genetic and pharmacological RIPK1 inhibition in FAEE-AP, TLCS-AP and 

CER-AP 

The genotyping of RIPK1K45A homozygous mice revealed a distinct band at 575 bp 

denoting RIPK (Supplementary Figure 1a). In PACs from RIPK1K45A and WT mice there was 

a similar expression and distribution of RIPK1 and RIPK3, assessed by Western blotting and 

confocal immunofluorescence (Supplementary Figures 1b and 1c). 

Induction of AP in 3 distinct models (TLCS-AP, FAEE-AP and CER-AP) caused 

significant histopathological pancreatic damage (Figure 1a), consistent with previous studies 

[4,22]. In RIPK1K45A mice there was no significant reduction of total histopathological scores in 

either FAEE-AP or TLCS-AP compared to control WT mice, although there was partial 

protection in CER-AP (Figures 1a and 1b). In contrast, Nec-1 treatment reduced pancreatic 

damage in all experimental AP models, with significantly reduced oedema, inflammation and 

necrosis scores (Figures 1a and 1b). Similarly, Nec-1 treatment significantly improved 

biochemical parameters in all 3 AP models (Figure 2). Consistent with histological data, the 

effects of RIPK1K45A on biochemical parameters did not reflect those of pharmacological 

inhibition, with either no or partial inhibition observed in the AP models. Thus, whereas Nec-

1 reduced amylase elevations in all three models, RIPK1K45A modification caused only a partial 

reduction in FAEE-AP, with no significant effect in either TLCS-AP or CER-AP (Figure 2a). 

Both Nec-1 treatment and RIPK1K45A modification decreased elevated trypsin levels in FAEE-

AP, however, only Nec-1 treatment was protective in CER-AP (Figure 2b). Raised pancreatic 

and lung MPO levels were greatly reduced by Nec-1 treatment in all AP models. However, 
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RIPK1K45A only partially decreased the former in TLCS-AP and CER-AP, with no effect in 

FAEE-AP (Figure 2c) and was without effect on raised lung MPO levels in all models (Figure 

2d). Increases of IL-6 in FAEE-AP and TLCS-AP were significantly reduced by Nec-1 

treatment, whereas RIPK1K45A was only protective in TLCS-AP (Figure 2e) 
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Figure 1. Comparison of histological damage in FAEE-AP, TLCS-AP and CER-AP in RIPK1K45A 

and WT mice. a) Representative H&E pancreas images (x200) from sham (control), FAEE-AP, TLCS-

AP, CER-AP in RIPK1K45A, WT, and WT with Nec-1 treatment. b) Pancreatic histology scores ((i) total 

score, (ii) necrosis, (iii) inflammation and (iv) oedema) in three AP models. Each dot represents a mouse. 

Responses were normalized to control changes after AP induction in WT and are expressed as the mean 

± SEM (≥5 mice/group). Significant differences between RIPK1K45A or Nec-1 treatment groups from 

control are shown as *p<0.05. 
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Figure 2. Comparison of biochemical changes in FAEE-AP, TLCS-AP and CER-AP in 

RIPK1K45A and WT mice. Changes in the levels of a) amylase, b) trypsin, c) pancreatic 

myeloperoxidase (MPO), d) lung MPO and e) interleukin-6 (IL-6) are shown in three AP models. Each 

dot represents a mouse. Responses were normalized to control changes after AP induction in WT and 

are expressed as the mean ± SEM (≥5 mice/group). Significant differences between RIPK1K45A or Nec-

1 treatment groups from control are shown as *p<0.05. 
 

Protective effects of IDO inhibition in TLCS-AP 

A secondary target of Nec-1, IDO, was subsequently investigated using the TLCS-AP 

model. Inhibition of IDO with Epacadostat (EPA) treatment markedly decreased local 

pancreatic damage, with significant reductions of oedema, inflammation and necrosis (Figures 

3a and 3b). In addition, EPA reduced the elevated pancreatic MPO in TLCS-AP, with a trend 

to lower serum amylase in EPA-treated compared to the non-treated group, although this did 

not attain significance (Figure 3b).  
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Figure 3. Protective effects of Epacadostat in TLCS-AP. a) Representative H&E pancreas images 

(x200) from sham (control) and TLCS-AP in WT, with and without epacadostat (EPA) treatment. 

Changes in b) pancreatic histological damage ((i) total score, (ii) necrosis, (iii) inflammation and (iv) 

oedema and biochemical alterations of (v) amylase and (vi) pancreas myeloperoxidase (MPO) in TLCS-

AP with and without EPA treatment. Each dot represents a mouse. Responses were normalized to 

control changes after AP induction in WT and are expressed as the mean ± SEM (≥5 mice/group). 

Significant differences between the EPA treatment group and control are shown as *p<0.05. 
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Comparative effects of RIPK1K45A and Nec-1 on PAC cell death 

In in vitro cell death assays no differences were detected in the basal levels of necrosis between 

RIPK1K45A and WT PACs or of apoptosis between RIPK1K45A and WT PACs (Figure 4). Both 

TLCS and POAEE caused necrosis that was significantly reduced by the RIPK1K45A 

modification and by Nec-1 application in WT (Figure 4a). TLCS also increased apoptotic cell 

death in RIPK1K45A and WT PACs, while POAEE was without effect. There was a significantly 

greater induction of apoptosis in response to TLCS in the RIPK1K45A mice compared to WT. 

Nec-1 significantly reduced TLCS-induced apoptosis to control levels, whereas it did not alter 

apoptosis levels in the presence of POAEE (Figure 4b). Furthermore, the appearance of 

cytosolic cytochrome C in response to TLCS was accelerated in RIPK1K45A PACs compared to 

WT (Figure 4c), consistent with enhanced apoptosis observed in the cell death assays. 
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Figure 4. Effects of RIPK1K45A and Nec-1 on TLCS- and POAEE-induced pancreatic acinar cell 

(PAC) death. a) Bar graph showing the effects of RIPK1K45A modification and Nec-1 (10 M) on 

TLCS (500 M)- and POAEE (100 M)-induced necrosis (propidium iodide (PI) uptake). Changes are 



15 

 

normalized as the ratio of total cell number to necrotic cell number. b) Bar graph showing the effects 

of RIPK1K45A modification and Nec-1 (10 M) on TLCS (500 M) and POAEE (100 M) induced 

apoptosis (Caspase-3/7 green). The data are normalized as F/F0. c) (i) Representative western blot 

images showing cytochrome C (58 KD) protein level in WT and RIPK1K45A PACs at 0, 2 and 4 h with 

or without TLCS (500 M). (ii) Bar graph showing the quantification of cytoplasm cytochrome C levels 

in WT and RIPK1K45A PACs at 0, 2 and 4 h with or without TLCS (500 M). Each dot represents a 

mouse. All data are expressed as the mean ± SEM (n≥3 mice/group). Significant differences are shown 

as * p<0.05 and # p<0.05. 

 

Comparative effects of RIPK1K45A and Nec-1 on intracellular Ca2+ and ROS 

In order to assess the possible involvement of RIPK1 in PAC [Ca2+]c overload that 

leads to necrosis [22,23], the effects of Nec-1 on TLCS-induced [Ca2+]c elevations in isolated 

PACs from WT mice were investigated. Application of TLCS (500 µM) induced a typical rapid 

peak elevation of [Ca2+]c followed by a sustained plateau. However, subsequent addition of 

Nec-1 did not inhibit the sustained Ca2+rise (Figure 5a). Furthermore, in separate experiments 

Nec-1 did not alter store-operated Ca2+ entry induced by depletion of intracellular stores with 

the SERCA pump inhibitor thapsigargin; the sustained increase of [Ca2+]c upon readmission of 

extracellular Ca2+ was unaffected by Nec-1. In contrast, addition of the Orai-1 inhibitor GSK-

7975A suppressed the store-operated Ca2+ influx (Figure 5b), consistent with previous findings 

[22]. 
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Figure 5. Nec-1 does not inhibit Ca2+ entry mechanisms in PACs. a) Graph showing the effects of 

Nec-1 (30 M) on TLCS (500 M)-induced sustained cytosolic Ca2+ elevations (Fura2-AM) in PACs. 

TLCS (500 M) was applied at 200s (blue; n=97 cells) and effects of Nec-1, added at 600s, were 

compared to time-matched controls (black; n=77 cells). b) Graph showing the effects of Nec-1 (30 M) 

on store-operated Ca2+ entry (SOCE) in PACs. Thapsigargin was applied under Ca2+-free conditions to 

elicit internal store depletion. Subsequently 5 mM Ca2+ was added from 1000s to 1800s to induce 

SOCE; effects of Nec-1 applied at 1800s (blue; n=66 cells) were compared to time-matched controls 

(black; n=54 cells). The Orai1 inhibitor GSK-7975A (10 μM) was applied as a positive control at 2500s 

to reverse the SOCE. Changes are normalized increases in fluorescence from the baseline (F/F0) in b) 

and (F/F1800) in c) and data expressed as the mean ± SEM (n≥3 mice/group). Significant differences 

from the control are shown as * p<0.05. 
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Since TLCS has been shown to cause Ca2+-dependent ROS generation in both human 

and murine PACs [23], the effects of RIPK1 activity on intracellular ROS were 

assessed using the RIPK1K45A modification and pharmacological inhibition (Figure 6). 

Basal ROS levels were similar in RIPK1K45A and WT PACs. Application of 500 µM 

TLCS induced a ROS elevation in WT PACs; a trend to greater TLCS-induced ROS 

was observed in RIPK1K45A PACs compared to WT, although this did not attain 

statistical significance. While Nec-1 (30 µM) did not affect basal ROS generation per 

se, it significantly decreased TLCS-induced ROS production. In contrast, application 

of POAEE (100 µM) did not increase ROS levels in either WT or RIPK1K45A PACs, 

and 30 µM Nec-1 did not alter ROS levels in the presence of POAEE (Figure 6). 
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Figure 6. Inhibitory effects of Nec-1 on intracellular ROS in PACs. Line graphs showing the effects 

of RIPK1K45A modification and Nec-1 (30 M) on intracellular ROS levels (H2DCFDA) in the presence 

of a) TLCS (500 M) and b) POAEE (100 M). c) Bar graph showing the endpoint effects of 

RIPK1K45A modification and Nec-1 on intracellular ROS levels at 5 hours in the presence of TLCS and 

POAEE. Each dot represents a mouse. Changes are normalized increases in fluorescence from the 

baseline (F/F0) and data expressed as the mean ± SEM (n≥3 mice/group; n.b. some traces have overlap 

and the symbols are masked). Significant differences in Nec-1 from WT controls are shown as * p<0.05. 
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DISCUSSION 

Our results show that Nec-1 was highly effective in ameliorating pathological events 

in multiple AP models that reflect the principal aetiologies, including for the first time a 

protective action in alcoholic AP. Alcohol excess and gallstones together account for 

approximately 80% of clinical AP cases, however, no specific therapy is currently available to 

combat this debilitating and sometimes fatal disease. Previously Nec-1 has been evaluated as 

potential treatment for a range of pathologies, including ischemia-reperfusion injury [24-28], 

neurodegeneration [29,30], inflammatory disease [31,32], hepatitis [33] and lethal irradiation [34]. 

However, prior studies in AP assessing the action of Nec-1 and involvement of necroptosis 

have generated mixed findings. For example, while Nec-1 improved CER-AP, TLCS-AP [10] 

and L-arginine-induced AP [16], it was ineffective in two evaluations of CER-AP [15,35]. Such 

discrepancies may reflect differences in methodologies and/or variability in the delivery of 

Nec-1. In the present study, in order to ensure a stable and consistent Nec-1 application due to 

its relatively short half-life [36], the RIPK1 inhibitor was administered via osmotic mini-pump 

allowing an accurate comparison across three distinct AP models, as previously employed to 

investigate Orai1 inhibitors [22]. Using this standardised approach, our data demonstrate that 

Nec-1 is effective in multiple AP models when applied as a treatment i.e. after AP induction, 

strongly supporting further investigation of its actions to assist drug discovery. 

RIPK1 is one of 28 kinases implicated in AP based on an interactions network derived 

from Gene Ontology Annotations [37]. Investigation of RIPK1 involvement by complete 

knockout of the protein is not feasible since these animals die shortly after birth [38]. Our results 

demonstrate that genetic modification of RIPK1 to a kinase dead variant (RIPK1K45A) did not 

mirror those of pharmacological inhibition, and indicate only a partial involvement of RIPK1-

dependent necroptosis in AP. In accord, prior evaluations using genetic mutations showed that 

no protection was afforded by RIPK1KD/KD D138N or by RIPK1 P-loop deficient RIP1Δ/Δ mice in 

CER-AP [12,14]. In contrast, genetic deletion of RIPK3 or MLKL ameliorated both CER-AP 

and TLCS-AP [10-13]. Interestingly, evidence suggests that both RIPK1 and RIPK3 may not 

always be prerequisites for necroptosis to occur [39]. For example, TLR3-induced necroptosis 

in fibroblasts and endothelial cells did not require RIPK1 but involved both RIPK3 and MLKL 

[40], whilst necroptosis due to cytomegalovirus infection was RIPK1-independent but involved 
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RIPK3 activity [41]. More recently, pancreatic tumour-promoting effects of RIPK1 were shown 

to be independent of its co-association with RIPK3 [42]. 

While recent evidence supports an involvement of necroptosis in the pathogenesis of 

AP, the contribution of RIPK1 appears variable and dependent on aetiology. Here the extent of 

RIPK1-dependent necroptosis differed according to the AP model, with pancreatic injury in 

RIPK1K45A mice significantly reduced compared to WT in CER-AP. This contrasted with little 

or no protection observed in TLCS-AP and FAEE-AP, implying a more extensive participation 

of RIPK1 in CER-AP. In isolated PACs, the involvement of RIPK1 in cell death modalities 

was complex; whilst TLCS-induced PAC necrosis was reduced by the RIPK1K45A modification, 

apoptosis was potentiated. The latter was linked to earlier release of cytochrome C from 

mitochondria in RIPK1K45A mice, accompanied by ROS elevation, consistent with previous 

studies demonstrating ROS driven apoptosis in this cell type [23,43]. Previously deletion of X-

linked inhibitor of apoptosis protein was shown to increase both RIPK1 degradation and 

caspase activity, resulting in enhanced PAC apoptosis and reduced necrosis that ameliorated 

AP [44]. Our findings of increased TLCS-induced apoptosis, with concurrent reduction of 

necrosis in RIPK1K45A mice, are consistent with an alteration of the apoptosis-necrosis balance 

that influences AP severity [23,45-47]. 

 In contrast to genetic manipulation, Nec-1 application reduced both apoptotic and 

necrotic PAC death, indicating multiple actions that determine responses to pathophysiological 

stimulation. Previously, TLCS-induced necrosome formation, ATP depletion and cell death in 

PACs were reduced by Ca2+ chelation with BAPTA pre-treatment [10]. In the present study 

Nec-1 did not alter the sustained [Ca2+]c elevations caused by TLCS in PACs, implying 

protective actions distal to Ca2+ release and store-operated Ca2+entry mechanisms engaged by 

bile acids [48,49]. Interestingly, the Ca2+-dependent ROS elevations induced by TLCS [23] were 

reduced by Nec-1, consistent with reported inhibitory actions on acetaminophen-induced ROS 

production and mitochondrial dysfunction in hepatocytes [50], and TNFα-induced ROS 

accumulation and cell death in NF-κB activation-deficient cells [51]. The ability of Nec-1 to 

decrease TLCS-induced ROS is likely to be of importance to its beneficial actions in AP. A 

recent study has demonstrated a role of transient receptor potential melastatin 2 (TRPM2) 

channels to detrimental actions of bile acids on acinar cells that are mediated through ROS 

elevation [52]. 
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The effects of Nec-1 application in disease studies have largely been attributed to 

RIPK1 inhibition. Our present findings strongly indicate that multiple mechanisms contribute 

to its protective effects in AP; to-date no investigations have addressed the possible 

involvement of collateral targets of Nec-1 in AP. Amongst those inhibited by Nec-1 is IDO, 

the initial, rate-limiting component of the kynurenine pathway involved in cellular tryptophan 

metabolism, known to have a complex role in inflammation and disease [53,54]. Early studies 

showed that inhibition of IDO could increase the severity of diseases, including asthma [55], 

uveoretinitis [56] and colitis [57]. However, investigations have also demonstrated that IDO1 

deficiency/inhibition reduced inflammation and metaplasia in chronic gastric inflammation 

[58], the development of allergic airway disease [59], and ameliorated rheumatoid arthritis 

symptoms via a diminished autoreactive B cell response [60]. In the present study, treatment 

with EPA, a highly selective and potent IDO1 inhibitor [61], was protective against pancreatic 

damage in TLCS-AP, indicating that actions on this enzyme likely contribute to beneficial 

effects of Nec-1. Although the expression of IDO was not evaluated here, upregulation of both 

IDO1 and IDO2 have been shown in human pancreatic ductal adenocarcinoma [62,63] and a 

more detailed evaluation of IDO involvement in AP is the focus of a separate, on-going study. 

The present findings are consistent with recent studies which have demonstrated the importance 

of the kynurenine pathway to AP. Increased plasma levels of 3-hydroxykynurenine in AP 

patients paralleled disease severity in clinical AP [64], while inhibition of kynurenine-3-

monooxygenase, an enzyme downstream of IDO, prevented multiple organ failure in rodent 

AP models [18]; a series of kynurenine-3-monooxygenase inhibitors is now in development for 

AP therapy [17]. Interestingly, it has also been shown that Nec-1 exerts cyclophilin D-dependent 

beneficial actions in cardiac ischaemia-reperfusion injury [65]. A collateral inhibitory effect of 

Nec-1 on cyclophilin D would also be advantageous in AP, since genetic deletion (ppif-/-) and 

pharmacological inhibition of this protein prevented mitochondrial permeability transition pore 

(MPTP) formation in the exocrine pancreas and protected against AP [3,66-69]. Thus, multiple 

actions of Nec-1 provide an aggregation of complementary beneficial effects of potential 

therapeutic value in AP and serve as a starting point for development of novel agents. 

In conclusion, our study has demonstrated important protective actions of Nec-1 in 

multiple AP models, including for the first time in alcoholic AP. However, RIPK1 kinase 

modification only partially reflected the effects of Nec-1. The efficacy of Nec-1 treatment 
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indicates that inhibition of multiple targets might be an effective therapeutic strategy in AP and 

further investigation is warranted. 

 

ACKNOWLEDGEMENTS 

This study was supported by a Chinese Scholarship Council (CSC) award (YO) and the Medical 

Research Council (UK). RS holds an NIHR Senior Investigator award. 

STUDY APPROVAL  

Animal studies were ethically reviewed and conducted according to UK Animals (Scientific 

Procedures) Act of 1986, approved by the UK Home Office (PPL 40/3320, renewed as 

70/8109). 

DISCLOSURES  

RS has received research support and/or funding from Calcimedica, Cypralis, EA Pharma, 

GlaxoSmithKline, MSD/Merck and Novartis, has been a consultant for AbbVie, Calcimedica, 

Cypralis, Eagle Pharmaceuticals, Novartis and Takeda (all funds to the University of 

Liverpool), and is collaborating in the IMI2 TransBioLine project with multiple public and 

private institutions including Janssen, Lilly, MSD/Merck, Novartis, Pfizer, Roche and Sanofi-

Aventis. 

  



23 

 

 



References 

 

1. Peery, A.F.; Crockett, S.D.; Murphy, C.C.; Lund, J.L.; Dellon, E.S.; Williams, J.L.; 

Jensen, E.T.; Shaheen, N.J.; Barritt, A.S.; Lieber, S.R.; et al. Burden and Cost of 

Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. 

Gastroenterology 2018, doi:10.1053/j.gastro.2018.08.063. 

2. Criddle, D.N. Reactive oxygen species, Ca(2+) stores and acute pancreatitis; a step 

closer to therapy? Cell Calcium 2016, 60, 180-189, doi:10.1016/j.ceca.2016.04.007. 

3. Mukherjee, R.; Mareninova, O.A.; Odinokova, I.V.; Huang, W.; Murphy, J.; Chvanov, 

M.; Javed, M.A.; Wen, L.; Booth, D.M.; Cane, M.C.; et al. Mechanism of mitochondrial 

permeability transition pore induction and damage in the pancreas: inhibition prevents 

acute pancreatitis by protecting production of ATP. Gut 2016, 65, 1333-1346, 

doi:10.1136/gutjnl-2014-308553. 

4. Huang, W.; Booth, D.M.; Cane, M.C.; Chvanov, M.; Javed, M.A.; Elliott, V.L.; 

Armstrong, J.A.; Dingsdale, H.; Cash, N.; Li, Y.; et al. Fatty acid ethyl ester synthase 

inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and 

acute pancreatitis. Gut 2014, 63, 1313-1324, doi:10.1136/gutjnl-2012-304058. 

5. Pallagi, P.; Madacsy, T.; Varga, A.; Maleth, J. Intracellular Ca(2+) Signalling in the 

Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. 

Int J Mol Sci 2020, 21, doi:10.3390/ijms21114005. 

6. Vandenabeele, P.; Galluzzi, L.; Vanden Berghe, T.; Kroemer, G. Molecular 

mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010, 

11, 700-714, doi:10.1038/nrm2970. 

7. Degterev, A.; Ofengeim, D.; Yuan, J. Targeting RIPK1 for the treatment of human 

diseases. Proc Natl Acad Sci U S A 2019, 116, 9714-9722, 

doi:10.1073/pnas.1901179116. 

8. Mifflin, L.; Ofengeim, D.; Yuan, J. Receptor-interacting protein kinase 1 (RIPK1) as a 

therapeutic target. Nat Rev Drug Discov 2020, 19, 553-571, doi:10.1038/s41573-020-

0071-y. 

9. Zhang, X.; Chen, Y.; Jenkins, L.W.; Kochanek, P.M.; Clark, R.S. Bench-to-bedside 

review: Apoptosis/programmed cell death triggered by traumatic brain injury. Crit 

Care 2005, 9, 66-75, doi:10.1186/cc2950. 

10. Louhimo, J.; Steer, M.L.; Perides, G. Necroptosis Is an Important Severity Determinant 

and Potential Therapeutic Target in Experimental Severe Pancreatitis. Cell Mol 

Gastroenterol Hepatol 2016, 2, 519-535, doi:10.1016/j.jcmgh.2016.04.002. 

11. He, S.; Wang, L.; Miao, L.; Wang, T.; Du, F.; Zhao, L.; Wang, X. Receptor interacting 

protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 2009, 137, 

1100-1111, doi:10.1016/j.cell.2009.05.021. 

12. Liu, Y.; Fan, C.; Zhang, Y.; Yu, X.; Wu, X.; Zhang, X.; Zhao, Q.; Zhang, H.; Xie, Q.; 

Li, M.; et al. RIP1 kinase activity-dependent roles in embryonic development of Fadd-

deficient mice. Cell Death Differ 2017, doi:10.1038/cdd.2017.78. 

13. Wu, J.F.; Huang, Z.; Ren, J.M.; Zhang, Z.R.; He, P.; Li, Y.X.; Ma, J.H.; Chen, W.Z.; 

Zhang, Y.Y.; Zhou, X.J.; et al. Mlkl knockout mice demonstrate the indispensable role 

of Mlkl in necroptosis. Cell Research 2013, 23, 994-1006, doi:10.1038/cr.2013.91. 

14. Newton, K.; Dugger, D.L.; Maltzman, A.; Greve, J.M.; Hedehus, M.; Martin-McNulty, 

B.; Carano, R.A.; Cao, T.C.; van Bruggen, N.; Bernstein, L.; et al. RIPK3 deficiency 

or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in 

mouse models of inflammation and tissue injury. Cell Death Differ 2016, 23, 1565-



 

 

1576, doi:10.1038/cdd.2016.46. 

15. Linkermann, A.; Brasen, J.H.; De Zen, F.; Weinlich, R.; Schwendener, R.A.; Green, 

D.R.; Kunzendorf, U.; Krautwald, S. Dichotomy between RIP1- and RIP3-mediated 

necroptosis in tumor necrosis factor-alpha-induced shock. Mol Med 2012, 18, 577-586, 

doi:10.2119/molmed.2011.00423. 

16. Zou, C.; Xiong, Y.; Huang, L.Y.; Song, C.L.; Wu, X.A.; Li, L.L.; Yang, S.Y. Design, 

Synthesis, and Biological Evaluation of 1-Benzyl-1H-pyrazole Derivatives as Receptor 

Interacting Protein 1 Kinase Inhibitors. Chem Biol Drug Des 2016, 87, 569-574, 

doi:10.1111/cbdd.12689. 

17. Walker, A.L.; Ancellin, N.; Beaufils, B.; Bergeal, M.; Binnie, M.; Bouillot, A.; 

Clapham, D.; Denis, A.; Haslam, C.P.; Holmes, D.S.; et al. Development of a Series of 

Kynurenine 3-Monooxygenase Inhibitors Leading to a Clinical Candidate for the 

Treatment of Acute Pancreatitis. J Med Chem 2017, 60, 3383-3404, 

doi:10.1021/acs.jmedchem.7b00055. 

18. Mole, D.J.; Webster, S.P.; Uings, I.; Zheng, X.; Binnie, M.; Wilson, K.; Hutchinson, 

J.P.; Mirguet, O.; Walker, A.; Beaufils, B.; et al. Kynurenine-3-monooxygenase 

inhibition prevents multiple organ failure in rodent models of acute pancreatitis. Nat 

Med 2016, 22, 202-209, doi:10.1038/nm.4020. 

19. Kaiser, W.J.; Daley-Bauer, L.P.; Thapa, R.J.; Mandal, P.; Berger, S.B.; Huang, C.; 

Sundararajan, A.; Guo, H.; Roback, L.; Speck, S.H.; et al. RIP1 suppresses innate 

immune necrotic as well as apoptotic cell death during mammalian parturition. Proc 

Natl Acad Sci U S A 2014, 111, 7753-7758, doi:10.1073/pnas.1401857111. 

20. Perides, G.; van Acker, G.J.; Laukkarinen, J.M.; Steer, M.L. Experimental acute biliary 

pancreatitis induced by retrograde infusion of bile acids into the mouse pancreatic duct. 

Nat Protoc 2010, 5, 335-341, doi:10.1038/nprot.2009.243. 

21. Koblish, H.K.; Hansbury, M.J.; Bowman, K.J.; Yang, G.; Neilan, C.L.; Haley, P.J.; 

Burn, T.C.; Waeltz, P.; Sparks, R.B.; Yue, E.W.; et al. Hydroxyamidine inhibitors of 

indoleamine-2,3-dioxygenase potently suppress systemic tryptophan catabolism and 

the growth of IDO-expressing tumors. Mol Cancer Ther 2010, 9, 489-498, 

doi:10.1158/1535-7163.MCT-09-0628. 

22. Wen, L.; Voronina, S.; Javed, M.A.; Awais, M.; Szatmary, P.; Latawiec, D.; Chvanov, 

M.; Collier, D.; Huang, W.; Barrett, J.; et al. Inhibitors of ORAI1 Prevent Cytosolic 

Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute Pancreatitis 

in 3 Mouse Models. Gastroenterology 2015, 149, 481-492.e487. 

23. Booth, D.M.; Murphy, J.A.; Mukherjee, R.; Awais, M.; Neoptolemos, J.P.; 

Gerasimenko, O.V.; Tepikin, A.V.; Petersen, O.H.; Sutton, R.; Criddle, D.N. Reactive 

oxygen species induced by bile acid induce apoptosis and protect against necrosis in 

pancreatic acinar cells. Gastroenterology 2011, 140, 2116-2125, doi:S0016-

5085(11)00265-4 [pii]10.1053/j.gastro.2011.02.054.24. Degterev, A.; Huang, Z.; 

Boyce, M.; Li, Y.; Jagtap, P.; Mizushima, N.; Cuny, G.D.; Mitchison, T.J.; Moskowitz, 

M.A.; Yuan, J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential 

for ischemic brain injury. Nat Chem Biol 2005, 1, 112-119, doi:10.1038/nchembio711. 

25. Northington, F.J.; Chavez-Valdez, R.; Graham, E.M.; Razdan, S.; Gauda, E.B.; Martin, 

L.J. Necrostatin decreases oxidative damage, inflammation, and injury after neonatal 

HI. J Cereb Blood Flow Metab 2011, 31, 178-189, doi:10.1038/jcbfm.2010.72. 

26. Xu, X.; Chua, K.W.; Chua, C.C.; Liu, C.F.; Hamdy, R.C.; Chua, B.H. Synergistic 



 

 

protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion 

injury. Brain Res 2010, 1355, 189-194, doi:10.1016/j.brainres.2010.07.080. 

27. Linkermann, A.; Brasen, J.H.; Himmerkus, N.; Liu, S.; Huber, T.B.; Kunzendorf, U.; 

Krautwald, S. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and 

contributes to renal ischemia/reperfusion injury. Kidney Int 2012, 81, 751-761, 

doi:10.1038/ki.2011.450. 

28. Smith, C.C.; Davidson, S.M.; Lim, S.Y.; Simpkin, J.C.; Hothersall, J.S.; Yellon, D.M. 

Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther 2007, 

21, 227-233, doi:10.1007/s10557-007-6035-1. 

29. Zhu, S.; Zhang, Y.; Bai, G.; Li, H. Necrostatin-1 ameliorates symptoms in R6/2 

transgenic mouse model of Huntington's disease. Cell Death Dis 2011, 2, e115, 

doi:10.1038/cddis.2010.94. 

30. Li, Y.; Yang, X.; Ma, C.; Qiao, J.; Zhang, C. Necroptosis contributes to the NMDA-

induced excitotoxicity in rat's cultured cortical neurons. Neurosci Lett 2008, 447, 120-

123, doi:10.1016/j.neulet.2008.08.037. 

31. Zitvogel, L.; Kepp, O.; Kroemer, G. Decoding cell death signals in inflammation and 

immunity. Cell 2010, 140, 798-804, doi:10.1016/j.cell.2010.02.015. 

32. Duprez, L.; Takahashi, N.; Van Hauwermeiren, F.; Vandendriessche, B.; Goossens, V.; 

Vanden Berghe, T.; Declercq, W.; Libert, C.; Cauwels, A.; Vandenabeele, P. RIP 

kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. 

Immunity 2011, 35, 908-918, doi:10.1016/j.immuni.2011.09.020. 

33. Jouan-Lanhouet, S.; Arshad, M.I.; Piquet-Pellorce, C.; Martin-Chouly, C.; Le Moigne-

Muller, G.; Van Herreweghe, F.; Takahashi, N.; Sergent, O.; Lagadic-Gossmann, D.; 

Vandenabeele, P.; et al. TRAIL induces necroptosis involving RIPK1/RIPK3-

dependent PARP-1 activation. Cell Death Differ 2012, 19, 2003-2014, 

doi:10.1038/cdd.2012.90. 

34. Huang, Z.; Epperly, M.; Watkins, S.C.; Greenberger, J.S.; Kagan, V.E.; Bayir, H. 

Necrostatin-1 rescues mice from lethal irradiation. Biochim Biophys Acta 2016, 1862, 

850-856, doi:10.1016/j.bbadis.2016.01.014. 

35. Wu, J.; Mulatibieke, T.; Ni, J.; Han, X.; Li, B.; Zeng, Y.; Wan, R.; Wang, X.; Hu, G. 

Dichotomy between Receptor-Interacting Protein 1- and Receptor-Interacting Protein 

3-Mediated Necroptosis in Experimental Pancreatitis. Am J Pathol 2017, 

doi:10.1016/j.ajpath.2016.12.021. 

36. Teng, X.; Degterev, A.; Jagtap, P.; Xing, X.; Choi, S.; Denu, R.; Yuan, J.; Cuny, G.D. 

Structure-activity relationship study of novel necroptosis inhibitors. Bioorganic & 

medicinal chemistry letters 2005, 15, 5039-5044. 

37. Li, Z.; Ma, B.; Lu, M.; Qiao, X.; Sun, B.; Zhang, W.; Xue, D. Construction of network 

for protein kinases that play a role in acute pancreatitis. Pancreas 2013, 42, 607-613, 

doi:10.1097/MPA.0b013e31826dc2b2. 

38. Polykratis, A.; Hermance, N.; Zelic, M.; Roderick, J.; Kim, C.; Van, T.-M.; Lee, T.H.; 

Chan, F.K.M.; Pasparakis, M.; Kelliher, M.A. Cutting edge: RIPK1 Kinase inactive 

mice are viable and protected from TNF-induced necroptosis in vivo. Journal of 

immunology (Baltimore, Md : 1950) 2014, 193, 1539-1543. 

39. Jouan-Lanhouet, S.; Riquet, F.; Duprez, L.; Vanden Berghe, T.; Takahashi, N.; 

Vandenabeele, P. Necroptosis, in vivo detection in experimental disease models. Semin 

Cell Dev Biol 2014, 35, 2-13, doi:10.1016/j.semcdb.2014.08.010. 

40. Kaiser, W.J.; Sridharan, H.; Huang, C.; Mandal, P.; Upton, J.W.; Gough, P.J.; Sehon, 



 

 

C.A.; Marquis, R.W.; Bertin, J.; Mocarski, E.S. Toll-like receptor 3-mediated necrosis 

via TRIF, RIP3, and MLKL. The Journal of biological chemistry 2013, 288, 31268-

31279. 

41. Upton, J.W.; Kaiser, W.J.; Mocarski, E.S. DAI/ZBP1/DLM-1 complexes with RIP3 to 

mediate virus-induced programmed necrosis that is targeted by murine 

cytomegalovirus vIRA. Cell Host Microbe 2012, 11, 290-297, 

doi:10.1016/j.chom.2012.01.016. 

42. Wang, W.; Marinis, J.M.; Beal, A.M.; Savadkar, S.; Wu, Y.; Khan, M.; Taunk, P.S.; 

Wu, N.; Su, W.; Wu, J.; et al. RIP1 Kinase Drives Macrophage-Mediated Adaptive 

Immune Tolerance in Pancreatic Cancer. Cancer cell 2018, 34, 757-774.e757. 

43. Criddle, D.N.; Gillies, S.; Baumgartner-Wilson, H.K.; Jaffar, M.; Chinje, E.C.; 

Passmore, S.; Chvanov, M.; Barrow, S.; Gerasimenko, O.V.; Tepikin, A.V.; et al. 

Menadione-induced Reactive Oxygen Species Generation via Redox Cycling Promotes 

Apoptosis of Murine Pancreatic Acinar Cells. J.Biol.Chem. 2006, 281, 40485-40492. 

44. Liu, Y.; Chen, X.D.; Yu, J.; Chi, J.L.; Long, F.W.; Yang, H.W.; Chen, K.L.; Lv, Z.Y.; 

Zhou, B.; Peng, Z.H.; et al. Deletion Of XIAP reduces the severity of acute pancreatitis 

via regulation of cell death and nuclear factor-kappaB activity. Cell Death Dis 2017, 8, 

e2685, doi:10.1038/cddis.2017.70. 

45. Kaiser, A.M.; Saluja, A.K.; Sengupta, A.; Saluja, M.; Steer, M.L. Relationship between 

severity, necrosis, and apoptosis in five models of experimental acute pancreatitis. 

Am.J.Physiol 1995, 269, C1295-C1304. 

46. Mareninova, O.A.; Sung, K.F.; Hong, P.; Lugea, A.; Pandol, S.J.; Gukovsky, I.; 

Gukovskaya, A.S. Cell death in pancreatitis: caspases protect from necrotizing 

pancreatitis. J.Biol.Chem. 2006, 281, 3370-3381. 

47. Armstrong, J.A.; Cash, N.J.; Ouyang, Y.; Morton, J.C.; Chvanov, M.; Latawiec, D.; 

Awais, M.; Tepikin, A.V.; Sutton, R.; Criddle, D.N. Oxidative stress alters 

mitochondrial bioenergetics and modifies pancreatic cell death independently of 

cyclophilin D, resulting in an apoptosis-to-necrosis shift. J Biol Chem 2018, 293, 8032-

8047, doi:10.1074/jbc.RA118.003200. 

48. Voronina, S.; Longbottom, R.; Sutton, R.; Petersen, O.H.; Tepikin, A. Bile acids induce 

calcium signals in mouse pancreatic acinar cells: implications for bile-induced 

pancreatic pathology. J.Physiol 2002, 540, 49-55. 

49. Kim, M.S.; Hong, J.H.; Li, Q.; Shin, D.M.; Abramowitz, J.; Birnbaumer, L.; Muallem, 

S. Deletion of TRPC3 in mice reduces store-operated Ca2+ influx and the severity of 

acute pancreatitis. Gastroenterology 2009, 137, 1509-1517, 

doi:10.1053/j.gastro.2009.07.042. 

50. Takemoto, K.; Hatano, E.; Iwaisako, K.; Takeiri, M.; Noma, N.; Ohmae, S.; Toriguchi, 

K.; Tanabe, K.; Tanaka, H.; Seo, S.; et al. Necrostatin-1 protects against reactive 

oxygen species (ROS)-induced hepatotoxicity in acetaminophen-induced acute liver 

failure. FEBS Open Bio 2014, 4, 777-787. 

51. Shindo, R.; Kakehashi, H.; Okumura, K.; Kumagai, Y.; Nakano, H. Critical 

contribution of oxidative stress to TNFalpha-induced necroptosis downstream of 

RIPK1 activation. Biochem Biophys Res Commun 2013, 436, 212-216, 

doi:10.1016/j.bbrc.2013.05.075. 

52. Fanczal, J.; Pallagi, P.; Gorog, M.; Diszhazi, G.; Almassy, J.; Madacsy, T.; Varga, A.; 

Csernay-Biro, P.; Katona, X.; Toth, E.; et al. TRPM2-mediated extracellular Ca(2+) 

entry promotes acinar cell necrosis in biliary acute pancreatitis. J Physiol 2020, 598, 



 

 

1253-1270, doi:10.1113/JP279047. 

53. Acovic, A.; Gazdic, M.; Jovicic, N.; Harrell, C.R.; Fellabaum, C.; Arsenijevic, N.; 

Volarevic, V. Role of indoleamine 2,3-dioxygenase in pathology of the gastrointestinal 

tract. Therap Adv Gastroenterol 2018, 11, 1756284818815334, 

doi:10.1177/1756284818815334. 

54. Yeung, A.W.; Terentis, A.C.; King, N.J.; Thomas, S.R. Role of indoleamine 2,3-

dioxygenase in health and disease. Clin Sci (Lond) 2015, 129, 601-672, 

doi:10.1042/CS20140392. 

55. Taher, Y.A.; Piavaux, B.J.; Gras, R.; van Esch, B.C.; Hofman, G.A.; Bloksma, N.; 

Henricks, P.A.; van Oosterhout, A.J. Indoleamine 2,3-dioxygenase-dependent 

tryptophan metabolites contribute to tolerance induction during allergen 

immunotherapy in a mouse model. J Allergy Clin Immunol 2008, 121, 983-991 e982, 

doi:10.1016/j.jaci.2007.11.021. 

56. Choi, B.K.; Asai, T.; Vinay, D.S.; Kim, Y.H.; Kwon, B.S. 4-1BB-mediated 

amelioration of experimental autoimmune uveoretinitis is caused by indoleamine 2,3-

dioxygenase-dependent mechanisms. Cytokine 2006, 34, 233-242, 

doi:10.1016/j.cyto.2006.04.008. 

57. Fallarino, F.; Volpi, C.; Zelante, T.; Vacca, C.; Calvitti, M.; Fioretti, M.C.; Puccetti, P.; 

Romani, L.; Grohmann, U. IDO mediates TLR9-driven protection from experimental 

autoimmune diabetes. J Immunol 2009, 183, 6303-6312, 

doi:10.4049/jimmunol.0901577. 

58. El-Zaatari, M.; Bass, A.J.; Bowlby, R.; Zhang, M.; Syu, L.J.; Yang, Y.; Grasberger, H.; 

Shreiner, A.; Tan, B.; Bishu, S.; et al. Indoleamine 2,3-Dioxygenase 1, Increased in 

Human Gastric Pre-Neoplasia, Promotes Inflammation and Metaplasia in Mice and Is 

Associated With Type II Hypersensitivity/Autoimmunity. Gastroenterology 2018, 154, 

140-153 e117, doi:10.1053/j.gastro.2017.09.002. 

59. Xu, H.; Oriss, T.B.; Fei, M.; Henry, A.C.; Melgert, B.N.; Chen, L.; Mellor, A.L.; Munn, 

D.H.; Irvin, C.G.; Ray, P.; et al. Indoleamine 2,3-dioxygenase in lung dendritic cells 

promotes Th2 responses and allergic inflammation. Proc Natl Acad Sci U S A 2008, 

105, 6690-6695, doi:10.1073/pnas.0708809105. 

60. Scott, G.N.; DuHadaway, J.; Pigott, E.; Ridge, N.; Prendergast, G.C.; Muller, A.J.; 

Mandik-Nayak, L. The immunoregulatory enzyme IDO paradoxically drives B cell-

mediated autoimmunity. J Immunol 2009, 182, 7509-7517, 

doi:10.4049/jimmunol.0804328. 

61. Yue, E.W.; Sparks, R.; Polam, P.; Modi, D.; Douty, B.; Wayland, B.; Glass, B.; 

Takvorian, A.; Glenn, J.; Zhu, W.; et al. INCB24360 (Epacadostat), a Highly Potent 

and Selective Indoleamine-2,3-dioxygenase 1 (IDO1) Inhibitor for Immuno-oncology. 

ACS Med Chem Lett 2017, 8, 486-491, doi:10.1021/acsmedchemlett.6b00391. 

62. Witkiewicz, A.; Williams, T.K.; Cozzitorto, J.; Durkan, B.; Showalter, S.L.; Yeo, C.J.; 

Brody, J.R. Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal 

adenocarcinoma recruits regulatory T cells to avoid immune detection. J Am Coll Surg 

2008, 206, 849-854; discussion 854-846, doi:10.1016/j.jamcollsurg.2007.12.014. 

63. Witkiewicz, A.K.; Costantino, C.L.; Metz, R.; Muller, A.J.; Prendergast, G.C.; Yeo, 

C.J.; Brody, J.R. Genotyping and expression analysis of IDO2 in human pancreatic 

cancer: a novel, active target. J Am Coll Surg 2009, 208, 781-787; discussion 787-789, 

doi:10.1016/j.jamcollsurg.2008.12.018. 

64. Skouras, C.; Zheng, X.; Binnie, M.; Homer, N.Z.; Murray, T.B.; Robertson, D.; Briody, 



 

 

L.; Paterson, F.; Spence, H.; Derr, L.; et al. Increased levels of 3-hydroxykynurenine 

parallel disease severity in human acute pancreatitis. Sci Rep 2016, 6, 33951, 

doi:10.1038/srep33951. 

65. Lim, S.Y.; Davidson, S.M.; Mocanu, M.M.; Yellon, D.M.; Smith, C.C. The 

cardioprotective effect of necrostatin requires the cyclophilin-D component of the 

mitochondrial permeability transition pore. Cardiovasc Drugs Ther 2007, 21, 467-469, 

doi:10.1007/s10557-007-6067-6. 

66. Shalbueva, N.; Mareninova, O.A.; Gerloff, A.; Yuan, J.; Waldron, R.T.; Pandol, S.J.; 

Gukovskaya, A.S. Effects of oxidative alcohol metabolism on the mitochondrial 

permeability transition pore and necrosis in a mouse model of alcoholic pancreatitis. 

Gastroenterology 2013, 144, 437-446 e436, doi:10.1053/j.gastro.2012.10.037. 

67. Toth, E.; Maleth, J.; Zavogyan, N.; Fanczal, J.; Grassalkovich, A.; Erdos, R.; Pallagi, 

P.; Horvath, G.; Tretter, L.; Balint, E.R.; et al. Novel mitochondrial transition pore 

inhibitor N-methyl-4-isoleucine cyclosporin is a new therapeutic option in acute 

pancreatitis. J Physiol 2019, 597, 5879-5898, doi:10.1113/JP278517. 

68. Shore, E.R.; Awais, M.; Kershaw, N.M.; Gibson, R.R.; Pandalaneni, S.; Latawiec, D.; 

Wen, L.; Javed, M.A.; Criddle, D.N.; Berry, N.; et al. Small Molecule Inhibitors of 

Cyclophilin D To Protect Mitochondrial Function as a Potential Treatment for Acute 

Pancreatitis. J Med Chem 2016, 59, 2596-2611, doi:10.1021/acs.jmedchem.5b01801. 

69. Criddle, D.N. Keeping mitochondria happy - benefits of a pore choice in acute 

pancreatitis. J Physiol 2019, 597, 5741-5742, doi:10.1113/JP279116. 

 

  



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1. Expression and distribution of RIPK1 and RIPK3 in RIPK1K45A and strain-

matched WT PACs. a) PCR experiments distinguished WT, heterozygous and homozygous RIPK1K45A mice. 

Each lane represents a single mouse (575 bp: RIPK1K45A homozygous; 473 bp: WT and both 575 bp and 473 bp: 

RIPK1K45A heterozygous). b) Representative western blotting images of RIPK1 (60 KD) and RIPK3 (57 KD) in 

WT and RIPK1K45A PACs. Calnexin (92 KD) was used as a loading control. c) Immunofluorescence images of 

RIPK1 (green) and RIPK3 (magenta) showing distribution in isolated PACs from WT and RIPK1K45A (scale bar: 

10 μm). All data are representative of at least 3 experiments. 


