Liu, Jiandong, Ma, Jianmin, Zhang, Zhicheng, Qin, Yuchen, Wang, Yan-Jie, Wang, Yao, Tan, Rou, Duan, Xiaochuan, Tian, Tong Zhen, Zhang, Cai Hong et al (show 41 more authors)
(2021)
2021 Roadmap: electrocatalysts for green catalytic processes.
JOURNAL OF PHYSICS-MATERIALS, 4 (2).
022004-022004.
Text
2021 Roadmap_JPhysMater.pdf - Published version Download (10MB) | Preview |
Abstract
<jats:title>Abstract</jats:title> <jats:p>Serious challenges in energy and the environment require us to find solutions that use sustainable processes. There are many sustainable electrocatalytic processes that might provide the answers to the above-mentioned challenges, such as the oxygen reduction reaction (ORR), water splitting, the carbon dioxide reduction reaction (CO<jats:sub>2</jats:sub>RR), and the nitrogen reduction reaction (NRR). These reactions can enhance the value added by producing hydrogen energy through water splitting or convert useless CO<jats:sub>2</jats:sub> and N<jats:sub>2</jats:sub> into fuels and NH<jats:sub>3</jats:sub>. These electrocatalytic reactions can be driven by high-performance catalysts. Therefore, the exploration of novel electrocatalysts is one of the important electrocatalytic fields. In this paper, we aim to systematically discuss a variety of electrocatalysts used for sustainable processes and to give further insights into their status and associated challenges. We invited many famous research groups to write this roadmap with topics including platinum (Pt) and its alloys for ORR, oxides for ORR, chalcogenides for ORR, carbon-based hollow electrocatalysts for ORR, carbides for ORR, atomically dispersed Fe–N–C catalysts for ORR, metal-free catalysts for ORR, single-atom catalysts (SACs) for ORR, metal boride (MB) electrocatalysts for water splitting, transitional metal carbides (TMCs) for water splitting, transition metal (TM) phosphides for water splitting, oxides for water splitting, sulfides for water splitting, layered double hydroxides for water splitting, carbon-based electrocatalysts for water splitting, Ru-based electrocatalysts for water splitting, metal oxides for CO<jats:sub>2</jats:sub>RR, metal sulfides for CO<jats:sub>2</jats:sub>RR, metals for CO<jats:sub>2</jats:sub>RR, carbon for CO<jats:sub>2</jats:sub>RR, SACs for CO<jats:sub>2</jats:sub>RR, heterogeneous molecular catalysts for CO<jats:sub>2</jats:sub>RR, oxides for NRR, chalcogenides for NRR, C<jats:sub>3</jats:sub>N<jats:sub>4</jats:sub> for NRR, SACs for NRR, etc. Their contributions enabled us to compile this 2020 roadmap on electrocatalysts for green catalytic processes and provide some suggestions for future researchers.</jats:p>
Item Type: | Article |
---|---|
Uncontrolled Keywords: | oxygen reduction reaction, water splitting, nitrogen reduction reaction, carbon oxide reduction reaction, oxides, sulfides, metals |
Divisions: | Faculty of Science and Engineering > School of Engineering |
Depositing User: | Symplectic Admin |
Date Deposited: | 10 May 2021 08:35 |
Last Modified: | 18 Jan 2023 22:49 |
DOI: | 10.1088/2515-7639/abd596 |
Related URLs: | |
URI: | https://livrepository.liverpool.ac.uk/id/eprint/3121987 |