
Streaming Multi-core Sample-based Bayesian Analysis

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor of Philosophy by

Alessandro Varsi

June 2021



i



To my grandparents

ii



Contents

Abbreviations xi

Abstract xiii

Acknowledgements xiv

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Publications, Patents and Technical Work . . . . . . . . . . . . . . . . . . 5

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5.1 Chapter 2 - Technical Background . . . . . . . . . . . . . . . . . . 6

1.5.2 Chapter 3 - Parallelising Particle Filters with Deterministic Run-
time on Distributed Memory Systems . . . . . . . . . . . . . . . . 7

1.5.3 Chapter 4 - An O(log2N) Fully-Balanced Particle Filter for Dis-
tributed Memory Architectures . . . . . . . . . . . . . . . . . . . . 7

1.5.4 Chapter 5 - A Fast Parallel Particle Filter on Hybrid Memory
Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.5 Chapter 6 - Streaming-Stan and SMC-Stan: Two High Perfor-
mance Computing Extension Packages for Stan . . . . . . . . . . . 7

1.5.6 Chapter 7 - Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.7 Appendix A - Distributed, Shared and Hybrid Memory Architectures 8

1.5.8 Appendix B - Stan . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.9 Appendix C - How to Install SMC methods in Stan . . . . . . . . 8

1.5.10 Appendix D - Reversible and Symplectic Numerical Integrators:
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Technical Background 10

2.1 Sequential Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Sequential Importance Sampling . . . . . . . . . . . . . . . . . . . 11

2.1.2 Sequential Importance Resampling . . . . . . . . . . . . . . . . . . 14

2.1.3 Sequential Monte Carlo Samplers . . . . . . . . . . . . . . . . . . . 16

2.1.4 Fixed-Lag Sequential Monte Carlo . . . . . . . . . . . . . . . . . . 17

2.2 Markov Chain Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . 19

iii



2.2.1 Metropolis-Hastings . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Hamiltonian Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 No-U-Turn Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3.1 Example: Neal’s Funnel . . . . . . . . . . . . . . . . . . . 24

3 Parallelising Particle Filters with Deterministic Runtime on Distributed
Memory Systems 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Literature Review on Redistribute for DMAs . . . . . . . . . . . . . . . . 28

3.3 SMC Methods on DMAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Embarrassingly Parallel . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 Cumulative Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.4 O((log2N)3) Fully-Balanced Redistribute . . . . . . . . . . . . . . 38

3.3.4.1 Bitonic Sort . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.4.2 Pivot Calculation . . . . . . . . . . . . . . . . . . . . . . 43

3.3.4.3 O((log2N)3) Fully-Balanced Redistribute . . . . . . . . . 44

3.4 Bitonic Sort Based Redistribute on MPI . . . . . . . . . . . . . . . . . . . 44

3.4.1 Pivot Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Rotational Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.3 Bitonic Sort Based Redistribute . . . . . . . . . . . . . . . . . . . 46

3.4.4 Algorithmic Implementation . . . . . . . . . . . . . . . . . . . . . . 47

3.4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.5.1 Redistribute . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.5.2 Stochastic Volatility . . . . . . . . . . . . . . . . . . . . . 52

3.5 Nearly Sort Based Redistribute on MPI . . . . . . . . . . . . . . . . . . . 54

3.5.1 Alternative Single Core Sorting Algorithms . . . . . . . . . . . . . 55

3.5.2 Sequential Nearly Sort . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.3 Parallel O((log2N)2) Nearly Sort . . . . . . . . . . . . . . . . . . . 57

3.5.4 Nearly Sort Based Redistribute . . . . . . . . . . . . . . . . . . . . 58

3.5.5 Algorithmic Implementation . . . . . . . . . . . . . . . . . . . . . . 58

3.5.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.6.1 Nearly Sort vs Bitonic Sort . . . . . . . . . . . . . . . . . 61

3.5.6.2 N-R vs B-R and C-R . . . . . . . . . . . . . . . . . . . . 61

3.5.6.3 Stochastic Volatility . . . . . . . . . . . . . . . . . . . . . 64

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 An O(log2N) Fully-Balanced Particle Filter for Distributed Memory
Architectures 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Rotational Nearly Sort: An O(log2N) Nearly Sort . . . . . . . . . . . . . 66

4.2.1 Alternative Version of O((log2N)2) Nearly Sort . . . . . . . . . . . 66

4.2.2 One Cumulative Sum for All Pivots . . . . . . . . . . . . . . . . . 67

4.2.3 One Round of Rotational Shifts for All Particles . . . . . . . . . . 68

4.2.4 Rotational Nearly Sort . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 A Three Step O(log2N) Fully-Balanced Redistribute for DMAs . . . . . . 71

4.3.1 Rotational Scatter . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

iv



4.3.2 Rotational Redistribute . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.3 O(log2N) Fully-Balanced Redistribute . . . . . . . . . . . . . . . . 75

4.3.4 Algorithmic Implementation . . . . . . . . . . . . . . . . . . . . . . 75

4.3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.6 O(log2N) Redistribute vs B-R and N-R . . . . . . . . . . . . . . . 77

4.3.7 Stochastic Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Rotational Nearly Sort and Split Redistribute . . . . . . . . . . . . . . . . 80

4.4.1 Rotational Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Rotational Nearly Sort and Split . . . . . . . . . . . . . . . . . . . 84

4.4.3 Algorithmic Implementation . . . . . . . . . . . . . . . . . . . . . . 84

4.4.4 Possible non-deterministic optimisations . . . . . . . . . . . . . . . 85

4.4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.5.1 Redistribute . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.5.2 Stochastic Volatility . . . . . . . . . . . . . . . . . . . . . 88

4.4.5.3 Vacuum Arc Remelting . . . . . . . . . . . . . . . . . . . 88

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 A Fast Parallel Particle Filter on Hybrid Memory Architectures 95

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 An O(log2N) OpenMP Particle Filter . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Embarrassingly Parallel . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.2 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.3 Cumulative Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.4 A Novel O(log2N) Redistribute on Shared Memory Systems . . . 99

5.2.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 A Hybrid MPI+OpenMP O(log2N) Particle Filter . . . . . . . . . . . . . 104

5.3.1 Embarrassingly Parallel . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.2 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.3 Cumulative Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.4 Rotational Nearly Sort and Split . . . . . . . . . . . . . . . . . . . 106

5.3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Streaming-Stan and SMC-Stan: Two High Performance Computing
Extensions for Stan 113

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 SMC-Stan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1 Proposal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1.1 Random Walk . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1.2 HMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1.3 NUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Streaming-Stan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.1 Proposal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.1.1 Fixed-Lag SMC . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1.2 Fixed-Lag HMC . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1.3 Fixed-Lag NUTS . . . . . . . . . . . . . . . . . . . . . . . 118

v



6.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.1 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.1.1 Stochastic Volatility . . . . . . . . . . . . . . . . . . . . . 118

6.4.1.2 Flood Water Level . . . . . . . . . . . . . . . . . . . . . . 119

6.4.1.3 Bearing-Only Tracking . . . . . . . . . . . . . . . . . . . 119

6.4.2 Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.3 Long-Term Memory Models . . . . . . . . . . . . . . . . . . . . . . 121

6.4.4 Run-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Conclusions 124

A Distributed, Shared and Hybrid Memory Architectures 126

A.1 Distributed Memory Architectures and MPI . . . . . . . . . . . . . . . . . 126

A.2 Shared Memory Architectures and OpenMP . . . . . . . . . . . . . . . . . 128

A.3 Hybrid Memory Architectures Using MPI and OpenMP . . . . . . . . . . 129

B Stan 131

B.1 How to Use CmdStan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.2 CmdStan: Back End Summary . . . . . . . . . . . . . . . . . . . . . . . . 132

B.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.3.1 Example: Student-t Distribution . . . . . . . . . . . . . . . . . . . 134

B.3.2 Example: Neal’s Funnel . . . . . . . . . . . . . . . . . . . . . . . . 135

C How to Install SMC Methods in Stan 136

C.1 How to Set up SMC-Stan . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

C.1.1 Proposal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 139

C.1.1.1 Random Walk . . . . . . . . . . . . . . . . . . . . . . . . 139

C.1.1.2 HMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

C.1.1.3 NUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C.2 How to Set up Streaming-Stan . . . . . . . . . . . . . . . . . . . . . . . . 140

C.2.1 Real-Time Measurement . . . . . . . . . . . . . . . . . . . . . . . . 141

C.2.2 Old State Declared as Data . . . . . . . . . . . . . . . . . . . . . . 142

C.2.3 Initial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

C.2.4 Proposal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 146

C.2.4.1 Fixed-Lag SMC . . . . . . . . . . . . . . . . . . . . . . . 146

C.2.4.2 Fixed-Lag HMC . . . . . . . . . . . . . . . . . . . . . . . 146

C.2.4.3 Fixed-Lag NUTS . . . . . . . . . . . . . . . . . . . . . . . 147

C.2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

C.2.5.1 Stochastic Volatility . . . . . . . . . . . . . . . . . . . . . 147

C.2.5.2 Flood Water Level . . . . . . . . . . . . . . . . . . . . . . 148

C.2.5.3 Bearing-Only Tracking . . . . . . . . . . . . . . . . . . . 149

C.2.5.4 Vacuum Arc Remelting . . . . . . . . . . . . . . . . . . . 151

D Reversible and Symplectic Numerical Integrators: Properties 154

vi



Bibliography 156

vii



Illustrations

List of Figures

1.1 State-of-art: speed-up of the resampling parallelisation in [85] for increasing

N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 History of IBM’s supercomputers . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Sequential Importance Resampling: state flow . . . . . . . . . . . . . . . . . 14

2.2 Sequential Redistribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Fixed-Lag Sequential Monte Carlo: state flow . . . . . . . . . . . . . . . . . . 18

2.4 Neal’s funnel example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Reset - speed-up for up to N = 224 and P = 256 . . . . . . . . . . . . . . . . 33

3.2 Reduction - binary tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 MPI Reduction - Example for N = 16 and P = 4 . . . . . . . . . . . . . . . . 35

3.4 Normalise - speed-up for up to N = 224 and P = 256 . . . . . . . . . . . . . 36

3.5 Parallel Cumulative Sum - binary tree structure . . . . . . . . . . . . . . . . 37

3.6 MPI Cumulative Sum - example for N = 16 and P = 4 . . . . . . . . . . . . 38

3.7 MPI Cumulative Sum - speed-up for up to N = 224 and P = 256 . . . . . . . 40

3.8 MVR - speed-up for up to N = 224 and P = 256 . . . . . . . . . . . . . . . . 40

3.9 Bitonic Sort - sorting network . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.10 MPI Bitonic Sort - speed-up for up to N = 224 and P = 256 . . . . . . . . . 43

3.11 O((log2N)3) Redistribute - example for N = 8 and P = N . . . . . . . . . . 43

3.12 Rotational Shifts - example for N = 16, P = 4 and r = 5 . . . . . . . . . . . 47

3.13 Bitonic Sort Based Redistribute - example for N = 16 and P = 4 . . . . . . . 48

3.14 B-R vs C-R vs O((log2N)3) Redistribute - run-times for increasing N and P 51

3.15 Stochastic Volatility - run-times of PF with B-R or C-R or O((log2N)3)

redistribute for increasing N and P . . . . . . . . . . . . . . . . . . . . . . . 53

3.16 Stochastic Volatility - bottleneck analysis for PF with B-R for N = 224 . . . 54

3.17 B-R - bottleneck analysis for N = 224 . . . . . . . . . . . . . . . . . . . . . . 54

3.18 Nearly Merge - example for N
P = 4 and up = 1 . . . . . . . . . . . . . . . . . 57

3.19 Nearly Sort - sorting network . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.20 Nearly Sort Based Redistribute - example for N = 16 and P = 4 . . . . . . . 59

3.21 Nearly Sort vs Bitonic Sort - run-time speed-ups for increasing P . . . . . . 61

3.22 N-R vs B-R vs C-R - run-times for increasing N and P . . . . . . . . . . . . 62

3.23 Stochastic Volatility - run-times of PF with N-R or B-R or C-R for increasing

N and P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Parallel Cumulative Sum - original structure . . . . . . . . . . . . . . . . . . 67

4.2 O(log2N) redistribute - example for N = 8 and P = 4 . . . . . . . . . . . . . 71

4.3 O(log2N) redistribute vs B-R vs N-R - run-times for increasing N and P . . 78

viii



4.4 Stochastic Volatility - run-times of PF with O(log2N) redistribute or N-R

or B-R for increasing N and P . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Stochastic Volatility - bottleneck analysis of PF with Algorithm 28 or N-R

or B-R for N = 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Rotational Nearly Sort and Split - example for N = 8 and P = 4 . . . . . . . 82

4.7 RoSS vs B-R vs N-R - run-times for increasing N and P . . . . . . . . . . . 87

4.8 Stochastic Volatility - run-times of PF with RoSS or N-R or B-R for increas-

ing N and P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.9 Vacuum Arc Remelting - run-times of PF with RoSS or N-R or B-R for

increasing N and P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.10 VAR and Stochastic Volatility with RoSS - bottleneck analysis of PF with

RoSS, Algorithm 28, N-R or B-R for N = 224 and increasing P . . . . . . . . 93

5.1 OpenMP IS - speed-ups for increasing N and DOP . . . . . . . . . . . . . . 97

5.2 OpenMP Normalise - speed-ups for increasing N and DOP . . . . . . . . . . 98

5.3 OpenMP Normalise - speed-ups for increasing N and DOP . . . . . . . . . . 99

5.4 OpenMP Normalise - speed-ups for increasing N and DOP . . . . . . . . . . 101

5.5 Novel redistribute - Example for N = 16 and T = 4. . . . . . . . . . . . . . . 103

5.6 Stochastic Volatility - run-times on OpenMP 4.5 for increasing N and DOP . 105

5.7 Stochastic Volatility - bottleneck analysis on OpenMP 4.5 for N = 224. . . . 106

5.8 MPI+OpenMP RoSS vs MPI RoSS - run-times for increasing N and P . . . 110

5.9 Stochastic Volatility MPI+OpenMP PF vs MPI PF - run-times for increasing

N and P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 SMC-Stan - Neal’s funnel example . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Fixed-Lag Hamiltonian Monte Carlo: state flow . . . . . . . . . . . . . . . . 117

6.3 Flood Water Level - FL-SMC vs FL-HMC vs FL-NUTS: run-times of one

time step for increasing N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.1 Distributed Memory Architecture . . . . . . . . . . . . . . . . . . . . . . . . 126

A.2 MPI node topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.3 Shared Memory Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.4 Hybrid Memory Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.1 Stan - back end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

List of Tables

3.1 Literature review on redistribute for DMAs. . . . . . . . . . . . . . . . . . . 31

3.2 Details of the clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Time complexity of each task of SMC methods on DMAs. . . . . . . . . . . . 85

4.2 Standard deviations for noise terms. . . . . . . . . . . . . . . . . . . . . . . . 90

ix



4.3 Parameters of Alloy 718. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Nominal values, furnace and Alloy 718 properties. . . . . . . . . . . . . . . . 91

6.1 Stochastic Volatility: average RMSE in log10 scale of the state over TPF =

100 time steps and for N = 29 particles. . . . . . . . . . . . . . . . . . . . . . 119

6.2 Flood Water Level: average RMSE in log10 scale of the state over TPF = 100

time steps and for N = 29 particles. . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Bearing-Only Tracking: average RMSE in log10 scale of the state over TPF =

100 time steps and for N = 29 particles. . . . . . . . . . . . . . . . . . . . . . 120

6.4 Vacuum Arc Remelting: average RMSE in log10 scale of each state quantity

over TPF = 100 time steps, for N = 217 particles and different proposals. . . 121

6.5 Bearing-Only Tracking: average RMSE in log10 scale of each state quantity

over TPF = 100 time steps, for N = 29 particles, different proposals and

values of l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.1 Common MPI communicators. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

x



Abbreviations

The following abbreviations are found throughout this thesis:

API Application Programming Interface

B-R Bitonic sort based Redistribute

C-R Centralised Redistribute

CPU Computing Processing Unit

CDF Cumulative Density Function

DOP Degree Of Parallelism

DMA Distributed Memory Architecture

ESS Effective Sample Size

FPGA Field Programmable Gate Array

FL-HMC Fixed-Lag Hamiltonian Monte Carlo

FL-NUTS Fixed-Lag No-U-Turn Sampler

FL-SMC Fixed-Lag Sequential Monte Carlo

GPU Graphics Processing Unit

HMC Hamiltonian Monte Carlo

HPC High Performance Computing

HMA Hybrid Memory Architecture

IS Importance Sampling

LSB Least Significant Bit

MCMC Markov Chain Monte Carlo

MPI Message Passing Interface

MVR Minimum Variance Resampling

MC Monte Carlo

MSB Most Significant Bit

N-R Nearly sort based Redistribute

NUTS No-U-Turn Sampler

PDE Partial Differential Equation

PF Particle Filter

PDF Probability Density Function

RNG Random Number Generator

RW Random Walk

xi



RNA Resampling with Non-proportional Allocation

RPA Resampling with Proportional Allocation

RMSE Root Mean Squared Error

RoSS Rotational nearly Sort and Split

SIR Sequential Importance Resampling

SMC-S Sequential Importance Sampling

SMCMC Sequential Markov Chain Monte Carlo

SMC Sequential Monte Carlo

S-R Sequential Redistribute

SMA Shared Memory Architecture

xii



Abstract

Sequential Monte Carlo (SMC) methods are a well-established family of Bayesian infer-

ence algorithms for performing state estimation for Non-Linear Non-Gaussian models.

As the models become more accurate, the run-time of SMC applications becomes increas-

ingly slow. Parallel computing can be used to compensate for this side-effect. However,

an efficient parallelisation of SMC is hard to achieve, due to the challenges involved in

parallelising the bottleneck, resampling, and its constituent redistribute step. While re-

distribution can be performed in O(NT log2N) on a Shared Memory Architecture (SMA)

using T parallel threads (e.g. a GPU or mainstream CPUs), a state-of-the-art redis-

tribute takes O((log2N)2) computations on Distributed Memory Architectures (DMAs)

which most supercomputers are made of. In this thesis, the focus is on three major

goals.

First, the thesis proposes a novel parallel redistribute for DMAs which achieves

O(log2N) time complexity. It is shown that on Message Passing Interface (MPI) the

novel redistribute is up to eight times faster than the O((log2N)2) one. On a cluster of

256 cores, an SMC method employing the O((log2N)2) redistribute becomes up to six

times faster when switching to the novel redistribution, which is also proved to no longer

be the bottleneck. For the same number of cores, the maximum reported speed-up vs a

single-core SMC method is 160. A patent application on this invention is currently filed.

Second, the thesis describes a novel parallel redistribute for SMAs which takes

O(NT + log2N) steps and fully exploits the computational power of SMAs. The pro-

posed approach is up to six times faster than the O(NT log2N) one. This shared memory

implementation is then combined with the MPI O(log2N) redistribution to obtain a

hybrid distributed-shared memory parallel redistribute that fully exploits the large par-

allelism that modern supercomputers offer.

In the end, to make these advances widely available this thesis presents Streaming-

Stan and SMC-Stan, two extension packages for Stan, a popular statistical programming

language. Streaming-Stan and SMC-Stan offer the possibility to describe models by

using the same intuitive syntax used by regular Stan, but they are also equipped with

the aforementioned High Performance Computing (HPC) SMC method, in the form of

Fixed-Lag SMC and SMC sampler respectively. The same SMC methods also provide

a vast choice of proposal distributions, including (on Streaming-Stan) two novel ones,

presented in this thesis, which combine the main features of Fixed-Lag SMC methods

with Hamiltonian Monte Carlo (HMC) and No-U-Turn Sampler (NUTS).
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Chapter 1

Introduction

Future events are and will always be an object of concern. Common daily questions could

be about, for example, tomorrow’s weather, stock markets or, unfortunately, reported

cases during a pandemic. The inherent random nature of future events indeed influences

many aspects of our present, especially the decisions we make and the margin of risk

that comes with them. Therefore, making accurate predictions is a subject of great

interest. However, since time is also a major contributing factor to the efficacy and

the effectiveness of our decisions, making predictions both accurately and as quickly as

possible is usually critical. These requests often arise in a wide variety of real-world

problems where a considerable amount of money or lives are on the line. It is then

crucially important to provide the world with a tool to address these problems.

1.1 Overview

There exist several methodologies to perform statistical inference. Bayesian inference has

been one of the most commonly used in the past 70 years. This approach is based on the

well-know Bayes’ theorem which states that a good knowledge of the past based on our

personal experience, called prior, wisely combined with actual observations of present

events, called data, give you a posteriori probability distribution, named posterior or

target, from which we can make fairly good estimates of the future. Predictions also

become more accurate as new data is collected, making Bayesian inference a versatile

methodology in the context of both on-line and off-line applications. It is then not

surprising that Bayesian inference methods find application in a wide variety of domains,

ranging from economics to medicine, meteorology or, broadly speaking, any field where

it is important to collect data and make predictions afterwards. For example, one could

be interested in estimating the trajectory of a hurricane, given data of wind speed,

temperature and atmospheric pressure; another example could be predictions of reported

COVID-19 positive cases within a few weeks, after new restrictions are introduced.

In other words, for any system we are given its model, a set of mathematical equations

designed to describe the state, a collection of the most characteristic physical quantities

of the system. Since models usually describe states only under ideal scenarios, i.e.

1
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assuming no disturbance from the external environment occurs, traditional numerical

methods do not always guarantee accurate results. We wish to apply Bayesian inference

methods to convey uncertainty in the state estimation process. Bayesian inference is

itself a large family of algorithms, which are classified within sub-classes, each of them

providing advantages and disadvantages.

Sequential Monte Carlo (SMC) methods are statistical algorithms which are com-

monly employed to make Bayesian inferences in the context of either dynamic models

(whose posterior is time-variant) or static models (whose target is constant in time). The

application domain is therefore vast and diverse: in the literature we can find applica-

tions in positioning [35], medical research [22, 24], risk analysis [97], weather forecasting

[88] or financial econometrics [51]. Particle Filters (PFs) [6] and SMC samplers [61] are

two well-known examples of SMC methods. The first is broadly used for dynamic models

under non-liner and non-Gaussian scenarios, while SMC samplers are more frequently

applied to static models.

The key idea behind all SMC methods is to generate a population of N hypotheses

of the true state, called particles or samples, by randomly selecting them from a user-

defined probability distribution, called proposal. The particles are then confronted with

the data, i.e. measurable quantities related to the state. This way we can assign to each

sample a weight which functions as a probability of how well that particle resembles the

true state. At any given iteration, the proposed estimate will be the weighted mean of

the particles. These steps are then repeated iteratively until the simulation is stopped.

Since the trend is to make the models more and more detailed and complex, modern

applications of SMC methods naturally get increasingly demanding in terms of accuracy

constraints. Therefore, the research community is highly active on investigating solutions

to satisfy this request. It is widely known that accuracy can trivially be improved by

using more particles. That is because the proposal is proven to converge to the true

distribution of interest as N increases [6]. This approach is often used as long as enough

memory resources are available [52, 53]. However, it is also possible to improve the

accuracy of the estimate by using several alternative strategies, ranging from employing a

more sophisticated proposal distribution [63] to collecting more measurements if possible

[99]. Applying any of these solutions, however, is likely to significantly slow down

the run-time which could also become even more problematic if the constraint on the

measurement rate is strict. In order to compensate for this side-effect without losing

accuracy (e.g. by avoiding decreasing the number of particles), SMC methods need

to use parallel computing, a type of computing technique which employs P processing

elements, called cores, to enhance the run-time of an algorithm. The goal is therefore to

provide speed-up, which is straightforwardly defined as the solution time of an algorithm

run by one core divided by the solution time of the same algorithm run by P > 1

cores. More precisely, the focus is on strong scaling performance which defines how the

run-time varies as a function of P for a fixed total problem size.
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1.2 Motivations

SMC methods are often claimed to be trivially parallelisable because the samples are sta-

tistically independent of each other, meaning that they can be generated and weighted

in embarrassingly parallel fashion. Although this statement is correct, at some point it

becomes necessary to perform a resampling step in order to correct the weight degenera-

tion of the particles, a problem which is inevitably caused by the sampling technique [6].

A textbook implementation of this resampling step is impossible to parallelise by using

standard embarrassingly parallel computing techniques. Previous research has however

demonstrated that it is possible to parallelise the resampling operation by using a divide-

and-conquer strategy [58, 85]. The achieved time complexity is O((log2N)2) for P = N

parallel cores. However, implementations of this solution on several frameworks, such

as Hadoop or Spark, have shown little to no scalability, even for a large number of

cores (see Figure 1.1). It is therefore necessary to investigate alternative scalable solu-

tions for resampling to meet the accuracy constraints by fully exploiting the increasing

computational power of modern computers and supercomputers (see Figure 1.2).
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Figure 1.1: State-of-art: speed-up of the resampling parallelisation in [85] for increas-
ing N .

In doing so, several questions need to be answered. The first is to identify a more

suitable framework than MapReduce (as used in [85]) for divide-and-conquer resampling

parallelisations. The second is to develop alternative parallel solutions for resampling,

hopefully achieving a faster time complexity. It is also necessary to conduct a thorough

investigation of the achieved performance of the resulting SMC method under various

conditions, such as different computer architectures, increasing N or number of cores,
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different models or proposal distributions. Although SMC methods are widely popu-

lar, the vast majority of users mostly employ them as black-box, and even fewer have

parallel computing background. Therefore, it would also be greatly helpful to provide

a probabilistic programming language, with a succinct, user-friendly syntax and, most

importantly, which builds on an optimised parallel implementation of an SMC method.

This would make the improvements on SMC methods in the High Performance Com-

puting (HPC) context easily accessible to anyone, with negligible learning overhead.
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1.3 Contributions

The first major contribution of this thesis is to propose Message Passing Interface (MPI),

a popular parallel programming model for distributed memory systems, as the ideal

framework to implement the resampling parallelisation in [85]. Along with its imple-

mentation on MPI, further optimisations are also presented. For this contribution, my

role has been to port the algorithm from MapReduce to MPI and gather the numer-

ical results on a supercomputer. Precious tips during the implementation phase have

been offered by Dr Lykourgos Kekempanos, Dr Jeyarajan Thiyagalingam and Professor

Simon Maskell as authors of reference [85]. This contribution is described in Chapter 3.

The second major contribution is to fully redesign the same algorithm and propose

a novel one on MPI that achieves O(log2N) time complexity. This algorithm has been

co-invented by me and Professor Simon Maskell. I also entirely coded the algorithm and

collected the experimental results. This invention is presented in Chapter 4.
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The third contribution is to design shared memory parallel solutions for each single-

node task of the novel MPI O(log2N) resampling; the preferred shared memory Ap-

plication Programming Interface (API) is OpenMP. This way it is possible to embed

the OpenMP components within the novel MPI resampling and, therefore, obtain a hy-

brid distributed-shared memory version of that which fully exploits the computational

resources that modern supercomputers offer. These shared memory parallel solutions

have been co-designed by me and Professor Simon Maskell. The coding and experimen-

tal phases were conducted by me but useful coding tips during were gently given by Jack

Taylor, and Professor Vassil Alexandrov. This contribution is described in Chapter 5.

The final contribution is to develop two extension packages for Stan, a probabilistic

programming language which performs Bayesian inference on static models by using a

sampling algorithm called No-U-Turn Sampler (NUTS), as often used in the context of

Markov Chain Monte Carlo (MCMC) methods. Stan currently counts about 10 thousand

users, mostly statisticians, and its success is due to its intuitive, succinct syntax and its

ability to interface with popular programming languages such as Python, MATLAB and

R. These extensions have preserved all functionalities and syntax of Stan but they also

embodies a PF or an SMC sampler, depending on the package. Since Stan has a back end

written in C++, it is possible to embed an MPI+OpenMP parallel SMC method, having

the same resampling parallelisation described in the previous contributions. Therefore,

these extension packages can be installed and run on a modern supercomputer and can be

applied in the context of either dynamic or static models. In each version, the user is also

given the option of choosing from several proposal distributions, including two novel ones,

which are co-invented by me and Professor Simon Maskell, and inspired from previous

work done by Dr Paul Horridge and illustrated in Appendix D. I and the people working

in my research group have agreed on naming these extension packages Streaming-Stan,

in the case of PFs, and SMC-Stan, in the case of SMC samplers. The implementation

of these packages (described in Appendix C of this thesis) has been mostly conducted

by me but Robert Moore, Dr Lee Devlin, Dr Philip Clemson and Dr Alexander Phillips

have been essential in finding some elusive bugs. The development of Streaming-Stan and

SMC-Stan is the focal point of a research project, called Big Hypotheses, led by Professor

Simon Maskell and closely coupled to work sponsored by many industrial partners such

as Schlumberger (my PhD sponsor), IBM, Dstl, GCHQ, the National Crime Agency,

AWE, MBDA and Leonardo. The novelty of this contribution is presented in Chapter

6.

1.4 Publications, Patents and Technical Work

The contributions described in Section 1.3 have produced the following published papers:

1. A. Varsi, L. Kekempanos, J. Thiyagalingam, and S. Maskell, “Parallelising Par-

ticle Filters with Deterministic Runtime on Distributed Memory Systems,” IET

Conference Proceedings, pp. 11–18, 2017 (reference [89]). This paper is related to
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the first major research outcome described in the previous section, and, therefore,

my contribution has been at least equal to the other co-authors.

2. A. Varsi, J. Taylor, L. Kekempanos, E. Pyzer Knapp and S. Maskell, “A Fast

Parallel Particle Filter for Shared Memory Systems,” in IEEE Signal Processing

Letters, vol. 27, pp. 1570-1574, 2020 (reference [91]). This paper presents the

third major research outcome described in Section 1.3, to which my contribution

has been at least equal to the other co-authors.

and the following papers, either submitted or still in preparation:

• Alessandro Varsi and Simon Maskell, “An O(log2N) Fully-Balanced Particle

Filter for Distributed Memory Architectures”, currently submitted to IEEE Trans-

actions on Signal Processing. This paper is related to the second major research

outcome described in Section 1.3, and my contribution to it has been at least equal

to the other co-author.

• A. Varsi, L. Devlin, S. Maskell, “A Fixed-Lag SMC method with Hamiltonian

moves for Long-Term Memory Models,” which will be submitted to either IEEE

Transactions on Signal Processing or IEEE Signal Processing Letters and is related

to the fourth major contribution described in Section 1.3.

The same contributions have also produced the following filed patent:

• Alessandro Varsi and Simon Maskell, “Method Of Parallel Implementation in

Distributed Memory Architectures”. GB Patent Request 2101274.5, 29 Jan 2021

(reference [92]). This title has been made uninformative on purpose for Intellectual

Property reasons. However, if the patent is granted, the title will be changed to:

“An O(log2N) Fully-Balanced Redistribute for Sequential Monte Carlo methods

on Distributed Memory Architectures” as this patent is related to the second major

contribution discussed in Section 1.3.

Other technical work related to and cited in this thesis can be found in:

• A. Varsi, L. Kekempanos, J. Thiyagalingam, and S. Maskell, “A Single SMC Sam-

pler on MPI that Outperforms a Single MCMC Sampler”, eprint arXiv:1905.10252,

2019 (reference [90]).

1.5 Outline

The rest of the thesis is divided into six chapters and two appendixes.

1.5.1 Chapter 2 - Technical Background

Chapter 2 explains in details the necessary technical background to understand the

chapters that follow. An explanation of the most important SMC methods is provided

in Section 2.1, while details of the most useful MCMC methods to this thesis are given

in Section 2.2.
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1.5.2 Chapter 3 - Parallelising Particle Filters with Deterministic Run-

time on Distributed Memory Systems

Chapter 3 starts with a thorough literature review and description of the most recent

parallelisation strategies for resampling on distributed memory environments. Section

3.4 explains how to implement on MPI each of the key components of the resampling

in [85]. In Section 3.4.5, the resulting algorithm is compared to another existing MPI

implementation of resampling. Section 3.5 explains how to further optimise the same

MPI resampling algorithm and Section 3.5.6 provides the results of the improvements

and their impact on a toy problem solved by a PF.

1.5.3 Chapter 4 - An O(log2 N) Fully-Balanced Particle Filter for Dis-

tributed Memory Architectures

In Chapter 4, the reader will see that, starting from the outcomes of Chapter 3, the

invention of the novel O(log2N) parallel resampling on MPI is the result of three ideas

described in Sections 4.2.1, 4.2.2 and 4.2.3. The first implementation of the O(log2N)

resampling is presented in Section 4.3 and a further improvement of the same is described

in Section 4.4. Sections 4.3.5 and 4.4.5 compare the novel MPI O(log2N) resampling

with the algorithms presented in Chapter 3. In the same sections, the impact of the

improvements are also studied on a PF working on two models, a toy problem and a

real-world one.

1.5.4 Chapter 5 - A Fast Parallel Particle Filter on Hybrid Memory

Architectures

Chapter 5 dedicates a section to each of the key components of the MPI O(log2N)

SMC method from Chapter 4, in order to present for each of them a parallelisation

on OpenMP. In particular, Section 5.2.4 describes a novel resampling parallelisation

algorithm for SMAs that achieves O(logN) time complexity. In Section 5.3, an MPI+

OpenMP PF is present and compared to its MPI-only equivalent.

1.5.5 Chapter 6 - Streaming-Stan and SMC-Stan: Two High Perfor-

mance Computing Extension Packages for Stan

Chapter 6 presents Streaming-Stan and SMC-Stan and describes how to use them.

More precisely, Section 6.2 focuses on SMC-Stan and shows the numerical results on

an exemplary SMC-Sampler for different proposal distributions. Section 6.3 illustrates

Streaming-Stan and its proposal distributions, including two novel ones which combine

the main features of Fixed-Lag SMC methods with Hamiltonian Monte Carlo (HMC)

and NUTS. The performance of Streaming-Stan are demonstrated in Section 6.4 on

multiple dynamic models and for several comparison metrics: flexibility, accuracy and

run-time.
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1.5.6 Chapter 7 - Conclusions

Chapter 7 highlights and summarises the most important outcomes of the research

findings explained in the previous chapters. It also discusses ideas for future work,

including those currently under development and those which are only planned for now.

1.5.7 Appendix A - Distributed, Shared and Hybrid Memory Archi-

tectures

Appendix A briefly describes distributed, shared and hybrid memory architectures and

highlights their most important advantages and disadvantages. This appendix also pro-

vides a brief description of MPI and OpenMP and their most useful routines.

1.5.8 Appendix B - Stan

Appendix B gives brief details about Stan, its syntax and its most important function-

alities.

1.5.9 Appendix C - How to Install SMC methods in Stan

Appendix C illustrates how to install a PF and an SMC sampler in Stan in order to

respectively set up Streaming-Stan and SMC-Stan, the HPC extensions packages for

Stan which are presented in Chapter 6.

1.5.10 Appendix D - Reversible and Symplectic Numerical Integra-

tors: Properties

Appendix D proves an important property of Leapfrog, the numerical integrator used in

NUTS and HMC. This property is fundamental to design the novel proposal distributions

presented in Chapter 6.

1.6 Notation

Many papers are cited in this work and, although they mostly share the same topic, the

notation tends to be very diverse and often hard to translate from one paper to another.

Since the reader may be used to a different notation, it is useful to provide a section that

explains the notation of this thesis and the reason behind each choice. The goal is to

pick a notation which is elegant, simple and as close to the core papers of this thesis as

possible, without losing sight of the main subject: presenting a novel parallel resampling

algorithm for SMC methods in C/C++ programming language.

Upper-case italic here is used for scalar parameters that are often input arguments

to the algorithms presented in this work. Typical examples are the number of particles

N , the dimension of each particle, M , the number of MPI cores, P , or the number of

SMC iterations, TSMC .
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Lower-case italic here is mostly used for iterators of vectors and matrices. This

is a common choice in mathematics but also in computer science, including software

development. Lower-case italic is also occasionally used to describe other scalar physical

constants or parameters, such as the rank of an MPI core, p, or the number of particles

per each core, n.

Vectors and matrices are in bold. Typical examples are xt, the matrix of multidi-

mensional particles at the t-th SMC iteration, or wt, the vector of importance weights

at the t-th SMC iteration. In order to refer to the i-th element of a vector/matrix within

the same SMC iteration, the iterator i is placed in the superscript: for example xit is

the i-th particle at the time step t and wi
t is its weight. Also t may be omitted for

brevity if the vector is constant over time, or we are not interested in comparing the

values of that vector across two or more consecutive time steps. Here it is useful to

specify that elements of a vector/matrix are in bold too, although they might as well

be scalars, e.g. wi
t ∈ R. This choice is motivated by two reasons: first, in the case of

matrices the i-th element is itself a vector (e.g. xit ∈ RM ); second, the common view

among software developers (including C/C++ developers) is to consider elements of a

vector as single-element vectors themselves. It is also useful to specify that sometimes

papers write iterators between brackets to avoid confusion with the power operation.

Although this choice is robust and consistent, here it would be quite excessive, because

lots of vector equations in this work are in element-wise form but they very rarely need

powers. In those rare cases, the power of an element is expressed using brackets as

follows: (wi
t)

2. Exceptions are made for the power of scalars or constant numbers, e.g.

23 = 8.

Iterators of vectors, matrices or mathematical operations over arrays such as Sum

or Product start from 0. This choice is mostly motivated by the syntax in C/C++, the

main programming language here, although it is rather unpopular in mathematics and

invalid in some programming languages such as MATLAB and Stan.



Chapter 2

Technical Background

This chapter provides the necessary technical background about SMC methods, with a

particular emphasis on Particle Filters (PFs) and Fixed-Lag SMC, two methods that will

be considered in the following chapters. Section 2.1.3 offers a brief explanation about

SMC samplers, and their similarities and differences with PFs. Understanding these

similarities and differences is important to understand Fixed-Lag SMC more deeply.

Although this work is not about Markov Chain Monte Carlo (MCMC) methods, some

novelty which is discussed in Chapter 6 requires a high level of understanding about

MCMC. Therefore, Section 2.2 describes Metropolis-Hastings, Hamiltonian Monte Carlo

(HMC) and No-U-Turn Sampler (NUTS), three popular MCMC methods. The reader

is referred to [6, 28, 30, 31, 37, 43, 44, 61, 68] for further details.

2.1 Sequential Monte Carlo Methods

Let Xt ∈ RM be the state of a system at any given time step t. In simple terms, the

state is a set of physical quantities that fully describes the most important features of

the system over time. Xt can be evaluated by a linear or non-linear vectorial function

ft : RM × RMv → RM as follows:

Xt = ft(Xt−1,Vt) (2.1)

where Vt ∈ RMv is an i.i.d process noise. We are interested in evaluating accurately

Xt ∀t. However, in many applications measurements of the state (or at least a subset

of the state) are not available and samples of Vt cannot be generated directly. At

each time step, we are only given partial measurements of Xt, or measurements of

physical quantities which are related to Xt by some physical law. Let Yt ∈ RMy be

the measurement vector collected at t, and related to the state by a linear or non-linear

vectorial function gt : RM × RMw → RMy as follows:

Yt = gt(Xt,Wt) (2.2)

10
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where Wt ∈ RMw is an i.i.d measurement noise. Equations (2.1) and (2.2) define the

system model. Bayesian inference methods can be used to address this problem.

The Bayesian approach starts by defining the posterior (or target) p(Xt|Y1:t), where

Y1:t is the history of measurements from time step 1 to the current time step t. The

initial condition is that p(X0|Y0) = p(X0) which means that no measurement is available

at the beginning. Then, p(Xt|Y1:t) is recursively evaluated ∀t by using a prediction-

update approach as follows.

In the prediction phase, the posterior at the previous time step p(Xt−1|Y1:t−1) is

assumed to be given. Then, the state-transition equation (2.1) is used to make a state

prediction, which is equivalent to evaluating p(Xt|Y1:t−1), the probability of Xt prior

to collecting a new Yt (commonly called prior). This can be done by using the Chap-

man–Kolmogorov equation as follows:

p(Xt|Y1:t−1) =

∫
p(Xt|Xt−1,Y1:t−1)p(Xt−1|Y1:t−1)dXt−1

=

∫
p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1

(2.3)

where p(Xt|Xt−1) = p(Xt|Xt−1,Y1:t−1) because (2.1) is a Markov process of order one.

Once the new measurement Yt is collected, the prediction can be updated by using

the Bayes’ rule as follows:

p(Xt|Y1:t) =
p(Xt|Y1:t−1)p(Yt|Xt)

p(Yt|Y1:t−1)
=

p(Xt|Y1:t−1)p(Yt|Xt)∫
p(Xt|Y1:t−1)p(Yt|Xt)dXt

(2.4)

where p(Yt|Xt) and p(Yt|Y1:t−1) are commonly called likelihood and evidence (or nor-

malising constant) respectively. Equations (2.3) and (2.4) form the basis of optimal

Bayesian solutions. However, this problem is often impossible to solve analytically,

since the evidence may be highly dimensional or impossible to integrate.

SMC methods represent an approximate solution to (2.3) and (2.4). As mentioned

in Chapter 1, PFs and SMC samplers are both SMC methods which are respectively

used in the context of dynamic models and static models. Therefore, the two methods

can be applied in complementary domains, although in some cases SMC Samplers can

also be configured to offer improved performance in contexts where a PF struggles [57].

The next two sections and Section 2.1.4 illustrate two types of PFs, and Section 2.1.3

offers a brief description of SMC samplers.

2.1.1 Sequential Importance Sampling

SMC methods apply the Importance Sampling (IS) principle to make Bayesian inferences

of the state of a dynamic or static system. The main idea consists of randomly generating

xt ∈ RN×M , a population of N statistically independent hypothesis of Xt called particles

(or samples), in order to approximate the true posterior at any time step t. Each particle

xit is then assigned to an unnormalised weight wi
t, such that the array of weights wt ∈ RN
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provides information on which particle best resembles the true state. A new estimate of

Xt can then be computed as weighted mean of the particles. Details on IS follow.

Let p(X) be a Probability Density Function (PDF) from which it is hard to sample

directly but can still be evaluated up to a constant factor. The IS principle says that

one can arbitrarily pick an alternative probability distribution q(X), called proposal or

importance density, from which it is easy to draw N samples xi and give them a weight

wi such that:

p(X) ≈
N−1∑
i=0

wiδ(X− xi) ∝
N−1∑
i=0

w̃iδ(X− xi) (2.5)

where w̃i is the normalised weight such that
∑

w̃i = 1. The choice of the weights is

crucial for (2.5) to work. In IS the weights are chosen up to a normalising constant

factor as follows:

wi =
p(xi)

q(xi)
(2.6)

Now we can apply the concepts above to the case of SMC.

Let p(X0:t|Y1:t) be the posterior distribution of interest where X0:t and Y1:t are the

history of states and measurements up to time step t. According to the IS principle,

we can sample N random particle trajectories xi0:t from the proposal q(X0:t|Y1:t) and

compute each weights as

wi
t =

p(xi0:t|Y1:t)

q(xi0:t|Y1:t)
(2.7)

such that

p(X0:t|Y1:t) ≈
N−1∑
i=0

wi
tδ(X0:t − xi0:t) ∝

N−1∑
i=0

w̃i
tδ(X0:t − xi0:t) (2.8)

Now, instead of considering all time steps at every iteration, one could apply re-

cursively the prediction-update approach of optimal Bayesian solutions. Therefore, we

assume to have access to the N samples that approximate the prior p(X0:t−1|Y1:t−1)

and we want to generate new samples out of the old ones to approximate p(X0:t|Y1:t).

If the proposal is chosen such that it satisfies the following property

q(X0:t|Y1:t) = q(Xt|X0:t−1,Y1:t)q(X0:t−1|Y1:t−1) (2.9)

one could simply propagate the old particle population x0:t−1 by drawing each xit from

q(Xt|X0:t−1,Y1:t). To derive the expression for the weights, we start from Bayes’s rule

and then express the posterior in terms of p(Yt|Xt), p(Xt|Xt−1) and p(X0:t−1|Y1:t−1).

p(X0:t|Y1:t) =
p(Yt|X0:t,Y1:t−1)p(X0:t|Y1:t−1)

p(Yt|Y1:t−1)

=
p(Yt|X0:t,Y1:t−1)p(Xt|X0:t−1,Y1:t−1)

p(Yt|Y1:t−1)
p(X0:t−1|Y1:t−1)

=
p(Yt|Xt)p(Xt|Xt−1)

p(Yt|Y1:t−1)
p(X0:t−1|Y1:t−1)

∝ p(Yt|Xt)p(Xt|Xt−1)p(X0:t−1|Y1:t−1) (2.10)
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If we replace the numerator and the denominator in (2.7) by using (2.9) and (2.10)

and change the the state terms with particle terms, we obtain:

wi
t =

p(Yt|xit)p(xit|xit−1)p(xi0:t−1|Y1:t−1)

q(xit|xi0:t−1,Y1:t)q(xi0:t−1|Y1:t−1)

=
p(Yt|xit)p(xit|xit−1)p(xi0:t−1|Y1:t−1)

q(xit|xi0:t−1,Y1:t)q(xi0:t−1|Y1:t−1)

wi
t−1

wi
t−1

= wi
t−1

p(Yt|xit)p(xit|xit−1)

q(xit|xi0:t−1,Y1:t)

(2.11)

Finally, if we assume that the new particles xit are only generated based on the

knowledge of xit−1 and Yt, which is the case for many SMC methods, we can then

discard each xi0:t−2 trajectory and the first t− 1 measurements Y1:t−1. Therefore, each

new particle is sampled as follows:

xit ∼ q(xit|xit−1,Yt) ∀i = 0, 1, . . . , N − 1 (2.12)

and its weight is computed as

wi
t = wi

t−1

p(xit|xit−1)p(Yt|xit)
q(xit|xit−1,Yt)

∀i = 0, 1, . . . , N − 1 (2.13)

Then, the weights are normalised

w̃i
t =

wi
t∑N−1

j=0 wj
t

∀i = 0, 1, . . . , N − 1 (2.14)

such that estimates of the true state can be computed at each time step as weighted

mean of the particles

ξt = E(Xt) =

N−1∑
i=0

xitw̃
i
t (2.15)

A PF which computes Equations (2.12), (2.13), (2.14) and (2.15) in sequence is

normally referred to as Sequential Importance Sampling (SIS). Although the population

of particles converges to the true posterior for N →∞ [6], it is also proven that SIS could

only work for unfeasible values of N , as shown both theoretically and empirically in [30].

This is because the particles are subjected to a phenomenon called degeneracy which

(within a few iterations) makes all weights but one decrease towards 0. The variance of

the weights is indeed proven to increase at every iteration [6, 30]. Therefore, ξt might

be very inaccurate if degeneracy is not corrected.

There exist different strategies to tackle degeneracy. This thesis only focuses on

the most popular and flexible alternative which consists of performing a correction step

called resampling, which removes the particles with low weight and substitutes them

with copies of the particles with high weights.
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2.1.2 Sequential Importance Resampling

This section provides a brief description of Sequential Importance Resampling (SIR),

a widely popular extension to SIS which tackles the particle degeneracy by using re-

sampling [6, 30, 43]. Algorithm 1 illustrate a pseudo-code for SIR which the reader is

referred to during the explanation.

p(X1|X0) p(X2|X1) p(Xt−1|Xt−2) p(Xt|Xt−1)

Y1 Y2 Yt−1 Yt

X0 X1 X2 Xt−1 Xt

Figure 2.1: Sequential Importance Resampling: state flow

Algorithm 1 SIR PF

Input: TPF , N , N∗

Output: ξt

1: x0,w0 ← Initialisation(), x0 ∼ p(x0) and wi
0 ← 1

N ∀i
2: for t← 1; t ≤ TPF ; t← t+ 1 do

3: Yt ← New Measurement()

4: xt,wt ← IS(xt−1,wt−1,Yt), see (2.12) and (2.13)

5: w̃t ← Normalise(wt), see (2.14)

6: Neff ← ESS(w̃t), see (2.16)

7: if Neff < N∗ then Resampling

8: ncopies← MVR(w̃t), see (2.18)

9: xt ← Redistribute(N,ncopies,xt)

10: wt ← Reset(wt), wi
t ← 1

N ∀i
11: end if

12: ξt ← Estimate(xt), see (2.19)

13: end for

In the SIR PF, at the initial time t = 0, no measurement has been collected yet, so

the particles are initially drawn from the initial distribution q(x0) = p(x0) and weighted

equally to 1/N , as this is the best assumption without feedback. However, for any time

step t > 0 measurements are collected, and each particle is drawn from the proposal

distribution as in (2.12). The importance weights are then computed as in (2.13) and

normalised by using (2.14). Therefore, up to this point SIR is indistinguishable from

SIS.

In order to address degeneracy, the SIR PF performs a resampling step which re-

populates the particles by eliminating the most negligible ones and duplicating the most

important ones. In the original Bootstrap PF, resampling is performed every itera-

tion but in the SIR PF it is only triggered when it is needed, more precisely when the
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(approximate) Effective Sample Size (ESS)

Neff =
1∑N−1

i=0 (w̃i
t)

2
(2.16)

decreases below an arbitrary threshold N∗, which is commonly set to N
2 .

Different (biased or unbiased) resampling schemes exist [43, 48, 49, 62] but they

mostly follow a three-step approach. The first step is to process the normalised weights

w̃t to generate ncopies ∈ ZN such that ncopiesi indicates how many copies of the i-th

particle must be created. Therefore, it is easy to infer that

N−1∑
i=0

ncopiesi = N (2.17)

Algorithm 2 Sequential Redistribute (S-R)

Input: x, ncopies, N
Output: xnew

1: i← 0
2: for j ← 0; j < N ; j ← j + 1 do
3: for k ← 0; k < ncopiesj ; k ← k + 1 do
4: xinew ← xj

5: i← i+ 1
6: end for
7: end for

Ax A

0ncopies 0

B

3

C

0

D

0

E

4

F

0

G

1

H

0

Bxnew B B B E E E E G

Figure 2.2: Sequential Redistribute

The second step is redistribution which all resampling algorithms have in common

and is in charge of duplicating each particle the right number of times. A textbook

Sequential Redistribute (S-R) can be found in Algorithm 2 which takes O(N) steps as

(2.17) holds. A possible example for N = 8 particles is illustrated in Figure 2.2 where

the value of each particle xi is actually a vector of real numbers, although it is marked

with a capital letter for brevity. After redistributing, all weights are reset to 1/N . To

perform the first step, previous referenced work [6, 53, 89] has used Minimum Variance

Resampling (MVR), commonly known as Systematic Resampling [43]. Since this thesis

focuses mostly on redistribution and its implementation on a parallel architecture, MVR

will be the only variant considered. MVR first computes cdf ∈ RN+1, the Cumulative
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Density Function (CDF) of the weights, then it draws a random sample u ∼ [0, 1) from

a uniform distribution and then computes each ncopiesi as follows:

ncopiesi = dcdf i+1 − ue − dcdf i − ue ∀i = 0, 1, . . . , N − 1 (2.18)

where the bracket operator represents the ceiling function (e.g. d5.1e = 6). At the end

of each time step, estimates are produced as follows:

ξt = E(Xt) =
1

N

N−1∑
i=0

xit (2.19)

2.1.3 Sequential Monte Carlo Samplers

In the SMC samplers, we have no income stream of measurements Yt during the SMC

iterations, but all data Y is assumed to be given before each run [61]. Therefore, at

each iteration t we consider a static target distribution p(Xt|Y). The objective is to

draw samples from p(Xt|Y) to estimate the true state Xt at the final SMC iteration

t = TSMC . This is because the target is static and hence every new estimate is simply

an improved version of the previous one. In order to do that, one begins by defining the

joint distribution over the state trajectory X0:t as follows:

p(X0:t|Y) = p(Xt|Y)

t∏
τ=1

L(Xτ−1|Xτ ) (2.20)

where the backward Markov kernel L(Xτ−1|Xτ ) is arbitrary and defined such that∫
p(X0:t|Y)dX0:t−1 = p(Xt|Y) (2.21)

Now we apply the IS principle. Therefore, at each iteration we draw a population of

N samples xit from a proposal distribution q(X0:t) = q(Xt|Xt−1)q(X0:t−1) and give them

an importance weight wi
t =

p(xi0:t|Y)

q(xi0:t)
. This means that the samples are first generated

from the initial proposal q0(X0) and given the initial weight wi
0 =

p(xi0|Y)

q0(xi0)
. At any

iteration t > 0, each particle is drawn from the proposal distribution as follows:

xit ∼ q(xit|xit−1) ∀i = 0, 1, . . . , N − 1 (2.22)

and its weight is computed as

wi
t =

p(xi0:t|Y)

q(xi0:t)
=
p(xit|Y)

∏t
τ=1 L(xiτ−1|xiτ )

q(xit|xit−1)q(xi0:t)

=
p(xit|Y)

∏t
τ=1 L(xiτ−1|xiτ )

q(xit|xit−1)q(xi0:t)

wi
t−1

wi
t−1

= wi
t−1

p(xit|Y)

p(xit−1|Y)

L(xit−1|xit)
q(xit|xit−1)

∀i = 0, 1, . . . , N − 1 (2.23)
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As we can see, SMC samplers work on static models as (2.23) does not depend on

an on-line stream of data which, on the other hand, impacts the weights for PFs.

After IS, the samples are again normalised as in (2.14) and estimates can then be

evaluated as in (2.15). After that, a resampling step may be performed depending on

the value of Neff . In the vanilla SMC Sampler, these steps are performed iteratively

until we reach the final iteration t = TSMC .

In [65], a novel recycling method is proposed. Instead of considering the samples from

the last iteration as providing the outputs, estimates are computed using all particles

from all iterations. Using the notation of this thesis, the final estimates are performed

as follows:

ξ̂t =

∑t
τ=1 ξτ c̃τ∑t
τ=1 c̃τ

∀t = 1, 2, . . . , TSMC (2.24)

where the normalisation constants c̃t are computed during the SMC iterations as:

c̃t =

∫
p(Xt)dX0:t−1 ≈ ct =

∑N−1
i=0 wi

t∑N−1
i=0 wi

t−1

(2.25)

Algorithm 3 describes the SMC Sampler with the recycling method.

Algorithm 3 SMC sampler with recycling

Input: TSMC , N , N∗

Output: ξ̂

1: x0,w0 ← Initialisation(), xi0 ∼ q(xi0), wi
0 =

p0(xi0|Y)

q0(xi0)
∀i

2: for t← 1; t ≤ TSMC ; t← t+ 1 do
3: c̃t ← Normalisation Constant(wt), see (2.25)
4: xt,wt ← IS(xt−1,wt−1), see (2.22) and (2.23)
5: w̃t ← Normalise(wt), see (2.14)
6: ξt ← Weighted Mean(xt,wt), see (2.15)
7: Neff ← ESS(w̃t), see (2.16)
8: if Neff < N∗ then Resampling
9: ncopies← MVR(w̃t), see (2.18)

10: xt ← Redistribute(N,ncopies,xt)
11: wt ← Reset(wt), wi

t ← 1
N ∀i

12: end if
13: end for
14: ξ̂ ←Recycling(ξ, c̃, TSMC), see (2.24)

2.1.4 Fixed-Lag Sequential Monte Carlo

Fixed-Lag SMC is a special type of PF that was first presented in [28]. Once again IS is

applied to approximate the PDF of Xt, but in this case l+ 1 ∈ Z+ measurements Yt−l:t

are considered per time step, where l ∈ Z is a fixed lag. This means one can re-sample

the values of each particle from step t− l to t− 1, such that each new particle xit can be

generated given a corrected (and potentially improved) particle trajectory xit−l:t−1.
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p(Xt−l|Xt−l−1) p(Xt−l+1|Xt−l) p(Xt−1|Xt−2)

p(Xt−l|Xt−l−1)

p(Xt−l+1|Xt−l) p(Xt−1|Xt−2) p(Xt|Xt−1)

L(Xt−l|Xt−l) L(Xt−l+1|Xt−l+1) L(Xt−1|Xt−1)

Yt−l Yt−l+1 Yt−1 Yt

Xt−l−1 Xt−l Xt−l+1 Xt−1

Xt−l Xt−l+1 Xt−1 Xt

Figure 2.3: Fixed-Lag Sequential Monte Carlo: state flow

This method starts by drawing the first set of particles from the initial distribution

and then drawing other l− 1 sets as in (2.12). The same weight 1/N is assigned to each

current particle trajectory xi0:l−1. At the time step t ≥ l, we are then given a set of N

particles xi0:t−1 and weights wi
t−1 which approximate the true posterior p(X0:t−1|Y1:t−1).

A new measurement Yt is collected. Since the goal is to propose new particles xit based

on corrected values for xit−l−1:t−1, we can then extend (2.12) for the Fixed-Lag SMC

case as follows:

xit−l:t ∼ q(xit−l:t|xit−l−1,Yt−l:t) ∀i = 0, 1, . . . , N − 1 (2.26)

To infer the importance weight formula, we define the posterior as follows:

p(Xt−l:t,X0:t−l−1|Y1:t) =

p(Xt−l:t|Xt−l−1,Yt−l:t)L(X1:r−l−1|Xr−l:t−1)L(Xr−l:t−1|Xt−l:t−1) (2.27)

where L(X1:r−l−1|Xr−l:t−1) generically summarises the product of the backward ker-

nels that were necessary to perform the previous t − 1 steps. On the other hand,

L(Xr−l:t−1|Xt−l:t−1) =
∏t−1
τ=t−l L(Xτ |Xτ ) which is necessary to update each particle

trajectory xit−l:t−1 to xit−l:t−1 at the current time step t. The weight formula can now be

inferred from (2.26) and (2.27) and by splitting the posterior terms into prior-likelihood

products as follows

wi
t =

p(xit−l:t,x
i
0:t−l−1|Y1:t)

q(xit−l:t|xit−l−1,Yt−l:t)

=
p(xit−l:t|xit−l−1,Yt−l:t)L(x1:r−l−1|xr−l:t−1)L(xir−l:t−1|xit−l:t−1)

q(xit−l:t|xit−l−1,Yt−l:t)

=
p(xit−l:t|xit−l−1,Yt−l:t)L(x1:r−l−1|xr−l:t−1)L(xir−l:t−1|xit−l:t−1)

q(xit−l:t|xit−l−1,Yt−l:t)

wi
t−1

wi
t−1

= wi
t−1

p(xit−l:t|xit−l−1,Yt−l:t)L(xir−l:t−1|xit−l:t−1)

p(xit−l:t−1|xit−l−1,Yt−l:t−1)q(xit−l:t|xit−l−1,Yt−l:t)
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= wi
t−1

p(xit−l:t|xit−l−1)p(Yt−l:t|xit−l:t)L(xit−l:t−1|xit−l:t−1)

p(xit−l:t−1|xit−l−1)p(Yt−l:t−1|xit−l:t)q(xit−l:t|xit−1,Yt−l:t)
∀i = 0, 1, . . . , N − 1

(2.28)

After that, the Fixed-Lag SMC method performs the same operations as SIR PF,

in other words, weight normalisation as in (2.14), resampling according to (2.16) and

then produces state estimates as in (2.19). Algorithm 4 depicts a pseudo-code for the

Fixed-Lag SMC method.

Algorithm 4 Fixed-Lag SMC

Input: TPF , N , N∗, l
Output: ξt

1: x0,w0 ← Initialisation(), x0 ∼ p(x0) and wi
0 ← 1

N ∀i
2: for t← 1; t ≤ l − 1; t← t+ 1 do
3: Yt ← New Measurement()
4: xit ∼ p(xit|xit−1,Yt) ∀i
5: wi

t ← 1
N ∀i

6: end for
7: for t← l; t ≤ TPF ; t← t+ 1 do
8: Yt ← New Measurement()
9: xt−l:t,wt ← IS(xt−l−1:t−1,wt−1,Yt), see (2.26) and (2.28)

10: w̃t ← Normalise(wt), see (2.14)
11: Neff ← ESS(w̃t), see (2.16)
12: if Neff < N∗ then Resampling
13: ncopies← MVR(w̃t), see (2.18)
14: xt−l:t ← Redistribute(N,ncopies,xt−l:t)
15: wt ← Reset(wt), wi

t ← 1
N ∀i

16: end if
17: ξt ← Estimate(xt), see (2.19)
18: end for

2.2 Markov Chain Monte Carlo Methods

MCMC is a widely popular class of methodologies which can be used in the same context

of SMC samplers. Therefore, the objective is again to estimate a parameter X ∈ RM

after we collect some data Y ∈ RMy by drawing random samples from a static posterior

distribution

p(X|Y) =
p(X)p(Y|X)

p(Y)
=

p(X)p(Y|X)∫
p(X)p(Y|X)dX

(2.29)

However, while SMC samplers are population-based methods which produce all sam-

ples independently and update them during the SMC iterations, MCMC draws each

sample individually based on the knowledge of the previous one. This way a Markov

chain is built sequentially in order to explore all regions of the posterior.

The next three sections briefly describes three of the most popular MCMC methods

and are fundamental to understand the concepts explained in Chapter 6.



Chapter 2. Technical Background 20

2.2.1 Metropolis-Hastings

Metropolis-Hasting is an old but still widely used MCMC method. Since we know it is

often impossible to compute analytically the evidence in (2.29), the key idea is to ran-

domly draw a new sample x∗ ∼ q(Xt|Xt−1) every iteration, where q(Xt|Xt−1) is a

proposal distribution from which we can sample directly. A typical choice is to draw

x∗ from a normal distribution with mean equal to the old sample xt−1. This is why

Metropolis-Hasting is a member of the sub-class of Random-Walk (RW) MCMC meth-

ods. Gibbs Sampling [33] is another MCMC method similar, in its basic implementation,

to Metropolis-Hastings.

An acceptance-rejection mechanism called Rejection Sampling is applied, in order to

compensate for the error introduced by sampling from the proposal. The new sample is

accepted or rejected by comparing the value of (2.29) in x∗ with the same computed in

xt−1, whose ratio cancels out the evidence. More precisely, an acceptance probability a =

min{1, p(x∗|Y)q(xt−1|x∗)
p(xt−1|Y)q(x∗|xt−1)} is computed. x∗ is accepted or rejected depending on whether

a is lower or higher than a random number drawn from a Uniform[0, 1] distribution.

In the end, the first (user-defined) τ samples are discharged (burn-in) to reduce the

dependency on the initial sample. These steps are summarised by Algorithm 5.

Algorithm 5 Metropolis-Hastings

Input: TMH , ε, Σ, τ

Output: x

1: x0 ∼ q0(x0), Draw the initial sample from the initial proposal

2: for t← 1; t ≤ TMH ; t← t+ 1 do

3: x∗ ∼ q(x∗|xt−1) = N (x∗|xt−1, ε
2Σ), draw a new sample from the proposal

4: a = min{1, p(x∗|Y)q(xt−1|x∗)
p(xt−1|Y)q(x∗|xt−1)}, calculate the acceptance probability

5: if a < Uniform[0, 1] then

6: xt = x∗, the proposed sample is accepted

7: else

8: xt = xt−1, the proposed sample is rejected

9: end if

10: end for

11: Remove x0:τ−1, burn-in the first τ samples

Pure RW methods commonly suffer from the so-called curse of dimensionality which

causes accuracy loss as M increases. This problem can be addressed by using alternative

MCMC methods such as HMC which is explained in the next section.

2.2.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a gradient-based MCMC methods, named as such

because new samples are proposed by a numerical integrator computing the gradient of

the target distribution, instead of taking purely random steps. This algorithm was first
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presented in [31] but recently improved several times [17, 18] and applied in multiple

fields such as Control Theory [3], Image Processing [17] and Tracking [72, 93]. The

key idea consists of applying Hamiltonian dynamics to generate a Markov chain of

samples from a target distribution. More precisely, HMC uses the Hamiltonian function

H(X,V) = U(X) + K(V) as proposal, where U(X) represents the potential energy,

K(V) is the kinetic energy and X and V are the position and momentum vectors

respectively.

The physical explanation of Hamiltonian dynamics can be found in several textbooks

such as [54, 55]. In the classic example we consider a pendulum of length l to which a

mass m is attached. At the beginning, the pendulum is still on the equilibrium point.

However, when we poke it, the pendulum starts oscillating forwards and backwards with

velocity v, forming an angle θ (which defines its position) with the axis perpendicular

to the ground. The energy is equal to H = 1
2ml

2θ̇2 +mlg(1− cos(θ)), where v = θ̇ = dθ
dt

and g is the gravitational constant. As the pendulum goes up, its potential energy

mlg(1 − cos(θ)) increases while its kinetic energy 1
2ml

2θ̇2 decreases, until it reaches

the point of maximum height θ = 90◦, where it stops and has maximum potential

energy. Then, the pendulum starts moving backwards and keeps accelerating until it

gets to the point of minimum height θ = 0◦, where it reaches the maximum velocity and

kinetic energy but has no potential energy. Therefore, H is conserved according to the

energy-conservation law. Broadly speaking, the Hamiltonian function is constant and

the potential and kinetic energy are defined as follows:

U(X) = − log(p(X|Y)) (2.30a)

K(V) =
1

2
VTM−1V (2.30b)

where M is the mass matrix and p(X|Y) is the target distribution for the purposes of

sampling.

HMC draws samples from p(X|Y) by emulating the Hamiltonian dynamics in (2.30).

For each new sample, a momentum vector V is drawn fromN (0,M). Then, the following

system of Partial Differential Equations (PDEs) is solved starting from the current

sample xt−1:

dV

dt
= −∂U(X)

∂X
(2.31a)

dX

dt
= M−1V (2.31b)

The final position after solving (2.31) is the proposed sample which is either accepted

or rejected according to a Rejection Sampling decision mechanism as in Metropolis-

Hasting. The acceptance probability is the ratio between the potential energy in the

current position and the one evaluated in the proposed sample. This routine is repeated

for THMC iterations. Then, a subset of the initial samples is burned-in as in Metropolis-

Hastings.
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A numerical integrator is required to solve (2.31). Leapfrog is the typical choice in

this case, because it is a symplectic integrator and because of its time-reversibility, a

property that will also become useful for the novel content in Chapter 6. To draw a new

sample, HMC performs an arbitrary number of Leapfrog steps L, each taking a constant

step-size ∆h, by using the following equations:

Ak = −∂U(Xk)

∂X
(2.32a)

Vk+ 1
2

= Vk− 1
2

+ ∆hAk (2.32b)

Xk+1 = Xk + ∆hVk+ 1
2

(2.32c)

where Ak is the acceleration term. In HMC, X0 is initialised to the current sample and

V0 ∼ N (0,M). By substituting (2.30a) into (2.32a) we obtain:

Ak =
∂ log(p(Xk|Y))

∂X
(2.33)

which means that the new sample will be updated according to the direction given by

the gradient of the target distribution, computed in the current position. Algorithms

6 and 7 show pseudo-codes for the Leapfrog integrator and HMC respectively. Despite

Algorithm 6 Leapfrog

Input: X
′
, V

′
, L, ∆h, M, p(X|Y), d (d is +1 or −1 depending on the direction)

Output: XL, VL

1: X0 ← X
′

2: V0 ← V
′

3: for k ← 0; k < L; k ← k + 1 do
4: Ak ← ∂ log(p(Xk|Y))

∂X
5: Vk+ 1

2
← Vk− 1

2
+ ∆hAk

6: Xk+1 ← Xk + ∆hVk+ 1
2
d,

7: end for

its efficiency, HMC requires manual tuning of ∆h and L. The next section describes

another gradient-based MCMC method which overcomes this limitation for L.

2.2.3 No-U-Turn Sampler

NUTS is an extension to HMC which performs an adaptive number of Leapfrog steps

L by removing the need to pre-calculate its optimal value. This algorithm was first

presented in [44] and now is used in a wide range of application domains due to the

growing popularity of Stan [34, 67, 94], PyMC3 [75] and Pyro [11].

One of the limitations in regular HMC is that a constant L may not always be the

best choice. For example, in some cases the posterior could be explored further by the

same Leapfrog integration but we might have chosen a low L. In some other cases, L

is too big and the Markov chain starts moving backwards. The key idea in NUTS is

to stop the Hamiltonian simulation when a breaking condition, called U-Turn, is met.
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Algorithm 7 Hamiltonian Monte Carlo (HMC)

Input: THMC , L, ∆h, p(X|Y), M, τ
Output: x

1: x0 ∼ q0(x0), Draw the initial sample from the initial proposal
2: for t← 1; t ≤ THMC ; t← t+ 1 do
3: v ∼ N (0,M), draw a random momentum

4: U ← vTM−1v
2 + p(xt−1|Y)

5: x∗,v∗ ← Leapfrog(xt−1,v, L,∆h,M, p(X|Y)), see Algorithm 6

6: U∗ ← v∗TM−1v∗

2 + p(x∗|Y)
7: a = exp(U∗ − U), calculate the acceptance probability
8: u ∼ [0, 1]
9: if a < u then

10: xt = x∗, the proposed sample is accepted
11: else
12: xt = xt−1, the proposed sample is rejected
13: end if
14: end for
15: Remove x0:τ−1, burn-in the first τ samples

More precisely, NUTS stops the simulation when the (squared) distance between the

current and proposed position begins to decrease, which translates to checking whether:

∂

∂t

(xnew − xold)
T(xnew − xold)

2
= (xnew − xold) · v < 0 (2.34)

However, the previous condition does not guarantee time-reversibility. To overcome

this limitation, NUTS incorporates Slice Sampling into a state-doubling recursive pro-

cedure. To understand what that means, this thesis now provides a brief explanation

of Slice Sampling for brevity but further details can be found in [64]. According to

Slice Sampling, we can augment our HMC posterior p(X,V|Y) = p(X,V) ∝ p(X,V) =

exp(U(X) − VT·V
2 ) by using an auxiliary slice variable u ∼ Uniform[0, p(X,V)] such

that we get:

p(X,V, u) = I(u ∈ [0, p(X,V)]) (2.35)

where the function I(.) equals 1 or 0 depending on whether its input argument is true

or false. Hence, p(X,V, u) has the following property:∫
p(X,V, u)du ∝ p(X,V) (2.36)

which means we can obtain samples of the posterior from p(X,V, u) as long as they fall

within the bounds of u, and then we can forget about u.

NUTS starts the new iteration from the current sample xt−1 and generates a ran-

dom momentum v ∼ N (0, I) and a slice variable u ∼ Uniform(0, exp(log p(xt−1|Y) −
vTM−1v

2 )). Then it augments the Markov chain by taking one step forward or back-

ward using the Hamiltonian dynamics, where the direction is picked randomly. This
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procedure is repeated recursively, each time by doubling the number of steps forward

or backward, whose direction is always selected randomly. Therefore, NUTS recursively

builds a binary tree, which keeps track of the Leapfrog steps taken. The algorithm stops

when the following U-Turn condition is met when:

(x+ − x−) · v− < 0 ∨ (x+ − x−) · v+ < 0 (2.37)

where x+, v+ are the proposed position and velocity in the forward direction after a

Leapfrog step, and x−, v− represent the same in the backward direction. Once (2.37)

occurs, a point from the binary tree is uniformly selected to be the proposed sample.

This implementation of NUTS is however inefficient because the number of target

and (most importantly) gradient evaluations grow exponentially with the height of the

binary tree. The same can also be said about the memory usage. This second issue has

been solved in [44] by using the following sophisticated transition kernel:

T (s
′ |s, C) =


I(s′∈Cnew)
|Cnew| if |Cnew| > |Cold|

|Cnew|I(s
′∈Cnew)

|Cold||Cnew| +
(

1− |Cnew||Cold|

)
I(s′ = s) if |Cnew| ≤ |Cold|

(2.38)

where Cold and Cnew are the current and proposed sets of points, s is a generic position-

velocity pair. Hence, NUTS uses (2.38) to make a transition from Cold to Cnew, and

then accepts or rejects depending on the acceptance probability |Cnew||Cold| . In [44], it has

been proven that NUTS can cover more space on average by using (2.38) rather than a

simple uniform sampler, while also having a space complexity which grows linearly with

the binary tree.

Algorithm 8 summarises the described routine. In this implementation ∆h is user-

defined, while [44] also illustrates an alternative implementation where the given ∆h is

optimised at run-time during the burn-in. The explanation is omitted for brevity, but

this optimisation is applied in the experiments of Chapter 6 since the source code used

for NUTS is the one available in Stan’s back end.

2.2.3.1 Example: Neal’s Funnel

In this example, Metropolis-Hasting, HMC and NUTS are employed to draw 100 samples

from the following M -dimensional funnel-shaped distribution called Neal’s Funnel [64]:

p(X|Y) = N (Y|0, 3))×
M−1∏
j=0

N (Xj |0, exp(0.5Y)) (2.39)

where Y is a one-dimensional data and the true mean for all funnels is 0.

Figure 2.4a shows the RMSE in log10 scale for all three MCMC methods and for

M = 9. As we can see, Metropolis-Hastings converges more slowly than HMC and NUTS

and does not achieve the same accuracy. This is because of the curse of dimensionality

and because Metropolis-Hastings usually struggles with complicated targets such
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Algorithm 8 No-U-Turn Sampler (NUTS)

Input: TNUTS , ∆h, p(X|Y), M, τ
Output: x

1: x0 ∼ q0(x0), Draw the initial sample from the initial proposal
2: for t← 1; t ≤ THMC ; t← t+ 1 do
3: v ∼ N (0,M), draw a random momentum
4: u ∼ Uniform[0, p(xt−1,v)], draw a slice variable
5: x∗+ ← xt−1,x

∗
− ← xt−1, v∗+ ← v,v∗− ← v, n← 1, k ← 0, loop← 1

6: while loop = 1 do
7: d

′ ∼ Uniform[Heads,Tails], flip an unbiased coin
8: if d

′
= Heads then

9: ·, ·,x∗+,v∗+,x∗, n
′
, loop

′ ← Tree(x∗+,v
∗
+), u, p(X|Y),∆h, k, 1)

10: else
11: x∗−,v

∗
−, ·, ·,x∗, n

′
, loop

′ ← Tree(x∗−,v
∗
−), u, p(X|Y),∆h, k,−1)

12: end if
13: if loop

′
= 1 then

14: if min(1, n
′

n ) < Uniform[0, 1] then
15: xt = x∗, the proposed sample is accepted
16: else
17: xt = xt−1, the proposed sample is rejected
18: end if
19: end if
20: loop← loop

′I((x∗+−x∗−) ·v∗− ≥ 0)I((x∗+−x∗−) ·v∗+ ≥ 0), k ← k+1, n← n+n
′

21: end while
22: end for
23: Remove x0:τ−1, burn-in the first τ samples

1: function Tree(x,v, u, p(X|Y),∆h, k, d)
2: if j = 0 then
3: x∗,v∗ ← Leapfrog(xt−1,v, 1,∆h,M, p(X|Y), d), see Algorithm 6
4: n

′ ← I(u ∈ [0, p(X,V)]), loop
′ ← I(p(X,V ≥ log u− 1000), see [44]

5: return x∗,v∗,x∗,v∗,x∗, n
′
, loop

′

6: else
7: x−,v−,x+,v+,x

∗, n
′
, loop

′ ← Tree(x−,v−, u, p(X|Y),∆h, k − 1, d)
8: if loop

′
= 1 then

9: if d = 1 then
10: ·, ·,x+,v+,x

′
, n”, loop” ← Tree(x∗+,v

∗
+), u, p(X|Y),∆h, k − 1,−1)

11: else
12: x−,v−, ·, ·,x′ , n”, loop” ← Tree(x∗+,v

∗
+), u, p(X|Y),∆h, k − 1, 1)

13: end if
14: if min(1, n”

n′+n” ) < Uniform[0, 1] then

15: x∗ = x
′
, the proposed sample is accepted

16: end if
17: loop

′ ← loop”I((x∗+ − x∗−) · v∗− ≥ 0)I((x∗+ − x∗−) · v∗+ ≥ 0), n
′ ← n

′
+ n”

18: end if
19: return x−,v−,x+,v+,x

∗, n
′
, loop

′

20: end if
21: end function
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as (2.39). This can also be observed in Figure 2.4b which shows the samples of X0 (the

other dimensions have the same shape and, therefore, are left out for brevity) that have

been drawn using Metropolis-Hastings, HMC and NUTS. As we can see, Metropolis-

Hastings struggles to explore the spout of the funnel, and hence most the samples are

concentrated in the top region. In Chapter 6, the advantages that HMC and NUTS offer

versus Metropolis-Hastings are applied to enhance the performance of SMC methods

which also suffer from the curse of dimensionality.
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Chapter 3

Parallelising Particle Filters with

Deterministic Runtime on

Distributed Memory Systems

3.1 Introduction

The (dynamic or static) models which SMC methods are commonly applied to are

constantly being improved in several ways, such as adding more details and equations

or using more sophisticated numerical solvers or typically both. Therefore, research

is currently active on making SMC methods more accurate as well. Several solutions

have already been proposed, such as using better proposal distributions [63, 79], better

importance weight evaluations [10, 76, 101], or simply employing more particles [36, 52,

53] or any combination of them. These solutions share the same side effect: the run-time

substantially increases and, most often, it does to the point that real-time applications

of SMC methods get out of reach, due to critical measurement stream rate. Parallel

computing is the typical solution address this problem.

SMC methods are often claimed to be easily parallelisable since the particles are

drawn and weighted independently of each other. Although the IS step is indeed embar-

rassingly parallel, at some point it becomes necessary to perform resampling in order to

correct degeneracy, as shown in Section 2.1.2. Resampling is however hard to parallelise

globally, which means by using a parallelisation strategy on multiple cores that leads to

the same outcome of sequential resampling. This is because of the difficulties in par-

allelising the constituent redistribute step, whose sequential textbook implementation

S-R (see Algorithm 2) achieves O(N) time complexity as (2.17) holds.

Several parallel redistributions have been proposed. A state-of-the-art parallelisable

algorithm is presented in [85], has O((log2N)2) time complexity and is implemented in

the Big data MapReduce context. However, portability of this algorithm is difficult to

achieve, especially on Distributed Memory Architectures (DMAs). The goal of this chap-

ter is to reformulate this algorithm for DMAs by using MPI. This chapter demonstrates

27
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that the derived algorithm can be almost four times as fast as existing alternative MPI

solutions for up to 256 cores. It also proves that the same algorithm can be reformulated

to achieve further speed-up.

In doing so, the rest of this chapter is organised as follows: Section 3.2 provides a

literature review of parallel redistribution strategies for DMAs. Section 3.3 illustrates

how to implement on MPI all components of SMC methods. Section 3.4 describes how

to port the redistribute in [85] to MPI; results for redistribution and an exemplary SMC

method are also provided. Section 3.5 shows how to improve the derived redistribution

and proves it by repeating the experiments in Section 3.4. Section 3.6 draws the con-

clusions of this chapter. The reader is recommended to consult Appendix A for details

about DMAs and MPI.

3.2 Literature Review on Redistribute for DMAs

Although Algorithm 2 has a very low constant time and is very fast on a single core,

it is also impossible to parallelise in embarrassingly parallel fashion, which means by

equally dividing the iteration space across the parallel cores. This is due to the fact

that the workload solely depends on the contents of ncopies, which is totally run-time

dependent. As such, the workload can become extremely unbalanced depending on the

elements of ncopies. On DMAs, parallelisation is further complicated by the fact that

the memory spaces are partitioned and the cores cannot directly access the other cores’

memory. Although all-to-all communication routines (e.g. MPI Alltoall on MPI) can

be used to provide easier data access across partitions, the time complexity would be

downgraded to O(N log2N) for P = N cores [66]. For obvious reasons, this parallel

redistribute approach has never been attempted.

To bypass the need of parallelising resampling, one could use multiple PFs in par-

allel. This approach has already been explored several times, especially in multi-object

tracking or economics applications [27, 38, 59, 82]. However, it has also shown three

fundamental problems. The first one is that Multi-PFs typically do not provide both

strong scaling and good accuracy, but they force the user to choose between one or the

other. Since the PFs in a Multi-PF implementation run local resampling independently,

it is strongly recommended to keep the number of particles per PF constant to N or at

least establish a lower bound for that number [26, 56]. If this constraint is not satisfied,

i.e. if the particles per PF progressively scale up as O(NP ), this approach asymptotically

converges to a SIS filter which is known to be unusable, as shown in [25, 30]. Therefore,

the run-time for two or more filters does not scale with respect to a single PF, but instead

it slows down due to the increasing communication to combine the local estimates of all

PFs. The second and third inconveniences are respectively about flexibility and applica-

bility, and are both caused by the inherent model-dependent nature of this approach. In

the cases which Multi-PFs can be used in, the filters need a model-dependent pre-tuning

phase to divide the state space across the filters. This may be challenging depending
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on the model, and hence may strongly affect the performance [26]. In other cases, this

approach is not feasible, for example when the posteriors of the marginalised states are

multi-modal [26]. Because of these issues, Multi-PF approaches will not be taken into

account in the rest of this thesis. Here it is specified that Multi-PFs can applied both on

DMAs and SMAs with little to no parallelisation differences. This thesis now provides a

description of some of the most recent and relevant parallel redistributions which have

been specifically designed for DMAs.

Three DMA solutions (along with mixed versions of them) are presented in [12,

13] for Field Programmable Gate Array (FPGA): Centralised Resampling, Resampling

with Proportional Allocation (RPA), and Resampling with Non-proportional Allocation

(RNA). Although these approaches present substantial differences, they also share a

similar core network: a central-unit controls a subset of the particles, but also acts as

a job-scheduler, and hence is in charge of coordinating the communication between the

other cores whose only duties are to duplicate, send and receive the remaining particles.

Therefore, central-unit will be the technical name used in this work to generically refer

to these strategies.

In Centralised Resampling, the central-unit gathers the particles from all cores, per-

forms resampling over the full dataset of particles, and then scatters the result back to

the cores. The implementation requires all-to-one and one-to-all communicators, such as

MPI Gather and MPI Scatter on MPI. Since resampling (and redistribute) is performed

by the central-unit in O(N) and the communication cost grows linearly with P [66], we

can infer that the run-time and time complexity are deterministic and data-independent

but bound to O(N) for any number of cores. For the same reasons, we can infer that

the space complexity is also deterministic, data-independent and equal to O(N) and a

global resampling output is guaranteed. Broadly speaking, this idea tries to maximise

the overall speed-up of PF by taking advantage of the fast constant time of Algorithm

2 in comparison with IS and the other PF components. However, because the compu-

tational effort of resampling is centralised to a single core, it is possible to prove that

the speed-up saturates for a relatively low Degree Of Parallelism (DOP), according to

Amdahl’s law [41]. Another more unlikely issue is that, in the extreme scenario where N

is so large that the particles do not fit the memory of the central-unit, this approach is

obviously unfeasible. Centralised Resampling is found in several referenced work apart

from [12, 13]: in [8], it is alternated with a decentralised resampling (akin to RNA), and

used to correct the accuracy loss that the decentralised scheme causes during the SMC

iterations. In [21], Centralised Resampling is employed in a Multi-PF implementation

with a view of compensating for the degeneracy caused by SIS. In [39], a variant of Cen-

tralised Resampling on MPI is used for augmented resampling and is performed in three

phases. In the first one, the central-unit gathers the weights from all cores and scatters

back the normalised weights. After that, local resampling is performed by each core.

In the final phase, the cores are coupled pairwise in a binary-tree structure: here, they

exchange a certain amount of particle copies proportional to the normalised weights, in
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order to achieve weight distribution.

In RPA, all cores (and not only the central-unit) are actively involved in creating

the particle copies during redistribute. Therefore, the central-unit partially performs

redistribution, but also decides the exact number of copies that the other cores must

create, meaning that the output is the same as in Algorithm 2. This load-balancing

decision, however, strongly depends on the input unbalance level over the cores. As

such, RPA is strongly data-dependent and so is its run-time during the SMC iterations.

The best scenario is when the input workload happens to be balanced already, which

costs no extra communication between the cores. However, the worst-case occurs when

one element in ncopies equals N and all the others are equal to 0: this translates

to a single core having to communicate the copies in excess to the other cores (as in

Centralised Resampling), providing no speed-up for any value of P . In the average case,

the speed-up may also saturate rapidly as shown in [83]. Apart from [12, 13], another

application of RPA can be found in [100] on MPI.

RNA has been developed with a view of reducing the communication cost in redis-

tribution. In doing so, the computational load of running the central-unit here is lighter

than in RPA and Centralised Resampling. However, this comes with a risk of causing a

statistical accuracy loss. The first step here is indeed local resampling, as in Multi-PF

approaches. This leads to an uneven distribution of the weights. Therefore, the parti-

cles are cyclically exchanged between neighbor cores on a ring topology network, and

the communication goes on until the weights are evenly distributed. The number of

particles to send per message can be established deterministically at compile-time, and

is typically chosen to be about 10− 50% of the number of particles per core. However,

since it is hard to determine an optimal value for the number of particles to send per

message, there is a high risk of experiencing redundant communication, especially for

large N , which may affect the speed-up [25, 83]. Also, since a local resampling step is

performed, the output may not be the same as Algorithm 2, which could compromise

the overall accuracy. [1] is another referenced work where RNA is employed (besides

[12, 13]), while in [8] a variant of RNA is alternated with Centralised Resampling, as

previously mentioned.

In summary, we can say that central-unit strategies may have accuracy or scalability

issue, especially for highly unbalanced workload, large N or DOP, as shown in [25, 83].

This thesis is then mostly focused on parallel fully-balanced redistribute solutions which

are defined as follows.

Definition 3.1. A fully-balanced redistribute meets the following requests:

• all cores perform the same pre-agreed tasks (i.e. no central-unit(s) involved) to

balance the workload (i.e. the number of particles per core) evenly;

• the achieved time complexity for P cores has to be faster than the time complexity

for one core in order to guarantee strong scaling performance;
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• the redistribution of the particles is global to ensure the same output of its se-

quential version and no speed-accuracy trade-off is made when P increases.

Another preferable request for fully-balanced redistribute is to have deterministic

run-time which is crucial in real-time domains. When it comes to redistribution on

DMAs, another preferable request is to have deterministic and scalable space complexity.

In [58], it has been shown that redistribute can be parallelised in a fully-balanced

fashion by using a divide-and-conquer approach. By using a balanced binary tree, this

algorithm recursively sorts and splits each node into two leaves, leaving half of the

number of copies on each side. This algorithm was implemented in C for Graphics. In

order to sort the particles, [58] employs Bitonic Sort, a deterministic, comparison-based

parallel sorting algorithm which takes O((log2N)2) comparisons for P = N parallel

cores [96]. Since Bitonic Sort is called log2N times in [58], the achieved time complexity

is O((log2N)3) (not O((log2N)2) as claimed in [58]). In [25], the idea of using sort

recursively has been applied in a dynamic scheduler for RPA/RNA and implemented

on Message Passing Interface (MPI). In [85], the time complexity has been reduced to

O((log2N)2) by proving that Bitonic Sort is only needed once. This algorithm has

been implemented on MapReduce and, although it was significantly better than the

algorithm in [58], its run-time for 512 cores was at best 20 times worse than S-R [85].

This is because the communication network in this MapReduce implementation is built

on a high level of abstraction and the consequent data movement is highly inefficient

[85]. The goals in this chapter and Chapter 4 are to first propose a better framework

for the algorithm [85] and then redesign the same to improve the performance.

Ref. Type

Parallel
computing
platform

Rando-
mised Global

Worst-case
Time

Complexity
Space

Complexity
[26] Multi-PF Simulation No No O(N) O(N)
[27] Multi-PF Simulation No No O(N) O(N)
[59] Multi-PF Simulation No No O(N) O(N)
[38] Multi-PF Simulation No No O(N) O(N)
[82] Multi-PF MPI No No O(N) O(N)
[12] Central FPGA No Yes O(N) O(N)
[8] Central+RNA Simulation No No O(N) O(N)
[39] Central MPI No Yes O(N) O(N)
[21] Central Simulation No Yes O(N) O(N)
[12] RPA FPGA Yes Yes O(N) O(1)
[13] RPA FPGA Yes Yes O(N) O(1)
[100] RPA MPI Yes Yes O(N) O(1)
[83] RPA Simulation Yes Yes O(N) O(1)
[12] RNA FPGA No No O(N) O(1)
[13] RNA FPGA No No O(N) O(1)
[83] RNA Simulation No No O(N) O(1)
[1] RNA Simulation No No O(N) O(1)

[58] Fully-balanced C-Graphics No Yes O((log2N)3) O(1)

[85] Fully-balanced MapReduce No Yes O((log2N)2) O(1)

Table 3.1: Literature review on redistribute for DMAs.
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3.3 SMC Methods on DMAs

This section describes how to implement an SMC method on DMAs by using MPI. In

doing so, the following subsections describe the most suitable parallelisation strategy

for each PF component, illustrate their implementation on MPI along with scalability

results. All reported run-times and speed-ups in this Chapter are medians of 20 runs

for the same N , P pair. Table 3.2 provides hardware details about the cluster that has

been used for this thesis. The reader is referred to Appendix A for more details on MPI.

Table 3.2: Details of the clusters.

Name Barkla
OS CentOS Linux 7
Number of Nodes 8
Cores per node 40
CPU 2 Xeon Gold 6138
RAM 384 GB
Clock 2.2 GHz
Cache L2 20 MB
MPI Version OpenMPI-1.10.1
Interconnect Infiniband 100 Gbps
Job scheduler Slurm

3.3.1 Embarrassingly Parallel

Reset, Initialise, Equation (2.18) and all variants of IS, such as (2.12) and (2.13) for

the PF, (2.22) and (2.23) for the SMC sampler, and (2.26) and (2.28) for Fixed-Lag SMC

are embarrassingly parallel, since the computation of each i-th element is independent of

the others. Therefore, a correct parallelisation consists of equally dividing the iteration

space across the cores. This means that each core always owns n = N
P elements of every

array involved.

On DMAs, it also important to decide how to distribute the elements of all arrays

across the cores. Several partitioning strategies can be used on MPI. The most intuitive

one is to assign the array indexes to the cores in increasing order. More precisely, given a

certain N , P pair, the i-th element (where 0 ≤ i ≤ N−1) will always belong to the same

core with MPI rank p = int(i/n). Therefore, it is trivial to infer that embarrassingly

parallel equations achieve O(NP ) time and space complexities, which converge to O(1)

when P = N . The same partitioning strategy is used in all parallel algorithms that are

described in this thesis, since a O(1) space complexity is one of the requirements for

implementing a fully-balanced parallel redistribute.

Algorithms 9 and 10 describe the pseudo-code for Reset and the IS step in Algorithm

1. The implementation for Initialise and other variants of IS are omitted for brevity,

since they are equivalent to Algorithm 9.
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Algorithm 9 Importance Sampling (IS)

Input: xt−1, wt−1, Yt, N , P
Output: xt, wt

1: n← N
P

2: for i← 0; i < n; i← i+ 1 do
3: xit ∼ q(xit|xit−1,Yt)

4: wi
t ← wi

t−1
p(Yt|xit)p(xit|xit−1)

q(xit|xit−1,Yt)

5: end for

Algorithm 10 Reset

Input: w, N , P
Output: w

1: n← N
P

2: for i← 0; i < n; i← i+ 1 do
3: wi ← 1

N
4: end for

These algorithms show that embarrassingly parallel computations require no com-

munication between the cores. As we can see in Figure 3.1, the speed-up vs a sequential

implementation of Reset becomes closer to P for high values of N , due to the absence

of data movement and the increasing volume of computation. Here, the speed-up of IS

is purposely omitted as IS is a model-dependent task and hence the results may vary

depending on the given model. Information on the scalability of IS will be given in the

case studies throughout the rest of the thesis.
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Figure 3.1: Reset - speed-up for up to N = 224 and P = 256
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3.3.2 Reduction

The Sum in (2.14), (2.16), and for the estimates (2.15) and (2.19) can be easily paral-

lelized by using reduction, a divide-and-conquer operation which scales logarithmically

with P , more precisely as O(NP + log2 P ). The mathematical intuition behind reduction

is that the Sum of a N -element array can be computed by adding the partial Sum of

the first N
2 elements of the array to the partial Sum of its other half. However, these

two partial Sums can be split the same way themselves by taking the Sums of their

two halves, i.e. the quarters of the original array. By repeating this reduction process

recursively, we obtain:

N−1∑
i=0

wi =

N
2
−1∑

i=0

wi +

N−1∑
i=N

2

wi

=

N
4
−1∑

i=0

wi +

N
2
−1∑

i=N
4

wi +

3N
4
−1∑

i=N
2

wi +
N−1∑
i= 3N

4

wi

...

= (w0 + w1) + (w2 + w3) + · · ·+ (wN−3 + wN−2) + (wN−2 + wN−1)

= w0 + w1 + w2 + w3 + · · ·+ wN−3 + wN−2 + wN−2 + wN−1

6 2 3 4 0 5 5 1

8 7 5 6

15 11

Sum = 26

Figure 3.2: Reduction - binary tree

This way it is possible to parallelise Sum in O(log2N) stages by using a binary-tree

structure. During each stage, the parallel cores are divided into groups (or nodes). The

cores within the same node are interconnected pairwise such that each core sends to its

partner the partial Sum from the previous stage. Figure 3.2 illustrates the binary-tree
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structure for reduction, where the squares represent core nodes and the arrows represent

communication of partial Sums.

On MPI, reduction can be computed by calling MPI reduce or MPI Allreduce on the

variable to reduce, after an O(NP ) sequential computation of the operation to reduce.

Figure 3.3 illustrates a possible example for N = 16 and P = 4. It is also worth

mentioning that reduction can be used the same way to parallelise any other elementary

operation such as Product, Max or Min.

Reduction to compute Sum
N = 16, P = 4

p = 0 p = 1 p = 2 p = 3

j = 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Exchange
sum with
partner and
add the
received
value.

+ + + +

+ +

+

+

array

sum

sum

sum

2 0 0 0 0 2 0 2 1 0 1 0 3 0 5 0

2 4 2 8

6 6 10 10

16 16 16 16

Figure 3.3: MPI Reduction - Example for N = 16 and P = 4

Algorithms 11, 12 and 13 describe MPI pseudo-codes for Normalise, ESS and Mean.

The MPI implementation of (2.15) is omitted for brevity as it is equivalent to Mean.

Algorithm 11 Normalise

Input: w, N , P
Output: w̃

1: n← N
P

2: local sum← 0
3: for i← 0; i < n; i← i+ 1 do
4: local sum← local sum+ wi

5: end for
6: MPI Allreduce(local sum, sum, 1, MPI DOUBLE, MPI SUM, MPI COMM WORLD)
7: for i← 0; i < n; i← i+ 1 do
8: w̃i ← wi

sum
9: end for

Figure 3.4 illustrates the scalability results for Normalise. Simular results can be

found for ESS and Mean but are not provided for brevity. Here, as in Figure 3.1, we can

also observe that the speed-up becomes more linear for high values of N , due to the

increasing computation-vs-communication granularity. However, for lower N and high

DOP, the granularity gets fine and the speed-up saturates.
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Algorithm 12 Effective Sample Size (ESS)

Input: w̃, N , P ,
Output: Neff

1: n← N
P

2: local sum← 0
3: for i← 0; i < n; i← i+ 1 do
4: local sum← local sum+ (w̃i)2

5: end for
6: MPI Allreduce(local sum, sum, 1, MPI DOUBLE, MPI SUM, MPI COMM WORLD)
7: Neff ← 1

sum

Algorithm 13 Mean

Input: x, N , P , M
Output: ξ

1: n← N
P

2: local sum← 0, local sum and sum are in bold here because xi ∈ RM
3: for i← 0; i < n; i← i+ 1 do
4: local sum← local sum + xi

5: end for
6: MPI Allreduce(local sum, sum,M, MPI DOUBLE, MPI SUM, MPI COMM WORLD)
7: ξ ← sum

N
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Figure 3.4: Normalise - speed-up for up to N = 224 and P = 256

3.3.3 Cumulative Sum

The CDF of the weights requires Cumulative Sum, which can also be found in the

literature under the name of Prefix Sum or Scan. This operation can be computed

either in inclusive or exclusive form. More precisely, given a N -element input vector
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array, the i-th element of the output vector csum is:

csumi = csumi−1 + arrayi (3.1)

where csum0 = array0 if Cumulative Sum is computed in inclusive form, or csum0 = 0

if Cumulative Sum is computed in exclusive form.
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Figure 3.5: Parallel Cumulative Sum - binary tree structure

Parallel Cumulative Sum was first presented in [45] and then optimised in [19]; more

recent versions can be found in [60, 81]. These implementations scale logarithmically,

more precisely as O(NP +log2 P ). The idea consists of using a binary-tree structure, akin

to Figure 3.2. As they move to the top of the tree, the cores (uniquely identified by a

rank) keep track of two variables: the node partial Sum and the node partial Cumulative

Sum. At each stage, the cores within the same node are coupled pairwise and send the

partial Sum to their partner. The partial Sum is updated at every stage just like in

reduction. However, the partial Cumulative Sum is updated by adding the received

value, only if the core’s rank is higher than its partner’s rank. Figure 3.5 illustrates an

example for P = 8 cores: the coloured blocks represent core nodes and the exchange of

partial Sums between partner cores is represented by the vertical arrows.

On MPI, parallel Cumulative Sum can be performed in inclusive form by calling

MPI Scan and in exclusive form by calling MPI Exscan [66]. If P < N , two O(NP )

calls of (3.1) are required to initialise and finalise MPI Scan/MPI Exscan. Algorithm 14

illustrates a pseudo-code of parallel Cumulative Sum on MPI. An example for N = 16

elements and P = 4 MPI cores can be found in Figure 3.6.
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Inclusive/Exclusive Cumulative Sum
N = 16, P = 4

p = 0 p = 1 p = 2 p = 3

j = 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

csum0 ← array0

csumj ← csumj−1+arrayj ∀j = 1, 2, . . .

Exchange
sum with
partner and
add the re-
ceived value
(reduction).
Add the
value to
coreSum
too if
partner has
higher rank.

+ +

+

+

array

csum

{coreSum, sum}

{coreSum, sum}

{coreSum, sum}

If
Inclusive

csum0 ← coreSum− csum
N
P −1 + array0

csumj ← csumj−1 + arrayj ∀j = 1, 2, . . .

csum

If
Exclusive

csum0 ← coreSum− csum
N
P −1

csumj ← csumj−1 + arrayj ∀j = 1, 2, . . .

csum

2 0 0 0 0 2 0 2 1 0 1 0 3 0 5 0

2 2 2 2 0 2 2 4 1 1 2 2 3 3 8 8

2 2 4 4 2 2 8 8

2 6 6 6 2 10 10 10

2 16 6 16 8 16 16 16

2 2 2 2 2 4 4 6 7 7 8 8 11 11 16 16

0 2 2 2 2 2 4 4 6 7 7 8 8 11 11 16

Figure 3.6: MPI Cumulative Sum - example for N = 16 and P = 4

Algorithm 15 illustrates a possible pseudo-code for MVR, the first task in Algorithms

1, 3 and 4 where parallel Cumulative Sum is required. Figures 3.7 and 3.8 report

the scalability results for single calls of Algorithms 14 and 15 under the same testing

conditions of Section 3.3.1 and 3.3.2. Once again, we can observe higher efficiency for

larger N due to the increasing granularity.

3.3.4 O((log2 N)3) Fully-Balanced Redistribute

As discussed in Section 3.2, S-R is impossible to parallelise in element-wise fashion,

i.e. by simply dividing equally the iteration space across the cores. This is because

each ncopiesi randomly changes at every time step t as it may be equal to any integer

number between 0 and N . Therefore, an element-wise parallelization could be extremely

unbalanced. On DMAs, a deterministic parallelisation is even more problematic as the

cores can only directly access their own private memory. In opposition to central-unit

approaches such as RPA and RNA, fully-balanced strategies offer a parallelisation for

global resampling with deterministic and scalable run-time and private memory space.

This section describes how to implement on MPI the redistribute parallelisation in [58],

the first fully-balanced redistribute that can be found in the literature.

Since the input workload in S-R is non-deterministic, the goal is to move the particles

deterministically by using a divide-and-conquer routine which achieves a faster time
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Algorithm 14 MPI Cumulative Sum

Input: array, N , P , type, form, comm
Output: csum

1: n← N
P

2: csum0 ← array0

3: for i← 1; i < n; i← i+ 1 do
4: csumi ← csumi−1 + arrayi

5: end for
6: MPI Scan(csumn−1, coreSum, 1, type, MPI SUM, comm)
7: if form == Inclusive then
8: csum0 ← coreSum− csumn−1 + array0

9: else
10: csum0 ← coreSum− csumn−1

11: end if
12: for i← 1; i < n; i← i+ 1 do
13: csumi ← csumi−1 + arrayi

14: end for

Algorithm 15 Minimum Variance Resampling (MVR)

Input: w̃, N , P , p
Output: ncopies

1: n← N
P

2: comm← MPI COMM WORLD

3: if p == 0 then
4: cdf0 ← 0, because cdf ∈ RN+1

5: end if
6: if p == 0 then
7: cdf1:n ← MPI Cumulative Sum(w̃, N, P, MPI DOUBLE, Inclusive, comm)
8: else
9: cdf1:n−1 ← MPI Cumulative Sum(w̃, N, P, MPI DOUBLE, Inclusive, comm)

10: end if
11: u ∼ Uniform[0,1)

12: MPI Bcast(u, 1, MPI DOUBLE, 0, comm), broadcast u to other cores in O(log2 P )
13: for i← 0; i < n; i← i+ 1 do
14: ncopiesi ← dcdf i + w̃i − ue − dcdf i − ue
15: end for

complexity than O(N), the number of memory stores performed by Algorithm 2, as

proven by (2.17). More precisely, the goal is to achieve perfect load-balancing across the

MPI cores. This is equivalent to having:

(p+1)N
P
−1∑

i=pN
P

ncopiesi =
N

P
∀p = 0, . . . , P − 1 (3.2)

which is essentially (2.17) applied locally. Once (3.2) is satisfied, the number of particles

to duplicate owned by each MPI core is balanced. Hence, the cores can safely perform

Algorithm 2 within their memory in O(NP ).
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Figure 3.7: MPI Cumulative Sum - speed-up for up to N = 224 and P = 256
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Figure 3.8: MVR - speed-up for up to N = 224 and P = 256

The divide-and-conquer strategy in [58] uses a top-down binary-tree structure. Start-

ing from the root node, the key idea consists of sorting ncopies and moving x conse-

quently at every stage of the binary tree. This way, the given randomised input pair

ncopies, x is re-organised into a known, ordered input. After that, it is possible to split

deterministically the father node into two balanced child nodes, each having half of the

cores and half of particles to duplicate. To achieve that, the cores search for a particular
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index, called pivot, such that N
2 particles to copy can be counted on each side of pivot.

In order to find pivot, parallel Cumulative Sum is performed over ncopies and then

pivot is the first index such that the same Cumulative Sum is equal to or greater than
N
2 . Once pivot is identified, the cores are coupled pairwise as in the reduction operation,

and send to their partner all the particles whose index i ≤ pivot. Since the particles per

node are halved at each stage, (3.2) is achieved by calling this routine recursively log2 P

times.

Apart from Cumulative Sum, which has been discussed already in the previous sec-

tion, this parallel routine requires other two components: sort and pivot calculation,

which are described in the two following sections.

3.3.4.1 Bitonic Sort

To sort ncopies and x, the redistribution in [58] uses Bitonic Sort, a fast comparison-

based parallel sorting algorithm. Bitonic Sort was first presented in [9] and recently

implemented on a cluster of graphics cards in [96]. This algorithm uses a divide-and-

conquer approach to first divide the input sequence into a series of Bitonic sequences1.

Then the Bitonic sequences are recursively merged together until the algorithm returns

a single monotonic sorted sequence.

A possible sorting network which can be used is illustrated in Figure 3.9. Each hori-

zontal wire represents a key, the vertical arrows connect the input keys for a comparison

and the direction represents the order of the keys after the comparison has occurred.

The coloured blocks represent the tree nodes (blue or red if the input keys must be

sorted in increasing or decreasing order respectively).
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Figure 3.9: Bitonic Sort - sorting network

For the purposes of this thesis, a modified version of Bitonic Sort is needed, because

while the keys in ncopies are sorted, the particles will move the same way. Algorithm 16

1A Bitonic sequence is a sequence of N keys in which the first N/2 keys are sorted in increasing order,
while the last N/2 keys are sorted in decreasing order.
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Algorithm 16 MPI Bitonic Sort

Input: x, ncopies, N , P , p, comm
Output: x, ncopies

1: n← N
P

2: Allocate s, an MPI Status variable
3: Serial Bitonic Sort(x,ncopies, n)
4: for i← 2; i ≤ P ; i← 2 · i do
5: up← Direction(p, i)
6: for j ← 0; j < log2 i; j ← j + 1 do
7: par ← PartnerCalc(p, i, j)
8: MPI Sendrecv(ncopies, n, MPI INT, par, 0, tmp, n, MPI INT, par, 0, comm, s)
9: MPI Sendrecv(x, n, MPI DOUBLE, par, 0, tmpx, n, MPI DOUBLE, par, 0, comm, s)

10: Merge(x,ncopies, tmp, tmpx, up, p, par, n)
11: end for
12: end for

illustrates a possible pseudo-code to implement on MPI the sorting network in Figure

3.9. As can be observed from the algorithm, each MPI process starts by sorting the

particles locally. The implementation of Serial Bitonic Sort is omitted for brevity as

it resembles the two nested for loops in Algorithm 16, with the only difference of having

steps 7, 8 and 9 switched with a for loop, which iteratively selects and compares two

keys at the time. After local sort, the cores are organised into nodes in a bottom-up

binary-tree structure. Each node is itself a top-down binary tree, where the cores are

coupled pairwise. Therefore, at every stage of the top-down binary tree, each core selects

a new partner to exchange the whole content of ncopies and x with. After that, Merge2

is invoked locally in order to keep the lowest or highest keys, according to the sorting

direction up. Since Merge takes O(NP ) comparisons and is invoked (log2 P )2 times, we

can infer infer that the achieved time complexity is equal to O((log2N)2) for P = N

processors. For any P ≤ N , Bitonic Sort performs

O

(
N

P

(
log2

(
N

P

))2

+
N

P
(log2 P )2

)
(3.3)

comparisons, where the first term describes the number of steps to perform Bitonic Sort

locally and the second term represents the data movement to merge the keys between

the cores.

Figure 3.10 shows the speed-ups for Bitonic Sort, using the same values of N and P

in Sections 3.3.1, 3.3.2 and 3.3.3. Once again, we can see that the speed-ups increase

with N , but in this case the values are lower since the communication in Bitonic Sort is

heavier than in reduction or Cumulative Sum.

2Merge is a O(N) routine which takes two ordered N -element sequences and saves either the lowest
or the highest N keys, depending on the direction of the arrow in Figure 3.9, the rank p or the partner’s
rank par. The implementation here is omitted for brevity but an exhaustive explanation can be found
in [7].
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Figure 3.10: MPI Bitonic Sort - speed-up for up to N = 224 and P = 256
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Figure 3.11: O((log2N)3) Redistribute - example for N = 8 and P = N

3.3.4.2 Pivot Calculation

The pivot is the first index such that csum ∈ ZN , the Cumulative Sum over ncopies,

is equal to N
2 or higher. Therefore, any given index i is pivot if the following logical
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expression is true:

csumi ≥ N

2
∧ csumi − ncopiesi <

N

2
(3.4)

During the splitting phase, the cores send to its partner every i-th particle such that

ncopiesi > 0 and i > pivot. If i = pivot and csumi > N
2 , only the particle copies

in excess must be sent: this translates to sending csumi − N
2 copies and keeping the

remaining ncopiesi + N
2 − csumi ones.

3.3.4.3 O((log2N)3) Fully-Balanced Redistribute

Algorithm 17 describes an MPI pseudo-code in recursive form for the parallel redistri-

bution described in this section. Since Bitonic Sort is performed (log2 P )2 times we can

infer that the achieved time complexity is O((log2N)3), as previously mentioned in Sec-

tion 3.2. A possible example for N = 8 and P = N is illustrated in Figure 3.11, where the

pivots are circled in red. The results for this redistribute implementation are provided

in the following section, in comparison with other parallel redistribute implementation.

3.4 Bitonic Sort Based Redistribute on MPI

As anticipated in Section 3.2, the redistribute in [85] is presented on MapReduce and,

although it has proven to be better than Algorithm 17, it has shown little to no speed-

up vs S-R. This section shows how to implement on MPI the parallel redistribution

in [85]. Then it repeats the same experiment in [85], with a view to showing that its

disappointing results were mostly caused by the chosen framework.

Algorithm 17 uses Bitonic Sort to make sure the workload can be deterministically

divided in less than O(N). This is because, by sorting the particles we are also moving

those ones for which ncopiesi > 0 to one side of the node, leaving the other particles

such that ncopiesi = 0 to the other side of the node. Therefore, each i-th particle

copy for i ≥ pivot can be safely sent to the other side of the node without colliding

with other copies. However, Bitonic Sort is also the only reason why Algorithm 17 takes

O((log2N)3) computations.

To improve the time complexity, the parallel redistribution in [85] performs Bitonic

Sort only once at the beginning. This guarantees that the particles that must be du-

plicated are separated from those that must be deleted. Then, the algorithm descends

the same binary-tree structure as in Algorithm 17. At this point, the clever observation

in [85] is that Bitonic Sort can be replaced by rotational shifts to ensure the workload

distribution is deterministic. More precisely, each i-th particle such that ncopiesi > 0

and i ≥ pivot is rotated by r = (N2 −1)−pivot positions. When operating on the binary

tree, parallel Cumulative Sum is again computed at every stage to calculate the position

of r. In this algorithm, it is necessary that all cores being aware of the exact position

of the pivot, such that they can calculate the number of rotations r to be performed.

Since the pivot could be located anywhere, whichever core finds pivot is tasked with
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Algorithm 17 O((log2N)3) MPI Redistribute

Input: x, ncopies, N , P , n, p, comm
Output: x

1: if N == n then
2: x← S-R(x,ncopies, n)
3: return x
4: end if
5: Allocate s, an MPI Status variable
6: MPI Bitonic Sort(ncopies,x, N, P, p, comm)
7: csum← MPI Cumulative Sum(ncopies, N, P, MPI INT, Inclusive, comm)
8: partner ← (p+ P

2 )&(P − 1)
9: for i← 0; i < N ; i← i+ 1 do

10: if csumi < N
2 then, i < pivot

11: copies to sendi ← 0
12: else if csumi ≥ N

2 ∧ csumi − ncopiesi < N
2 then, i = pivot

13: copies to sendi ← csumi − ncopiesi

14: else, i > pivot
15: copies to sendi ← ncopiesi

16: end if
17: ncopiesi ← ncopiesi − copies to sendi

18: end for
19: if p < P

2 then, I am a sender
20: MPI Send(copies to send, n, MPI INT, partner, 0, comm)
21: MPI Send(x, n, MPI DOUBLE, partner, 0, comm)
22: else, I am a receiver
23: MPI Recv(ncopies, n, MPI INT, partner, 0, comm, s)
24: MPI Recv(x, n, MPI DOUBLE, partner, 0, comm, s)
25: end if
26: P ← P

2 , N ← N
2 , colour ← (int)( pP )

27: MPI Comm split(comm, colour, p,&comm), split the communicator in two
28: MPI Comm size(comm,&P ), register the new size of the communicator
29: MPI Comm rank(comm,&p), assign a new rank to each core
30: O((log2N)3) MPI Redistribute(x,ncopies, N, P, n, p, comm)

broadcasting it to the other cores of the same node. The next two sections demon-

strate that it is possible to broadcast the pivot and rotate the particles by r positions in

O(log2N). Therefore, since Bitonic Sort is performed once and Cumulative Sum, pivot

broadcast and rotational shifts are performed log2 P times, we can infer that the parallel

redistribution in [85] achieves O((log2N)2) time complexity.

3.4.1 Pivot Broadcast

Once again, pivot is the first index such that csumpivot ≥ N
2 . Therefore, it can be found

by checking the logical expression (3.4). However, as said in the previous section, pivot

could be located anywhere between i = 0 and i = N
2 −1. This means any core with rank

p < P
2 could find it. Therefore, it is necessary to make sure that pivot is available to all

cores. This can be done by using a binary tree, akin to the one for reduction. During
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this operation, all but the owner of the pivot yield 0 towards the reduction while the

owner yields the true value of pivot. This way, the output of reduction is guaranteed to

be equal to the true pivot. Since (3.4) is embarrassingly parallel and the binary tree in

reduction takes log2 P partial Sums (see Section 3.3.2), we can infer that this routine

achieves O(NP + log2 P ) time complexity.

3.4.2 Rotational Shifts

In order to safely rotate the N
2 particles on the right side of pivot, the first thing to do is to

save every i-th particle such that i < pivot and as many copies as ncopiesi−csumi+ N
2

if i = pivot. This is to restore the saved particles once the rotations have been performed.

The cores within the same father node must now rotate the particles by r = (N2 −
1) − pivot position, such that the father node is split into two balanced child nodes.

Since r ∈ Z, it can be expressed in base-two notation by using log2N bits. Therefore,

one can decompose r into a sum of log2N power-of-two numbers (i.e. one per each bit

of r) as follows:

r =

log2N−1∑
k=0

bk2k (3.5)

where bk is the k-th bit of r in base-two notation. One can then develop a bottom-up

binary-tree structure, where at each stage a new bit of r is checked, starting from the

Least Significant Bit (LSB) to the Most Significant Bit (MSB); the particles are then

rotated by 2k positions depending on whether bk is 1 or 0. This way, the father node

gets split in O(log2N) if P = N . In the more realistic case where P < N , an extra

leaf stage must be performed before the cores starts ascending the binary tree. In this

initial stage, internal rotations are performed locally in order to take care at once of the

rotations related to the first log2
N
P LSBs.

Figure 3.12 depicts a possible example for N = 16 particles and P = 4 cores rotating

the particles by r = 5 positions. The scanned bits at each stage of the binary tree are

in red.

3.4.3 Bitonic Sort Based Redistribute

Bitonic Sort is performed at the start to separate all the particles to be copied from

those that must be deleted. Then, the particles can be split recursively in O((log2N)2)

by using sequences of Cumulative Sum over ncopies, pivot calculation and broadcast

and rotational shifts in each node of a binary tree. After that, (3.2) is satisfied and

S-R can be performed locally in O(NP ). As previously mentioned, the time complexity is

O((log2N)2) for P = N , but equal to (3.3) for any P ≤ N as Bitonic Sort is performed

once. From now on, this algorithm will be referred to as Bitonic Sort Based Redistribute

(B-R). A possible example for N = 16 and P = 4 is found in Figure 3.13, where the red

circles represent node pivots and the arrows are applications of rotational shifts.
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Figure 3.12: Rotational Shifts - example for N = 16, P = 4 and r = 5

3.4.4 Algorithmic Implementation

This section provides some algorithmic implementation details about B-R and its key

components discussed in Sections 3.4.1 and 3.4.2.

Algorithm 18 summarises the necessary steps to implement Pivot Bcast. Each core

searches for pivot using an embarrassingly parallel for loop. The core p that finds it

also needs to convert it to a global index by rescaling it by p× n, i.e. the total number

of memory locations belonging to the cores with lower ranks. At this point any core

could have found pivot. Therefore, standard all-to-one MPI broadcast routines, such as

MPI Bcast, cannot be used to to broadcast the position of pivot. Here, MPI Allreduce

is used instead.

Algorithm 19 illustrates an MPI pseudo-code performing r rotational shifts. As

anticipated in Section 3.4.2, this routine needs two embarrassingly parallel for loop, one

at the beginning and one at the end, to save and restore the particles that must not
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Figure 3.13: Bitonic Sort Based Redistribute - example for N = 16 and P = 4

Algorithm 18 Pivot Bcast

Input: ncopies, csum, N , P , comm
Output: pivot

1: n← N
P

2: idx← 0
3: for i← 0; i < n; i← i+ 1 do
4: if csumi ≥ N

2 ∧ csumi − ncopiesi < N
2 then

5: idx← p× n+ i, the pivot must be expressed as a global index
6: break
7: end if
8: end for
9: MPI Allreduce(idx, pivot, 1, MPI INT, MPI SUM, comm)

move. In between, the cores are organised in a binary tree for loop where they exchange

particles by using MPI Sendrecv at each stage.

Algorithm 20 describes an MPI pseudo-code for the parallel redistribution in [85].

As we can see, this routine performs Bitonic Sort once, followed by a binary-tree step

performing Algorithms 14, 18 and 19 in sequence at each stage. The routine is then

finalised by using S-R to redistribute the particles within the memory of each core.

The next section repeats the experiment in [85] which compares B-R with Algo-

rithm 17 and the Centralised Redistribute (C-R), i.e. the redistribute parallelisation in

Centralised Resampling, whose pseudo-code can be found in Algorithm 21.

3.4.5 Numerical Results

This section first compares single iterations of the redistributions in Algorithms 17, 20

and 21. Then, it studies the impact of each of these variants on the overall run-time of

a SIR PF working on an exemplary dynamic model.
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Algorithm 19 MPI Rotational Shifts

Input: x, ncopies, csum, N , P , pivot, comm
Output: x, ncopies

1: n← N
P

2: r ← pivot− (N2 − 1)
3: for i← 0; i < n; i← i+ 1 do, save particles on the right side of pivot
4: if p× n+ i < pivot then
5: tmpi ← ncopiesi

6: tmpxi ← xi

7: else if p× n+ i > pivot then
8: tmpi ← 0
9: tmpxi ← 0

10: else
11: tmpi ← csumi − N

2
12: ncopiesi ← ncopiesi − tmpi

13: tmpxi ← xi

14: end if
15: end for
16: if P < N then Leaf stage
17: if r&(n− 1) then The k-th bit is 1
18: sp← (p+ 1)&(P − 1), compute the sending partner
19: rp← (p− 1)&(P − 1), compute the receiving partner
20: for i← 0; i < n; i← i+ 1 do
21: j ← (r + r&(n− 1))&(n− 1)
22: tmp2j ← ncopiesi

23: tmpx2j ← xi

24: end for
25: ncopies0:n−1 ← tmp0:n−1

26: x0:n−1 ← tmpx20:n−1

27: MPI Sendrecv(ncopies, n, MPI INT, sp, 0, tmp2, n, MPI INT, rp, 0, comm, s)
28: MPI Sendrecv(x, n, MPI DOUBLE, sp, 0, tmpx2, n, MPI DOUBLE, rp, 0, comm, s)
29: end if
30: end if
31: for k ← log2 n; k < log2 r; k ← k + 1 do Binary tree
32: if r&2k then The k-th bit is 1
33: sp← (p+ P

2k
)&(P − 1), compute the sending partner

34: rp← (p− P
2k

)&(P − 1), compute the receiving partner
35: MPI Sendrecv(ncopies, n, MPI INT, sp, 0, tmp2, n, MPI INT, rp, 0, comm, s)3

36: MPI Sendrecv(x, n, MPI DOUBLE, sp, 0, tmpx2, n, MPI DOUBLE, rp, 0, comm, s)
37: end if
38: end for
39: for i← 0; i < n; i← i+ 1 do, restore particles on the right side of pivot
40: ncopiesi ← ncopiesi + tmpi, xi ← xi + tmpxi

41: end for

3.4.5.1 Redistribute

Figure 3.14 shows the run-times for all three redistribute algorithms that have been

described in Sections 3.3.4 and 3.4.3. To ensure fair comparison, all algorithms have
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Algorithm 20 Bitonic sort based Redistribute (B-R)

Input: x, ncopies, N , P , n = N
P , comm

Output: x

1: if P > 1 then, sort the particles
2: MPI Bitonic Sort(x,ncopies, N, P, comm)
3: end if
4: for k ← 1; k ≤ log2 P ; k ← k + 1 do, Binary tree
5: csum← MPI Cumulative Sum(ncopies, N, P, comm)
6: pivot← Pivot Bcast(ncopies, csum, N, P, comm)
7: x,ncopies←MPI Rot Shifts(x,ncopies, csum, N, P, pivot, comm),
8: N ← N/2
9: P ← P/2

10: colour ← (int)(
p
P )

11: MPI Comm split(comm, colour, p,&comm), split the communicator in two
12: MPI Comm size(comm,&P ), register the new size of the communicator
13: MPI Comm rank(comm,&p), assign a new rank to each core
14: end for, ncopies now complies with (3.2)
15: x← S-R(x,ncopies, n)

Algorithm 21 Centralised Redistribute (C-R)

Input: x, ncopies, N , P , p
Output: x

1: n← N
P

2: MPI Gather(ncopies, n, MPI INT,ncopies, n, MPI INT, 0, MPI COMM WORLD)
3: MPI Gather(x, n, MPI DOUBLE,x, n, MPI DOUBLE, 0, MPI COMM WORLD)
4: if p == 0 then
5: x← S-R(x,ncopies, N)
6: end if
7: MPI Scatter(x, n, MPI DOUBLE,x, n, MPI DOUBLE, 0, MPI COMM WORLD)

always been tested for the same input pair: x, ncopies. To guarantee (2.17), ncopies

is generated randomly by using MVR with a normally distributed input w̃, as this is a

common case for several exemplary models. As can be observed, C-R is very fast for a

few cores, but becomes progressively slower as P increases, primarily due to increasing

cost of communication. The run-times for the O((log2N)2) and O((log2N)3) variants

increase rapidly for P = 2 MPI cores, because neither Bitonic Sort nor the binary-tree

phase are needed when P = 1. However, with the number of MPI processes increasing, it

is evident that B-R outperforms Algorithm 17 for any P > 2, and eventually outperforms

C-R as well starting from at least P = 64 MPI cores. Also, B-R provides up to a four

time speed-up vs the other two redistribute variants.

With these results in view, we can expect to see that the new algorithm will lead to

slow-downs for any P < 64 MPI processes when applied to the context of SMC methods.

These are not further discussed here. Instead more relevant results about the overall

speed-up for the PF will be discussed in the section that follows this.
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Figure 3.14: B-R vs C-R vs O((log2N)3) Redistribute - run-times for increasing N
and P
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3.4.5.2 Stochastic Volatility

The chosen example for this experiment is a stochastic volatility model which appeared

several times in the literature [29, 30] and estimates the pound-to-dollar exchange rate

between October 1, 1981 and June 28, 1985. In [29], this model has been used to

demonstrate the utility of advanced SMC methods, such as Block Sampling PFs, over

SIR PFs. The dynamic model follows:

Xt = φXt−1 + σVt (3.6a)

Yt = β exp

(
Xt

2

)
Wt (3.6b)

where the coefficients φ = 0.9731, σ = 0.1726, β = 0.6338 (as selected in [29]) and

Vt ∼ N (0, 1) and Wt ∼ N (0, 1). The initial state is sampled as X0 ∼ N (0, σ2

1−φ2 ). The

particles are initially drawn from p(X0) and then from dynamic model. Hence, (2.13) is

simplified to wi
t = wi

t−1p
(
Yt|xit

)
.

For this experiment, three different versions of Algorithm 1 are used, only differing

for the type of redistribute parallelisation in use. Each run-time has been taken for 100

consecutive time steps and, in order to compare the algorithms accurately, resampling

is purposely computed every time, to ensure the frequency of redistribution is the same.

Figure 3.15 shows that the speed of PF using C-R improves for a limited number

of cores. This is because C-R is faster than other tasks, such as MVR, when P is low.

However, when P is high enough all tasks become faster than redistribute. At this

point, C-R emerges as the bottleneck and then the PF stops scaling. On the other

hand, the PF using B-R and the O((log2N)3) PF scale progressively for P > 2 cores.

However, the most interesting result is that not only is the O((log2N)2) PF faster than

the O((log2N)3) PF for any DOP (as expected from [85]) but, most importantly, it also

outperforms the O(N) PF for P = 64, 128, depending on N . These results prove that

MPI is a better environment than MapReduce for the PF with B-R. More precisely, on

MPI the O((log2N)2) PF provides about a two-fold speed-up vs the centralised PF for

P = 256 cores, while on MapReduce it was much slower for P = 512 cores.

The same figure underlines that the PF with B-R for P = 256 is up to 30 times

faster than each implementation of the PF running on a single core, as the three PF

algorithms are equivalent when P = 1.

These findings are encouraging and motivates further investigation of novel MPI

solutions to optimise the results above. Although B-R is indeed the best fully-balanced

redistribute which has been described so far, as we can see in Figure 3.16, it still is a

significant bottleneck for any P > 1, when it comes to its application in the context of

SIR PFs. The next section presents a novel variant of B-R that is effective for low DOP,

while Chapter 4 focuses on a novel redistribute which is fast for any P .
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redistribute for increasing N and P
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3.5 Nearly Sort Based Redistribute on MPI

The previous section has proven that B-R is the bottleneck of PF. In order to effectively

optimise the overall performance, a full profiling of Algorithm 20 is required to identify

which among Bitonic Sort, S-R or the other tasks in B-R is on the most computationally

intensive. As can be observe in Figure 3.17, Bitonic Sort always accounts for at least

50% of total run-time of B-R for P > 1. Therefore, the sorting phase needs revision
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both for low and high DOP. The rest of this chapter focuses on improvements for low

DOP, while the next chapter is focused on providing improvements for any P .

3.5.1 Alternative Single Core Sorting Algorithms

One possible way to improve Bitonic Sort (and by extension redistribute) is to substitute

the serial Bitonic Sort algorithm with a better single-core sorting algorithm. In the

literature, there are plenty of alternatives to Bitonic Sort available. Algorithms such

as Quicksort [42], Mergesort [4] and Heapsort [80], for example, achieve O(N log2N)

time complexity. Quicksort is on average faster than Mergesort and Heapsort. However,

Quicksort’s choice of its pivot can severely influence the performance: it is known, in

fact, that Quicksort’s worst-case time complexity is O(N2). This occurs when the pivot

chosen at every iteration is equal to either the minimum or the maximum of the available

keys. Although this case is statistically very rare in several modern applications, in the

case of SMC methods the worst-case scenario is however often encountered: ncopies

has to be sorted and, since (2.17) holds, there is a high probability that 0 is picked as

Quicksort’s pivot, i.e. a high probability that the pivot is the minimum element.

Heapsort achieves O(N log2N) time complexity in all cases except when all keys

are equal. In this special although rather unlikely case, the time complexity is O(N).

However, Mergesort is perfectly deterministic and data-independent and represents a

valid alternative to Bitonic Sort to fit a fully-balanced redistribute. A Bitonic Sorter

with Mergesort performed locally achieves the following time complexity:

O

(
N

P
log2

(
N

P

)
+
N

P
(log2 P )2

)
(3.7)

We also observe that ncopies is an array of integers. Hence, one could use locally

linear time sorting algorithms such as Counting Sort [32] or Radix Sort [5] (which are

both only applicable to arrays of integers). Although Counting Sort has deterministic

and data-independent time complexity, its space complexity is data-dependent. This is

because Counting Sort allocates a temporary array with as many elements as max −
min + 1. In the worst-case max = N , min = 0 and since N in extreme scenarios

could be very high, the temporary array may not fit within the local memory of a

single machine. This problem is shared with C-R. On the other hand, Radix Sort is a

feasible deterministic solution. However, Radix Sort is data-dependent because its time

complexity is actually O(C ·N) where the constant C is equal to the number of digits of

the maximum element (which can be N in the worst-case). Therefore, Radix Sort may

be too slow when N is high and its run-time may fluctuate too much as a function of

the input.

In summary, since this thesis is mostly interested in fully-balanced solutions, it is

necessary to find a parallel sorting algorithm that works with integer numbers, and

is deterministic and data-independent with respect to both time and space complexity.

While a combination of Bitonic Sort and Mergesort within each core achieves these aims,
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the next two sections develop an improved strategy that is sufficient for the needs of this

thesis and does not require sort at all.

3.5.2 Sequential Nearly Sort

The replacement of sort with rotational shift in B-R has improved the time complexity

from O((log2N)3) to O((log2N)2). However, it has also led to a more subtle considera-

tion: by observing the input of rotational shifts we can infer that one does not actually

need to perfectly sort the particles to divide the workload deterministically. This condi-

tion is always satisfied as long as stage by stage the particles that have to be duplicated

are separated from those that do not. To make things more clear it is necessary to first

provide the following definition.

Definition 3.2. A sequence of N non-negative integer ncopies is nearly-sorted in de-

scending order when it has the following shape:

ncopies =
[
λ0, λ1, ..., λm−1, 0, . . . , 0

]
(3.8)

where ncopiesi > 0 ∀i = 0, 1, ...,m − 1 and 0 ≤ m ≤ N . On the other hand, ncopies

is an ascending nearly-sorted sequence if the last m elements are positive and the first

are 0.

We can infer that the workload can be divided deterministically if ncopies is a

nearly-sorted sequence. In B-R, this condition is ensured by sorting before the subse-

quent parts of the redistribute step, consisting of Algorithms 14, 18 and 19. While there

are single-core sorting algorithms that achieve O(N) time complexity, these algorithms

do not meet the constraints of deterministic run-time and storage. However, it is pos-

sible to use a single core Nearly Sort for an array of integers with a deterministic and

data-independent approach with O(N) time complexity.

The key idea simply consists of checking the value of each ncopiesi. If this value is

positive, the core will copy xi to the left of an output array; if ncopiesi = 0, xi will be

copied to right. Each cores repeats this atomic operation for each particle it owns; after

that, the output array is necessarily nearly-sorted in descending order. For ascending

order outputs, the logic of the atomic operation must be reversed. This thesis refers to

the described routine as Sequential Nearly Sort (S-NS). To complete S-NS, each core

requires one atomic operation per particle that it owns, which means that S-NS achieves

O(N) time complexity or O(NP ) if we consider that each core owns n = N
P elements.

S-NS is, therefore, a very good alternative to Serial Bitonic Sort, Mergesort, Heapsort

and Radix Sort. This is because it achieves low time complexity with deterministic and

data-independent run-time and space complexity. The next section shows how to use

S-NS in a parallel algorithm that improves the performance of Bitonic Sort.
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3.5.3 Parallel O((log2 N)2) Nearly Sort

The goal of this section is show how S-NS can be used as part of a parallel algorithm

which generates a nearly-sorted sequence from a random input one. In this section and

the following one, it is discussed how to achieve this.

Let h be a sequence of N elements. h is called a nearly-bitonic sequence when it is

possible to find an index k which splits h into two monotonic nearly-sorted sequences.

One could use S-NS and the same sorting network of Bitonic Sort to first divide the input

into a series of nearly-bitonic sequences, and then to recursively merge the sequences

together until we generate a monotonic nearly-sorted sequence at the last step.

To achieve that, Merge in Algorithm 16 requires adaptation such that it can process a

nearly-bitonic sequence and returns a monotonic nearly-sorted sequence. This algorithm

has been named Nearly Merge. Stage-by-stage, one core with MPI rank i is coupled

with another core with MPI rank j. The assumption is that each core owns a nearly-

sorted sequence of keys such that the combination of both is necessarily a nearly-bitonic

sequence. Stage by stage, the cores exchange their local data. Then they consume a

complementary subset of N
P elements. Depending on the direction of the arrow in the

sorting network (see again Figure 3.9) and its rank compared to its partner’s rank, one

core will start consuming the 0s first and then the positive elements, while the other

core will do the opposite. This way, the 0s will be confined to one end of the output

array, separated from the positive elements.
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Figure 3.18: Nearly Merge - example for NP = 4 and up = 1

Figure 3.18 illustrates a possible example of Nearly Merge, where the two coupled

cores own 4 keys; the positive elements are padded with Xs for brevity. By extension,

each core owns exactly N
P particles and performs the same amount of writes to memory.
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Therefore, Nearly Merge achieves O(NP ) time complexity just as S-NS does. Considering

these conclusions, we can infer that, by switching Serial Bitonic Sort and Merge in

Algorithm 16 with S-NS and Nearly Merge, we obtain a parallel implementation of

Nearly Sort which takes

O

(
N

P
+
N

P
(log2 P )2

)
(3.9)

comparisons. A possible example is found in Figure 3.19.
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Figure 3.19: Nearly Sort - sorting network

3.5.4 Nearly Sort Based Redistribute

Nearly Sort has asymptotically the same time complexity of Bitonic Sort when P = N ,

but the time complexity for the serial algorithm is improved by a factor of O((log2(NP ))2).

Therefore, we can expect this algorithm to outperform Bitonic Sort. By extension, if

Bitonic Sort is replaced with Nearly Sort in B-R, we can also expect to have better

performance. A possible example for N = 16 and P = 4 is shown in Figure 3.20. From

now on, this algorithm is referred to as Nearly Sort Based Redistribute (N-R).

3.5.5 Algorithmic Implementation

This section provides some algorithmic implementation details for N-R and its key com-

ponents on MPI.

Algorithm 22 illustrates S-NS4, declares two iterators which respectively point at

the first and the last element of ncopies. Step by step, the i-th element of ncopies is

considered and if the value is positive then the particle is copied to the left end of the

output array. If not, it gets copied to the right end. The output ncopiesnew will then

be a descending nearly-sorted sequence.

4The pseudo-code for S-NS outputs zeros, the total count of ncopiesi = 0 elements. The reason for
that will become clear in Chapter 4, although it seems useless at this point of the narrative.
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Figure 3.20: Nearly Sort Based Redistribute - example for N = 16 and P = 4

Algorithm 22 Sequential Nearly Sort (S-NS)

Input: x, ncopies, n
Output: xnew, ncopiesnew, zeros

1: l← 0
2: r ← n− 1
3: for i← 0; i < n; i← i+ 1 do
4: if ncopiesi > 0 then
5: ncopieslnew ← ncopiesi

6: xlnew ← xi

7: l← l + 1
8: else
9: ncopiesrnew ← ncopiesi

10: xrnew ← xi

11: r ← r − 1
12: end if
13: end for
14: zeros← n− l

An MPI implementation of Nearly Sort is illustrate by Algorithm 23. As we can

see, this algorithm have a similar body of instructions to 16. At each stage, the cores

call MPI Sendrecv to exchange data with their partners. Then each core will invoke

a Nearly Merge routine to either consume the 0s first and then the positive elements

(Nearly Merge Down) or the opposite (Nearly Merge Up), depending on the binary tree

stage and the partner’s rank.

Algorithm 24 describes N-R, which is essentially the same as 20 with MPI Bitonic Sort

being replaced by MPI Nearly Sort.



Chapter 3. Parallelising Particle Filters with Deterministic Runtime on Distributed
Memory Systems 60

Algorithm 23 MPI Nearly Sort

Input: x, ncopies, N , P , p, comm
Output: x, ncopies

1: n← N
P

2: Allocate s, an MPI Status variable
3: S-NS(x,ncopies, n)
4: for i← 2; i ≤ P ; i← 2 · i do
5: up← Direction(p, i)
6: for j ← 0; j < log2 i; j ← j + 1 do
7: par ← PartnerCalc(p, i, j)
8: MPI Sendrecv(ncopies, n, MPI INT, par, 0, tmp, n, MPI INT, par, 0, comm, s)
9: MPI Sendrecv(x, n, MPI DOUBLE, par, 0, tmpx, n, MPI DOUBLE, par, 0, comm, s)

10: if up then, The arrow in Figure 3.19 is pointing up
11: if p < par then, consume the positive keys first
12: Nearly Merge Up(x,ncopies, tmp, tmpx, n)
13: else, consume the 0s first
14: Nearly Merge Down(x,ncopies, tmp, tmpx, n)
15: end if
16: else, The arrow in Figure 3.19 is pointing down
17: if p < par then
18: Nearly Merge Down(x,ncopies, tmp, tmpx, n)
19: else
20: Nearly Merge Up(x,ncopies, tmp, tmpx, n)
21: end if
22: end if
23: end for
24: end for

Algorithm 24 Nearly sort based Redistribute (N-R)

Input: x, ncopies, N , P , n = N
P , comm

Output: x

1: if P > 1 then, sort the particles
2: MPI Nearly Sort(x,ncopies, N, P, comm)
3: end if
4: for k ← 1; k ≤ log2 P ; k ← k + 1 do, Binary tree
5: csum← MPI Cumulative Sum(ncopies, N, P, comm)
6: pivot← Pivot Bcast(ncopies, csum, N, P, comm)
7: x,ncopies←MPI Rot Shifts(x,ncopies, csum, N, P, pivot, comm),
8: N ← N/2
9: P ← P/2

10: colour ← (int)( pP )
11: MPI Comm split(comm, colour, p,&comm), split the communicator in two
12: MPI Comm size(comm,&P ), register the new size of the communicator
13: MPI Comm rank(comm,&p), assign a new rank to each core
14: end for, ncopies now complies with (3.2)
15: x← S-R(x,ncopies, n)
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3.5.6 Numerical Results

This section first compares Nearly Sort with Bitonic Sort and then it repeats the exper-

iment from Section 3.4.5, under the same testing conditions, to investigate the improve-

ments made up to this point.

3.5.6.1 Nearly Sort vs Bitonic Sort

The two algorithms are compared by passing the same random input pair: x and ncopies

which is again generated from MVR as in Section 3.4.5.1.

As we can see from Figure 3.21, Nearly Sort is significantly faster than the other

algorithms and especially Bitonic Sort for a low number of cores. Then, when P increases

the performance of both algorithms become closer because the achieved time complexity

is asymptotically the same.

20 21 22 23 24 25 26 27 28

P

20

21

22

23

24

25

sp
e
e
d
-u

p

Nearly Sort vs Bitonic Sort - improvements 
for increasing N and P

N= 216

N= 220

N= 224

Figure 3.21: Nearly Sort vs Bitonic Sort - run-time speed-ups for increasing P

3.5.6.2 N-R vs B-R and C-R

In this experiment, the same strategy described in the previous section is used, since

the required input for N-R, B-R and C-R is the same as for Bitonic Sort or Nearly Sort.

The results are shown in Figure 3.22.

As expected from the previous results, and also from comparing (3.3) with (3.9),

N-R is better than B-R overall: more precisely, it is much faster for a small number of

cores, but comparable for high DOP. It is also interesting to see that N-R requires a

lower DOP than N-R to outperform C-R.
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3.5.6.3 Stochastic Volatility

This section repeats the experiment in Section 3.4.5 under the same testing conditions.

Hence the stochastic volatility model is run again by three versions of Algorithm 1, only

differing for the chosen redistribution, which in this case may be N-R, B-R or C-R.

We can observe in Figure 3.23 that a PF with N-R becomes faster than a PF with

C-R for at least P = 32, as expected from the previous section, while a PF with B-R

requires at least 64 cores to achieve the same result. For high DOP, using N-R instead

of C-R makes the PF up to 3 times faster. On the other hand, the improvements that

N-R brings over B-R can be mostly appreciated for low P , where switching Bitonic Sort

with Nearly Sort speeds up the run-time by up to a factor of two. For the highest values

of P , using N-R to parallelise redistribute in a PF provides about a 25% improvement

vs the same PF using B-R as redistribute parallelisation.

3.6 Conclusions

This chapter has provided the first milestone of this thesis: proving that MPI is a

much more suitable framework than MapReduce for B-R, the fully-balanced redistribute

presented in [85]. The results provided in [85] show that B-R on MapReduce cannot

outperform C-R even for P = 512 cores, while the results in this chapter prove that B-R

on MPI can indeed outperform C-R by almost a three-time factor for 256 MPI cores.

In Section 3.5, it has also been shown that the performance can be further improved

by switching Bitonic Sort, the most computationally intensive task in B-R, with Nearly

Sort, a novel routine that does not perfectly sort the particles, but simply separates

those that have to be duplicated from those that have to be deleted. The improvements

vs B-R are significant for low DOP but incremental for high values of P .

These final results may sound disappointing. However, proving that sort is not

necessary will be crucial for the novelty of the next chapter, where a novel fully-balanced

redistribute for DMAs which achieves O(log2N) time complexity is presented.



Chapter 4

An O(log2N) Fully-Balanced

Particle Filter for Distributed

Memory Architectures

4.1 Introduction

B-R and N-R, the two redistributions in Algorithm 20 and 24, both presented in Chapter

3 and published in [89, 90], are significant performance bottlenecks to SMC methods on

DMAs, as they both account for over 80% of the total run-time when the DOP is large.

This is because every other task in SMC methods scales at most as O(log2N), while

N-R and B-R achieve O((log2N)2) time complexity due to four major contributing fac-

tors. The first is the sorting network in Figures 3.9 and 3.19, consisting of a bottom-up

binary tree whose nodes are top-down binary trees themselves. In the second part of

both algorithms, there is another top-down binary tree whose nodes are sequences of Cu-

mulative Sum, Pivot Bcast, and rotational shifts, each taking O(log2N) computations.

It is then clear that, until each of these four subtasks are improved to, or substituted

by alternative strategies that scale logarithmically, redistribute will always be a largely

intensive bottleneck.

The goal of this chapter is to completely re-design the redistribute in [89, 90] and

propose a novel fully-balanced approach for DMAs which achieves O(log2N) time com-

plexity. In doing so, the rest of this chapter is organised as follows: Section 4.2 discusses

three crucial ideas to derive a O(log2N) Nearly Sort algorithm. Section 4.3 illustrates

how to translate the same ideas to design a novel three-phase O(log2N) fully-balanced

redistribution and show the improvements vs N-R and B-R. Section 4.4 proves that one

of the phases of the novel O(log2N) redistribute can be entirely removed with little

overhead. Here, the numerical results are provided for two exemplary PFs: the same

stochastic volatility example described in Chapter 3 and a real-world model for alloy

65
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productions, in which a large N was shown to be necessary to meet the accuracy con-

straints. Section 4.5, outlines the conclusions of this chapter and introduces the goals

for the next one.

4.2 Rotational Nearly Sort: An O(log2 N) Nearly Sort

Sorting networks that scale as O(log2N) already exist. The first example is AKS sort,

which can be found in [2]. The key idea is to organise the network as a top-down binary

tree, where each node is designed as an imperfect halver, a circuit which splits the father

node into two child nodes, each having a subset of wrong keys, called strangers, which

should belong to other nodes. Each node is then tasked with computing the halver, and

sending the strangers back to the father node.

However, the imperfect halver and the need of re-routing the strangers require such

a large constant time c that AKS sort is slower than Bitonic Sort, unless for an impracti-

cally large N . The exact value of c is unknown as it depends on the network parameters,

but is believed to be in the order of tens of thousands. In [70, 77], the original network

has been simplified to have c = 6100 in the best parameter configuration. Nevertheless,

the achieved constant is still too high: in [7], it has been estimated that a hypothetical

c = 87 would require N ≥ 2173 keys to make AKS-like sorting networks faster than

Bitonic Sort. Some other academics are of the opinion that the actual minimum N to

observe a crossing point vs Bitonic Sort should be about 278 [50], which is impractical

anyway.

Although sorting in logarithmic time is not practically possible at the current state-

of-the-art, similar concepts to AKS sort can be extrapolated to design a novel O(log2N)

Nearly Sort with a practical constant time, as Nearly Sort is indeed a much easier

property to achieve than sort.

4.2.1 Alternative Version of O((log2 N)2) Nearly Sort

The concept of strangers in AKS sort can be applied to Nearly Sort. The preliminary

idea is to use a bottom-up binary tree structure where, at each stage, the nodes are

divided pairwise into couples such that the coupled nodes, each containing a nearly-

sorted sequence, are merged into a new father node which also becomes nearly-sorted.

However, instead of merging the nodes as in Figure 3.19, the higher ranked child node

could be tasked with moving its stranger keys to its sibling node.

As said in the previous section, the circuit of each node in AKS to identify and

re-route the strangers has an impractical constant time. Alternatively, one could use a

combination of Cumulative Sum and reduction to identify the strangers and their final

destination in the memory of the sibling node. More precisely, let zeros be an array

containing a “binary” Cumulative Sum that counts the number of ncopiesi = 0 up to

the i-th element within the memory of each node. Now, let p̄ be lowest MPI rank of

each node. It can be inferred that each i-th element of zeros within the node’s memory
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partition is computed as follows:

zerosi =
i∑

j=p̄×N
P

(1− sgn(ncopiesj)) (4.1)

The i-th particle is then a stranger if the following boolean condition is true:

ncopiesi > 0 ∧ zerosi > 0 (4.2)

This corresponds to checking whether the i-th particle has to be duplicated and is in

the wrong position, since some gaps are available.

At each stage k, the strangers (if there is any) must be moved by as many positions

as:

rk =

Nk
Pk
−1∑

j=0

(1− sgn(ncopiesj)) = zeros
Nk
Pk
−1

(4.3)

the number of zeros in the sibling node, which we know can be filled in with particles to

copy. Here, it is clarified that Nk and Pk are the number of particles and cores per node

during the k-th stage. The value of rk is inferred from 4.1, and the core who owns it can

broadcast it to the other cores in the node by using MPI Bcast or MPI Allreduce as in

Pivot Bcast (see Algorithm 18). The child nodes can then save all particles for which

(4.2) is false, and use rotational shifts to move the others by rk positions according to

the bits of rk, from the LSB to the MSB. Then the saved particles are restored.

This implementation of Nearly Sort is a bottom-up equivalent version of the second

part in B-R and N-R. But, if this alternative version is used in N-R in place of Algorithm

23, we can infer that now redistribute scales as O((log2N)2) because of the recursive

use of three factors instead of four: Cumulative Sum, reduction and rotational shifts.

4.2.2 One Cumulative Sum for All Pivots
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Figure 4.1: Parallel Cumulative Sum - original structure
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Both Equations (4.2) and (4.3) depend on the same array zeros. This strongly

suggests that the operation to identify the strangers and the rotations to perform could

be one instead of two. Most importantly, it is possible to prove that the operation could

be performed once instead of log2N times.

The parallel Cumulative Sum illustrated in Figure 3.5 is the most recent and efficient

version. In the original implementation presented in [45], this operation is divided into

a bottom-up and a top-down phase. During the bottom-up phase, the nodes compute

Sum and in the meantime they build a tree where each node stores the value to subtract

during the top-down phase (see Figure 4.1).

Therefore, the cores could build a tree containing the information of each rk ∀k =

1, 2, ... log2 P , while they compute zeros. Alternatively, the values of rk can be updated

stage by stage the same way, before every call of rotational shifts. Either way, the cost of

computing all values in r is O(log2N) and the cost for each rk is now O(1). Therefore,

Nearly Sort now scales as O((log2N)2) only because of the repeated use of rotational

shifts.

4.2.3 One Round of Rotational Shifts for All Particles

The alternative Nearly Sort described so far makes each particle rotate by a total number

of positions equal to:

shiftsi =

log2 P∑
k=1

rk ∈ Z (4.4)

At this point, by carefully profiling the performance of this alternative Nearly Sort, it

is possible (although not trivial) to notice that the bits of rk are most often 0 and very

rarely 1, meaning that a lot of communication effort is wasted.

This communication inefficiency can be explained by pointing out that

shiftsi =

log2 P∑
k=1

rk =

log2 P∑
k=1

Nk
Pk
−1∑

j=0

(1− sgn(ncopiesj))

=
i∑

j=0

(1− sgn(ncopiesj)) ≤ N − 1 ∈ Z (4.5)

This means that not only each rk, but also the total number of zeros on the left of each

i-th particle shiftsi can still be expressed in base-2 using up to log2N bits. Therefore,

in order to Nearly Sort the particles, one could use Cumulative Sum once only to infer

shiftsi and follow its bits to perform one round of rotational shifts, which both take

O(log2N). Because the values in shifts are designed to place the particles to copy side

by side, a particle cannot collide or get past another one. For clarity, these problems

are formally defined a follows.

Definition 4.1. Let xi be a particle having ncopiesi ≥ 1, and xj be a particle having

ncopiesj ≥ 1, with j = i+dist, where 0 < dist < N − 1. A collision would occur if dist
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is a power-of-two number, xj is rotating to the left by dist, and xj is staying where it is.

More formally, a collision occurs if the total number of rotations that xj must perform

has significant bit (i.e. the bit corresponding to dist rotations) equal to 1, while the

same bit of the number of rotations that xi must perform is 0. The same definition can

be applied to collisions when rotations are performed to right if xi is rotating to the

right (and hence have significant bit equal to 1) and xj is not rotating (and hence have

significant bit equal to 0).

Definition 4.2. Let xi be again a particle having ncopiesi ≥ 1, and xj be again a

particle having ncopiesj ≥ 1, with j = i+ dist, where 0 < dist < N − 1. The particle

xj can get past xi if is rotating to the left by a power-of-two number greater than dist

while xi is staying where it is. The same problem occurs when rotations are performed

to the right if xi is rotating to the right by a power-of-two number greater than dist

while xj is staying where it is.

In the rest of this chapter, it is proven that these problems can never occur. There-

fore, it is now possible to Nearly Sort N particles in logarithmic time complexity.

4.2.4 Rotational Nearly Sort

This section describes in technical details how to implement the ideas explained in the

previous sections, in order to derive a O(log2N) alternative to Nearly Sort. The name

that has been chosen for this algorithm is Rotational Nearly Sort.

As in Algorithm 22, the first thing to do is to Nearly Sort the particles locally

by calling S-NS as this routine only takes O(NP ) iterations. This will start moving

the particles locally to the left which is what it has to be done across the MPI cores

eventually. At this point, the particles within core p must shift to the left by as many

positions as the number of zero elements in ncopies owned by the cores with a lower

rank. Let zeros ∈ ZP be the array which counts the number of ncopiesi = 0 within

each core; each element of shifts ∈ ZP (the array to keep track of the remaining shifts)

can be initialised as follows:

shiftsp =

p−1∑
p̃=0

zerosp̃ (4.6)

As anticipated in Section 4.2.2, Equation (4.6) can be parallelised by using parallel

exclusive Cumulative Sum once, after each core p has initialised zerosp to the sum

of zeros within its memory, at the end of S-NS. Then the particles can be rotated by

following the information stored in shifts.

As explained qualitatively in Section 4.2.3, it is now necessary to express shiftsp in

binary notation and shift the particles by increasing power-of-two numbers of positions,

depending on the bits of shiftsp, from the Least Significant Bit (LSB) to the Most

Significant Bit (MSB). This translates to using a bottom-up binary tree structure which

has depth O(log2N) as long as Equation (4.6) is updated in constant time. Further

technical details follow.
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If P < N , then Rotational Nearly Sort performs first an extra leaf stage in which

the MPI cores send all the particles to the neighbor on their left, if the bitwise & of

shiftsp and N
P −1 is positive. In addition, they also send shiftsp−shiftsp&

(
N
P − 1

)
, the

remaining shifts to perform after the leaf stage. In simple terms, the leaf stage masks

the log2
N
P LSBs of shiftsp and performs at once of the rotations referring to those bits.

After the leaf stage, the actual tree-structure routine can start. At every k-th stage

of the tree (for k = 1, 2, . . . , log2 P ), any core p will send to its partner p − 2k−1 all its

particles (i.e. x and ncopies) and shiftsp− N
P 2k−1 (i.e. the number of remaining shifts

after the current rotation) if and only if the bitwise & of shiftsp and N
P 2k−1 is positive;

this corresponds to checking a new bit of shiftsp, precisely the one which is significant

at the current stage. At every stage, the particles will then shift by an increasing

power-of-two number of positions and shifts gets updated in O(1). Therefore, since

shiftsp ≤ N − 1 (because a particle must shift at most from one end to the other end)

and its value is updated in constant time, the overall achieved time complexity is equal

to O(log2N). The following theorem and corollary prove that a particle can never collide

with or get past another one.

Theorem 4.3. During the k-th iteration of Rotational Nearly Sort, ∀k = 1, 2, . . . , log2 P ,

a particle xj, having ncopiesj ≥ 1 and rotating to the left by N
P 2k−1 positions, can never

collide with a particle xi, having ncopiesi ≥ 1 and j = i+ N
P 2k−1.

Proof of Theorem 4.3. At the k-th iteration, particle xi has shiftsi remaining rotations

to the left, while xj has shiftsj . Therefore, the necessary and sufficient condition for col-

lisions, defined in Definition 4.1, can be restated for Rotational Nearly Sort by checking

whether the following logical condition((
shiftsi&

N

P
2k−1

)
= 0

)
∧
((

shiftsj&
N

P
2k−1

)
> 0

)
(4.7)

is true, which corresponds to checking whether the significant bit of shiftsi is 0 and the

significant bit of shiftsj is 1. This condition can also be rearranged as follows:((
shiftsi&

N

P
2k−1

)
= 0

)
∧
((

(shiftsi + zerosi+1:j−1)&
N

P
2k−1

)
> 0

)
(4.8)

where zerosi+1:j−1 is the number of 0s in ncopies between positions i and j excluded.

Since Rotational Nearly Sort performs rotations using a LSB-to-MSB strategy, it is

easy to infer that the bits to the right of the significant one at this iteration (i.e. bit k−1)

are all 0. This means that, if the significant bit of shiftsi is 0, the only condition that

would make (4.8) true would be zerosi+1:j−1 = N
P 2k−1. That is, however, impossible

because in this case there are only i+ N
P 2k−1 − 1 memory slots between i and j, which

means that:

zerosi+1:j−1 ≤ j − i− 1 =
N

P
2k−1 − 1 <

N

P
2k−1 (4.9)
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Corollary 4.4. During the k-th iteration of Rotational Nearly Sort, ∀k = 1, 2, . . . , log2 P ,

a particle xj, having ncopiesj ≥ 1 and rotating to the left by N
P 2k−1 positions, can never

get past a particle xi, having ncopiesi ≥ 1 and i < j < i+ N
P 2k−1.

Proof of Corollary 4.4. Theorem 4.3 can automatically prove Corollary 4.4 because,

once again, (4.8) is true only if zerosi+1:j−1 = N
P 2k−1. But in this case j < i+ N

P 2k−1,

and hence:

zerosi+1:j−1 ≤ j − i− 1 < j − i < N

P
2k−1 (4.10)

In simpler words, Theorem 4.3 and Corollary 4.4 reinforce the following statement:

all non-zero values in shifts are by definition monotonically increasing (see Equation

(4.4)), and because a LSB-to-MSB strategy is applied, a particle rotating to the left can

at most catch up with the next one and there are always enough zeros to its left to do

that safely.

This breakthrough is very encouraging. The following section applies similar concepts

to develop a O(log2N) fully-balanced redistribute for DMAs and offers some algorithmic

implementation details about each step (including Rotational Nearly Sort).

4.3 A Three Step O(log2 N) Fully-Balanced Redistribute

for DMAs

Rotational Nearly Sort
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Rotational Redistribute + S-R
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- shifts and min shifts are in base 2, e.g. 4 = (100)2.
- For those arrays, the scanned bits are in red.
- Here N = 8 and P = 4, so the number of LSBs
to check in all Leaf stages is log2
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Figure 4.2: O(log2N) redistribute - example for N = 8 and P = 4

This section describes how it is possible to extrapolate the concepts in Rotational

Nearly Sort to develop a novel fully-balanced redistribution for DMAs, which serves its

purpose by using a three-phase approach, each phase taking O(log2N) computations.
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The reader is referred to Figure 4.2 which illustrates an example for N = 8 particles

and P = 4 cores. In the first phase, this routine moves to the left all particles that must

be duplicated by using Rotational Nearly Sort. The goal of the second phase, called

Rotational Scatter, is to create gaps to safely duplicate those particles without risking

collisions. The last phase, Rotational Redistribute, fills the gaps by duplicating the

particles across the MPI cores. This way, (3.2) is achieved. If P < N , then Rotational

Redistribute is finalised by S-R to redistribute the particles within each MPI cores.

The following two sections describe Rotational Scatter and Rotational Redistribute

while Section 4.3.5 repeats the experiment of Section 3.5.6 to show the improvements

that this novel redistribute provides vs B-R and N-R.

4.3.1 Rotational Scatter

The goal of this phase is to make room for each particle that has to be copied. We know

that after Rotational Nearly Sort, the first 1 < m ≤ N elements in ncopies will be

positive (see (3.8)). We also know that Equation (2.17) always guarantees that for every

ncopiesi > 0 there are as many zeros as ncopiesi − 1. Therefore, making room for the

copies to create easily translates to shifting the particles to the right until ncopies has

the following new shape:

ncopies = [λ0, 0, . . . , 0, λ1, 0, ..., 0, λm−1, 0, ..., 0] (4.11)

where for each ncopiesi > 0 (generically represented by λs in (4.11)), ncopiesi − 1

zeros follow. Let csum ∈ ZN be the inclusive Cumulative Sum of ncopies. To achieve

(4.11), it can be inferred that for each index i such that ncopiesi > 0, the minimum

required number of shifts to the right that the i-th particle must perform is:

min shiftsi =
∑i−1

j=0
(ncopiesj − 1)

= csumi − ncopiesi − i
(4.12)

since the i-th element in the inclusive Cumulative Sum is csumi =
∑i

j=0 ncopiesj .

As in Rotational Nearly Sort, parallel inclusive Cumulative Sum is computed once

only and, after that, Equation (4.12) is trivially parallelisable. However, in this phase

min shifts ∈ ZN , i.e. each core now owns n = N
P elements of min shifts instead of

one, which is the case with shifts in Rotational Nearly Sort.

In this case too, each min shiftsi is expressed in base-2. However, here the bits are

scanned from the MSB to the LSB, as the goal is now to scatter the particles, instead of

gathering them together. Each particle is then rotated to the right by decreasing power-

of-two numbers of position, depending on the value of the scanned bits. This corresponds

to using a top-down binary tree structure which, once again, takes O(log2N) steps as

long as (4.12) can be updated in constant time. Technical details follow.
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At each stage k of the tree, any core with rank p will send to its partner with rank

p+ P
2k+1 any particle i for which the bitwise & of min shiftsi and N2−k is positive and

will hold the other particles. This corresponds to scanning a new bit of min shiftsi,

the one which is significant to the k-th stage. In case P < N , after log2 P stages the

cores will perform a leaf stage to send at once to their neighbour with higher rank any

particle i such that min shiftsi + i > (p+ 1)n, which corresponds to checking whether

the i-th particle should be placed in the memory partition of the neighbour core. In

other words, the leaf stage performs at once the rotations corresponding to the log2
N
P

least significant bits of each min shiftsi.

In order to ensure logarithmic time complexity, one needs to update csum and

min shifts in O(NP ). This can be done if the cores send starter = csumj , where j is

the index of the first particle to send if there is any to send. It is possible to prove that

a particle can never collide with or get past another one. This statement will be proven

later in this section. Hence, each core can safely see the received starter as
∑

ncopies

for the cores with lower rank, and use it to re-initialise and update csum sequentially as

in (3.1). This strategy guarantees csum is always correct for at least any index i such

that ncopiesi > 0, but those are the only indexes of interest. After updating csum,

min shifts can be recomputed in O(NP ) by using Equation (4.12).

It is easy to infer that min shiftsi < N − 1, for any 0 ≤ i ≤ N − 1, as a particle

could be shifted at most from the second to the last position. Therefore, because the

shifts will decrease stage by stage by up to a factor of two, the achieved time complexity

of Rotational Scatter is O(log2N). The following theorem proves that two particles can

never collide or get past each other.

Theorem 4.5. Given a nearly-sorted input ncopies, at the k-th iteration of Rotational

Scatter, ∀k = 1, 2, ..., log2 P , a particle xi, having ncopiesi ≥ 1 and rotating to the right

by N2−k positions, can never collide with or get past a particle xj, having ncopiesj ≥ 1

and j = i+ dist with 1 ≤ dist ≤ N2−k.

Proof of Theorem 4.5. This theorem can be proved in two possible complementary cases:

1. there is one or more zeros between i and j;

2. there are no zeros between i and j.

Case 1. Since the particles are initially nearly-sorted, at the beginning there are no

zeros in between any pair of particles in position i and j. At the k-th iteration, if one or

more zeros is found between xi and xj , it necessarily means that dist > min shiftsi ≥
N2−k. That is because of two reasons. First, zeros between two particles xi and xj

can only be created if the MSB of min shiftsi is 0 and the MSB of min shiftsj is 1.

Second, for any binary number, its MSB, if equal to 1, is a greater number than the one

represented by any disposition of all remaining LSBs (e.g. (1000)2 = 8 > (0111)2 = 7).

Hence, if there is any zero between xi and xj , it is because during at least one of the

previous iterations, xj rotated by an MSB and xi did not, such that xj is now beyond

reach of possible collisions with xi.
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Case 2. In this case, all particles between i and j are still nearly-sorted. Therefore,

xi would collide with (when dist = N2−k) or get past xj (when dist < N2−k) if((
min shiftsi&N2−k

)
> 0
)
∧
((

min shiftsj&N2−k
)

= 0
)

(4.13)

is true, which corresponds to checking whether the MSB of min shiftsi is 1 and the MSB

of min shiftsj is 0. In other words, (4.13) can be simplified to checking if min shiftsi >

min shiftsj . However, for a pair of particles xi and xj within a nearly-sorted group of

particles, that is impossible because:

min shiftsi = csumi − ncopiesi − i

= csumj −
∑j

z=i+1
ncopiesz − ncopiesi − j + dist

= csumj − ncopiesj − j −
(∑j−1

z=i
ncopiesz − dist

)
= min shiftsj −

(∑j−1

z=i
ncopiesz − dist

)
≤min shiftsj

since csumj =
∑j

z=0 ncopiesz, dist = j−i and (in this case)
∑j−1

z=i ncopiesz ≥ j−i.

In simpler words, Theorem 4.5 reinforces the following statement: the particles are

initially nearly-sorted; during the rotations, two particles can either be separated by

enough zeros to never cause collisions (because of the MSB-to-LSB strategy) or be

separated by nearly-sorted non-zero particles. For these adjacent particles, min shifts

is monotonically increasing and hence those particles can never collide with or get past

each other, as the increasing values in min shifts, along with the MSB-to-LSB strategy,

can only make them scatter.

4.3.2 Rotational Redistribute

After Rotational Scatter, every particle such that ncopiesi > 0 has enough room on

its right to duplicate itself ncopiesi − 1 times. The goal in this third and final phase,

Rotational Redistribute, is to fill in the available gaps to balance the workload.

This is done once again by moving the particles to the right, as in Rotational Scatter.

However, in this case there is no need to compute and update Cumulative Sum to

infer the shifts to perform, because ncopies already carries all information required.

Therefore, the strategy is to first express each ncopiesi in binary notation and scan the

bits of ncopiesi from the MSB to the LSB. The bits still represent power-of-two numbers

of positions which the particles might have to rotate by, depending on the value of the

scanned bits. This translates again to using a top-down binary tree structure where the

cores are connected as in Rotational Scatter.

At each k-th stage of the tree, every ncopiesi can be written as follows:

ncopiesi = (ncopiesi −N2−k) +N2−k (4.14)
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Stage by stage, the cores need to split every ncopiesi > N2−k by sending ncopiesi −
N2−k copies to its partner and keeping N2−k. Checking ncopiesi > N2−k is indeed

equivalent to reading the bit of ncopiesi which is relevant to the k-th stage. Here it

is specified that the significant bit is also 1 when ncopiesi = N2−k, but in that case

ncopiesi−N2−k = 0 copies would be sent. Hence, checking whether ncopiesi > N2−k

is true is more informative than computing the bitwise & of ncopiesi and N2−k.

If P < N , after log2 P steps the cores need to perform a leaf stage to split any

particle i for which ncopiesi + i ≥ (p + 1)n, where (p + 1)n is the beginning of the

partition which belongs to the neighbour core with rank p + 1. This done by sending

ncopiesi + i − (p + 1)n copies (the ones in excess) to their neighbour and keeping the

remaining (p + 1)n − i ones. Once again, the leaf stage performs at once all rotations

that refer to the least log2
N
P bits of the integer representing the shifts or the splits and

shifts to perform, in this case ncopiesi. After that, it is guaranteed that ncopies will

still have shape (4.11) but, most importantly, the workload is fully-balanced across the

MPI ranks, i.e. the sum of ncopies within each core’s memory is equal to N
P .

Because Equation (2.17) holds, ncopiesi ≤ N ∀i and because every integer number

N can be expressed as a sum of log2N power-of-two numbers, we can infer Rotational

Redistribute achieves O(log2N) time complexity. Also, collisions cannot occur in this

step because (4.11) holds from the beginning. A proof of this statement is trivial and

omitted for brevity.

4.3.3 O(log2 N) Fully-Balanced Redistribute

After Rotational Redistribute, S-R can be invoked locally and will finish in O(NP ) iter-

ations because the particles are now equally distributed across the MPI ranks.

The overall redistribute will then perform in sequence Rotational Nearly Sort, Ro-

tational Scatter and Rotational Redistribute only if P > 1 before calling S-R. We can

infer that the achieved time complexity is then O(N) for P = 1, O(log2N) for P = N

cores and for any 1 ≤ P ≤ N is:

O

(
N

P
+
N

P
log2 P

)
(4.15)

The first term in (4.15) represents S-R, which is performed always, and all the steps

which are called once only for any P > 1, such as S-NS. The second term describes the

log2 P stages of Rotational Nearly Sort, Rotational Scatter and Rotational Redistribute

during which up to N
P particles are updated, sent and received.

4.3.4 Algorithmic Implementation

This section provides algorithmic implementation details about Rotational Nearly Sort

(see Algorithm 25), Rotational Scatter (see Algorithm 26), Rotational Redistribute (see

Algorithm 27), and the O(log2N) fully-balanced redistribute described in the previous

section (see Algorithm 28).
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Algorithm 25 Rotational Nearly Sort

Input: x, ncopies, N , P , n = N
P , p

Output: x, ncopies

1: x,ncopies, zeros←S-NS(x,ncopies, n), see Algorithm 22
2: shifts← Exclusive Cumulative Sum(zeros)
3: if P < N then perform leaf stage of the binary tree
4: partner ← (p− 1) & (P − 1), i.e. the neighbour
5: if shifts & (n− 1) > 0 then
6: for j ← 0; j < n; j ← j + 1 do
7: if j < shifts & n− 1 then
8: Send xj , ncopiesj to partner, ncopiesj ← 0
9: else

10: Shift particle to the left by shifts & n− 1
11: end if
12: end for
13: shifts← shifts− shifts & n− 1
14: Send shifts to partner
15: else
16: Send arrays of 0s to partner (Message to reject)
17: end if
18: Accept or reject the received particles and shifts
19: end if
20: for k ← 1; k ≤ log2 P ; k ← k + 1 do binary tree
21: partner ← (p− 2k−1) & (P − 1)
22: if shifts & n2k−1 > 0 then
23: for j ← 0; j < n; j ← j + 1 do
24: Send xj , ncopiesj to partner, ncopiesj ← 0
25: end for
26: shifts← shifts− shifts & n2k−1

27: Send shifts to partner
28: else
29: Send arrays of 0s to partner (Message to reject)
30: end if
31: Accept or reject the received particles and shifts
32: end for

Algorithms 25, 26 and 27 refer to the pseudo-code that a generic core p would run

on a DMA (e.g. by using MPI). For this reason, the for loops, the particles and every

array related to them are indexed using local indexes 0 ≤ j ≤ n − 1, where n = N
P ,

although all equations in the previous sections have been expressed in global index form

(for brevity and simplicity reasons). Therefore, some local indexes in certain equations

have to be rescaled by p × n to be converted to global indexes. This is because a local

index j is equivalent to global index i = j + p× n.

4.3.5 Numerical Results

This section repeats the same experiment from Section 3.4.5, under the same testing

conditions and strategy. To do that, Algorithm 28 is first compared to N-R and B-R,
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Algorithm 26 Rotational Scatter

Input: x, ncopies, N , P , n = N
P , p

Output: x, ncopies

1: csum← MPI Cumulative Sum(N,P,ncopies)
2: min shiftsj ← csumj − ncopiesj − j − np, ∀j = 0, 1, . . . n− 1 if ncopiesj > 0
3: for k ← 0; k < log2 P ; k ← k + 1 do Binary tree
4: partner ←

(
p+ P

2k+1

)
&(P − 1)

5: for j ← 0; j < n; j ← j + 1 do
6: if min shiftj > N2−k then
7: Send xj , ncopiesj , min shiftsj −N2−k to partner
8: Send also starter = csumj if j is the first index to send
9: else

10: Send 0 to partner (Message to reject)
11: end if
12: end for
13: Accept or reject the received particles and starter
14: Update csum sequentially if starter has been received
15: Update min shifts as in line 2
16: end for
17: if P < N then Perform Leaf stage of the binary tree
18: for j ← 0; j < n; j ← j + 1 do
19: if min shiftsj + j > (p+ 1)n then
20: Send xj , ncopiesj to partner
21: else
22: Send 0 to partner (Message to reject)
23: end if
24: if min shiftsj > 0 then
25: Shift particle to the right by min shiftsj

26: end if
27: end for
28: Accept or reject the received particles
29: end if

the two most advanced fully-balanced redistribute from Chapter 3, and then this section

studies its impact on the same stochastic volatility example.

4.3.6 O(log2 N) Redistribute vs B-R and N-R

The results for this experiment are found in Figure 4.3. For P = 2, we can see that

the O(log2N) redistribute is slightly worse than N-R, because in that case N-R sends

two messages while Algorithm 28 sends three, but is also roughly three to four times

as fast as B-R, due to the high volume of computation in Bitonic Sort. However, we

can observe that the gap between Algorithm 28 and N-R and B-R tends to significantly

increase with P , as the novel approach is on a faster scalability curve. For the highest

number of cores P = 256, the O(log2N) redistribute becomes up to seven times faster

than both N-R and B-R, depending on N .
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Figure 4.3: O(log2N) redistribute vs B-R vs N-R - run-times for increasing N and
P
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Algorithm 27 Rotational Redistribute

Input: x, ncopies, N , P , n = N
P , p

Output: x, ncopies

1: for k ← 0; k < log2 P ; k ← k + 1 do Binary tree
2: partner ←

(
p+ P

2k+1

)
&(P − 1)

3: for j ← 0; j < n; j ← j + 1 do
4: if ncopiesj > N2−k then
5: Send xj , ncopiesj −N2−k to partner
6: ncopiesj ← N2−k

7: else
8: Send 0 to partner (Message to reject)
9: end if

10: end for
11: Accept or reject the received particles
12: end for
13: if P < N then Perform Leaf stage of the binary tree
14: for j ← 0; j < n; j ← j + 1 do
15: if ncopiesj + j > (p+ 1)n then
16: Send xj , ncopiesj + j − (p+ 1)n to partner
17: ncopiesj ← (p+ 1)n− j
18: else
19: Send 0 to partner (Message to reject)
20: end if
21: end for
22: Accept or reject the received particles
23: end if

Algorithm 28 O(log2N) redistribute

Input: x, ncopies, N , P , n = N
P , p

Output: x

1: if P > 1 then
2: x,ncopies←Rot.-NS(x,ncopies, N, P, n, p), ncopies has now shape (3.8)
3: x,ncopies ←Rot.-Scatter(x,ncopies, N, P, n, p), ncopies has now shape

(4.11)
4: x,ncopies ←Rot.-Red(x,ncopies, N, P, n, p), ncopies has now shape (4.11)

and (3.2)
5: end if
6: x← S-R(x,ncopies, n)

4.3.7 Stochastic Volatility

As we can see in Figure 4.4, the PF using Algorithm 28 is up to five times faster than

the same using N-R or B-R. The maximum recorded worst-case speed-up is roughly 110

for P = 256 cores. The gap between the novel approach and N-R/B-R also increases

with DOP as expected after the results in the previous section.

Figure 4.5 shows a full profiling of the three compared PFs for N = 224 and all values

of P . We can observe that the O(log2N) redistribute only becomes the bottleneck over
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IS for P = 128, while B-R and N-R emerge for a relatively low DOP, P = 2 for B-R and

P = 16 for N-R.

These results are remarkable but the performance can be improved even further. The

next section shows how it is possible to slightly change the mathematics of Algorithm

28, such that one of the three phases can be entirely skipped with very little overhead,

saving 33% of messages.

4.4 Rotational Nearly Sort and Split Redistribute

The previous section has presented a O(log2N) fully-balanced redistribute for DMAs.

This novel algorithm is divided into three phases: the first one, Rotational Nearly Sort,

rotates the particles to the left by using an LSB-to-MSB decision making policy; the

other two phases, Rotational Scatter and Rotational Redistribute, rotate the particle

to the right by using the opposite policy to Rotational Nearly Sort. Therefore, these

final two phases share the same rotation strategy. In this section, it is proved how to

merge Rotational Scatter and Rotational Redistribute into a single phase that requires

the same components of Rotational Scatter and also scales as O(log2N). This means

that Rotational Redistribute can be entirely removed, which saves one-third of the total

messages. The reader is now referred to Figure 4.6, which describes graphically the

updated routine by an example with N = 8 particles and P = 4 cores.

4.4.1 Rotational Split

After Rotational Scatter, ncopies has shape (4.11) but not (3.2). That is because for

each xi that must be copied more than once, all its copies are rotated by the same

minimum number of positions. However, some of these copies could be split and rotated

further to also fill in the gaps that a strategy for (4.11) alone would create.

Therefore, this algorithm also considers the maximum number of rotations that any

copy of xi has to perform, without causing collisions. Since (4.11) aims to creating

ncopiesi − 1 gaps for each i such that ncopiesi > 0, that number is:

max shiftsi = min shiftsi + ncopiesi − 1

= csumi − i− 1
(4.16)

At each k-th stage of the same binary tree of Rotational Scatter, Rotational Split checks

the MSB of both min shiftsi and max shiftsi to infer copies to sendi, the number

of copies of xi which must rotate by N2−k positions. For each particle xi, three possible

scenarios may occur:

• none of its copies must move;

• all of them must rotate;

• some must split and shift and the others must not move.
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Figure 4.4: Stochastic Volatility - run-times of PF with O(log2N) redistribute or
N-R or B-R for increasing N and P



Chapter 4. An O(log2N) Fully-Balanced Particle Filter for Distributed Memory
Architectures 82

20 21 22 23 24 25 26 27 28

P

0

20

40

60

80

100

w
o
rk

lo
a
d
 p

e
rc

e
n
ta

g
e
 [

%
]

Stochastic Volatility: bottleneck analysis for 
TPF = 100 and N= 224

IS
Others
B-R
N-R
Alg. 28

Figure 4.5: Stochastic Volatility - bottleneck analysis of PF with Algorithm 28 or

N-R or B-R for N = 224

Rotational Nearly Sort

p = 0 p = 1 p = 2 p = 3

i = 0 1 2 3 4 5 6 7

S-NS

Exclusive Cumulative Sum over zeros

Scan the log2
N
P LSBs of shifts and shift accordinglyLeaf

Shift
by 1

k = 1
Shift
by 2

k = 2
Shift
by 4

x

ncopies

x

ncopies

shifts

x

ncopies

zeros

x

ncopies

A B

0 0

C D

0 2

E F

5 0

G H

1 0

A B

0 0

2

D C

2 0

1

E F

5 0

1

G H

1 0

1

A B

0 0

000

D C

2 0

010

E F

5 0

011

G H

1 0

100

A B

0 0

000

D E

2 5

010

E F

0 0

000

G H

1 0

100

D E

2 5

000

D E

0 0

000

E F

0 0

000

G H

1 0

100

D E

2 5

G E

1 0

E F

0 0

G H

0 0

Rotational Split

p = 0 p = 1 p = 2 p = 3

i = 0 1 2 3 4 5 6 7

Compute csum, the Cumulative Sum over ncopies, and
min shiftsi = csumi−ncopiesi− i, if ncopiesi > 0
max shiftsi = csumi − i− 1, if ncopiesi > 0
copies to sendi = ncopiesi or csumi − i−N2−k,
depending on the MSBs of min shiftsi & max shiftsi

∀k ≥ 1 each core sends starter = csums−copies to sends

where xs the first copy to send; otherwise it sends 0.
Update csum in O(N/P ) if the received starter > 0.
csumi = 0 if all particles were sent and none was received

k = 1
Shift
by 4

k = 2
Shift
by 2

x

ncopies

x

ncopies

csum

min shifts

max shifts

copies to send

D E

2 5

G E

1 0

E F

0 0

G H

0 0

D E

2 5

2 7

G E

1 0

8 8

E F

0 0

8 8

G H

0 0

8 8

000 001

000 101

0 2

101 000

101 000

1 0

000 000

000 000

0 0

000 000

000 000

0 0

D E

2 3

2 5

G E

0 0

0 0

E E

0 2

5 7

G H

1 0

8 8

000 001

000 011

0 2

000 000

000 000

0 0

000 000

000 001

0 0

001 000

001 000

0 0

Rotational Split (cont.) + S-R

p = 0 p = 1 p = 2 p = 3

i = 0 1 2 3 4 5 6 7

Leaf
Shift
by 1

Consider inter-core shifts only if they move copies
to the neighbour core’s memory and then internal
shifts if min shiftsi > 0

x

ncopies

S-R

Notes:
- shifts, min shifts and max shifts are

represented in binary notation, e.g. 4 = (100)2.
- For those arrays, the scanned bits at any given

iteration are in red and underlined.
- Here N = 8 and P = 4, so the number of LSBs

to check in both Leaf stages is log2
N
P = 1.

- If P = N both leaf stages are skipped.
- In Rotational Split, each circle represents an

index s in which a starter > 0 is computed.

x

D E

2 1

2 3

G E

0 2

3 5

E E

0 2

5 7

G H

1 0

8 8

000 001

000 001

0 1

000 000

000 001

0 1

000 000

000 001

0 1

001 000

001 000

0 0

D E

2 0

E E

1 1

E E

1 1

E G

1 1

D D E E E E E G

Figure 4.6: Rotational Nearly Sort and Split - example for N = 8 and P = 4

Trivially, the copies will not move if the MSB of max shiftsi is 0, which also implies

that the MSB of min shiftsi is 0, since min shiftsi ≤max shiftsi at all stages. If both

are equal to 1, the core sends copies to sendi = ncopiesi copies of xi. However, if

only the MSB of max shiftsi is equal to 1, copies to sendi < ncopiesi. The number

of copies to split is equal to how many of them must be placed from position i+N2−k on

to achieve perfect workload balance. This is equivalent to computing how many copies

make csumi > i+N2−k. Therefore, if only the MSB of max shiftsi is equal to 1, the



Chapter 4. An O(log2N) Fully-Balanced Particle Filter for Distributed Memory
Architectures 83

core sends

copies to sendi = csumi − i−N2−k (4.17)

copies of xi and keep the remaining ones still.

If P < N , after log2 P stages the cores perform once again a leaf stage. Here, the

log2
N
P LSBs of min shiftsi and max shiftsi are checked at once. In this case, inter-

core shifts or splits and shifts are performed only if they send copies to the neighbor.

Internal shifts are also considered only if min shiftsi > 0, to make enough room to

receive particles from the neighbor, since min shiftsi = max shiftsi−1 + 1 (see (4.12)

and (4.16)).

In order to ensure logarithmic time complexity, one needs to update all elements

in csum, min shifts and max shifts in O(NP ). This can be done if the cores send

starter = csumj − copies to sendj , where j is the index of the first particle to send,

having ncopiesj > 0. It is once again possible to prove that a particle cannot overwrite

or get past another one. This statement will be proven at the end of this section. Hence,

each core can safely see the received starter as
∑

ncopies for the cores with lower rank,

and use it to re-initialise and update csum in O(NP ) as in Rotational Scatter. Once again,

this strategy updates correctly csum for at least any index i such that ncopiesi > 0,

but those are the only values that have to be correct. Once csum is updated, (4.12)

and (4.16) are embarrassingly parallel.

It is easy to infer that both min shiftsi < N − 1 and max shiftsi ≤ N − 1,

as a particle copy could at most be shifted, or split and shifted from the first to the

last position. Therefore, the achieved time complexity of Rotational Split is O(log2N)

because the shifts or the split and shifts to perform decrease stage by stage by up to a

factor of two. The following theorem proves that a particle can never collide or get past

another one.

Theorem 4.6. Given a nearly-sorted input ncopies, at the k-th iteration of Rotational

Split, ∀k = 1, 2, ..., log2 P , a particle xi, having ncopiesi ≥ 1 and rotating to the right

by N2−k positions, can never collide with or get past a particle xj, having ncopiesj ≥ 1

and j = i+ dist with 1 ≤ dist ≤ N2−2k.

Proof of Theorem 4.6. Since Rotational Split uses the same rotation strategy as Rota-

tional Scatter, this theorem can be proved in two possible complementary cases, the

same considered in Theorem 4.5:

1. there is one or more zeros between i and j;

2. there are no zeros between i and j.

Case 1. This case is proven the same way Case 1 of Theorem 4.5 is. Here, the

only difference is that having one or more zeros between xi and xj means that these

two particles are at least dist > max shiftsi ≥ N2−k locations apart, due previous

rotations of xj by a previous MSB. Further details are omitted for brevity.
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Case 2. In this case, all particles between i and j are still nearly-sorted. Therefore,

xi would collide with (when dist = N2−k) or get past xj (when dist < N2−k) if((
max shiftsi&N2−k

)
> 0
)
∧
((

min shiftsj&N2−k
)

= 0
)

(4.18)

is true, which corresponds to checking whether the MSB of max shiftsi is 1 (which also

includes those cases where the MSB of min shiftsi is 1) and the MSB of min shiftsj

is 0. In other words, (4.18) can be simplified to checking if max shiftsi > min shiftsj .

However, for a pair of particles xi and xj within a nearly-sorted group of particles, that

is impossible because:

max shiftsi = csumi − i− 1

= csumj −
∑j

z=i+1
ncopiesz − j + dist− 1

= csumj − ncopiesj − j −
(∑j−1

z=i+1
ncopiesz − dist+ 1

)
= min shiftsj −

(∑j−1

z=i+1
ncopiesz − dist+ 1

)
≤min shiftsj

since csumj =
∑j

z=0 ncopiesz, dist = j − i and (in this case)
∑j−1

z=i+1 ncopiesz ≥
j − i− 1.

4.4.2 Rotational Nearly Sort and Split

After Rotational Split, S-R can be invoked locally and will finish in O(NP ) iterations

because the particles are now equally distributed across the MPI ranks.

The overall redistribute will then perform in sequence Rotational Nearly Sort and

Rotational Split only if P > 1, before calling S-R. The chosen name for this novel

algorithm is Rotational Nearly Sort and Split (RoSS) redistribute. We can infer that

the achieved time complexity is again O(N) for P = 1, O(log2N) for P = N cores and

(4.15) for any 1 ≤ P ≤ N , but the constant time is about 33% smaller than Algorithm

28 as one phase is now entirely skipped.

Now all tasks in the PF take either O(1) or O(log2N) computations, which brings

down the overall time complexity of PFs to O(log2N). This is because, even if we had

a O(1) fully-balanced redistribute, the time complexity of PFs would still be bound to

O(log2N) because Normalise, ESS, MVR and Estimate require reduction or Cumulative

Sum (see Table 4.1). The same can be said for any SMC method since the only difference

between Algorithms 1, 3 and 4 is that SMC samplers also need Recycling which requires

reduction.

4.4.3 Algorithmic Implementation

Algorithm 29 describes a pseudo-code for a generic core p running Rotational Split on a

DMA. Once again, the for loops, the particles and all arrays related to them are indexed

using local indexes, while the description in Section 4.4.1 uses global indexes. Therefore,
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Table 4.1: Time complexity of each task of SMC methods on DMAs.

Task name
(parallelisation strategy)

Sequential
Time

Complexity

Parallel
Time

Complexity

Initialise (Embarrassingly parallel) O(N) O(1)
IS (Embarrassingly parallel) O(N) O(1)
Normalise (Reduction) O(N) O(log2N)
ESS (Reduction) O(N) O(log2N)
MVR (Cumulative Sum) O(N) O(log2N)
Redistribute (RoSS) O(N) O(log2N)
Reset (Embarrassingly parallel) O(N) O(1)
Estimate (Reduction) O(N) O(log2N)
Recycling (Reduction) O(N) O(log2N)

certain terms in some equations, e.g. (4.16) and (4.17), have to be rescaled by p× n to

convert local indexes into global indexes.

Algorithm 30 illustrates RoSS redistribute which invokes Rotational Nearly Sort (see

25) and Rotational Split if P > 1, before calling S-R.

4.4.4 Possible non-deterministic optimisations

A trivial idea that can save messages consist of checking the maximum MSB for all

shiftsi and all max shiftsi at the beginning of Rotational Nearly Sort and Rotational

Split respectively. This will allow us to finish early the execution of either of the two

steps and avoid sending unnecessary messages. For example, if ncopies happens to be

nearly-sorted already, all bits in shifts will obviously be 0, meaning that no messages

should be sent and Rotational Nearly Sort could be skipped entirely. However, this

practice could be faster but might also be slower as it is highly non-deterministic; hence

it is strongly not recommended for real-time applications.

4.4.5 Numerical Results

This section shows the numerical results of the improvements on redistribution first and

then for two exemplary models, one being again the stochastic volatility model, and the

second being the non-linear model in [52, 53], for which N > 216 particles were proven

necessary to meet accuracy constraints and up to N = 224 were used. The testing

strategy is the same as Section 4.3.5.

4.4.5.1 Redistribute

Figure 4.7 compares RoSS with Algorithm 28, N-R and B-R. We can see that RoSS

optimises the performance of the previous O(log2N) redistribute by a solid 25% factor

for any P > 1, as it saves one-third of the total messages. This discrepancy is because

Rotational Redistribute in Algorithm 28 does not require Cumulative Sum or its up-

dating routine. However, the most interesting results are those in comparison with B-R
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Algorithm 29 Rotational Split

Input: x, ncopies, N , P , n = N
P , p

Output: x, ncopies

1: csum← Cumulative Sum(N,P,ncopies)
2: min shiftsj ← csumj − ncopiesj − j − np, ∀j < n if ncopiesj > 0
3: max shiftsj ← csumj − j − 1− np, ∀j < n if ncopiesj > 0
4: for k ← 1; k ≤ log2 P ; k ← k + 1 do binary tree
5: partner←

(
p+ P

2k

)
&(P − 1)

6: for j ← 0; j < n; j ← j + 1 do
7: if max shiftsj & N2−k > 0 then
8: if min shiftsj & N2−k > 0 then
9: copies to sendj←ncopiesj , ncopiesj←0

10: else
11: copies to sendj ← (csumj − j −N2−k − pn)
12: ncopiesj ← ncopiesj − copies to sendj

13: end if
14: starter ← csumj − copies to sendj if j is first
15: Send xj , copies to sendj to partner and send starter also if j is first
16: else
17: Send 0s to partner (Message to reject)
18: end if
19: end for
20: Accept or reject the received particles and starter, reset starter to 0 if all

particles are sent and none is accepted
21: csum0 ← starter + ncopies0

22: csumj ← csumj−1 + ncopiesj ∀j = 1, 2, ..., n− 1
23: Update min shifts and max shifts as in steps 2 and 3
24: end for
25: if P < N then perform leaf stage of the binary tree
26: for j ← n− 1; j ≥ 0; j ← j − 1 do
27: if csumj > (p+ 1)n then
28: copies to sendj ← min(csumj − (p+ 1)n,ncopiesj)
29: ncopiesj ← ncopiesj − copies to sendj

30: Send xj , copies to sendi to partner
31: else
32: Send 0s to partner (Message to reject)
33: end if
34: if min shiftsj > 0 then
35: Shift particle to the right by min shiftsj

36: end if
37: end for
38: Accept or reject the received particles
39: end if

and N-R, both presented in the previous chapter. RoSS redistribute is now comparable

with N-R and up to four times as fast as B-R for P = 2 cores. Most importantly, as the

DOP increases, the speed-up vs B-R and N-R improves consistently, such that RoSS is

eight to nine times faster than N-R and B-R for P = 256.
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Figure 4.7: RoSS vs B-R vs N-R - run-times for increasing N and P
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Algorithm 30 Rotational Nearly Sort and Split (RoSS)

Input: x, ncopies, N , P , n = N
P , p

Output: x

1: if P > 1 then
2: x,ncopies←Rot.-NS(x,ncopies, N, P, n, p), ncopies has now shape (3.8)
3: x,ncopies←Rot.-Split(x,ncopies, N, P, n, p), (4.11) and (3.2) now hold
4: end if
5: x← S-R(x,ncopies, n)

4.4.5.2 Stochastic Volatility

As we can see in Figure 4.8, the PF using RoSS is superior to any other PF option. Most

importantly, it is up four to six times faster than a PF using N-R/B-R. The maximum

speed-up is about 125 for P = 256 cores. The gap between a PF with RoSS and a

PF with N-R/B-R also increases with P as expected after the results in the previous

section. It is also remarkable to see that RoSS is the only redistribute option which

remains faster than IS for any P here, as shown in Figure 4.10a.

4.4.5.3 Vacuum Arc Remelting

Vacuum Arc Remelting (VAR) is a secondary melting process, used in the final stage

of alloy productions. In this stage, a continuous arc strikes between an electrode and a

solidifying ingot, making the metal melt off the electrode and then fall onto a melt pool to

solidify. Since this process is done in a vacuum, a lot of impurities are removed, resulting

in higher quality of the finished product. During the VAR process, it is fundamental

to keep track of the liquid pool depth which, however, cannot be measured directly. A

parallel PF can then be used in this case. The following dynamic model is for Alloy

718 and is thoroughly explained in [52, 53]. Here, for brevity, only the most important

details are highlighted.

Xt is nine-dimensional and contains information about the electrode thermal bound-

ary layer ∆, the electrode gap G, the ram position Xram, the electrode mass Me, the

melting efficiency µ, the centerline pool depth SC , the mid-radius pool depth SM , the

helium pressure phe, and the current I.

∆t = ∆t−1 +

[
αrC∆∆

∆t−1
− C∆p

Aehm
µt−1(Vc +RiIt−1)It−1

]
dt+G11dI (4.19a)

Gt = Gt−1 +

[
−α0αrCs∆

∆t−1
+
α0C∆p

Aehm
µt−1(Vc +RiIt−1)It−1 − Vram

]
dt+G21dI − dVram

(4.19b)

Met = Met−1 +

[
ρAeCs∆

∆t−1
+
ρCsp
hm

µt−1(Vc +RiIt−1)It−1

]
dt+G41dI (4.19c)

Xramt = Xramt−1 + Vramdt+ dVram (4.19d)
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Figure 4.8: Stochastic Volatility - run-times of PF with RoSS or N-R or B-R for
increasing N and P
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µt = µt−1 + dµ (4.19e)

SCt = SCt−1 −
[
AC(SCt−1 − SC0)−B∆C(∆t−1 −∆0)−

BiC(It−1 − I0)−BµC(µt−1 − µ0)−BheC(phet−1 − phe0)

]
dt−BiCdI (4.19f)

SMt = SMt−1 −
[
AM (SMt−1 − SM0)−B∆M (∆t−1 −∆0)−

BiM (It−1 − I0)−BµM (µt−1 − µ0)−BheM (phet−1 − phe0)

]
dt−BiMdI (4.19g)

phet = phet−1 + dhe (4.19h)

It = Ic + (Ic − It−1)e−dt/dτ + dI (4.19i)

where the time interval dt, the melting current Ic and the ram speed Vram are controlled

by the user; here we use dt = 5s, Ic = 6000A and Vram is inferred by setting to 0 the

expression between squared brackets in (4.19b). The process noise terms dI, dVram,

dµ and dphe are Gaussian with 0 mean and covariances (σIdt)
2, (σVramdt)

2, (σµµ0)2dt,

(σphephe0)2dt respectively.

Yt = [Gt, Xramt ,Met , SCt , SMt , phet , It, Vc +RiIt] +N (0,R) (4.20)

where R = diag(σ2
G, σ

2
X , σ

2
Me
, σ2

C , σ
2
M , σ

2
hem

, σ2
Im
, σ2

Vm
).

X0 ∼N ([∆0, G0, Xram0 , µ0,Me0 , SC0 , SM0 , phe0 , I0],Q) (4.21)

where Q = diag(σ2
∆, σ

2
G, σ

2
X , σ

2
LC , σ

2
µdt, σ

2
hedt, σ

2
C , σ

2
M , σ

2
Im

). Tables 4.2, 4.3 and 4.4 pro-

vide all constants and σ terms in (4.19), (4.20), and (4.21). The dynamics is again

chosen as proposal.

Symbol Value Symbol Value Symbol Value

σhem 0.01 Torr σIm 15 A σM 1 cm
σX 0.005 cm σG 0.2 cm σC 1 cm
σVram 5e−4 cm/s σLC 0.2 kg σ∆ 5 cm
σµ 0.001µ0 σVm 0.1 V
σhe 0.001phe0 σI 20 A

Table 4.2: Standard deviations for noise terms.

As we can see in Figure 4.10b, IS now takes up a larger percentage of the total

run-time for low P than it does in the previous example. This is because Xt and Yt in

(2.12) and (2.13) are more computationally intensive and aboutM = 9 andMy = 8 times

bigger, while only redistribution and Estimate have increased in dimensionality, among

the other tasks. We can indeed observe that IS is the bottleneck over any redistribute for
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Symbol Value Symbol Value

C∆∆ 40 BiM 3.2e−6 cm/s A
C∆p 3.8 BµC 6.9e−4 cm/s
Cs∆ 6.7 BµM 2.7e−4 cm/s
Csp 1.3 BheC −8.1e−4 cm/s Torr
AC 1.9e−3 1/s BheM −6.5e−4 cm/s Torr
AM 1.4e−3 1/s G11 −5.6e−6 cm/A
B∆C 2.6e−5 1/s G21 5.4e−7 cm/A
B∆M −1.3e−4 1/s G41 −2.2e−2 g/A
BiC 6.6e−6 cm/s A dτ 1 s

Table 4.3: Parameters of Alloy 718.

Name (symbol) Value

Nominal electrode thermal boundary layer (∆0) 80 cm
Nominal electrode gap (G0) 0.9 cm
Nominal ram position (Xram0) 0.7 cm
Nominal electrode mass (Me0) 4800 kg
Nominal melting efficiency (µ0) 0.44
Nominal centerline pool depth (SC0) 15.7 cm
Nominal mid-radius pool depth (SM0) 13.2 cm
Nominal helium pressure (phe0) 3.0 Torr
Nominal current (I0) 6000 A
Electrode cross section (Ae) 1460 cm2

Area fill ratio (a) 0.28
Density (ρ) 8.192 g/cm3

Cathode voltage fall (Vc) 21.2 V
Electric resistance (Ri) 4.37e−4 Ω
Thermal diffusivity at 300 K (αr) 2.4e−2 cm2/s
Thermal diffusivity at 1623 K (αm) 6.0e−2 cm2/s
Volume-specific enthalpy at 1623 K (hm) 5.4e3 J/cm3

Volume-specific enthalpy at 1673 K (hs) 8.1e3 J/cm3

Table 4.4: Nominal values, furnace and Alloy 718 properties.

P = 2. However, as P increases, both B-R and N-R eventually emerge as the bottleneck

for 8 ≤ P ≤ 32. On the other hand, it is again interesting to see that RoSS still is faster

than IS for any P ≤ 256. In Figure 4.9, we can observe that a PF with RoSS redistribute

outperforms any other PF option, especially the one with N-R/B-R by up to a factor of

three, which is once again increasing with P . The maximum recorded speed-up is 160

for a PF with RoSS and about 50 for a PF with N-R/B-R, hence both higher than in

the previous example.

These results underline well the importance of having a fast, scalable redistribu-

tion. Since modern dynamic or static models may be very detailed and complex (e.g.

requiring some sophisticated numerical integrator) the IS step also becomes highly com-

putationally intensive. Therefore, a fast redistribute allows PFs to maintain a near-linear

speed-up for larger P , which is desirable in theory but hard to achieve in practice.
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Figure 4.9: Vacuum Arc Remelting - run-times of PF with RoSS or N-R or B-R for
increasing N and P
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Figure 4.10: VAR and Stochastic Volatility with RoSS - bottleneck analysis of PF

with RoSS, Algorithm 28, N-R or B-R for N = 224 and increasing P

4.5 Conclusions

This chapter has presented RoSS redistribute, a novel fully-balanced redistribution for

SMC methods on distributed memory environments. This algorithm has been imple-

mented on MPI. The baselines for comparison are B-R and N-R, two similar MPI fully-

balanced redistribute algorithms which both achieve O((log2N)2) time complexity and

whose implementation is described in Chapter 3. However, in this chapter it has been

proved that RoSS redistribute achieves exactly O(log2N) time complexity, the lower

bound for SMC methods.

The results in Section 4.4.5 show that the RoSS redistribute is almost an order

of magnitude faster than B-R and N-R for up to P = 256 cores. Similar results are

observed on two exemplary PFs too. For the same level of parallelism, a PF using RoSS

redistribute is up to six times faster than a PF using B-R/N-R and provides a maximum

speed-up of 160 vs a single-core PF. It is also interesting to highlight that, under the
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same testing conditions, RoSS is the only option for redistribute which is still faster than

IS in both models.

The improvements are encouraging but several advances can still be made. As done in

this chapter, the focus should be on keeping investigating solutions to reduce the number

of messages between the cores. One key observation is that the current implementation is

MPI-everywhere, which means that the memory is distributed not only across inter-node

processors, but also between cores which are embedded into the same compute node. In

reality, this is not the case. Such an architectural arrangement can be exploited by using

the shared-memory parallelism within nodes and distributed memory parallelism across

nodes. Mixing OpenMP, one of the most common programming models for SMAs, with

MPI is indeed a routine practice in the HPC domain.

The following chapter shows how to derive an MPI+OpenMP version of RoSS from

the implementation described in this chapter. In order not to lose the advances made

so far, one needs to ensure every single-core component in RoSS achieves either O(1) or

O(log2N) time complexity on OpenMP. Therefore, a novel O(log2N) shared-memory

implementation of redistribute is also developed in the next chapter.



Chapter 5

A Fast Parallel Particle Filter on

Hybrid Memory Architectures

5.1 Introduction

The previous chapter presents a novel fully-balanced redistribute algorithm for SMC

methods on DMAs which achieves O(log2N) time complexity. Although DMAs are

frequently used, especially in HPC contexts, there are other memory environments that

can be exploited. Share Memory Architectures (SMAs), such as shared-memory CPUs

and GPUs, represent a possible alternative. However, on SMAs, as well as on DMAs,

an efficient parallelisation of SMC methods depends once again on how effectively the

redistribution step can be parallelised.

On DMAs, fully-balanced redistribute parallelisations use a load-balancing routine

before redistributing. In the previous chapters, the reader can see that these load-

balancing routines typically require a sorting or nearly-sorting phase. On SMAs, how-

ever, it has been proven that sort is optional as it can be substituted by N Binary

Searches. This idea was implemented in [52], optimised in [53] and applied to different

resampling schemes in [62]. The time complexity is O(NT log2N) for T parallel shared-

memory cores. Since N could be large, due to demanding accuracy constraints [53],

this redistribute strategy cannot be effectively parallelised due to the inherently limited

number of cores of modern SMAs.

This chapter has two goals. The first is to propose a novel SMA redistribute paralleli-

sation on OpenMP which takes O(NT +log2N) steps and fully-exploits the computational

power of SMAs. In HPC applications, DMAs and SMAs are often combined to optimise

the performance, whenever a higher DOP does not offer further scalability in DMA-

only contexts. Therefore, the second goal is to investigate the possible advantages of

using a hybrid DMA-SMA approach for a parallel SMC method, by combining the MPI

algorithms developed in Chapters 3 and 4 with the single-node OpenMP algorithm pre-

sented in this chapter. In doing so, the next two sections of this chapter are dedicated to

each goal. Every time, results for both redistribute and an exemplary PF are provided.

95
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Section 5.4 draws the final conclusions of this chapter and gives suggestions for future

improvements. The reader is recommended to consult Appendix A.2 for details about

SMAs and OpenMP and Appendix A.3 for Hybrid Memory Architectures (HMAs).

The results in Section 5.2 have been published in [91].

5.2 An O(log2 N) OpenMP Particle Filter

This section illustrates how to parallelise each task of PFs on OpenMP, including a novel

implementation of redistribute. It also gives the results for each task as a standalone

and for the stochastic volatility model which easily generates the worst-case scenario.

The results in this section are provided both on mainstream CPUs and on GPU, to

resemble the narrative in [91]. Since two different types of SMAs are employed, in this

section only the run-times may be plotted as function of N , instead of the DOP only

as in the previous chapter. In the following sections, the pseudo-codes are illustrated

for shared-memory CPUs only for brevity reasons, but an OpenMP 4.5 algorithm can

target GPU by simply adding target teams distribute map clauses to the existing

#pragma omp parallel for directives. In this section, there have been made lots of

optimisations on several tasks that are possible on OpenMP and are not used elsewhere,

e.g. optimisations of the Random Number Generator (RNG) used in (2.12), or the

use of SIMD in all algorithms of this chapter whenever possible, and use of vector

implementations of math functions, such as log and exp; details are omitted for brevity.

All results are medians of 20 runs for up to N = 224 as in the previous chapters and

different numbers of threads T . The CPU used is a 2 Xeon Gold 6138 which has up to

40 cores, provided by each computing node of the cluster in Table 3.2. However only 32

cores are employed as many of these algorithms use the divide-and-conquer paradigm.

For the GPU results, the same cluster provides a GPU node mounting an NVIDIA Tesla

V100 which has 5120 cores. In this section, Clang 7.0 is used as in [69], as this is one of

the most popular compilers that supports GPU offload on NVIDIA graphics cards.

5.2.1 Embarrassingly Parallel

As stated in Chapter 3, Reset, Initialise, (2.18) and all variants of IS are element-

wise operations and hence trivially parallelisable. On OpenMP they can be parallelised

by #pragma omp parallel for directives. Also, the workload is roughly balanced ∀i =

0, 1, ..., N − 1. Therefore, a static scheduling clause should be added to the #pragma

directive.

Here, as in Section 3.3.1, only the OpenMP pseudo-code for Reset and IS are illus-

trated. Figure 5.1 shows the most significant run-times for IS on both CPU and GPU.

As we can see, the speed-up for varying DOP increases with N , due to the increased

workload per thread. This is true for both the CPU and the GPU. Most importantly,

the GPU roughly provides up to a three-fold speed-up vs its equivalent on a 32-thread

CPU. This is mostly due to the improvements on the RNG that Curand provides.
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Algorithm 31 Importance Sampling (IS)

Input: xt−1, wt−1, Yt, N , T
Output: xt, wt

1: #pragma omp parallel for schedule(static) num threads(T)
2: for i← 0; i < N ; i← i+ 1 do
3: xit ∼ q(xit|xit−1,Yt)

4: wi
t ← wi

t−1
p(Yt|xit)p(xit|xit−1)

q(xit|xit−1,Yt)

5: end for

Algorithm 32 Reset

Input: w, N , T
Output: w

1: #pragma omp parallel for schedule(static) num threads(T)
2: for i← 0; i < N ; i← i+ 1 do
3: wi ← 1

N
4: end for
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Figure 5.1: OpenMP IS - speed-ups for increasing N and DOP

5.2.2 Reduction

As mentioned in Chapter 3, the sum in (2.14), (2.16), (2.19) and (2.15) can be parallelised

by using the reduction operation which scales as O(NT + log2 T ) on SMAs as well. On

OpenMP, reduction can be used by adding to the #pragma directives a reduction clause

applied to the variable to reduce.

Algorithms 33, 34 and 35 describe OpenMP pseudo-codes for Normalise, ESS and

Mean. The OpenMP implementation of (2.15) is omitted for brevity as it is almost

identical to Mean.
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Figure 5.2: OpenMP Normalise - speed-ups for increasing N and DOP

For brevity, only the results for Normalise are provided in Figure 5.2. Here, as in

the previous section, we can see that the maximum speed-up for T = 32 along with the

speed-up provided by the GPU both increase with N .

Algorithm 33 Normalise

Input: w, N , T
Output: w̃

1: local sum← 0
2: #pragma omp parallel for reduction(+:local sum) num threads(T)
3: for i← 0; i < n; i← i+ 1 do
4: local sum← local sum+ wi

5: end for
6: #pragma omp parallel for schedule(static) num threads(T)
7: for i← 0; i < N ; i← i+ 1 do
8: w̃i ← wi

sum
9: end for

5.2.3 Cumulative Sum

As previously mentioned, the CDF of the weights requires Cumulative Sum which also

achieves O(NT + log2 T ) time complexity on SMAs [60].

Algorithms 36 and 37 illustrate OpenMP pseudo-codes for parallel Cumulative Sum

and for MVR respectively.

Figures 5.3 and 5.4 show the most significant run-times on shared memory CPUs

and GPU for increasing DOP and N . For these tasks also, we can see that the speed-up

for T = 32 increases with N . The same can be said for the improvements that the GPU

provides vs a 32-core CPU.
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Algorithm 34 Effective Sample Size (ESS)

Input: w̃, N , T ,
Output: Neff

1: local sum← 0
2: #pragma omp parallel for reduction(+:local sum) num threads(T)
3: for i← 0; i < N ; i← i+ 1 do
4: local sum← local sum+ (w̃i)2

5: end for
6: Neff ← 1

local sum

Algorithm 35 Mean

Input: x, N , T , M
Output: ξ

1: for j ← 0; i < M ; j ← j + 1 do
2: local sumj ← 0, local sum is in bold here because xi ∈ RM
3: #pragma omp parallel for reduction(+:local sumj) num threads(T)
4: for i← 0; i < N ; i← i+ 1 do
5: local sumj ← local sumj + xi,j

6: end for
7: end for
8: ξ ← local sum

N
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Figure 5.3: OpenMP Normalise - speed-ups for increasing N and DOP

5.2.4 A Novel O(log2 N) Redistribute on Shared Memory Systems

In Chapters 3 and 4, it has been stated that S-R has a low constant time (it only

consists of N memory writes) but is impossible to parallelise in an element-wise fashion.
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Algorithm 36 OpenMP Cumulative Sum

Input: array, N , T , form
Output: csum

1: #pragma omp parallel num threads(T ){
2: id←omp get thread num(), base← id× N

T
3: csumbase ← arraybase

4: for i← base+ 1; i < base+ n; i← i+ 1 do
5: csumi ← csumi−1 + arrayi

6: end for
7: sumid ← csumbase+N

T
−1

8: coreSumid ← csumbase+N
T
−1

9: }
10: for dist← 1; dist < T ; dist← dist× 2 do
11: #pragma omp parallel num threads(T ){
12: id←omp get thread num(), partner ← id⊕ dist
13: sumid ← sumid + sumpartner

14: if id > partner then
15: coreSumid ← coreSumid + sumpartner

16: end if
17: }
18: end for
19: #pragma omp parallel num threads(T ){
20: id←omp get thread num(), base← id× N

T
21: if form == Inclusive then

22: csumbase ← coreSumid − csumbase+N
T
−1 + arraybase

23: else
24: csumbase ← coreSumid − csumbase+N

T
−1

25: end if
26: for i← base+ 1; i < base+ n; i← i+ 1 do
27: csumi ← csumi−1 + arrayi

28: end for
29: }

Each ncopiesi could randomly be equal to any integer between 0 and N and hence, the

workload could be highly unbalanced. This is true on SMAs as well.

Multi-PF approaches can be used to bypass the need of parallelising S-R and require

little to no changes from a DMA implementation. However, as explained in Section 3.2,

this approach has accuracy, scalability and applicability issues. A centralised approach

can also be used [47], but as said in Section 3.2, scalability is not guaranteed for large

DOP. This will also be clear in the results of the next section. An alternative fully-

balanced parallel redistribution for SMAs on CPU and GPU can be found in [52, 53, 62]1.

The idea is to make use of csum ∈ ZN , the Cumulative Sum of ncopies, to search for

1This redistribution parallelisation is applied to MVR, the only resampling scheme considered in
this thesis. However, using other resampling schemes, such as Stratified Resampling, may also lead
to alternative O(log2 N) parallel resampling methods for SMAs (see [40]). Cross-comparisons between
different resampling schemes are out of the scope of this thesis but to be considered for future work.
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Algorithm 37 Minimum Variance Resampling (MVR)

Input: w̃, N , T
Output: ncopies

1: cdf0 ← 0, because cdf ∈ RN+1

2: cdf1:N
T ← OpenMP Cumulative Sum(w̃, N, T, Inclusive)

3: u ∼ Uniform[0,1)

4: #pragma omp parallel for schedule(static) num threads(T)
5: for i← 0; i < n; i← i+ 1 do
6: ncopiesi ← dcdf i + w̃i − ue − dcdf i − ue
7: end for
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Figure 5.4: OpenMP Normalise - speed-ups for increasing N and DOP

the particles to duplicate. Each i-th particle to copy can indeed be found by using

Binary Search over csum to search for the first index j such that csumj ≥ i. While it

is not explicit in [52, 53, 62], to infer csum it is unnecessary to perform again parallel

Cumulative Sum, as one could recycle the information in cdf and apply (2.18) as follows:

csumi =
i∑

j=0

ncopiesj = dcdf i+1 − ue − dcdf0 − ue (5.1)

Algorithm 38 briefly summarises these steps. The time complexity is O(NT log2N) as

each core needs to perform up to N Binary Searches. When N is large, due to accuracy

constraints, the workload on each core is significant. As we will see in Section 5.2.5,

Algorithm 38 hardly shows any speed-up vs S-R. This section develops a novel parallel

redistribution that only requires one Binary Search per thread and takes advantage of

the fast constant time of S-R.
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Algorithm 38 Reference Parallel Redistribute

Input: N , ncopies, x, cdf , u, T
Output: xnew

1: #pragma omp parallel for num threads(T)
2: for i← 0; i < N ; i← i+ 1 do
3: j ←Binary Search(cdf ,ncopies, u, i), search

for the first j such that csumj ≥ i, see (5.1)
4: xinew ← xj

5: end for

S-R cannot be parallelised directly as the workload could be unevenly distributed.

Therefore, the proposed approach is to first balance the workload across the T cores,

such that S-R could be then invoked with a fast and scalable time complexity equal

to O(NT ). To do that, one needs to fully exploit the information which is stored in

csum and ncopies. Although S-R has already been introduced in Algorithm 2, for

this OpenMP parallel redistribution it is more convenient to use an alternative O(N)

implementation of S-R, illustrated in Algorithm 39. This variant differs from Algorithm

2 for two reasons: the external for loop is replaced by a while loop; the copies can be

placed to the output array starting from a given index base.

Algorithm 39 Alternative Sequential Redistribute (S-R)

Input: N , ncopies, x, base
Output: xnew

1: i← base, j ← 0, base must be 0 on a single core run
2: while i < N do
3: for k ← 0; k < ncopiesj ; k ← k + 1 do
4: xinew ← xj

5: i← i+ 1
6: end for
7: j ← j + 1
8: end while

Each thread (uniquely identified by an integer 0 ≤ id ≤ T − 1) has to generate N
T

particle copies, given the instructions provided by ncopies. However, since ncopies

complies by definition with (2.17), it is always possible to identify T indexes, called

pivots, between which the workload across the cores is equally divided. To also have a

balanced data partitioning, each thread will have to place its N/T copies starting from

index i = id × N
T in the output array. Therefore, each thread’s pivot is the first index

such that csumpivot ≥ id× N
T .

The threads can simultaneously find their pivot by calling Binary Search once. Since

multiple threads may happen to share the same pivot, each thread must figure out how

many copies of the particle xpivot it has to create. This can be computed in constant

time as the min value between csumpivot − id × N
T and N

T . That is because if two or

more threads share the same pivot, only the thread with the highest id must create

less than N
T copies of xpivot. After that, the workload is balanced and the threads can
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Figure 5.5: Novel redistribute - Example for N = 16 and T = 4.

independently produce their N
T particle copies by calling S-R. Since Binary Search and

S-R are performed once, we can infer that the time complexity is O(NT + log2N).

Figure 5.5 illustrates a practical example for N = 16 and T = 4 and Algorithm 40

provides an OpenMP-like description of this novel parallel redistribute.

Algorithm 40 Novel OpenMP Redistribute

Input: N , ncopies, x, cdf , u, T
Output: xnew

1: if T == 1 then
2: xnew ← Alternative S-R(N,ncopies,x, 0), see Algorithm 39
3: else
4: #pragma omp parallel num threads(T ){
5: id←omp get thread num()

6: base←id× N
T

7: pivot← Binary Search(cdf ,ncopies, u, base), search for the first
pivot such that csumpivot ≥ base, see (5.1)

8: n← min(csumpivot − base, NT ), see (5.1) for csumpivot

9: xbasenew ,x
base+1
new , . . . ,xbase+n−1

new ← xpivotnew

10: xnew ← Alternative S-R(NT − n,ncopies + pivot,x + pivot, pivot+ 1)
11: }
12: end if

5.2.5 Numerical Results

This section first compares single iterations of Algorithms 38 and 40 and then two PFs

working on the same model, both running TPF = 10 iterations but differing for the

constituent parallel redistribute. The two PFs are compared in the worst-case scenario

which occurs when IS is relatively fast and resampling is invoked at every iteration for

both PFs. Here, it is denoted that in other applications, where IS (which scales more
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quickly than redistribute) is slower than here, redistribution will always become the

bottleneck for some bigger T .

To generate the worst-case scenario, the same benchmark stochastic volatility model

as in Chapters 3 and 4 is used. The particles are initially drawn from the prior distri-

bution. Equation (2.13) becomes wi
t = wi

t−1p
(
Yt|xit

)
since the dynamics is again used

as the proposal.

The two parallel OpenMP redistribution steps have been tested on the same inputs

generated from a PF working on the model in (3.6a) and (3.6b). Figure 5.6a shows their

scalability for N = 224 and increasing degree of parallelism, while Figure 5.6b shows the

most significant run-times on CPU and GPU for increasing N . In Figure 5.6a, we can

observe that Algorithm 38 for T < 32 provides little to no speed-up vs Algorithm 40 on

a single core (i.e. S-R). However, Algorithm 40 achieves substantial speed-up for any

T > 1. In Figure 5.6b, we can see that using a GPU in place of a CPU gets more effective

as N increases, since the host-to-device transfer time is dominant over the computation

for small N . Overall, both Figures 5.6a and 5.6b highlight that Algorithm 40 is up to

six times faster than Algorithm 38 on CPU and GPU. Algorithm 40 on GPU also gives

about a three-fold speed-up vs its CPU best run-time.

Figure 5.6c shows the results for the PFs using either Algorithm 38 or 40 and Figure

5.7 illustrates how much run-time is taken up by each task for TPF = 10 iterations, for

T = 32 cores and on GPU. We can see that, while Algorithm 38 still accounts for 63% of

the whole run-time, Algorithm 40 is no longer the bottleneck. The overall performance

of the PF has improved by up to a factor of 2.1. Here it is specified that the theoretical

maximum speed-up is 1/(1 − 0.63) = 2.7 for a 63% bottleneck, according to Amdahl’s

law [41]. On GPU, we can observe again over a three-fold speed-up vs the best run-time

on CPU.

5.3 A Hybrid MPI+OpenMP O(log2 N) Particle Filter

This section describes how to mix the MPI algorithms for all PF tasks, including RoSS,

with the OpenMP algorithms described in the previous section. One section is again

dedicated to each parallelisation strategy that is used for all PF task.

5.3.1 Embarrassingly Parallel

Let N be the number of particles across all MPI ranks, P be the number of MPI ranks

and T the number of shared memory threads per rank. An MPI+OpenMP parallelisation

for all embarrassingly parallel algorithms can be achieved by directly calling the OpenMP

versions of the same in the code of each MPI rank. As long as the number of particles

per MPI rank is n = N
P , the achieved time and space complexities are once again O(1)

for P × T = N parallel threads. Therefore, the pseudo-code for every MPI+OpenMP

embarrassingly parallel task, such as Reset and IS, are the same as in Section 5.2.1.
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5.3.2 Reduction

An MPI+OpenMP version of Normalise, ESS and Mean can be straightforwardly derived

by calling MPI Allreduce after the first for loop in Algorithms 33, 34 and 35. Then,

the result of MPI Allreduce is used in place of local sum for Normalise and ESS or

local sum for Mean. The inputs given to MPI Allreduce are the same as in MPI version

of the same algorithms in Section 3.3.2. Therefore, the MPI+OpenMP pseudo-codes of

these tasks are omitted for brevity.

5.3.3 Cumulative Sum

The OpenMP parallel Cumulative Sum in Algorithm 36 can be extended to a hybrid

MPI+OpenMP implementation by including MPI Exscan after the second for loop. This

is done to keep count of the Cumulative Sum in the lower ranked MPI nodes when

initialising the final for loop.
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Figure 5.7: Stochastic Volatility - bottleneck analysis on OpenMP 4.5 for N = 224.

Algorithms 41 and 42 illustrate an MPI+OpenMP pseudo-code for Cumulative Sum

and MVR.

5.3.4 Rotational Nearly Sort and Split

In the RoSS redistribute described in Chapter 4, all tasks except S-NS, S-R and Cu-

mulative Sum are embarrassingly parallel. For example, Equations (4.12), (4.16) and

the internal rotations during the leaf stages are embarrassingly parallel. Therefore, for
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Algorithm 41 Hybrid Cumulative Sum

Input: array, N , T , type, form, comm
Output: csum

1: #pragma omp parallel num threads(T ){
2: id←omp get thread num(), base← id× N

T
3: csumbase ← arraybase

4: for i← base+ 1; i < base+ n; i← i+ 1 do
5: csumi ← csumi−1 + arrayi

6: end for
7: sumid ← csumbase+N

T
−1

8: coreSumid ← csumbase+N
T
−1

9: }
10: for dist← 1; dist < T ; dist← dist× 2 do
11: #pragma omp parallel num threads(T ){
12: id←omp get thread num(), partner ← id⊕ dist
13: sumid ← sumid + sumpartner

14: if id > partner then
15: coreSumid ← coreSumid + sumpartner

16: end if
17: }
18: end for
19: MPI Exscan(coreSum0,nodeSum, 1, type, MPI SUM, comm)
20: #pragma omp parallel num threads(T ){
21: id←omp get thread num(), base← id× N

T
22: if form == Inclusive then

23: csumbase ← nodeSum + coreSumid − csumbase+N
T
−1 + arraybase

24: else
25: csumbase ← nodeSum + coreSumid − csumbase+N

T
−1

26: end if
27: for i← base+ 1; i < base+ n; i← i+ 1 do
28: csumi ← csumi−1 + arrayi

29: end for
30: }

these single-node MPI tasks an MPI+OpenMP parallelisation can be straightforwardly

derived by adding #pragma omp parallel for directives above the related for loops,

as explained in Sections 5.2.1.

Algorithm 41 in the previous section illustrates how to parallelise the Cumulative

Sum that is required in Rotational Split.

S-R can be parallelised on OpenMP by using Algorithm 40. This SMA parallelisation

requires knowledge of the Cumulative Sum over ncopies. As mentioned in Section 5.2.4,

on SMA only this can be inferred with little to no overhead from the CDF of the weights

as in Equation (5.1). However, this is not true on MPI+OpenMP, since the elements of

ncopies after MVR will be completely changed by the load-balancing phases in RoSS.

The Cumulative Sum csum which is computed and updated during Rotational Split

cannot be used either, because correctness is not guaranteed for the i-th indexes such
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Algorithm 42 Minimum Variance Resampling (MVR)

Input: w̃, N , P , T , p
Output: ncopies

1: n← N
P

2: comm← MPI COMM WORLD

3: if p == 0 then
4: cdf0 ← 0, because cdf ∈ RN+1

5: end if
6: if p == 0 then
7: cdf1:n ← Hybrid Cumulative Sum(w̃, n, T, MPI DOUBLE, Inclusive, comm)
8: else
9: cdf1:n−1 ← Hybrid Cumulative Sum(w̃, n, T, MPI DOUBLE, Inclusive, comm)

10: end if
11: u ∼ Uniform[0,1)

12: MPI Bcast(u, 1, MPI DOUBLE, 0, comm), broadcast u to other cores in O(log2 P )
13: #pragma omp parallel for schedule(static) num threads(T)
14: for i← 0; i < n; i← i+ 1 do
15: ncopiesi ← dcdf i + w̃i − ue − dcdf i − ue
16: end for

that ncopiesi = 0. This means that Binary Search cannot be used yet as csum is not

sorted. An extra computation of Cumulative Sum to correct csum is therefore necessary

before calling Algorithm 40.

S-NS can be performed in O(NT + log2 T ) computations by using a similar strategy

to Rotational Nearly Sort. Here, each thread id is tasked with working on the memory

space of the output array between index id × N
T and index (id + 1) × N

T − 1. The

threads start nearly sorting in O(NT ) by calling Algorithm 22 over their iteration space.

This is done to also compute zerosid ∈ Z, the number of zeros between those indexes.

After that, shiftsid ∈ Z, the number of positions that each particle must rotate by,

is computed in O(log2 T ) as in Equation (4.6). At this point, instead of performing

the rotations by using a LSB-to-MSB strategy as in Algorithm 25, on OpenMP it is

possible to rotate in O(NT ). Every particles i such that ncopiesi > 0 can indeed be

copied to index i − shiftsid of the output array without risking collisions. To ensure

data coherency without using synchronisation points, a temporary array must be used

during the copying phase.

5.3.5 Numerical Results

This section first compares single iterations of RoSS redistribute on MPI with its equiv-

alent on a hybrid memory architecture using MPI and OpenMP. Then it compares an

MPI version of a PF working on the stochastic volatility model with its equivalent im-

plementation on MPI+OpenMP. N = {216, 220, 224} as in all experiments in this thesis.

Up to 256 parallel cores are employed. On hybrid memory, the results for 2 cores are

always equivalent to the same on MPI, as these two cores are mapped to two distributed

computing nodes. For brevity reasons, the reported results on hybrid memory for more
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than 2 cores only refer to the best combination of P and T , respectively the number of

MPI ranks and the number of parallel threads within the same MPI rank. Each reported

run-time is again the median of 20 runs using the same N , P , T triples.

Figure 5.8 compares the results for RoSS on MPI with its equivalent implementation

on MPI+OpenMP. As we can see, the hybrid memory version, can only provide optimi-

sation for N = 216 particles and only when the MPI version has stopped scaling already.

Also, the best results for the hybrid memory implementation are for the most part for

a low T ≤ 4. After a thorough investigation on the profiler, it appears that the highly

volume of memory-copies and cache misses during the internal rotations of the two leaf

stages do not offer good scalability, especially in comparisons with their equivalent on

MPI. To some extent, this also nullifies the good speed-up that other embarrassingly

parallel tasks offer, such as (4.12) and (4.16).

Broadly speaking, these results are expected: apart from the specific side effects of

mixing MPI and OpenMP in this particular example, this behaviour is actually typical

when it comes to comparisons between MPI and MPI+OpenMP on CPUs [15, 16], espe-

cially for strongly memory bounded tasks such as redistribute. The general assumption

is that, when P increases, the memory gets more distributed, reducing the frequency of

the caching problems. In this case, increasing P further may cause saturation due to

the communication, and increasing T may be a more sensible option.

The results for the stochastic volatility model are provided in Figure 5.9. Here

we can see that using MPI-everywhere or MPI+OpenMP, whenever either architecture

shows better performance on redistribute, does not translate into a significant speed-up

for the PF. This is in part explained from the results in Figure 5.9, but mostly from

the outcomes in Section 4.4.5, where it is explained that RoSS has not yet emerged as

bottleneck over IS, see Figure 4.10. Therefore, we can conclude that, for the same DOP

of this experiment, the efforts should be re-orientated towards investigating solutions to

optimise IS. Some ideas to achieve that are explained in the next section.

5.4 Conclusions

This chapter is divided into two parts. In the first one, a novel parallel redistribute

for SMAs has been introduced. The achieved time complexity is O(NT + log2 T ) for T

shared memory threads. The chosen programming model is OpenMP 4.5, one of the

most popular shared-memory APIs which supports both mainstream CPUs and GPU

offload, starting from version 4.5 on. Therefore, the results for this first part are provided

both on CPU and GPU, using respectively a 32-core machine and a Tesla V100 graphics

card. Here, it is shown that the proposed approach is up to six times faster than a

referenced one which scales as O(NT × log2 T ).

In the second part, the algorithms presented in Chapter 4 on MPI have been trans-

lated for hybrid memory architectures by mixing MPI and OpenMP. In this case, only

the CPUs are employed as the cluster that has been used for this thesis mounts one GPU
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node only. The results show that the hybrid implementation is slightly better for low

values of N , when the MPI-everywhere alternative has stopped scaling, while using MPI

only shows some improvements for large values of N . The user should then be able to

choose the preferred version between MPI-everywhere, OpenMP-only or MPI+OpenMP,

depending on the performance and the available resources. This is possible by setting

T = 1 for MPI-everywhere, P = 1 for OpenMP only, or P > 1 and T > 1 for hybrid

memory architectures.

With the results of this chapter and Chaper 4 in view, it is clear that efforts should

now be focused more on IS than redistribute both for run-time and accuracy. One

straightforward way to improve the run-time performance is to port the MPI+OpenMP

implementation from CPU to GPU. In Section 5.2, it is shown that IS on GPU can be up

to three times faster than its equivalent on CPU. To achieve this goal, the Big Hypothesis

project is currently engaging with IBM to port the MPI+OpenMP algorithm to a 128-

GPU cluster. Also, as mentioned in the previous chapter, models can be complex,

e.g. requiring highly computationally intensive numerical integrators to achieve better

accuracy. The next chapter shows how to use NUTS moves as proposal to improve the

accuracy of the estimations. This is done by installing SMC methods into Stan, a highly

popular statistical programming model which uses NUTS and a fast gradient based on

auto-differentiation to sample from static models.



Chapter 6

Streaming-Stan and SMC-Stan:

Two High Performance

Computing Extensions for Stan

6.1 Introduction

The previous chapter describes a parallel SMC method which achieves O(log2N) time

complexity on a hybrid memory architecture having N parallel CPU cores. This parallel

algorithm has been implemented on C++ using MPI and OpenMP for parallelism, a

very common choice in HPC applications. Although C++ is still used quite extensively,

many other languages such as MATLAB, R and Python have been used in many research

papers on SMC methods. The goal of this chapter is to make the progress previously

discussed in this thesis more widely available, without having to translate the code to

every other existing language. To achieve that, this chapter presents Streaming-Stan

and SMC-Stan, two HPC extension packages for Stan which respectively embody the

described parallel PF and SMC sampler on MPI+OpenMP, along with the already

existing functionalities of Stan. Extending Stan is indeed perfectly compatible with

the goal of this chapter, since Stan is a popular and intuitive statistical programming

language whose back end is also written in C++, and which already interfaces with

other languages, such as MATLAB, R, Python and Julia.

In doing so, the rest of this chapter is organised as follows: Section 6.2 describes

SMC-Stan and the different proposal distributions which the installed SMC sampler

equips, and shows the performance on an exemplary static model. Section 6.3 illustrates

Streaming-Stan; in this version also, three proposal distributions are described, two of

which being novel and combining a FL-SMC method with HMC and NUTS. The perfor-

mance of Streaming-Stan are provided in Section 6.4 on several dynamic models under

different testing conditions. Section 6.5 draws the conclusions and gives suggestions for

future work. The reader is referred to Appendix B for a brief tutorial about Stan and

to Appendix C for implementation details of Streaming-Stan and SMC-Stan.
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6.2 SMC-Stan

Although this thesis is mostly focused on PFs, in this case it is more intuitive to describe

SMC-Stan first, before presenting Streaming-Stan. This is because the novelty described

in Section 6.3 also includes most of the mathematics from this section. The reader is

referred to Section C.1 for all implementation details of SMC-Stan.

6.2.1 Proposal Distributions

As anticipated in the previous section and elsewhere in Chapter 2, SMC-Stan offers the

possibility to run an SMC sampler on a static model, described by a .stan model, and also

supports several types of proposal distributions. This section provides the mathematical

details of the three proposals which are currently installed in SMC-Stan.

6.2.1.1 Random Walk

The original SMC sampler described in [61, 65] uses a random walk (RW) proposal (akin

to Metropolis Hasting MCMC methods) where the N samples at each SMC iteration

are simply moved in space by adding a random vector N (0,1) to each sample. The

proposed samples are always accepted, weighted as in (2.23) and resampling is tasked

with accepting or rejecting the new samples.

6.2.1.2 HMC

As suggested in Section 2.2, better MCMC moves than RW, such as HMC and NUTS,

can be used instead. It is possible to prove that using HMC to propose a new sample

xit given xit−1 requires the following proposal distribution:

q(xit|xit−1) =
qv(vit)∣∣∣∣∣∣∂f(xit−1,v

i
t−1)

∂v

∣∣∣∣∣∣ =
qv(vit)

||J(xit−1,v
i
t−1)|| (6.1)

where qv() is the proposal distribution of the momentum vector v, f is a numerical

integrator such that f(xit−1,v
i
t−1) = xit,v

i
t, and J is the Jacobian matrix related to

the same numerical integrator. Equation (2.23) also needs a backward kernel, which is

commonly chosen as the reverse proposal q(xit−1|xit), such that in this case it is equal to:

L(xit−1|xit) =
qv(ṽit)∣∣∣∣∣∣∂f(xit,ṽit)∂v

∣∣∣∣∣∣ =
qv(ṽit)

||J(xit, ṽ
i
t)||

(6.2)

where ṽit is a momentum vector such that f(xit, ṽ
i
t) = xit−1,v

i
t−1. Computing ṽit is not

always easy, since it involves inverting the numerical integrator f . However, Leapfrog,

the most common numerical integrator for HMC, is time reversible, a property such

that:

f(xit−1,v
i
t−1) = xit,v

i
t (6.3a)
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f(xit,−vit) = xit−1,v
i
t−1 (6.3b)

In other words, time reversibility means that if we reverse the integration from the final

offset with the opposite of the final momentum, we get back where we started. Therefore,

if we apply (6.1) and (6.2) to (2.23) and set ṽit = −vit we obtain:

wi
t = wi

t−1

p(xit|Y)

p(xit−1|Y)

qv(−vit)||J(xit−1,v
i
t−1)||

qv(vit)||J(xit,−vit)||
(6.4)

It is possible to prove that ||J(xit−1,v
i
t−1)|| = 1 for Leapfrog, as shown in [98].

Furthermore, it is possible to prove that ||J(xit−1,v
i
t−1)|| = ||J(xit,−vit)|| for reversible

numerical integrators, as shown in Appendix D. Therefore, (6.4) can be simplified to:

wi
t = wi

t−1

p(xit|Y)

p(xit−1|Y)

qv(−vit)

qv(vit)
(6.5)

which does not require computation of the Jacobian terms and their determinants which

may be computationally expensive.

6.2.1.3 NUTS

As explained in Section 2.2.3, NUTS also employs Leapfrog for an adaptive number of

Leapfrog steps. Hence, it is relatively straightforward to infer that the samples drawn

by an SMC sampler which uses NUTS moves as proposal are again weighted as in (6.5).

6.2.2 Numerical Results

This section repeats the experiment in Section 2.2.3.1 on SMC-Stan by using an SMC

sampler employing three different proposal distributions: RW, HMC and NUTS. The

.stan file for this model can be found in Section B.3.2.

In SMC-Stan, the .stan file is unchanged and, while the user can still run the com-

mand in Section B.3.2 to execute MCMC, it is also possible to employ an SMC sampler

using RW, HMC or NUTS proposals by running respectively the following commands:

$ mpirun -np 1 neals funnel method=sample algorithm=smcs proposal=rw T=1 \
Tsmc=100 num samples=1024

$ mpirun -np 1 neals funnel method=sample algorithm=smcs proposal=hmc \
num leapfrog steps=5 stepsize=0.47 T=1 Tsmc=100 num samples=1024

$ mpirun -np 1 neals funnel method=sample algorithm=smcs proposal=NUTS \
stepsize=0.47 T=1 Tsmc=100 num samples=1024

The three commands above run an SMC sampler for TSMC = 100 iterations by

drawing and weighting N = 1024 samples each time, and using P = 1 MPI nodes and

T = 1 OpenMP threads.
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Figure 6.1: SMC-Stan - Neal’s funnel example

Figure 6.1 shows the RMSE of the estimates in logarithmic scale, for the same SMC

sampler using RW, HMC or NUTS as proposal. As we can see, using HMC or NUTS

greatly improves the accuracy of the estimation with respect to a RW proposal which is

struggling due to the high dimension of the state M = 9. However, the most important

outcome of this section is that it is actually possible to install an SMC method in Stan

alongside MCMC without changing Stan’s syntax. To some extent, this was imaginable

since MCMC and SMC samplers are designed to work on the same static model.

On the other hand, Stan does not currently provide support for dynamic models,

i.e. it is not designed to use PFs. The next section presents Streaming-Stan which

overcomes this limitation.

6.3 Streaming-Stan

Streaming-Stan is a novel extension package for Stan, similar to SMC-Stan, which,

however, gives the user the possibility to describe dynamic models using the same syntax

of regular Stan. As well as SMC-Stan, Streaming-Stan also provides several proposal

distributions which are described in the following section. The reader is referred to

Section C.2 for all implementation details about Streaming-Stan.

6.3.1 Proposal Distributions

This section describes FL-SMC, FL-HMC and FL-NUTS, the proposal distributions that

Streaming-Stan provides for PFs and Fixed-Lag SMC methods. FL-HMC and FL-NUTS

are novel and respectively use HMC and NUTS in a FL-SMC method.
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6.3.1.1 Fixed-Lag SMC

As explained in Section 2.1.4, Fixed-Lag SMC methods sample and weight each particle

as in Equations (2.26) a (2.28) which are repeated here for extra clarity:

xit−l:t ∼ q(xit−l:t|xit−l−1,Yt−l:t)

wi
t = wi

t−1

p(xit−l:t|xit−l−1)p(Yt−l:t|xit−l:t)L(xit−l:t−1|xit−l:t−1)

p(xit−l:t−1|xit−l−1)p(Yt−l:t−1|xit−l:t)q(xit−l:t|xit−1,Yt−l:t)

These equations are function of the lag l which should be given as input. Also, as

explained in Sections 2.1.4 and C.2, they can respectively be coded to become equal to

xit ∼ q(xit|xit−1,Yt)

and

wi
t = wi

t−1

p(xit|xit−1)p(Yt|xit)
q(xit|xit−1,Yt)

when l = 0, i.e. Equations (2.12) and (2.13). Therefore, choosing FL-SMC with l = 0

in Streaming-Stan is equivalent to running a SIR PF.

6.3.1.2 Fixed-Lag HMC

p(Xt−l|Xt−l−1) p(Xt−l+1|Xt−l) p(Xt−1|Xt−2) p(Xt|Xt−1)

p(Xt−l|Xt−l−1)

p(Xt−l+1|Xt−l) p(Xt−1|Xt−2) p(Xt|Xt−1)

L(Xt−l|Xt−l) L(Xt−l+1|Xt−l+1) L(Xt−1|Xt−1) L(Xt|Xt)

HMC HMC HMC HMC

Yt−l Yt−l+1 Yt−1 Yt

Xt−l−1 Xt−l Xt−l+1 Xt−1 Xt

Xt−l Xt−l+1 Xt−1 Xt

Figure 6.2: Fixed-Lag Hamiltonian Monte Carlo: state flow

Both PFs and Fixed-Lag SMC suffer from the curse of dimensionality, which causes

accuracy loss as the state dimension M increases. In the case of regular PF models, an

alternative solution called Sequential Markov Chain Monte Carlo (SMCMC) is proposed,

consisting of one or more Hamiltonian Monte Carlo (HMC) unweighted chains, sampling

from a dynamic target distribution [23, 72, 78, 95]. This suggests a similar approach

could be done in IS for Fixed-Lag SMC methods, which can cover both PF models and

models where the measurements are time-delayed.
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Considering the state flow diagram for FL-SMC in Figure 2.3, the key idea is again

to replace every old particle xiτ with a new particle xiτ ∀τ = t− l, ..., t. However, instead

of sampling xiτ given xiτ−1, FL-HMC uses HMC to upgrade each xiτ into xiτ , such that

the forward and backward kernels are reversed and the determinants of their Jacobian

terms cancel, as done for Equation (6.5). However, as can be observed in in Figure

2.3, the old trajectory xit−l:t−1 does not have a term at time step t from which HMC

should generate xit. Therefore, FL-HMC is designed to first extend the old trajectory

by randomly sampling xit from xit−1, before calling HMC on each xiτ ∀τ = t − l, ..., t.
Figure 6.2 illustrates the state flow diagram for FL-HMC. Since the determinants of the

Jacobian terms of each backward kernel vs forward kernel ratio cancel, it is relatively

straightforward to infer that the weight equation becomes:

wi
t = wi

t−1

p(xit−l:t|xit−l−1)p(Yt−l:t|xit−l:t)qv(−vit−l:t)

p(xit−l:t|xit−l−1)p(Yt−l:t|xit−l:t)qv(vit−l:t)
(6.6)

6.3.1.3 Fixed-Lag NUTS

The Fixed-Lag NUTS proposal is equivalent to Fixed-Lag HMC, but NUTS is used in

place of HMC. Therefore, the state flow diagram in Figure 6.2 is still valid, along with

the importance weight equation (6.6).

6.4 Numerical Results

This section shows the performance of Fixed-Lag HMC and Fixed-Lag NUTS, the most

advanced proposal distributions of Streaming-Stan, under four different testing condi-

tions: flexibility on varying dynamic models (see Section 6.4.1), accuracy for increasing

dimension of Xt and Yt (see Section 6.4.2), accuracy on long-term memory models (see

Section 6.4.3), and run-time for increasing number of particles (see Section 6.4.4).

6.4.1 Flexibility

The goal of section is to show the flexibility of Fixed-Lag HMC and Fixed-Lag NUTS

when it comes to work on a relatively large portfolio of dynamic models, which previous

research has already shown that can be effectively solved using RW proposal (i.e. FL-

SMC with l = 0). Therefore, this section aims to show that Fixed-Lag HMC and

Fixed-Lag NUTS performs at least equally to RW on these models. The reasons and

scenarios as to why and when Fixed-Lag HMC and Fixed-Lag NUTS may perform better

than FL-SMC will be analysed in details in Sections 6.4.2 and 6.4.3.

6.4.1.1 Stochastic Volatility

The first example is the Stochastic Volatility model which is first illustrated in this

thesis in Section 3.4.5.2. The Streaming-Stan code for this model can be found in

Section C.2.5.1, along with the compiling instructions.
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The following table shows the average RMSE in logarithmic scale.

Symbol [unit] FL-SMC FL-HMC FL-NUTS
X [m] −0.345 −0.342 −0.343

Table 6.1: Stochastic Volatility: average RMSE in log10 scale of the state over TPF =

100 time steps and for N = 29 particles.

As we can see, the performance are comparable for all the different proposals.

6.4.1.2 Flood Water Level

The second example is a popular model to monitor the flood water level in an urban

area. This model is found in several publications such as [6, 73, 74, 86] and is described

by the following equations:

Xt = 0.5Xt−1 +
25Xt−1

1 + (Xt−1)2
+ cos(1.2t) +N (0, 1) (6.7a)

Yt = 0.05(Xt−1)2 +N (0, 1) (6.7b)

where X0 ∼ N (0, 1).

The Streaming-Stan code for this model is found in Section C.2.5.2.

The state estimation accuracy, expressed as average RMSE in log10 scale, is shown

in the following table:

Symbol [unit] FL-SMC FL-HMC FL-NUTS
X [m] 0.343 0.352 0.381

Table 6.2: Flood Water Level: average RMSE in log10 scale of the state over TPF =

100 time steps and for N = 29 particles.

As we can see, there is no significant difference between the different proposals.

6.4.1.3 Bearing-Only Tracking

The next example is a popular four-dimensional state dynamic model for bearing-only

tracking, where the state is represented by the position and velocity of the tracked

object which are both two-dimensional physical quantities. This model was previously

presented in several publications, such as in [6], and used in [29] to test the Block

Sampling SIR PF. In accordance with [29], the state is composed of four elements denoted

such that Xt = [px, vx, py, vy] where Xt,0 = px, Xt,2 = py represent the state position

and Xt,1 = vx, Xt,3 = vy represent the state velocity. The model is defined as follows:

Xt = A ·Xt−1 + Vt (6.8a)

Yt,k = arctan

(
Xt,2 − pk,2
Xt,0 − pk,0

)
+ Wt,k, ∀k = 1, . . . ,My (6.8b)
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where (pk,0,pk,1) are the Cartesian coordinates of the k-th sensor.

A =


1 ∆ 0 0

0 1 0 0

0 0 1 ∆

0 0 0 1

 Σ = q


∆3

3
∆2

2 0 0
∆2

2 ∆ 0 0

0 0 ∆3

3
∆2

2

0 0 ∆2

2 ∆


The process noise is Vt ∼ N (0,Σ) and each sensor noise is Wt,k ∼ N (0, 0.333). The

initial state X0 has the identity matrix as covariance and mean equal to the true initial

simulated point of the system. The parameter ∆ represents the sampling period which

is set to ∆ = 1 s, and the scalar q ∈ R is set to 5.0.

The Streaming-Stan code for this model is found in Section C.2.5.3.

The average RMSEs (again in log10 scale) of position and velocity over TPF = 100

time steps are shown in Table 6.3. which shows that Fixed-Lag HMC and Fixed-Lag

Symbol [unit] FL-SMC FL-HMC FL-NUTS
(px, py) [m] −1.0154 −1.1892 −1.1915
(vx, vy) [m/s] −0.6978 −0.8135 −0.8446

Table 6.3: Bearing-Only Tracking: average RMSE in log10 scale of the state over

TPF = 100 time steps and for N = 29 particles.

NUTS can handle this type of model too.

All models described so far in this section are toy problems. The next section focuses

on a highly dimensional real-world model.

6.4.2 Curse of Dimensionality

When it comes to using SIR PFs (equivalent to FL-SMC with l = 0), it is known that

dimensionality may affect the estimation accuracy, a problem named curse of dimen-

sionality which is shared with SMC samplers, as shown in Sections 6.2. One of the most

common reasons is related to the number of sensors My and most importantly their

standard deviation: if the sensors have very small variance, it is harder to effectively

weight the particles, as RW proposals cancel the prior term in the importance weight

equation. Another reasons could be the state transition system of equations, which may

require a numerical integrator whose stability is influenced by the number of equations

M .

This experiment is designed to test the performance of FL-NUTS and FL-HMC vs

FL-SMC for models having increasing M and My. For this experiment the VAR model

described in Section 4.4.5.3 is chosen, since it has significantly higher dimensionality

than the models in the previous section. In this experiment, N = 217 particles are used,

since it is the minimum N for convergence on this model when the dynamics is used as

proposal, as shown in [52, 53].

The Streaming-Stan code for this model is found in Section C.2.5.4.
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Table 6.4 illustrates the average RMSE in log10 scale of the state estimation for

this experiment. All proposal distributions guarantee at least an acceptable estimate.

However, it is also possible to observe better performance for FL-HMC and FL-NUTS

by up to an order of magnitude in comparison with FL-SMC, which is struggling more

due to the curse of dimensionality. In other words, using FL-HMC or FL-NUTS on

such highly dimensional models provides better improvements than it does on single

dimensional models, such as the flood water level one used in the previous section (see

Table 6.2).

Symbol [unit] FL-SMC FL-HMC FL-NUTS
∆ [cm] −0.424 −0.988 −0.9817
G [cm] −0.303 −1.394 −1.363
Xram [cm] −6.661 −7.681 −7.662
Me [kg] 1.736 0.713 0.712
µ −5.259 −5.778 −5.828
SC [cm] −4.489 −4.986 −4.954
SM [cm] −1.971 −2.677 −2.652
phe [Torr] −6.972 −7.944 −7.962
I [A] 0.334 −1.269 −1.286

Table 6.4: Vacuum Arc Remelting: average RMSE in log10 scale of each state quan-

tity over TPF = 100 time steps, for N = 217 particles and different proposals.

6.4.3 Long-Term Memory Models

As explained in Section 2.1.4, PFs work well as long as the measurements and the

sampling technique are accurate. Fixed-Lag SMC methods offer the possibility to store

more than one measurement and trajectories of more than one particle at each time

step. This becomes useful in those scenarios where measurements are time-delayed or

the process noise covariance is small which may affect the state estimate of a single

iteration. In either of these situations, it is recommended to use l > 0 measurements

at each iteration. This section investigates the performance of FL-SMC, FL-HMC and

FL-NUTS on a model for which l > 0 may be beneficial.

To generate this scenario, the bearing-only tracking model is used with a much

smaller process noise covariance, e.g. by setting q = 0.005 � 5. The measurement

covariance is also considerably decreased to 10−4 � 0.33 to favour HMC/NUTS moves

over RW. After that, the same commands from the previous section can be used, apart

from changes on the file name input arguments and using different values for l.

As we can see in Table 6.5, the accuracy of the estimates (again represented as

average RMSE in log10 scale) for this model tend to converge to acceptable levels only

when l > 0. In this case, it is also possible to observe that FL-HMC and FL-NUTS

provide better accuracy than FL-SMC, due to the much smaller standard deviation of

the sensor noise than the one in Section 6.4.1.3.
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Symbol
[unit]

FL-SMC
l = 0

FL-HMC
l = 0

FL-NUTS
l = 0

FL-SMC
l = 2

FL-HMC
l = 2

FL-NUTS
l = 2

(px, py) [m] 1.7574 1.6927 1.6853 −0.6439 −0.9573 −1.0245
(vx, vy) [m/s] 0.9658 0.9146 0.9482 −0.2468 −0.5563 −0.6278

Table 6.5: Bearing-Only Tracking: average RMSE in log10 scale of each state quantity

over TPF = 100 time steps, for N = 29 particles, different proposals and values of l.

6.4.4 Run-Time

The better accuracy that FL-HMC and FL-NUTS may provide over FL-SMC comes at

a price. Using Leapfrog to propose new particles is more computationally intensive than

making random moves. This section reports the average run-time of a single time step

using increasing N for the three proposal distributions on the flood water level model.

Other models are not taken into account for brevity, since the results for this experiment

would be similar.
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Figure 6.3: Flood Water Level - FL-SMC vs FL-HMC vs FL-NUTS: run-times of one
time step for increasing N

As we can see in Figure 6.3, a FL-HMC method performing L = 5 Leapfrog steps

and a FL-NUTS method may be two to three times slower than FL-SMC. In order

to compensate for this side effect, it is then recommended to use parallel computing,

especially the MPI+OpenMP RoSS redistribute designed in Chapters 4 and 5, which

it has been proven to allow the PF to maintain a more linear speed-up than the same

using other fully-balanced redistributions, such as B-R or N-R.

6.5 Conclusions

This chapter has presented SMC-Stan and Streaming-Stan, two extension packages for

Stan which runs the MPI+OpenMP SMC methods described in the previous chapters,
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and use the same syntax of regular Stan to describe the model. More precisely, SMC-

Stan embodies the MPI+OpenMP SMC sampler, such that it work on static models, as

regular Stan does. Streaming-Stan is equipped with the MPI+OpenMP PF, such that it

can solve dynamic models, which is something that regular Stan is currently unable to do.

Each of these extensions of Stan have been equipped with three proposal distributions,

which can be selected from command line, and differ for the type of MCMC moves to

propose new samples: RW, HMC or NUTS. Moreover, FL-HMC and FL-NUTS, two

of the three proposals in Streaming-Stan, are novel and employ HMC and NUTS on

a FL-SMC method. These proposals provide up to an order of magnitude accuracy

improvement vs currently existing FL-SMC methods, but they increase the run-time

by at least a factor of two. Therefore, the reader and potential user is recommended

to combine these novel proposals with the parallelisation algorithms described in the

previous chapters, in order to compensate for this side effect.

Several improvements and exciting future work are ahead. The first one should be to

investigate the benefits of using SMC2, an alternative to PFs where each particle is itself

the final estimate of an SMC sampler [20]. Another improvement avenue should be to

edit Stan’s back end to support GPU offload: at the moment, important Stan methods

such as log prob, write array and log prob grad do not offer this possibility, because

of the way the class var in Stan math library has been designed. This issue is also linked

to the results of Chapter 5, which underlines that further run-time improvements should

focus on the performance of the IS step. A final idea to consider is to embed Streaming-

Stan and SMC-Stan into existing popular libraries for Bayesian inference such as Stone

Soup [46] and Scikit-learn [14, 71].



Chapter 7

Conclusions

This thesis has presented RoSS, a novel fully-balanced parallelisation algorithm for re-

distribute, the run-time bottleneck of SMC methods. The achieved time complexity is

O(logN) (the same as the other tasks of SMC methods) on a hybrid distributed-shared

memory architecture having P × T = N parallel cores. The code has been written in

C++, using MPI to parallelise the tasks across P distributed computing nodes, and

using OpenMP to achieve shared-memory parallelism within each node having T cores.

A patent application for RoSS is currently filed.

The baseline for comparison is B-R, a state-of-the-art fully-balanced redistribute

which achieves O((logN)2) time complexity and which was originally presented on

MapReduce. Therefore, in this thesis, B-R has first been ported from MapReduce to

MPI, in order to compare the two algorithms on a common ground. The experiments

have been run on several models, some describing toy problems and others representing

highly dimensional real-world problems. The research findings emphasise that an SMC

method using B-R becomes almost an order of magnitude faster on a cluster of 256

cores when switching to RoSS, and achieves up to a 160 speed-up factor vs a single-core

SMC method. For the same DOP, B-R accounts for up to 85% of the total run-time

of the SMC method, while it is interesting to see that RoSS has not yet emerged as

bottleneck over IS, another component of SMC methods which is tasked with sampling

and weighting the N particles at each SMC iteration.

In order to make the improvements widely available to industries and research com-

munity, this thesis presents Streaming-Stan and SMC-Stan, two extension packages for

Stan which allow the user to describe respectively dynamic and static models using the

same syntax used by Stan, but solve them with an SMC method (in the form of a FL-

SMC method and an SMC sampler respectively) running on a supercomputer. Since the

syntax and compiler of Stan have been preserved, Streaming-Stan and SMC-Stan can

easily interface with other popular languages, such as MATLAB, Python, R and Julia.

Also, the user is still able to run NUTS MCMC method in SMC-Stan if they choose

to, as in regular Stan. The installed SMC sampler and FL-SMC method both equip all

parallel MPI+OpenMP algorithms implemented in this thesis, including RoSS, along
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with three optional proposal distributions to sample and weight the particles. In partic-

ular, FL-HMC and FL-NUTS, two of the three proposals of Streaming-Stan, are novel

and provide up to an order of magnitude accuracy improvement vs regular FL-SMC

methods. The results are again collected on several models, representing toy problems

or highly-dimensional real-world problems.

The findings are encouraging but several advances can still be made. Since that the

run-time results have shown that IS is likely to be slower than RoSS, the focus should

now be on improving the performance of IS, independently of the model. Streaming-Stan

and SMC-Stan currently run on a cluster of CPU cores: therefore, one way to achieve

this goal is to redesign Stan’s back end to support GPU offload, in order to exploit the

extra speed-up that graphics cards usually provide over CPUs. Another consideration to

make is that MVR is the preferred resampling scheme for this thesis, since it is used in

several referenced work. Then, future work should also be focused on comparisons with

different schemes in terms of accuracy and run-time, to also investigate if other schemes

could lead to further simplification of the parallel redistribution presented in this thesis.

Apart from ideas to improve accuracy and run-time performance, the focus should also

be on designing a user-friendly interface to call Streaming-Stan and SMC-Stan from

widely popular Bayesian inference libraries, such as Stone Soup or Scikit-learn.
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Distributed, Shared and Hybrid

Memory Architectures

This appendix provides general information about distributed, shared and hybrid mem-

ory architectures along with a brief tutorial about MPI and OpenMP, two of the most

popular APIs for these environments. Further details can be found in [66, 87]

A.1 Distributed Memory Architectures and MPI

Memory

Core 0

Memory

Core 1

Memory

Core P − 1

Common communication network

Figure A.1: Distributed Memory Architecture

DMAs are a type of parallel system which are inherently opposed to SMAs. In

this environment, the memory is distributed over the cores and each core can only

directly access its own private memory. Exchange of information stored in the memory

of the other cores is achieved by sending/receiving explicit messages through a common

communication network.

DMAs provide several advantages over SMAs such as scalable and larger DOP, scal-

able and larger memory which can also be accessed by its proprietary core with no

interference. The main disadvantage is the cost of communication and the consequent
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data movement. This may affect the speed-up relative to a single core version of the

same algorithm.

There are lots of APIs for DMAs and all of them are suitable for this thesis. MPI

is arguably the most popular API for DMAs due to its intuitive syntax. In this API,

we have P MPI processes which are created and mapped to the physical cores by us-

ing MPI Init(). The typical approach to maximise the performance is to map one

MPI process to each core. Then the MPI processes are uniquely identified by a rank

p = 0, 1, . . . , P − 1: the rank is assigned by calling MPI Comm rank(). Once cre-

ated and mapped, the MPI cores need to be connected. This is achieved by using

MPI Comm size() which takes the communicator variable, the list and number of MPI

ranks that want to register to that communicator. Each communicator can also be split

into two or more new communicators by using MPI Split() which takes in input the

father communicator, the list of child communicators and the lists of ranks that want

to use the child communicators.

The registered ranks within the same communicator can use explicit send/receive

communication routines to exchange messages. Therefore, these routines require knowl-

edge of the MPI ranks involved on both ends: sending and receiving. There exists

several MPI communication routines, which are classified depending on the communica-

tion topology (see Figure A.2). The following table provides a list of common routines

that have been used for this thesis.

Name Topology Description
Time

Complexity
Space

Complexity

MPI Alltoall Flat tree
All ranks send and
receive a message O(P log2 P ) O(P )

MPI Gather Flat tree
A rank sends a different

message to the other ranks O(P ) O(P )

MPI Scatter Flat tree
Multiple ranks sends a dif-
ferent message to one rank O(P ) O(P )

MPI Send One-to-one
A rank sends a message to

another rank O(1) O(1)

MPI Recv One-to-one
A rank receives a message

from another rank O(1) O(1)

MPI Sendrecv One-to-one
Two ranks exchange a

message O(1) O(1)

MPI Bcast Binary tree
A rank broadcasts the

same message to the others O(log2 P ) O(1)

MPI Reduce Binary tree
It computes reduction. A
root rank holds the result. O(log2 P ) O(1)

MPI Allreduce Binary tree
It computes reduction.

All ranks hold the result. O(log2 P ) O(1)

MPI Scan Binary tree
It computes inclusive

Cumulative Sum. O(log2 P ) O(1)

MPI Exscan Binary tree
It computes exclusive

Cumulative Sum. O(log2 P ) O(1)

Table A.1: Common MPI communicators.
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(a) Binary tree (b) One-to-one (c) Flat tree

Figure A.2: MPI node topologies

A.2 Shared Memory Architectures and OpenMP

Memory

Core 0 Core 1 Core T − 1
Figure A.3: Shared Memory Architecture

SMAs are a type of parallel system which are fundamentally different to DMAs. In

these architectures, the cores can simultaneously access the same memory which can be

used to share information between the threads.

The main advantage over DMAs is therefore fast communication between the T cores

since SMAs achieve this by accessing the system-wide shared memory. However, SMAs

have two main disadvantages relative to DMAs: memory access increases with T and

the largest systems that use DMAs are bigger than the largest that use SMAs alone.

As said for DMAs, any shared memory API is suitable for this thesis. OpenMP is

chosen in this case for its simple and intuitive syntax which makes it one of the most

popular programming models for SMAs. OpenMP applies the fork-join model to set up

T parallel threads which are uniquely identified by an id ∈ Z. Once created, the threads

can concurrently execute bodies of instructions which are coded within directives for

the compiler called pragmas. Every pragma directive is identified by the following syn-

tax: #pragma omp clause1(arg list) clause2(arg list) ... clauseN(arg list)

where the various clauses are chosen based on the type of parallelism which is needed

for the related body of instructions. The following is a list of the most important clauses

to understand the concepts explained in Chapter 5 of this thesis:

• parallel: it takes no arguments and activates multithreading for the related body

of instructions;

• for: it is used after parallel, takes no arguments and activates multithreading

over a for loop;
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• schedule: it is used after parallel for and establishes the partitioning strategy

of the iteration space. Typical arguments are static or runtime. If static the

iteration space gets distributed equally. If runtime the fastest threads run more

iterations;

• num threads: it takes either an integer number or an integer variable which cor-

respond to the number of threads to create;

• private: it takes a list of previously declared variables of which every parallel

thread create a new private copy, initialised to a random value;

• firstprivate: it takes a list of previously declared variables of which every thread

create a new private copy, initialised to the value of the variable before the pragma

directive;

• simd: it takes no arguments and activates vector parallelism;

• reduction: it takes in input the type of reduction operation to compute, followed

by the name of the variable to reduce. The syntax for sum is +:variable name,

while for max is max:variable name.

A.3 Hybrid Memory Architectures Using MPI and OpenMP

Node 0 Node P−1
Memory

Core 0 Core 1 Core T − 1

Memory

Core 0 Core 1 Core T − 1

Common communication network

Figure A.4: Hybrid Memory Architecture

Hybrid memory architectures consist of multiple computing nodes connected as in

a DMA, where each of these nodes is itself a SMA. These architectures combine the

benefits of DMAs and SMAs, i.e. scalable memory with the number of nodes, and

fast data-sharing within each node. The main disadvantage is a considerable increased

coding complexity, as some single node task may be hard to parallelise efficiently on

SMAs.

One of the most common approaches to implement hybrid DMA-SMA code is to

extend existing MPI codes with OpenMP. This is done by calling MPI init thread() in

place of MPI init() and using the proper pragma directives on the top of parallelisable

single node bodies of instructions. MPI init thread() takes in input a flag variable

which sets up the level of thread support. The possible flag values are:
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• MPI THREAD SINGLE if only the master thread is allowed to call MPI routines out-

side a parallel region;

• MPI THREAD FUNNELED if only the master thread is allowed to call MPI routines

inside a parallel region;

• MPI THREAD SERIALIZED if all threads are allowed to call MPI routines inside but

only one at the time;

• MPI THREAD MULTIPLE if all threads are allowed to concurrently call MPI routines.
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Stan

Stan is a probabilistic programming language for statistical modeling, data analysis, and

prediction making on a static model. It is currently used by over ten thousand users.

Its popularity is mostly due to the following reasons:

• its syntax is simple, intuitive and very succinct: in a few code lines it is possible to

design complex models that may take hundreds of lines in other languages, such

as C++;

• it provides a large library of statistical functions;

• the back end is written in C++, which makes the overall run-time highly perform-

ing;

• it can interface with many popular programming languages such as MATLAB,

Python, R and Julia;

• it uses NUTS to draw samples, a highly accurate gradient-based proposal distri-

bution which is explained in Section 2.2.3;

• in order to compute the gradient, Stan provides a highly performing gradient

calculator based on auto-differentiation.

This appendix provides a brief description of the most important features of Stan

and its back end, in order to follow the concepts explained in Chapter 6. The reader is

referred to Stan user’s guide [84] for extra details.

B.1 How to Use CmdStan

Since the final goal of this thesis is to extend Stan’s back end to use other Bayesian

inference methods such as SMC samplers and PFs, CmdStan, the command line version

of Stan, is used as this is the only alternative which is not protected by licenses.

Once CmdStan is correctly built, users must write a .stan file which describes the

model. This file has to be compiled by stanc, the compiler for Stan. If the compilation is
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successful, a new .hpp file is generated, containing a C++ class describing the statistical

model in the original .stan file. After that, the .hpp file needs to be compiled with rest

of the back end. The default compiler for this step is g++ but others are available, such

as mpic++, upon previous installation of compatible MPI libraries, such as OpenMPI.

After this second compilation, a new executable file is generated and can be run from

command line using the ./ command. Several arguments need to be provided, depending

on the desired output, such as the number of samples to draw. The followings are the

most important arguments to be given from command line:

• method= which defines the type of problem to be solved. Since sampling is the

main interest in this work, the typical value to give is sample and is the only one

considered in this thesis;

• algorithm= which is used to define the sampling method. In CmdStan the two

accepted values are hmc for NUTS and fixed params which is not covered in this

thesis;

• num samples= which establishes the number of samples to generate;

• num warmup= which establishes the number of samples to generate during the burn-

in phase;

• data file= which provides the name of the file containing the data, if there is

any. Supported formats are .R, .json and .csv;

• output file= an optional argument to provide the name of the output file contain-

ing the generated samples. If not given, the default output file name is output.csv.

B.2 CmdStan: Back End Summary

CmdStan/stan/src/stan/io/dump.hpp

path/to/model/model name.hpp

file num warmup num samples algorithm method hmc

singleton argument.hpp list argument.hpp

valued argument.hpp categorical argument.hpp

/arguments/argument.hpp

CmdStan/stan/src/stan/model/
gradient libraries

CmdStan/stan/src/stan/mcmc/
leapfrog libraries

CmdStan/stan/src/stan/services/sample/
nuts methods such as hmc nuts dense e.hpp

CmdStan/src/cmdstan/command.hpp

CmdStan/src/cmdstan/main.cpp

Figure B.1: Stan - back end

The graph in Figure B.1 briefly summarises the most important classes and libraries

in Stan’s back end with a view to easily and efficiently explaining which folders need to

be created or extended to install an SMC sampler and a PF in Stan. As we can see, the

main includes the library command.hpp from which all argument classes and sampling

method classes are accessible. More precisely, the only method in command.hpp is

tasked with three assignments: parse the input arguments, generate an object of the
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model class, call the selected method by feeding it the model object and the required

received arguments. In doing so, three types of argument classes (child to the argument

main class) are necessary:

• list argument class which is used to parse the values of method and algorithm

from command line;

• singleton argument class which is used to parse any integer, float or string ar-

gument such as num samples, num warmup and data file;

• categorical argument class which is used to parse the possible values of other

list arguments, such as different variants of NUTS which is given to algorithm.

The model class is usually found in an arbitrary folder and is referred to on any

library or class in Stan’s back end by using the alias stan model. The constructor

of the model class requires an object of the dump class, called data var context in

command.hpp, which consists of a C++ map containing names and values of the data

file. In order to access the data file, data var context requires the file path which is

found in the string argument for data file. The model constructor (whose body of

instructions is changed at compile time by stanc depending on the content of the .stan

model) accesses the data values by name and saves them as private members.

The model object and the other relevant arguments are fed to the selected algorithm,

whose calling methods are found in the CmdStan/stan/src/stan/services/ folder.

B.3 Syntax

Models are described in .stan file which is composed of up to seven blocks, each one

defining a part of the model. A brief description of each block follows:

• data (optional but typically used): it declares constants (e.g. physical constants

or array dimensions) and other data, such as measurements. Possible keywords

for data types are int for integers, real for floating point numbers, and vector

or matrix for structures. Arrays of int and real can also be declared by adding

squared brackets containing the dimension of the array; the same thing has to be

done for vector and matrix. The values are stored in a data file whose name

must then be given in input from command line;

• transformed data (optional): it is used to declare new data which is defined as

function of the data in the data block. The keywords for the data types are the

same as in the data block;

• parameters: it declares the parameters to sample directly. The keywords for the

data types are the same as in the data block;
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• transformed parameters (optional): it declares and defines the parameters that

are not sampled directly but computed as function of the parameters during the

sampling iterations. The keywords for the data types are the same as in the data

block;

• model: it defines the posterior distribution in logarithmic scale. The keyword for

the posterior is target and every factor which contributes to the posterior may

be added to target by using the following syntax: target +=;

• generated quantities (optional): it declares and defines output parameters

which are not sampled directly but computed as function of the parameters

and the transformed parameters after the sampling iterations. The keywords

for the data types are the same as in the data block;

• functions (optional): it declares and defines functions which may be useful in the

rest of the Stan file, e.g. to define transformed data, transformed parameters

or statistical functions to use in the model and that are not built-in.

B.3.1 Example: Student-t Distribution

This example describes how to use Stan to sample from a student-t distribution which

has the following multivariate form:

p(X|Y) = Γ

(
ν +M

2

)
− Γ

(ν
2

)
ν0.5·Mp0.5·M |Σ|0.5+

+

(
1 +

1

ν
(X− µ)ᵀ|Σ|−1(X− µ)

)− ν+M
2

(B.1)

where the model data is simply the input dimension M , the degrees of freedom ν, the

mean µ, and the variance Σ. Here, M = 1, ν = 7, µ = 0 and Σ = 1. A suitable .stan

file follows:

data {

real nu; //degrees of freedom

real mu; //mean

real sigma; //covariance

}

parameters {

real x;

}

model {

target += student_t_lpdf(x | nu, mu, sigma);

}

where the data can be stored in the following .R file:
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nu <- 7

mu <- 0

sigma <- 1

If the .R file is named, for example, student t.data.R and the executable file is named,

for example, student t, after compilation the command to run is:

$ ./student t method=sample algorithm=hmc num samples=128 \
num warmpup=100 data file=student t.data.R

which generates 128 estimates of the mean value, after performing 100 burn-in iterations.

B.3.2 Example: Neal’s Funnel

The Neal’s funnel described in Section 2.2.3.1, whose target is defined in Equation (2.39),

can be describe by the following .stan file, called neals funnel.stan, which can also be

found in Stan user’s guide [84]:

parameters {

real y_raw;

vector[9] x_raw;

}

transformed parameters {

real y;

vector[9] x;

y = 3.0 * y_raw;

x = exp(y/2) * x_raw;

}

model {

y_raw ∼ std_normal(); // equals target += normal_lpdf(y_raw|0, 1)

x_raw ∼ std_normal(); // equals target += normal_lpdf(x_raw|0, 1)

}

After compilation, an arbitrary number of samples, e.g. N = 1024, can be generated in

regular Stan by running the following command:

$ ./neals funnel method=sample algorithm=hmc num samples=1024 \
num warmpup=100.
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How to Install SMC Methods in

Stan

This appendix describes how to set up SMC-Stan and Streaming-Stan by respectively

installing an SMC sampler and a PF in Stan. Although this thesis is mostly focused

on PFs, it is more intuitive to explain how to set up SMC-Stan first. This is because

the changes to be made in the back end are fewer for SMC-Stan and mostly have to be

repeated for Streaming-Stan. The reader is referred to Appendix B for details about

Stan’s back end.

C.1 How to Set up SMC-Stan

The first thing to do is create a new folder, here called smc, containing the SMC sampler

libraries which consists of the parallel algorithms described in Chapters 3, 4 and 5 and

Algorithm 3. This folder should be created in the following path: CmdStan/stan/src/s-

tan/ where all sampling methods, such as NUTS, already are.

Once the SMC sampler has been copied, it is necessary to create any extra input

argument that Algorithm 3 requires and is not already available in regular Stan. The

argument num samples can be used for the number of particles N per SMC iteration.

One argument that should be created is, for example, Tsmc, which allows the user to

input TSMC for Algorithm 3. Therefore, a new argument class, called for example

arg Tsmc, has to be defined as child to the singleton argument class, since it is an

integer input argument. A possible C++ code follows:

#ifndef CMDSTAN_ARGUMENTS_ARG_TSMC_HPP

#define CMDSTAN_ARGUMENTS_ARG_TSMC_HPP

#include <cmdstan/arguments/singleton_argument.hpp>

namespace cmdstan {

class arg_Tsmc: public int_argument {

public:
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arg_Tsmc(): int_argument() {

_name = "Tsmc";

_description = "Total number of SMC iterations";

_validity = "1 < Tsmc";

_default = "100";

_default_value = 100;

_constrained = true;

_good_value = 2.0;

_bad_value = -1.0;

_value = _default_value;

}

bool is_valid(unsigned int value) { return value > 1; }

};

}

#endif

Any other valued input argument to Algorithm 3, such as one for the number of OpenMP

threads T , has to be created the same way. The C++ code is omitted for brevity.

Now it is necessary to enable the user to invoke Algorithm 3 from command line, the

same way regular Stan does with NUTS. This is achieved by the following four steps:

1. A new possible value for argument algorithm has to be registered. This first

requires a new argument class, called for example arg smcs, child to the existing

class categorical argument. A possible C++ code is:

#ifndef CMDSTAN_ARGUMENTS_ARG_SMCS_HPP

#define CMDSTAN_ARGUMENTS_ARG_SMCS_HPP

#include <cmdstan/arguments/categorical_argument.hpp>

namespace cmdstan {

class arg_smcs: public categorical_argument {

public:

arg_smcs() {

_name = "smcs";

_description = "SMC sampler";

_subarguments.push_back(new arg_Tsmc());

_subarguments.push_back(new arg_T());

_subarguments.push_back(new arg_proposal());

}

};

}

#endif

The role of the argument arg proposal will be explained in the following sections.
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2. Now, arg smcs needs to be registered in the possible values that the command line

argument algorithm accepts. This is done by adding arg smcs() as input member

in the constructor of the already existing arg sample algo class as follows:

#ifndef CMDSTAN_ARGUMENTS_ARG_SAMPLE_ALGO_HPP

#define CMDSTAN_ARGUMENTS_ARG_SAMPLE_ALGO_HPP

#include <cmdstan/arguments/list_argument.hpp>

#include <cmdstan/arguments/arg_hmc.hpp>

#include <cmdstan/arguments/arg_fixed_param.hpp>

#include <cmdstan/arguments/arg_smcs.hpp>

namespace cmdstan {

class arg_sample_algo: public list_argument {

public:

arg_sample_algo() {

_name = "algorithm";

_description = "Sampling algorithm";

_values.push_back(new arg_hmc());

_values.push_back(new arg_fixed_param());

_values.push_back(new arg_smcs());

_default_cursor = 0;

_cursor = _default_cursor;

}

};

}

#endif

3. In order to follow the structure of Stan’s back end, a new method, called for ex-

ample smc sampler, has to be created in the folder CmdStan/stan/src/stan/ser-

vices/sample/. The role of this method is simply to print out the relevant input

arguments to the output .csv file, before calling Algorithm 3, which is found in the

CmdStan/stan/src/stan/smc folder, as previously mentioned in this section;

4. In command.hpp an object of arg sample algo called algo is created. The value

given to the constructor of algo is checked by using a sequence of nested if-else

branches and, depending on the given value, a method from CmdStan/stan/s-

rc/stan/services/sample/ is invoked. Therefore, the next step is to create an-

other else if branch which checks whether the given value is equal to smcs. If

true, smc sampler is invoked after reading its required input arguments, such as

num samples, Tsmc and T. This passage is relatively straightforward and the reader

is simply referred to repository of CmdStan https://github.com/stan-dev/cmdstan

to understand how to proceed.
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C.1.1 Proposal Distributions

As anticipated elsewhere in this thesis, the goal is to install an SMC sampler which

provides multiple proposal distributions (apart from regular RW moves) by employing

better MCMC samplers than RW. To achieve that, it is necessary to first install in the

argument folder a new class called arg proposal, child to the list argument class.

The C++ code is omitted for brevity but the reader can refer to the arg sample algo

class defined in the previous section. This creates a new command line input argument

called proposal which the user can use to select the preferred proposal to be used by

the IS step in Algorithm 3. The back end is programmed to reject the command line if

proposal is defined but algorithm is not given smcs as value.

A new class for each type of proposal distribution needs to be defined, in order to

become a new value that the argument proposal accepts. The names of these classes

will have to be registered in the values field of arg proposal.

C.1.1.1 Random Walk

For RW moves, a class called arg random walk proposal has to be defined. This class

will have to be child to the categorical argument class and have name field equal to

the keyword rw. For extra implementation details the reader can consult the C++ for

the next proposal defined in the next section. Therefore, if rw is given to proposal from

command line, IS in Algorithm 3 will sample each new particle using (2.22) and weight

the particles as in (2.23).

C.1.1.2 HMC

To use HMC as proposal, it is necessary to register a possible value for the new argument

proposal, called for example hmc. Therefore, a class called arg hmc proposal has to

be defined, whose C++ code can be the following:

#ifndef CMDSTAN_ARGUMENTS_ARG_HMC_PROPOSAL_HPP

#define CMDSTAN_ARGUMENTS_ARG_HMC_PROPOSAL_HPP

#include <cmdstan/arguments/categorical_argument.hpp>

namespace cmdstan {

class arg_hmc_proposal: public categorical_argument {

public:

arg_hmc_proposal() {

_name = "hmc";

_description = "HMC proposal distribution";

_subarguments.push_back(new arg_stepsize());

_subarguments.push_back(new arg_num_leapfrog_steps());

}

};

}
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#endif

Also, two extra input arguments are required for this proposal: one for the number of

leapfrog steps L, and one for the step size ∆h. Therefore, two extra classes, called for

example arg num leapfrog steps and arg stepsize, must be created and added to the

member subarguments of the constructor of arg hmc proposal. For these two argu-

ments, num leapfrog steps and stepsize have been chosen as names. The C++ codes

for arg num leapfrog steps and arg stepsize are omitted for brevity, since they sim-

ply consist of child classes to singleton argument, one in the form of integer argument,

the other in the form of real argument. In order to compute the gradient in Leapfrog,

Stan provides a callable method named log prob grad, found in CmdStan/stan/src/s-

tan/model, which is designed to perform a fast auto-differentiation on log prob, the

method which computes p(X|Y) in the model class. Hence, log prob grad is also used

in the libraries in CmdStan/stan/src/stan/smc.

C.1.1.3 NUTS

The steps to include NUTS as proposal are the same as in the previous section. There-

fore, the C++ code for arg NUTS proposal is omitted for brevity as it is equivalent to

the one for arg hmc proposal, apart from the member name being assigned to nuts

as value, and without adding arg num leapfrog steps to subarguments, since NUTS

uses Leapfrog with an adaptive number of steps.

C.2 How to Set up Streaming-Stan

The first thing to be done is to create a .hpp file defining Algorithm 4. As mentioned

in Chapter 2, a PF can be designed as an FL-SMC method using one measurement

at each time step. Indeed, Equation (2.28) can be manipulated to be equal to (2.13)

when the fixed lag l = 0. This is why a single .hpp file is sufficient for both PFs and

FL-SMC methods. Also, as mention in Chapter 2, these two SMC methods only differ

from SMC samplers for the importance weight equation, but require for each task the

same parallelisation methods, described in Chapters 3, 4 and 5. Therefore, the .hpp file

for Algorithm 4 can simply replace the .hpp file for Algorithm 3 in CmdStan/stan/sr-

c/stan/smc. After that, the same steps described in Section 6.2 to register a new valid

value for the argument algorithm must be repeated to register pf as well. These steps

are summarised as follows:

• create a new argument class, called for example arg pf, child to the existing cat-

egorical argument class. The code should be identical to arg smcs, but having

the member name equal to the value pf. Also, to be consistent with the notation

of this thesis, the argument class arg Tsmc() has been substituted with an iden-

tical argument class called arg Tpf() which registers Tpf as new possible input

argument in Streaming-Stan, in order to input the number of time steps TPF ;
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• extend the constructor of arg sample algo by adding a new element to the mem-

ber values, precisely arg pf();

• create a new .hpp file in CmdStan/stan/src/stan/services/sample containing a

method, called for example particle filter, which is tasked with first printing

out to the output .csv file a summary of the input arguments list, before calling

Algorithm 4;

• add another else-if branch in command.hpp to check whether algo->value() is

equal to pf and, if true, call the method particle filter after creating an object

for each input argument, as done for the method smc sampler;

At this point, running a PF in Stan would require:

1. the possibility to re-read the data file without recompiling the model, in order to

emulate a real-time income of measurement Yt;

2. the possibility to describe the current state Xt in the parameters or transformed

parameters block and save it at run-time to the old state Xt−1 which should,

however, be defined in the data block.

3. the possibility to describe both target and initial distribution and compile them

into the same executable file.

At the moment, none of them are possible in Stan. The first two are currently impossible

because the data variables become private members of the C++ model class generated

by the compiler stanc. Therefore, the model class does not provide get-set methods to

modify the data at run-time. The last constraint requires description and compilation of

two models at the same time. The following three sections describe a possible solution

for each of these limitations.

C.2.1 Real-Time Measurement

To overcome the first limitation without making changes to the compiler, it is necessary

to manipulate to the input given to the constructor of the model class, instead of trying

to change the content of the model object once this has been created. As previously

mentioned in Section B.2, the constructor of the model class requires data var context,

an object of the dump class in CmdStan/stan/src/stan/io, which has a C++ map con-

taining the content of the data file. This class already provides get methods to return the

value of a specific integer or real member of the map, if its name is known. Therefore,

since dump is hard-coded and is not edited at run-time by stanc, it is only needed to

add set methods to search by name for a value in the map that we want to update. This

means that now the data file can be re-read, and then data var context can be edited

and given to the constructor of the model class, in order to create a new model object.

To achieve that, data var context and the path to the data file must be added to the

input list of particle filter, Algorithm 4 and its task New Measurement(). At each
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time step t, the MPI node having rank p = 0 is tasked with reading the data file again,

which is expected to be changed at run-time by an external measurement source, and

saving its content to a new temporary object of dump. More precisely, the PF expects

to read new values only for the subset of variables in the data block that are changed

in real-time, e.g. Yt. By comparing this temporary object with data var context, it is

possible to infer which data has changed, such that rank p = 0 can then broadcast the

new content to the other MPI nodes by using MPI Bcast. After that, each MPI node

can independently update the content of data var context, create a new model object,

and destroy the old one. It is now possible to update at run-time the data block of .stan

in O(logP ), the time complexity of MPI Bcast (see Table A.1).

C.2.2 Old State Declared as Data

The second limitation is trickier than the first because, in order to achieve this goal,

Streaming-Stan has to be able to access the value of Xt and Xt−1, and then copy the

content of Xt to Xt−1. One naive solution would be to force the user to declare Xt−1

and Xt in the parameters block and place them in a pre-agreed order, such that they

can be managed within Algorithm 4. However, this solution would require complex

changes to Stan’s back end, such as the interface of log prob grad (which is designed

to compute the gradient of the whole parameters block), besides adding constraints

to Stan’s syntax. On the other hand, this limitation becomes even harder to overcome

if the constraints are once again to make no major changes to stanc or Stan’s syntax.

This is due to the following reasons:

• The most intuitive block to declare Xt−1 in is data, while Xt is inherently part of

the parameters or transformed parameters. This is because, at each time step

t, Xt is to be sampled, while Xt−1 is constant and a given term to the posterior.

At the moment, however, there is no method in any class that copies parameters

to data, as this feature is not contemplated in regular Stan;

• Xt−1 and Xt are only subsets of data and parameters (since others may be

needed and declared) and their variable names are arbitrary.

It is currently possible to access Xt−1 by name from data var context thanks to the

changes described in the previous section. When it comes to the parameters, and hence

Xt, it is already possible to access them by address. All parameters (i.e. parameters,

transformed parameters and generated quantities) are indeed placed by stanc

onto a C++ vector, in the same order they are declared. This compiler also generates

two useful methods of the model class, called get param names and get dims which

respectively return name list and dimension list of all parameters in the same order

they are stored to the vector. Therefore, what is currently missing is a mechanism for

Streaming-Stan to know (before running the executable file) the names of the parameters

and data variables that form Xt and Xt−1, along with the order these variables are

declared in, which may also be totally arbitrary.
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The solution to this limitation consists of adding two new input arguments old state

and state. The values of these arguments are designed to be a list of strings separated

by a comma, precisely the variable names for Xt−1 and Xt, in the order which the

variable of Xt has to overwrite the variables of Xt−1. For example, if a .stan file has

Xt = {Alpha, Beta} and Xt−1 = {Gamma, Delta}, by giving the following input argu-

ment state=Alpha,Beta and old state=Gamma,Delta, at each SMC iteration Alpha

overwrites Gamma and Beta overwrites Delta. Broadly speaking, the value of Xt is read

by address using the names in state as described above, and its value overwrites some

variables in data var context, precisely those having the names in old state. Then,

the updated data var context is used to create a new model object. This operation

must obviously be done for each particle during IS, but since IS is embarrassingly paral-

lel, the overall overhead is negligible for a high DOP. Stan does not currently offer any

argument class which takes in input a list of values linked to the same argument keyword.

Also, the singleton argument class is not easy to re-factor to suit these needs, since it

is built to have a keyword per each value. Although re-factoring singleton argument

should be considered as future work, the current solution has been to create a new argu-

ment class, called multiton argument and child to valued argument, whose C++ code

is omitted for brevity. The C++ codes for old state and state are, however, provided

below:

#ifndef CMDSTAN_ARGUMENTS_ARG_PF_OLD_STATE_HPP

#define CMDSTAN_ARGUMENTS_ARG_PF_OLD_STATE_HPP

#include <cmdstan/arguments/multiton_argument.hpp>

#include <vector>

#include <string>

#include <regex>

namespace cmdstan {

class arg_old_state: public multi_string_argument {

public:

arg_old_state(): multi_string_argument() {

_name = "old_state";

_description = std::string("data subset for the old state in

PF");

_validity = "Names in data block separated by ,";

_default = {};

_default_value = {};

_constrained = false;

_value = _default_value;

}

bool is_valid(std::string value){

return !std::regex_match(value, std::regex( (

"((\\+|-)?[[:digit:]]+)(\\.(([[:digit:]]+)?))?" ) ) );

}
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};

}

#endif

#ifndef CMDSTAN_ARGUMENTS_ARG_PF_STATE_HPP

#define CMDSTAN_ARGUMENTS_ARG_PF_STATE_HPP

#include <cmdstan/arguments/multiton_argument.hpp>

#include <vector>

#include <string>

#include <regex>

namespace cmdstan {

class arg_state: public multi_string_argument {

public:

arg_state(): multi_string_argument() {

_name = "state";

_description = std::string("parameter subset for state in PF");

_validity = "Names in parameter block separated by ,";

_default = {};

_default_value = {};

_constrained = false;

_value = _default_value;

}

bool is_valid(std::string value){

return !std::regex_match(value, std::regex( (

"((\\+|-)?[[:digit:]]+)(\\.(([[:digit:]]+)?))?" ) ) );

}

};

}

#endif

In order to register state and old state, arg pf old state() and arg pf state()

must be added to subarguments in the constructor of arg pf().

C.2.3 Initial Distribution

The initial distribution q0() should be described by another .stan file to be compiled by

stanc, as if it was a standalone .stan model. The generated .hpp file should then be

compiled together with the model .hpp file describing the target, along with the rest of

Stan’s back end by using mpic++. However this is not currently possible on CmdStan

because all .hpp files generated by stanc end with a typedef instruction which transforms

the arbitrary model name into an alias called stan model, such that the rest of Stan’s

back end can access the model class in a general purpose way. Therefore, having two or
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more .hpp files generated by stanc to be compiled into the same executable file would

result in a compilation error.

A solution to overcome this limitation would be to slightly change stanc to make it

accept an extra optional compilation flag, named for example --prior. If this flag is

given, the final typedef in the model .hpp file, stanc substitutes the model name with

the alias prior, instead of stan model. Then, the task Initialise() in Algorithm 4

is instructed to use prior to create a model object to generate the particles x0.

To achieve that, one first needs to add an extra boolean variable in stanc helper

which is found in CmdStan/stan/src/stan/command. This boolean variable has to be

set to true or false, depending on whether the user has used the flag prior in the

stanc compilation line. This can be done as follows:

bool prior = cmd.has_flag("prior");

After that, the boolean flag has to be passed on compile (called by stanc helper

and defined in compiler.hpp in the folder CmdStan/stan/src/stan/lang/), then passed on

generate cpp (called by compile and defined in generate cpp.hpp in the folder Cmd-

Stan/stan/src/stan/lang/generator/) and finally passed on generate model typedef

called by generate cpp. The C++ code of generate model typedef should be changed

as follows:

#ifndef STAN_LANG_GENERATOR_GENERATE_MODEL_TYPEDEF_HPP

#define STAN_LANG_GENERATOR_GENERATE_MODEL_TYPEDEF_HPP

#include <stan/lang/ast.hpp>

#include <stan/lang/generator/constants.hpp>

#include <ostream>

#include <string>

namespace stan {

namespace lang {

/**

* Generate reusable typedef of <code>stan_model</code> for

* specified model name writing to the specified stream.

*

* @param model_name name of model

* @param o stream for generating

*/

void generate_model_typedef(const std::string& model_name,

std::ostream& o, const bool prior = false) {

if(prior)

o << "typedef " << model_name << "_namespace::" <<

model_name << " prior;" << EOL2;

else

o << "typedef " << model_name << "_namespace::" <<

model_name << " stan_model;" << EOL2;
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}

}

}

#endif

At this point, some trivial changes have to be made to the makefile, but in this case

details are omitted for brevity.

It is now actually possible to describe a dynamic model using regular Stan’s syntax.

C.2.4 Proposal Distributions

Streaming-Stan also provides, for the PFs and Fixed-Lag SMC methods, multiple pro-

posal distributions, as well as SMC-Stan does in the case of SMC sampler. These

proposals are named FL-SMC, FL-HMC and FL-NUTS and are described in Section

6.3.1. The user decides which one to call by assigning a valid value to the argument

proposal. Depending on this value, the IS step in Algorithm 4 is given a numerical

flag, called prop, which is checked within a switch-break statement such that the correct

sampling and weighting equations can be used. The value of prop is modulated by a

series of nested if-else statements within the body of instructions in command.hpp which

is executed if algo->value() is equal to pf.

The implementation strategy is the same as in SMC-Stan. More precisely, for each

proposal distribution, a new class has to be created and added to value in the con-

structor of arg proposal, in order to register a new valid keyword for the argument

proposal. These classes and keywords are named: arg fl smc proposal and FL-SMC

for the FL-SMC proposal, arg fl hmc proposal and FL-HMC for the FL-HMC proposal,

and arg fl nuts proposal and FL-NUTS for the FL-NUTS proposal.

C.2.4.1 Fixed-Lag SMC

Equations (2.26) a (2.28) describe FL-SMC. These equations are function of the lag l

which should be given as input. Therefore, it is necessary to create a new class called

arg lag, child to singleton argument in the form of integer argument, having keyword

Lag and default value 0. The C++ code for arg lag is omitted for brevity, but it is

equivalent to the one of any other integer arguments, such as arg T. Then, arg lag has

to be added to subarguments of the constructor of arg fl smc proposal. Hence, the

C++ for this class is omitted for brevity, but the reader is referred to Section C.1.1.2 to

see how the proposal classes are defined in SMC-Stan.

C.2.4.2 Fixed-Lag HMC

To use this proposal, the following arg fl hmc proposal class has to be added to Cmd-

Stan/src/cmdstan/arguments and arg fl hmc proposal() has to be added to values

in the constructor of arg proposal. The C++ code for this class is omitted for

brevity but is equivalent to the one for arg hmc proposal in SMC-Stan (see Section
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C.1.1.2), apart from having name equal to the keyword FL-HMC and one extra input in

subarguments for arg lag.

C.2.4.3 Fixed-Lag NUTS

The class arg fl nuts proposal is equivalent to arg fl hmc proposal apart from hav-

ing FL-NUTS assigned to name and not having arg num leapfrog steps() added to

subarguments, as the number of leapfrog steps in NUTS is adaptive. To use FL-

NUTS, arg fl nuts proposal() must also be added to value in the constructor of

arg proposal.

C.2.5 Examples

This section shows how to use Streaming-Stan to describe and solve a wide range of

dynamic models.

C.2.5.1 Stochastic Volatility

The first example is the Stochastic Volatility model which is first illustrated in this thesis

in Section 3.4.5.2. This is a relatively easy model to describe in Streaming-Stan, as the

state-transition equation is single-dimensional and linear. The following is suitable .stan

file to implement this model:

data {

real phi; real beta; real sigma;

real Xt_1;

real Yt;

}

parameters {

real Vt;

}

transformed parameters {

real Xt;

Xt = phi*Xt_1 + sigma*Vt

}

model {

target += normal_lpdf(Yt | beta*exp(0.5*Xt) 1); //likelihood

target += normal_lpdf(Xt | phi*Xt_1, pow(sigma, 2)); //prior

}

and the initial distribution may be described by the following .stan file:

data {

real phi; real sigma;

}

parameters {

real V0;
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}

transformed parameters {

real X0;

X0 = sqrt(pow(sigma, 2)/(1 - pow(phi, 2)))*V0;

}

model {

target += normal_lpdf(X0 | 0, pow(sigma, 2)/(1 - pow(phi, 2)));

}

As we can see, this model samples process noise from N (0, 1) which is then rescaled in

the transformed parameters block where the state is defined and computed.

The data has to be written in a separate file. Streaming-Stan, as well as Stan and

SMC-Stan, accepts different extensions, such as .R files or .json files. The following is a

suitable .R data file for this model:

phi <- 0.9731

beta <- 0.6338

sigma <- 0.1726

Xt_1 <- 0.0

Yt <- 0.0

where the Xt−1 and Yt can be initialised to any arbitrary value, since Xt−1 is overwrit-

ten at run-time by Xt and Yt is expected to be updated at run-time by an external

measurement source, e.g. by an external software that edits the content of the data file.

If the executable and data files are named, for example, sv and sv.data.R, then it is

possible to execute the model by running the following command:

$ mpirun -np 1 sv method=sample algorithm=pf proposal=FL-NUTS \
stepsize=0.01 old state=Xt 1 state=Xt Lag=0 T=1 Tpf=100 \
num samples=512 data file=sv.data.R

which generates 100 estimates by sampling N = 512 particles at each time step using

FL-NUTS as proposal.

C.2.5.2 Flood Water Level

The second example is the flood water level model presented in Section 6.4.1.2. The

following, called water.stan, is a suitable .stan file to describe this model in Streaming-

Stan.

data {

int t;

real Xt_1;

real Yt;

}

parameters {

real Vt;

}
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transformed parameters {

real Xt;

Xt = 0.5*Xt_1 + 25*Xt_1/(1+pow(Xt_1, 2)) + cos(1.2*t) + Vt

}

model {

target += normal_lpdf(Yt | 0.05*pow(Xt, 2), 1); //likelihood

target += normal_lpdf(Xt | 0.5*Xt_1 + 25*Xt_1/(1+pow(Xt_1, 2)) +

cos(1.2*t), 1); //prior

}

where the time step t is used as data since it is expected to be incremented by the

data/measurement source. The code for the initial distribution follows:

parameters {

real X0;

}

transformed parameters {

real X0;

X0 = V0;

}

model {

target += normal_lpdf(X0 | 0, 1);

}

The .R data file, called water.data.R, is

t <- 0

Xt_1 <- 0.0

Yt <- 0.0

The same command line as in the previous section can be used to run this model, apart

from changes on the executable and data file names. The data source has been coded

to update water.data.R every second with incremental values of t, and new values of Yt

which can downloaded from https://www.water.gov.my, as done in [73, 74].

C.2.5.3 Bearing-Only Tracking

The next example is the bearing-only tracking model presented in Section 6.4.1.3.

data {

matrix[4, 4] A; //State transition matrix

matrix[4, 4] sigma; //Process noise sigma up to a constant factor

real q; //constant term in process noise covariance

int My; //number of measurements

real p[My*2]; //sensors’ positions

real W; //measurement noise standard deviation

vector[4] Xt_1; //Old state

real Yt[My]; //measurements



Appendix C. How to Install SMC Methods in Stan 150

}

transformed data {

matrix[4, 4] Sigma; //Full process noise covariance

Sigma = q*sigma;

}

parameters {

vector[4] Vt; //Process noise

}

transformed parameters{ //State transition

vector[4] Xt;

Xt = A*Xt_1 + sqrt(Sigma)*Vt;

}

model { //Target p(Y_t | X_t) * p(X_t | X_{t-1})

real pred_y[My]; //predicted measurement

for(k in 1:My){

pred_y[k] = atan((Xt[1] - p[k*2 - 1]) / (Xt[3] - p[k*2]));

}

target += normal_lpdf(Yt | pred_y, W); //likelihood

target += multi_normal_lpdf(Xt | A*Xt_1, Sigma); //prior

}

where the full process noise covariance is computed in the transformed data block

and can be modulated at run-time by the scalar q.

The code for the initial distribution follows:

parameters {

real V0;

}

transformed parameters {

real X0;

X0 = V0;

}

model {

target += normal_lpdf(X0 | 0, 1);

}

The .R data file, called BO tracking.data.R, is the following:

A <- structure(c(1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0,

1.0, 0.0, 0.0, 0.0, 1.0), .Dim = c(4, 4))

Sigma <- structure(c(0.3333, 0.5, 0, 0, 0.5, 1, 0, 0, 0, 0, 0.3333,

0.5, 0, 0, 0.5, 1), .Dim = c(4, 4))

q <- 5.0

num_sensors <- 4

p <- c(0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0)

W <- 0.333

Xt_1 <- c(1.0, 0.2, 1.0, 0.2)
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Yt <- c(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

The command line to run is again the same as in the previous sections, apart from using

the names of the execution and data files.

C.2.5.4 Vacuum Arc Remelting

The final example of this section is the VAR model described in Section 4.4.5.3. A

suitable model .stan file, called var.stan, could be:

data {

real Cdd; real ar; real Cdp; real Ae; real hm; real G11;

real Csd; real a; real G21; real rho; real Csp; real G41;

real dt; real Ac; real Bdc; real Bic; real Buc; real Bhec;

real Am; real Bdm; real Bim; real Bum; real Bhem; real Vc;

real Ri; real Vram; real Ic; real dtau;

vector[9] Q;

vector[8] R;

vector[9] Sigma;

vector[9] Xnom;

vector[9] Xt_1;

vector[8] Yt;

}

parameters {

real dI;

real dVram;

real du;

real dhe;

}

transformed parameters {

vector[9] Xt;

Xt[1] = Xt_1[1] + dt*(Cdd*ar/Xt_1[1] +

Xt_1[5]*(Vc+Ri*Xt_1[9])*Cdp/(Ae*hm)) + G11*20*dt*dI;

Xt[2] = Xt_1[2] + dt*(-Csd*a*ar/Xt_1[1] +

Xt_1[5]*(Vc+Ri*Xt_1[9])*Cdp*a/(Ae*hm) - Vram) +

G21*20*dt*dI - dt*dVram;

Xt[3] = Xt_1[3] + dt*(Csd*Ae*rho/Xt_1[1] +

Xt_1[5]*(Vc+Ri*Xt_1[9])*Csp*rho/hm) + G41*20*dt*dI;

Xt[4] = Xt_1[4] + Vram*dt + dt*dVram;

Xt[5] = Xt_1[5] + 0.001*pow(Xnom[5],2)*sqrt(dt)*du;

Xt[6] = Xt_1[6] - dt*(Ac*(Xt_1[6] - Xnom[6]) - Bdc*(Xt_1[1]-Xnom[1])

- Bic*(Xt_1[9]-Xnom[9]) - Buc*(Xt_1[5]-Xnom[5]) -

Bhec*(Xt_1[8]-Xnom[8])) + Bic*20*dt*dI;

Xt[7] = Xt_1[7] - dt*(Am*(Xt_1[7] - Xnom[7]) - Bdm*(Xt_1[1]-Xnom[1])

- Bim*(Xt_1[9]-Xnom[9]) - Bum*(Xt_1[5]-Xnom[5]) -

Bhem*(Xt_1[8]-Xnom[8])) + Bim*20*dt*dI;

Xt[8] = Xt_1[8] + 0.001*pow(Xnom[8],2)*sqrt(dt)*dhe;
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Xt[9] = Ic + (Ic - Xnom[9])*exp(-dt/dtau) + 20*dt*dI;

}

model {

vector[8] pred_y;

for(i in 1:7){

pred_y[i] = Xt[i+1];

}

pred_y[8] = Vc + Ri*Xt[9];

vector[9] pred_X;

pred_X[1] = Xt_1[1] + dt*(Cdd*ar/Xt_1[1] +

Xt_1[5]*(Vc+Ri*Xt_1[9])*Cdp/(Ae*hm));

pred_X[2] = Xt_1[2] + dt*(-Csd*a*ar/Xt_1[1] +

Xt_1[5]*(Vc+Ri*Xt_1[9])*Cdp*a/(Ae*hm) - Vram);

pred_X[3] = Xt_1[3] + dt*(Csd*Ae*rho/Xt_1[1] +

Xt_1[5]*(Vc+Ri*Xt_1[9])*Csp*rho/hm);

pred_X[4] = Xt_1[4] + Vram*dt;

pred_X[5] = Xt_1[5];

pred_X[6] = Xt_1[6] - dt*(Ac*(Xt_1[6] - Xnom[6]) -

Bdc*(Xt_1[1]-Xnom[1])

- Bic*(Xt_1[9]-Xnom[9]) - Buc*(Xt_1[5]-Xnom[5]) -

Bhec*(Xt_1[8]-Xnom[8]));

pred_X[7] = Xt_1[7] - dt*(Am*(Xt_1[7] - Xnom[7]) -

Bdm*(Xt_1[1]-Xnom[1])

- Bim*(Xt_1[9]-Xnom[9]) - Bum*(Xt_1[5]-Xnom[5]) -

Bhem*(Xt_1[8]-Xnom[8]));

pred_X[8] = Xt_1[8];

pred_X[9] = Ic + (Ic - Xnom[9])*exp(-dt/dtau);

target += multi_normal_lpdf(Yt | pred_y, diag_matrix(R));

target += multi_normal_lpdf(Xt | pred_X, diag_matrix(Sigma));

}

and the file for the initial distribution follows:

data {

vector[9] Q;

vector[9] Xnom;

}

parameters {

vector[9] v0;

}

transformed parameters {

vector[9] X0;

for(i in 1:9){

X0[i] = Xnom[i] + sqrt(Q[i])*v0[i];

}

}

model {
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target += multi_normal_lpdf(X0 | Xnom, diag_matrix(Q));

}

The data file is omitted for brevity due to its large size, but the constant values are found

in Tables 4.2, 4.3 and 4.4 and the value of Vram and Yt are changed at run-time by an

external measurement source. The compilation and running commands are the same as

in the previous example, apart from changes to the file names and input arguments.



Appendix D

Reversible and Symplectic

Numerical Integrators: Properties

This appendix proves a fundamental property of Leapfrog related to the Jacobian matrix

of the forward and backward integration. This property is crucial to design FL-HMC

and FL-NUTS, the two novel proposal distributions for FL-SMC methods presented in

Chapter 6. The equations describing Leapfrog are found in (2.32), but for this proof it

is more convenient to use the following alternative version of the same:

Xt = Xt−1 + ∆hVt−1 +
1

2
∆h2At (D.1a)

Vt = Vt−1 +
1

2
∆h(At−1 + At) (D.1b)

where Xt−1 and Vt−1 are the starting point and momentum, Xt and Vt are the final

point and momentum, ∆h is the integration step, and At−1 and At are the initial and

final accelerations terms. The property to prove is expressed by the following theorem.

Theorem D.1. Let f represent the Leapfrog integrator, such that f(Xt−1,Vt−1) =

(Xt,Vt), and J(Xt−1,Vt−1) = Jfor be the Jacobian matrix associated to this tran-

sition. Leapfrog is time reversible, which means that if f(Xt−1,Vt−1) = (Xt,Vt),

by starting from Xt with reversed final momentum −Vt we get back to Xt−1, i.e.

f(Xt,−Vt) = (Xt−1,Vt−1). Hence, let J(Xt,−Vt) = Jback be the Jacobian matrix

related to the backward integration. For Leapfrog, it is possible to show that the deter-

minants of the forward and backward Jacobian matrices have the same absolute value:

||J(Xt−1,Vt−1)|| = ||J(Xt,−Vt)|| (D.2)

Proof of Theorem D.1. To prove (D.2), we need to start from the expression for the

forward Jacobian matrix:

Jfor =

[
∂Xt
∂Xt−1

∂Xt
∂Vt−1

∂Vt
∂Xt−1

∂Vt
∂Vt−1

]
=

 I + ∆h2

2
∂At
∂Xt−1

∆hI

∆h
2

(
∂At
∂Xt−1

+ ∂At
∂Xt

+ ∆h2

2
∂At
∂Xt

∂At
∂Xt−1

)
I + ∆h2

2
∂At
∂Xt

 (D.3)
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The determinant of this matrix has been shown to be equal to 1 [98], meaning that

Leapfrog is also a symplectic numerical integrator. For Leapfrog, which is time reversible,

it is also possible to show that the backward Jacobian matrix can be computed by

transposing each block of the matrix Jfor:

Jback =


(

∂Xt
∂Xt−1

)T (
∂Xt
∂Vt−1

)T(
∂Vt
∂Xt−1

)T (
∂Vt
∂Vt−1

)T
 (D.4)

In other words, if A is an arbitrary block matrix and we let α be the operation:

α(A) = α

([
A1,1 A1,2

A2,1 A2,2

])
=

[(
A1,1

)T (
A1,2

)T(
A2,1

)T (
A2,2

)T
]

(D.5)

we can then say that:

Jback = α(Jfor) (D.6)

Now, we need to consider the generic scenario, where the integration f(Xt−1,Vt−1) =

(Xt,Vt) is the result of L Leapfrog steps, such that we have a sequence of position-

momentum pairs (Xt−1,Vt−1), (X1,V1), (X2,V2), ..., (XL,VL) = (Xt,Vt). In this

case, the forward Jacobian for the full forward integration is given by the following

matrix product:

Jfor = JforL−1 · J
for
L−2 · J

for
L−3 · · ·J

for
1 · Jfor0 (D.7)

while the backward Jacobian for the full backward integration is computed as in the

following matrix product:

Jback = Jback0 · Jback1 · Jback2 · · ·JbackL−2 · JbackL−1 (D.8)

where by (D.6) Jbacki+1 = α(Jfori ).

It is relatively straightforward to prove that for a block matrix A = B0 · B1 ·
B2 · · ·BL−2 ·BL−1, we have:

α(A) = α(B0 ·B1 ·B2 · · ·BL−2 ·BL−1)

= α(BL−1) · α(BL−2) · α(BL−3) · · ·α(B1) · α(B0) (D.9)

By applying (D.9) to (D.7), we obtain:

α(Jfor) = α(Jfor0 ) · α(Jfor1 ) · α(Jfor2 ) · · ·α(JforL−2) · α(JforL−1)

= Jback0 · Jback1 · Jback2 · · ·JbackL−2 · JbackL−1

= Jback (D.10)

which means (D.6) can be applied to the full integrator. In particular, (D.10) automat-

ically proves (D.2).
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[10] O. Ö. Bilgin and M. Demirekler, Multi Mode Projectile Tracking With Marginalized

Particle Filter, 2015 IEEE Radar Conference, 2015, pp. 224–229.

[11] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj

Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and

Noah D. Goodman, Pyro: Deep Universal Probabilistic Programming, J. Mach.

Learn. Res. 20 (2019), no. 1, 973–978.

[12] M. Bolic, P. M. Djuric, and Sangjin Hong, Resampling Algorithms and Architec-

tures for Distributed Particle Filters, IEEE Transactions on Signal Processing 53

(2005), no. 7, 2442–2450.

[13] Miodrag Bolic, Akshay Athalye, Sangjin Hong, and Petar Djuric, Study of Al-

gorithmic and Architectural Characteristics of Gaussian Particle Filters, Signal

Processing Systems 61 (2010), 205–218.

[14] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas

Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,

Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and
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[101] E. Özkan, F. Lindsten, C. Fritsche, and F. Gustafsson, Recursive Maximum Like-

lihood Identification of Jump Markov Nonlinear Systems, IEEE Transactions on

Signal Processing 63 (2015), no. 3, 754–765.


	Abbreviations
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Overview
	1.2 Motivations
	1.3 Contributions
	1.4 Publications, Patents and Technical Work
	1.5 Outline
	1.5.1 Chapter 2 - Technical Background
	1.5.2 Chapter 3 - Parallelising Particle Filters with Deterministic Runtime on Distributed Memory Systems
	1.5.3 Chapter 4 - An O(log2N) Fully-Balanced Particle Filter for Distributed Memory Architectures
	1.5.4 Chapter 5 - A Fast Parallel Particle Filter on Hybrid Memory Architectures
	1.5.5 Chapter 6 - Streaming-Stan and SMC-Stan: Two High Performance Computing Extension Packages for Stan
	1.5.6 Chapter 7 - Conclusions
	1.5.7 Appendix A - Distributed, Shared and Hybrid Memory Architectures
	1.5.8 Appendix B - Stan
	1.5.9 Appendix C - How to Install SMC methods in Stan
	1.5.10 Appendix D - Reversible and Symplectic Numerical Integrators: Properties

	1.6 Notation

	2 Technical Background
	2.1 Sequential Monte Carlo Methods
	2.1.1 Sequential Importance Sampling
	2.1.2 Sequential Importance Resampling
	2.1.3 Sequential Monte Carlo Samplers
	2.1.4 Fixed-Lag Sequential Monte Carlo

	2.2 Markov Chain Monte Carlo Methods
	2.2.1 Metropolis-Hastings
	2.2.2 Hamiltonian Monte Carlo
	2.2.3 No-U-Turn Sampler
	2.2.3.1 Example: Neal's Funnel



	3 Parallelising Particle Filters with Deterministic Runtime on Distributed Memory Systems
	3.1 Introduction
	3.2 Literature Review on Redistribute for DMAs
	3.3 SMC Methods on DMAs
	3.3.1 Embarrassingly Parallel
	3.3.2 Reduction
	3.3.3 Cumulative Sum
	3.3.4 O((log2N)3) Fully-Balanced Redistribute
	3.3.4.1 Bitonic Sort
	3.3.4.2 Pivot Calculation
	3.3.4.3 O((log2N)3) Fully-Balanced Redistribute


	3.4 Bitonic Sort Based Redistribute on MPI
	3.4.1 Pivot Broadcast
	3.4.2 Rotational Shifts
	3.4.3 Bitonic Sort Based Redistribute
	3.4.4 Algorithmic Implementation
	3.4.5 Numerical Results
	3.4.5.1 Redistribute
	3.4.5.2 Stochastic Volatility


	3.5 Nearly Sort Based Redistribute on MPI
	3.5.1 Alternative Single Core Sorting Algorithms
	3.5.2 Sequential Nearly Sort
	3.5.3 Parallel O((log2N)2) Nearly Sort
	3.5.4 Nearly Sort Based Redistribute
	3.5.5 Algorithmic Implementation
	3.5.6 Numerical Results
	3.5.6.1 Nearly Sort vs Bitonic Sort
	3.5.6.2 N-R vs B-R and C-R
	3.5.6.3 Stochastic Volatility


	3.6 Conclusions

	4 An O(log2N) Fully-Balanced Particle Filter for Distributed Memory Architectures
	4.1 Introduction
	4.2 Rotational Nearly Sort: An O(log2N) Nearly Sort
	4.2.1 Alternative Version of O((log2N)2) Nearly Sort
	4.2.2 One Cumulative Sum for All Pivots
	4.2.3 One Round of Rotational Shifts for All Particles
	4.2.4 Rotational Nearly Sort

	4.3 A Three Step O(log2N) Fully-Balanced Redistribute for DMAs
	4.3.1 Rotational Scatter
	4.3.2 Rotational Redistribute
	4.3.3 O(log2N) Fully-Balanced Redistribute
	4.3.4 Algorithmic Implementation
	4.3.5 Numerical Results
	4.3.6 O(log2N) Redistribute vs B-R and N-R
	4.3.7 Stochastic Volatility

	4.4 Rotational Nearly Sort and Split Redistribute
	4.4.1 Rotational Split
	4.4.2 Rotational Nearly Sort and Split
	4.4.3 Algorithmic Implementation
	4.4.4 Possible non-deterministic optimisations
	4.4.5 Numerical Results
	4.4.5.1 Redistribute
	4.4.5.2 Stochastic Volatility
	4.4.5.3 Vacuum Arc Remelting


	4.5 Conclusions

	5 A Fast Parallel Particle Filter on Hybrid Memory Architectures
	5.1 Introduction
	5.2 An O(log2N) OpenMP Particle Filter
	5.2.1 Embarrassingly Parallel
	5.2.2 Reduction
	5.2.3 Cumulative Sum
	5.2.4 A Novel O(log2N) Redistribute on Shared Memory Systems
	5.2.5 Numerical Results

	5.3 A Hybrid MPI+OpenMP O(log2N) Particle Filter
	5.3.1 Embarrassingly Parallel
	5.3.2 Reduction
	5.3.3 Cumulative Sum
	5.3.4 Rotational Nearly Sort and Split
	5.3.5 Numerical Results

	5.4 Conclusions

	6 Streaming-Stan and SMC-Stan: Two High Performance Computing Extensions for Stan
	6.1 Introduction
	6.2 SMC-Stan
	6.2.1 Proposal Distributions
	6.2.1.1 Random Walk
	6.2.1.2 HMC
	6.2.1.3 NUTS

	6.2.2 Numerical Results

	6.3 Streaming-Stan
	6.3.1 Proposal Distributions
	6.3.1.1 Fixed-Lag SMC
	6.3.1.2 Fixed-Lag HMC
	6.3.1.3 Fixed-Lag NUTS


	6.4 Numerical Results
	6.4.1 Flexibility
	6.4.1.1 Stochastic Volatility
	6.4.1.2 Flood Water Level
	6.4.1.3 Bearing-Only Tracking

	6.4.2 Curse of Dimensionality
	6.4.3 Long-Term Memory Models
	6.4.4 Run-Time

	6.5 Conclusions

	7 Conclusions
	A Distributed, Shared and Hybrid Memory Architectures
	A.1 Distributed Memory Architectures and MPI
	A.2 Shared Memory Architectures and OpenMP
	A.3 Hybrid Memory Architectures Using MPI and OpenMP

	B Stan
	B.1 How to Use CmdStan
	B.2 CmdStan: Back End Summary
	B.3 Syntax
	B.3.1 Example: Student-t Distribution
	B.3.2 Example: Neal's Funnel


	C How to Install SMC Methods in Stan
	C.1 How to Set up SMC-Stan
	C.1.1 Proposal Distributions
	C.1.1.1 Random Walk
	C.1.1.2 HMC
	C.1.1.3 NUTS


	C.2 How to Set up Streaming-Stan
	C.2.1 Real-Time Measurement
	C.2.2 Old State Declared as Data
	C.2.3 Initial Distribution
	C.2.4 Proposal Distributions
	C.2.4.1 Fixed-Lag SMC
	C.2.4.2 Fixed-Lag HMC
	C.2.4.3 Fixed-Lag NUTS

	C.2.5 Examples
	C.2.5.1 Stochastic Volatility
	C.2.5.2 Flood Water Level
	C.2.5.3 Bearing-Only Tracking
	C.2.5.4 Vacuum Arc Remelting



	D Reversible and Symplectic Numerical Integrators: Properties
	Bibliography

