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1. Introduction

We consider a game in which the players repeatedly play a strategic
(normal-form) game. Each action profile determines the payoff, the prob-
ability of absorption, and the absorbing payoff. Following absorption, all
future payoffs are equal to the absorption payoff. Such games are called
absorbing games.

Early studies of absorbing games [4, 3] focused on two-person zero-sum
absorbing games with finitely many actions, deterministic transitions, i.e.,
where the absorption probabilities are either 0 or 1, and where the payoff
of each action pair coincides with the absorbing payoff of that action pair.
Such a game is represented by the payoff matrix where the absorbing entries
are marked with a ∗. The classic example of an absorbing game, the Big
Match, introduced by Gillette [4], is represented by the matrix[

1 -1
-1∗ 1∗

]
.

An absorbing game (with probabilistic transitions) with finitely many
actions (or compact action sets) is represented by a matrix (or a strategic
game) whose entries (or the outcome of players’ actions) are triples (r, q, a)
of a payoff r, a probability 0 ≤ q ≤ 1, and a payoff a. Following the play
of an entry (r, q, a), the current payoff is r, with probability q all future
payoffs are a, and with probability 1 − q the players continue playing the
same absorbing game.

The game model with compact action sets assumes that the payoff r, the
absorption probability q, and the absorbing payoff a depend continuously
on the actions.

We are mainly interested in such games where the outcome of the game
is the long-run average payoff. By “long-run” we refer to the average payoff
(per stage) of either the infinitely repeated game or a finitely repeated game
with a long but unknown finite duration.

In the two-person zero-sum case where the sets of actions are finite,
Kohlberg [7] proved that (1) the limit of the values of the λ-discounted
game as λ goes to 0 exists, (2) the limit of the n-stage game as n goes to ∞
exists, (3) that both limits coincide, and (4) that this limit v is the value (of
the undiscounted game) in the following strong sense: for every ε > 0, each
player has an ε-optimal strategy, i.e., a strategy that guarantees him a payoff
of v up to an error of ε in all the n-stage games with n sufficiently large, in
all λ-discounted games with λ sufficiently small, and in the limiting-average
game.1

1In the limiting-average game the payoff to player 1 (respectively player 2) is the
expectation of the liminf (respectively limsup) of the average payoff in the first n stages
as n goes to infinity.
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These results of Kohlberg [7] were extended to the more general class of
two-person zero-sum stochastic games with finitely many states and actions
[2, 9] and to absorbing games with compact action sets [10].

The ε-optimal strategies constructed in [3, 7, 9, 10] depend in each stage
on a statistic of past history, and this statistic (e.g., the sum of the past
payoffs) takes value in an infinite set; hence, it requires an infinite memory.

The question that arises is how much dependence on past history is needed
for an ε-optimal strategy. This dependence is formalized using the following
concept.

A memory-based strategy in an absorbing game2 is a strategy where the
conditional probability of the action in a given round depends on the current
memory state and the clock (i.e, the stage number) and the memory state is
updated as a stochastic function of the current memory, the actions of the
players in the previous stage, and the clock.

The ε-optimal strategies in [3, Theorem 2] are memory-based, and those
in [3, Theorem 1], [7, Theorems 2.1 and 3.4], [9], and [10] are memory-based
and clock-independent; i.e., the action in a given round and the memory
update do not depend on the clock.

The value of the Big Match is zero. But no memory-based strategy of
Player 1 that has a finite set of memory states and that is either clock-
independent [1] or has a deterministic memory update function [5] can guar-
antee Player 1 strictly more than −1 in the Big Match. Recently it has been
shown that for every ε > 0 there is a memory-based strategy for Player
1 with two memory states that is ε-optimal in the Big Match [6]. Obvi-
ously, given the previously mentioned impossibility results, the [6] ε-optimal
strategy relies on stochastic and clock-dependent memory updating.

The question that arises is whether or not a finite memory suffices for an
ε-optimal strategy in any absorbing game.

The present paper proves that an absorbing game, with either finite or
compact action sets, has, for each ε > 0, ε-optimal strategies with finite
memory. In fact we show that there is an ε-optimal strategy that depends
on the clock and three states of memory.

The importance of absorbing games stems from the fact that advances
in the theory of absorbing games, which are a subclass of stochastic games,
serve as an important building block in the study of stochastic games as
well as other models of dynamic games, and from their intimate relation to
repeated games with symmetric incomplete information. In fact, there is a
natural translation of the value (and equilibria) and optimal (and equilibria)
strategies between the two. See, e.g., [8, 11, 12].

2The general concept of a memory-based strategy in the more general model of a
stochastic game is given in the next section.
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2. The model and related results

Absorbing games are an important subclass of stochastic games, and their
study served as an important step in the analysis of stochastic games.

2.1. Stochastic games. A finite two-person zero-sum stochastic game Γ,
henceforth, a finite stochastic game, is defined by a tuple (Z, I, J, r, p, z1),
where Z is a finite state space, I and J are the finite actions sets of Players 1
and 2 respectively, r : Z×I×J → R is a payoff function, p : Z×I×J → ∆(Z)
is a transition function, and z1 is the initial state.

A compact stochastic game is defined analogously, like the definition of
a stochastic game, but the actions sets I and J are compact topological
spaces, and the payoff function and the transitions depends continuously on
the actions.

A state z ∈ Z is called an absorbing state if p(z, ·, ·) = δz, where δz is the
Dirac measure on z. An absorbing game is a stochastic game with only one
non-absorbing state, which is its initial state.

A play of the stochastic game is an infinite sequence z1, . . . , zt, it, jt, . . .,
where (zt, it, jt) ∈ Z × I × J . A play up to stage t is the finite sequence
ht = (z1, i1, j1, . . . , zt). The payoff rt in stage t is r(zt, it, jt) and the average
of the payoffs in the first n stages, 1

n

∑n
t=1 rt, is denoted by r̄n.

The initial state of the multi-stage game is z1 ∈ Z. In the t-th stage
players simultaneously choose actions it ∈ I and jt ∈ J .

A behavioral strategy of Player 1, respectively Player 2, is a function
σ, respectively τ , from the disjoint union ∪̇∞t=1(Z × I × J)t−1 × Z to ∆(I),
respectively to ∆(J). The restriction of σ, respectively τ , to (Z×I×J)t−1×Z
is denoted by σt, respectively τt. In what follows, σ denotes a strategy of
Player 1 and τ denotes a strategy of Player 2.

A strategy pair (σ, τ) defines a probability distribution Pσ,τ on the space
of plays as follows. The conditional probability of (it = i, jt = j) given a
play ht up to stage t is the product of σ(ht)[i] and τ(ht)[j]. The conditional
distribution of zt+1 given ht, it, jt is p(zt, it, jt). The expectation w.r.t. Pσ,τ
is denoted by Eσ,τ

A stochastic game has a value v = (v(z))z∈Z if, for every ε > 0, there are
strategies σε and τε such that for some positive integer nε

(1) ε+ Eσε,τ r̄n ≥ v(z1) ≥ Eσ,τε r̄n − ε ∀σ, τ, n ≥ nε,

and

(2) ε+ Eσε,τ lim inf
n→∞

r̄n ≥ v(z1) ≥ Eσ,τε lim sup
n→∞

r̄n − ε ∀σ, τ.

It is known that all finite absorbing games [7] and, more generally, all
finite stochastic games [9], and all compact absorbing games [10], have a
value.
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A strategy σε (respectively τε) that satisfies the left-hand (respectively,
right-hand) inequality (1) is called uniform ε-optimal. A strategy σε (respec-
tively τε) that satisfies the left-hand (respectively, right-hand) inequality (2)
is called limiting-average ε-optimal.

If σε and τε are uniform ε-optimal strategies, then for every ε′ > ε there
is λε′ > 0 such that for every τ and 0 < λ < λε′ ,

(3) ε′+Eσε,τ

∞∑
t=1

λ(1−λ)t−1rt ≥ v(z1) ≥ Eσ,τε
∞∑
t=1

λ(1−λ)t−1rt−ε′ ∀σ, τ.

A strategy σε that satisfies both left-hand inequalities (1) and (2) is called
ε-optimal.

The definition of an absorbing game in this section generalizes the one
given in the introduction. However, the analysis of the two-player zero-sum
case is essentially the same in both models of an absorbing game. The reason
is that once an absorbing state is reached, the players will play the optimal
strategies of the stage game, resulting in a stage payoff whose expectation
equals the value of the stage game. Therefore, one can replace each entry of
the nonabsorbing state by the absorbtion probability, i.e., the probability of
departure from the nonabsorbing state, and the absorbing payoff being the
conditional expected value of the next absorbing state.

2.2. Memory-based strategies. A memory-based strategy σ generates a
random sequence of memory states m1, . . . ,mt,mt+1, . . ., where the memory
is updated stochastically in each stage, and selects its action it according
to a distribution that depends on just the current time t, its current mem-
ory mt, and the current state zt. Explicitly, the conditional distribution
of it, given hmt := (z1,m1, i1, j1, . . . , zt,mt), is a function σα of (t, zt,mt)
and the conditional distribution of mt+1, given (hmt , it, jt, zt+1), is a func-
tion σm of (t, zt,mt, it, jt) (i.e., it depends on just the time t and the tuple
(zt,mt, it, jt)).

A memory-based strategy σ is clock-independent if the functions σα and
σm are independent of t.

A k-memory strategy is a memory-based strategy in which the memory
states mt take values in a set with (at most) k elements. Note that a strategy
is a Markov strategy if and only if it is a one-memory strategy, and a strategy
is a stationary strategy if and only if it is a one-memory clock-independent
strategy. A strategy uses finite memory if it is a k-memory strategy where
k is finite. A strategy that uses finite memory is called a finite-memory
strategy. The set of all k-memory strategies is denoted by Mk.

The long-standing natural open problem that motivates the present paper
is whether for every stochastic game there are ε-optimal strategies that use
finite memory. This has recently been settled affirmatively for the Big Match
[6], and the present paper settles this problem affirmatively for all absorbing
games.
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3. The result

The main result of the present paper is that, in every absorbing game,
there is a finite-memory strategy that is ε-optimal and moreover that is a
three-memory strategy.

Theorem 1. Every absorbing game with value v has, for every ε > 0, a
3-memory strategy σ of Player 1 and nε such that for every strategy τ of
Player 2,

(4) Eσ,τ lim inf
n→∞

r̄n ≥ v − ε,

and

(5) Eσ,τ r̄n ≥ v − ε ∀n ≥ nε.

Similarly for Player 2.

4. A few preliminaries to the proof

It is sufficient to prove the result for a compact absorbing game whose
initial state z1 is the non-absorbing state and v(z1) = 0. Fix a compact
absorbing game whose initial state z1 is the non-absorbing state and v(z1) =
0.

The set of stages t = 1, 2, . . . of the infinite game is partitioned into
consecutive epochs, indexed by i = 1, 2, . . ., where the number of stages
of the i-th epoch is si. The number of stages in the first n epochs equals∑n

i=1 si and is denoted by Sn.

The definition of the duration of the epochs is not identical to the def-
inition in [6], but the proofs of the properties of the epochs’ duration are
very similar to those in [6]. In this section, we state these properties, and
in order to make the present paper independent we include here also the
slightly different proofs.

The epochs’ duration. We now define the sequence (si) of durations
of epochs. The sequence of durations depends on a fixed sufficiently small
0 < ε < 1/2, and a sufficiently small λ > 0. For notational convenience

we set p = e−λ
′
, where λ′ = λ/(1 − λ). The condition that λ is sufficiently

small will guarantee, in particular, that p is sufficiently large so that3 1/2 <
1− ε < p < 1 and hence, 1/p < 2. As 1 + ε > 1,

∑∞
i=1

2
i1+ε

<∞. Let iε be
a sufficiently large positive integer so that

(6)
∞∑

i=iε+1

1

i(1+ε)
< ε.

3In [6] the parameter p was an explicit function of ε, p = 1 − ε.
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The duration of the i-th epoch, si, is the largest integer such that p−si ≤
i1+ε if i > iε, and si = 1 if i ≤ iε. Recall that the sum of the durations of
the first n epochs is denoted by Sn =

∑n
i=1 si.

Lemma 1. The sequence (si) satisfies

(7) si+1 ≥ si ≥ 1 ∀i and sn/Sn →n→∞ 0.

Proof. In short, the definition of si implies that the sequence si is non-
decreasing and that sn = Θ(lnn) and hence Sn = Θ(n lnn), and therefore
sn/Sn →n→∞ 0.

For completeness, we spell out the details. Recall that p > 1 − ε > 1/2.
Note that 1 < p−1 ≤ i1+ε for every i > 1; hence, si ≥ 1 for every i > iε,
and recall that si = 1 for every 1 ≤ i ≤ iε. For i > iε, p

−si ≤ i1+ε by the
definition of si, and i1+ε < (i + 1)1+ε. Hence, by the definition of si+1, we
have si+1 ≥ si. We conclude that 1 ≤ si ≤ si+1 for every i.

For i > iε, the definition of si implies that p−si ≤ i1+ε ≤ p−si−1; hence,
1+ε
− ln p ln i ≥ si ≥ −1+ 1+ε

− ln p ln i. Therefore, sn = Θ(lnn) and Sn =
∑n

i=1 si =

Θ(n lnn) as n→∞, and therefore sn/Sn →n→∞ 0. �

Lemma 2. There exists a constant K such that for all positive integers i
and n with i ≤ n,

(8)
si
Sn
≤ sn
Sn
≤ Kn−1 ≤ Kn−ε2iε2−1.

Proof. In short, this lemma follows from the following properties: si is non-

decreasing, sn = Θ(lnn), Sn = Θ(n lnn), and n−1 = n−ε
2
nε

2−1 ≤ n−ε2iε2−1.
For completeness, we spell out an explicit derivation of these inequali-

ties. For i > iε, si ≥ −1 + 1+ε
− ln p ln i; hence, for n > 2(iε + 1), Sn ≥∑

n/2−1≤i≤n si ≥ −n+ n
2

1+ε
−2 ln p lnn. For n > iε, sn ≤ 1+ε

− ln p lnn; hence, sn ≤
1+ε
− ln p lnn ≤ K n−1Sn for a sufficiently large K. Hence, for n > 2(iε + 1),

sn/Sn < Kn−1 for a sufficiently large K, and therefore there is a positive
constant K such that for every n we have sn/Sn < Kn−1. �

The payoff to Player 1 in the j-th round of epoch i is denoted by rij .

Note that the j-th round of epoch i is the (Si−1 + j)-th stage of the game.

Therefore,
∑Sn

t=1 rt =
∑n

i=1

∑si
j=1 r

i
j . Hence, for n sufficiently large and

Sn−1 < T ≤ Sn, 1
T

∑T
t=1 rt ≥

1
Sn

∑n
i=1

∑si
j=1 r

i
j − ε.

Therefore, in order to prove the theorem it suffices to exhibit a strategy
σ ∈ M3 of Player 1 and nε such that for every pure strategy τ of Player 2,
we have

(9) Eσ,τ lim inf
n→∞

1

Sn

n∑
i=1

si∑
j=1

rij ≥ −5ε,
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and

(10) Eσ,τ
1

Sn

n∑
i=1

si∑
j=1

rij ≥ −11ε ∀n ≥ nε.

5. The proof

We start with recalling a few results from the theory of finite two-person
zero-sum stochastic games and the theory of compact absorbing games.

The payoff in stage t, t = 1, 2, . . ., is denoted by rt. The λ-discounted
game, 0 < λ ≤ 1, is the game where the payoff is

∑∞
t=1 λ(1 − λ)t−1rt. It

is known that in a two-player zero-sum λ-discounted compact stochastic
games, and in particular, in an absorbing game with compact action sets,
each player has a stationary optimal strategy. The value of the λ-discounted
game is a function of the initial state and is denoted by vλ.

If σλ is a stationary optimal strategy in the λ discounted game, then for
every strategy τ of player 2, Eσλ,τ (λrt+(1−λ)vλ(zt+1) | Ht) ≥ vλ(zt), where
Ht is the history of play up to stage t (including the state zt). Hence,

(11) Eσλ,τ (λ′(rt−vλ(zt))+vλ(zt+1)−vλ(zt) | Ht) ≥ 0, where λ′ =
λ

(1− λ)
.

It is known that in a finite two-person zero-sum stochastic game and in a
compact absorbing game, vλ converges to a limit as λ goes to 0. We denote
this limit by v. Note that for every absorbing state z, vλ(z) is independent
of λ and (hence) is equal to v(z).

We continue with the proof that a compact absorbing game has, for every
ε > 0, a 3-memory strategy that is ε-optimal.

Recall that we fixed a compact absorbing game with v(z1) = 0. Fix
0 < ε < 1/2. W.l.o.g. we assume that −1 < −1 + ε ≤ r ≤ 1− ε < 1. Hence,
−1 < −1 + ε ≤ v(z) ≤ 1− ε < 1 and −1 < −1 + ε ≤ vλ(z) ≤ 1− ε < 1 for
every state z and discount rate 0 < λ ≤ 1.

The strategy σ consists of patching together strategies σsi , which will be
defined later, where σsi is a strategy in the i-th epoch.

The strategy uses two mixed actions, C and A, which we term the careful
mixed action and the adventurous mixed action respectively.

The careful action C is a limit point of the mixed action of a stationary
optimal strategy in the λ-discounted game as λ goes to 0. The adventurous
mixed action A is the mixed action of a stationary optimal strategy in the
λ-discounted game, where λ is sufficiently small, and A is sufficiently close
to the careful mixed action C.

The careful definition of the epoch strategies and the duration of the
epochs will guarantee that the sequence of random variables vi, where

vi := v(zSi+1),
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obeys the following two properties. For every pure strategy τ of Player 2,

(12) Eσ,τ lim inf
1

Sn

n∑
i=1

sivi−1 ≥ v0 − ε,

and

(13) Eσ,τ vi ≥ v0 − ε ∀i.

Remark. This remark’s role is to explain the necessity of conditions (12)
and (13). Condition (12) is essentially necessary for the strategy σ to obey
(9): One can show that if σ is a strategy of Player 1 for which there is a pure
strategy τ of Player 2 such that the left hand side of inequality (12) is < −5ε,
then there is a pure strategy τ∗ of Player 2 for which inequality (9) does
not hold.4 Condition (13) is essentially necessary for the strategy σ to obey
(10): One can show that if σ is a strategy of Player 1 for which there is i and
a pure strategy τ of Player 2 such that the left hand side of inequality (13)
is < −11ε, then there is a pure strategy τ∗ of Player 2 for which inequality
(10) does not hold for all sufficiently large n. This concludes the remark.

In addition, the strategy σ will satisfy the following two properties. Set
yt = rt− v(zt) + ε, yij = ySi−1+j

, and βi = −1
si

∑si
j=1 y

i
j . Note that −2 < βi <

2. For every pure strategy τ of Player 2,

(14) lim
n→∞

1

Sn

n∑
i=1

si1{βi≥3ε} = 0 Pσ,τ -a.e.

and for a sufficiently large nε, for every n ≥ nε and every pure strategy τ of
Player 2,

(15) Eσ,τ
1

Sn

n∑
i=1

si1{βi≥3ε} ≤ ε.

Lemma 3. Inequality (9) holds whenever inequalities (12) and (14) hold,
and inequality (10) holds whenever inequalities (13) and (15) hold.

Proof. Using the definition of βi, the equality −siβi =
∑si

j=1(r
i
j − v(zij) + ε),

and the inequality
∑si

j=1(v(zij)− v(zi1)) ≤ s11{zisi 6=zi1}, we have

si∑
j=1

rij =

si∑
j=1

(rij − vi−1 + vi−1) ≥ sivi−1 − siβi − siε− si1{zisi 6=zi1}

= sivi−1 − siβi1{βi≥3ε} − siβi1{βi<3ε} − siε− si1{zisi 6=zi1}
≥ sivi−1 − 2si1{βi≥3ε} − 3εsi − εsi − si1{zisi 6=zi1}.

4And even the weaker inequality, where the lim inf is replaced in (9) by lim sup, does
not hold.
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Hence, by using the monotonicity of the sequence si, which implies sn ≥
si ∀i ≤ n, and the inequality

∑
i 1{zisi 6=z

i
1}
≤ 1, we deduce that

n∑
i=1

si∑
j=1

rij ≥
n∑
i=1

sivi−1 − 2
n∑
i=1

si1{βi≥3ε} − 4εSn − sn.

Therefore, if (12) and (14) hold, then inequality (9) holds, and if (13) and
(15) hold, then, for nε sufficiently large so that sn/Sn < ε, inequality (10)
holds. �

The epoch strategy σs. We now define the epoch strategy σs. We
illustrate the update function in Figure 1 and next describe it formally. If
s = 1 then σs = σ1 plays the careful mixed action C. Recall that the careful
mixed action C is a limit point, as λ→ 0+, of Aλ, where Aλ is a stationary
optimal strategy in the λ-discounted game. We proceed with the definition
of the strategy σs for s > 1.

mt = Ĉ

Pr[it = A] = 0
Pr[it = C] = 1

mt = Â

Pr[it = A] = 0
Pr[it = C] = 1

mt = Â∗

Pr[it = A] = 1
Pr[it = C] = 0

mt+1 = Ĉ

Pr[it+1 = A] = 0
Pr[it+1 = C] = 1

mt+1 = Â

Pr[it+1 = A] = 0
Pr[it+1 = C] = 1

mt+1 = Â∗

Pr[it+1 = A] = 1
Pr[it+1 = C] = 0

(∗, xt)

ct := 1−p (1+x
t )

1−ct−at
at := p(1+xt) 1−qt+1

1−
∑
k≤t qk

(∗, xt)
(∗, xt)

Figure 1. The memory update function for σs. The initial
memory m1 is Â∗ with pr. ε1p

s and otherwise Â

Let 0 < λ < 1 be sufficiently small so that Aλ is sufficiently close to C,

λ′ := λ/(1− λ) < ε/2,

vλ is within ε/2 of v, i.e.,

(16) |vλ(z1)− v(z1)| < ε/2,
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and, by setting A := Aλ, EA,br(z, a, b) :=
∫
r(z, a, b)A(a) is within ε of

EC,br(z, a, b) for any state z and action b of Player 2, i.e.,

(17) |EA,b r(z, a, b)− EC,b r(z, a, b)| < ε ∀z, b.

Recall that p = e−λ
′
, and let s > 1 be an integer.

The three states of memory of the strategy σs are Ĉ (for continuing

throughout with the careful mixed action C) and Â (for possible future play

of the adventurous mixed action A) and Â∗ (for playing the adventurous
mixed action A).

The strategy plays the careful mixed action C when the memory state

is either Â or Ĉ, and it plays the adventurous mixed action A when the

memory state is Â∗.

Fix 0 < ε1 ≤ 1−p. The initial state of memory, m1, is Â∗ with probability

q1 = ε1p
s and Â with probability 1− q1.

If the current memory state is either Â∗ or Ĉ, then the next memory state

is Ĉ.

We will define for each round number 1 ≤ j < s an auxiliary random
variable xj with xj ≥ −1. The random variable xj , which will be defined
later as a function of the state and action of Player 2 in round j, is used by
Player 1 in the definition of the stochastic memory updating. The distribu-
tion of the next memory state mj+1 as a function of the current memory
state mj and xj is defined as follows.

The conditional probability that the next memory state mj+1 is Â∗, given

xj and that the current memory state mj is Â, is

p(1+xj)
qj+1

1−
∑

k≤j qk
,

where qk := ε1p
s−(k−1). Note that the condition ε1 ≤ 1− p guarantees that

1 −
∑

k≤j qk > qj+1 > 0 for every 1 ≤ j ≤ s, and the condition xj ≥ −1

guarantees that p(1+xj) ≤ 1. Hence the above displayed formula is indeed a
probability.

The conditional probability that mj+1 = Â, given xj and that the memory

state is mj = Â, is

p(1+xj)

(
1− qj+1

1−
∑

k≤j qk

)
= p(1+xj)

1−
∑

k≤j+1 qk

1−
∑

k≤j qk
.

(Hence, the conditional probability that mj+1 = Ĉ, given xj and that the

current memory state mj is Â, is 1− p(1+xj).)
This completes the definition of the strategy σs.

Recall that for every 1 ≤ j < s, mj+1 = Ĉ whenever mj = Â∗ or mj = Ĉ;

hence, there is at most one value of 1 ≤ j ≤ s such that mj = Â∗.
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Let τ be a strategy of Player 2. Let pj(x1, . . . , xj−1), or pj for short, be

the Pσ,τ conditional probability that mj = Â∗, given x1, . . . , xj−1.

Lemma 4. pj = ε1p
s+

∑
k<j xk ; hence, Eσs,τ1{mj=Â∗} = Eσs,τ (ε1p

s+
∑
k<j xk).

Proof. p1 = Pr(m1 = Â∗) = q1 = ε1p
s, which proves the statement of the

lemma for j = 1. For j > 1, the event mj = Â∗ corresponds to a sequence

of j − 1 memory states Â followed by the memory state Â∗. Hence, by the
definition of the memory transitions,

pj = (1− q1)

 ∏
1≤t<j−1

p(1+xt)
1−

∑
i≤t+1 qi

1−
∑

i≤t qi

 p(1+xj−1)
qj

1−
∑

t<j qt

= qj
∏
k<j

p(1+xk) = ε1p
s+

∑
k<j xk .

�

Consider the auxiliary game with s+1 stages, where the transitions of
states and the stage payoffs follow the rules of the absorbing game and the
players are active only in the first s stages j, j = 1, . . . , s.

Recall that z1 is the non-absorbing state. Define a function ω on the state
space by

ω(z) = v(z)− 2ε1{z=z1}.

We continue with the explicit definition of xj :

xj := EA,bjr(zj , a, bj)− v(zj) + ε.

The next lemma provides an inequality on the expectation of ω(zs+1) −
ω(z1), w.r.t. the probability Pσs,τ that is defined by the strategy σs of
Player 1 and a (pure) strategy τ of Player 2.

Lemma 5. For every strategy τ of Player 2,

(18) Eσs,τω(zs+1)− ω(z1) ≥ Eσs,τε1p
s+

∑s
j=1 xj − ε1ps.

Proof. Let Hj be the σ-algebra of events defined by plays up to round j. If

either mj = Ĉ, or mj = Â, then σ plays the careful mixed action; hence,
Eσs,τ (ω(zj+1)− ω(zj) | Hj ,mj) ≥ 0. Hence,

Eσs,τ (ω(zj+1)− ω(zj) | Hj ,mj) ≥ 1{mj=Â∗}Eσs,τ (ω(zj+1)− ω(zj) | Hj ,mj).

If zj is an absorbing state then zj+1 = zj and xj ≥ 0. Hence, on zj being

an absorbing state (and mj = Â∗), ω(zj+1) = ω(zj), and Eσs,τ (ω(zj+1) −
ω(zj) | Hj ,mj) ≥ Eσs,τ (pxj − 1 | Hj ,mj).
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On zj being the non-absorbing state and mj = Â∗,

Eσs,τ (ω(zj+1)− ω(zj) | Hj ,mj)

≥ Eσs,τ (vλ(zj+1)− vλ(zj) | Hj ,mj)

= Eσs,τ (λ′(rj − vλ(zj)) + vλ(zj+1)− vλ(zj) | Hj ,mj)

−Eσs,τ (λ′(rj − vλ(zj)) | Hj ,mj)

≥ −Eσs,τ (λ′(rj − v(zj) + ε+ v(zj)− vλ(zj)− ε) | Hj ,mj)

≥ −Eσs,τ (λ′(xj − ε/2) | Hj ,mj)

≥ Eσs,τ (e−λ
′xt − 1 | Hj ,mj) = Eσs,τ (pxt − 1 | Hj ,mj).(19)

The first inequality follows from the inequality ω(zj+1)−ω(zj) ≥ vλ(zj+1)−
vλ(zj), which follows from the definition of ω along inequality (16) and the
equality v(z) = vλ(z) which holds whenever z is an absorbing state. The
second inequality follows from the definition of the adventurous mixed ac-
tion A along (11). The third inequality follows from the definition of xj and
the inequality v(zj) − vλ(zj) ≤ ε/2. The last inequality follows from the

inequalities λ′ < ε/2 and e−λ
′xt − 1 ≤ −λ′xt + (λ′)2 ≤ −λ′xt + λ′ε/2.

Recall that xj is a function of zj and bj . Hence, the conditional dis-
tribution of xj , given Hj and mj , is independent of mj , and recall that

Eσs,τ (1{mj=Â∗} | Hj) = ε1p
s+

∑
k<j xk . Therefore,

Eσs,τ (1{mj=Â∗}Eσs,τ (pxj − 1 | Hj ,mj))

= Eσs,τ (Eσs,τ (1{mj=Â∗} | Hj)Eσs,τ (pxj − 1 | Hj))

= Eσs,τ (ε1p
s+

∑
k<j xkEσs,τ (pxj − 1 | Hj))

= Eσs,τ (Eσs,τ (ε1p
s+

∑
k<j xk(pxj − 1) | Hj))

= Eσs,τ (ε1p
s+

∑
k<j xk(pxj − 1)).

In the second to the last equality we used the fact that ε1p
s+

∑
k<j xk (is

a function of hj and thus) is measurable with respect to Hj , and in the
last equality we used the fact that the expectation is the expectation of the
conditional expectation.

Therefore,

Eσs,τ (ω(zj+1)− ω(zj)) ≥ Eσs,τ (ε1p
s+

∑
k<j xk(pxj − 1))

= ε1Eσs,τ (ps+
∑
k≤j xk)− ε1Eσs,τ (ps+

∑
k<j xk).

Summing the inequalities over j = 1, . . . , s, we have

Eσs,τω(zs+1)− ω(z1) ≥ Eσs,τε1p
s+

∑
k≤s xk − ε1ps.

�

Define a function v on plays of the auxiliary (s+1)-stage game by v =
ω(zs+1)− ω(z1).
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Lemma 6. Let α(x) = −
∑s

j=1 xj/s. Then

Eσs,τv ≥ ε1Eσs,τp
(1−α(x))s − ε1ps(20)

≥ ε1p
(1−θ)sEσs,τ1{α(x)≥θ} − ε1ps ∀θ > 0.(21)

Proof. Inequality (20) follows directly from Lemma 5.

The function α 7→ p(1−α)s is nonnegative and monotonic increasing in α,
and p(1−θ)s ≥ p(1−θ)s1{α≥θ}. Therefore, equality (20) implies inequality (21),
which completes the proof of the lemma. �

The strategy σ. We proceed with the definition of the 3-memory strat-
egy σ of Player 1. In short, the strategy σ follows the strategy σsi in the i-th
epoch. In order to see that σ is a 3-memory strategy, we define explicitly its
memory states, its action function ασ, and its memory updating function

βσ. The three states of memory of σ are Ĉ, Â, and Â∗. The action function
of strategy σ in stage t = Si−1 + j, 1 ≤ j ≤ si, namely, ασ(t,m), coincides
with the action function of σi in round j, i.e., ασ(t,m) = ασsi (j,m). The
memory updating function of the strategy σ in stage t = Si−1+j, 1 ≤ j < si,
namely, βσ(t,m, a, b), coincides with the memory updating function of the
strategy σi in round j, namely, βσ(t,m, a, b) = βσsi (j,m, a, b). The memory
updating function of the strategy σ in stage t = Si−1 + si = Si, namely,
βσ(t,m, a, b), is such that the distribution of the memory state in stage t+1
(is independent of m, a, b and) coincides with the distribution of the initial
state in round 1 of the strategy σsi+1 (of the (i+ 1)-th epoch).

The strategy σ obeys properties (12), (13), (14), and (15). The
next lemma introduces an auxiliary sequence of random variables, whose
properties are used in the following lemma that shows that the strategy σ
obeys properties (12), (13), (14), and (15). Set αi = 0 if si = 1 or if the i-th
epoch starts with an absorbing state, and αi = −

∑si
j=1 x

i
j . (∗ij refers to the

∗-th entry in the j-th round of epoch i).

Let vi := ω(zSi+1). In other words, vi = ω(zi+1
1 ), where zij is the state in

the j-th round of the i-th epoch.

Lemma 7. The sequence of random variables (Yi)i≥1 that is defined by

Yi = vi −
∞∑

k>max(i,iε)

2

k(1+ε)

obeys Yi − vi →i→∞ 0, Yi ≤ vi ≤ Yi + ε, −1 < Yi < 1, and for every pure
strategy τ of Player 2,

(22) Eσ,τ (Yi − Yi−1 | Hi) ≥ ε1Eσ,τ (iε
2−11{αi≥ε} | Hi),

where Hi is the history of play up to the start of the i-th epoch.
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Proof. By the definition of vi and (6), |Yi| < 1, and, as Yi−Yi−1 = vi− vi−1
for i < iε and Yi − Yi−1 = vi − vi−1 + 1

i1+ε
for i ≥ iε, Yi − vi →i→∞ 0 and

Yi ≤ vi ≤ Yi + ε. It remains to prove inequality (22).

Inequality (21) along with the definition of αi implies that for i ≥ iε,

Eσ,τ (vi − vi−1 | Hi) ≥ ε1Eσ,τp
(1−ε)si1{αi≥ε} − ε1p

si

≥ ε1i
ε2−1Eσ,τ1{αi≥ε} −

ε1/p

i1+ε
,

≥ ε1i
ε2−1Eσ,τ1{αi≥ε} −

1

i1+ε
,(23)

Therefore, (22) holds for i ≥ iε. For 1 ≤ i < iε, Eσ,τ (vi − vi−1 | Hi) ≥ 0
(because si = 1 for such i and thus σ plays C in such epochs) and αi = 0
(by definition), and (22) holds for i < iε. We conclude that (22) holds for
every i. �

An implication of the lemma is that (Yi)i>iε is a bounded submartingale
and therefore converges a.e. (namely, with Pσ,τ probability 1) to a limit Y∞.
As vi − Yi →i→∞ 0, vi converges to Y∞ as i goes to infinity.

Lemma 8. The strategy σ obeys properties (12) and (13).

Proof. Let τ be a pure strategy of Player 2. As Yi−1 is a function of the play
up to the start of the i-th epoch, inequality (22) shows that the sequence of
random variables (Yi)i≥0 is a submartingale (with respect to the probability
distribution Pσ,τ on plays). In addition, Y0 ≥ v0− ε and vi ≥ Yi. Therefore,
Eσ,τvi ≥ Eσ,τYi ≥ Eσ,τY0 ≥ v0 − ε, which proves (13).

As Yi is a bounded submartingale, it converges a.e. to a limit Y∞ and
Eσ,τY∞ ≥ Y0. As Yi − vi →i→∞ 0, we have vi →i→∞ Y∞.

As vi →i→∞ Y∞, si
Sn
→n→∞ 0 for each fixed i, and Sn =

∑n
i=1 si, we have

(24)
1

Sn

n∑
i=1

sivi−1 →n→∞ Y∞ Pσ,τ -a.e.

Hence, Eσ,τ limn→∞
1
Sn

∑n
i=1 sivi−1 = Eσ,τY∞ ≥ Y0 ≥ v0 − ε, which proves

(12). �

Lemma 9. The strategy σ obeys properties (14) and (15).

Proof. Note that (as −1 < Yi < 1) Yi − Yj < 2. Taking the expectations in

inequality (22), we deduce that Eσ,τ (Yi − Yi−1) ≥ Eσ,τ i
ε2−11{αi≥ε}. Sum-

ming these inequalities over all i such that 1 ≤ i ≤ n, we deduce that

(25) 2 > Eσ,τ (Yn − Y0) ≥ Eσ,τ
n∑
i=1

iε
2−11{αi≥ε}.

By the monotone convergence theorem, inequality (25) implies that 2 ≥
Eσ,τ

∑∞
i=1 i

ε2−11{αi≥ε}. Hence,
∑∞

i=1 i
ε2−11{αi≥ε} is finite a.e. Hence, using
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(8), for every pure strategy τ of Player 2,

(26) 0 ≤ 1

Sn

n∑
i=1

si1{αi≥ε} ≤ K n−ε
2

n∑
i=1

iε
2−11{αi≥ε} →n→∞ 0 Pσ,τ -a.e.,

Next we prove that

(27) 0 ≤ 1

Sn

n∑
i=1

si1{βi≥αi+2ε} →n→∞ 0 Pσ,τ -a.e.

Set γi = 1
si

∑si
j=1(Eσ,τ (rij | Hij) − v(zij) + ε). As the strategy σ plays ei-

ther the mixed action C or the mixed action A, inequality (17) implies
that γi ≤ αi + ε, and hence 1{βi≥αi+2ε} ≤ 1{βi≥γi+ε}. Note that βi − γi =
1
si

∑si
j=1(r

i
j−Eσ,τ (rij | Hij)). The sequences (rij−Eσ,τ (rij | Hij)), j = 1, . . . , si,

and 1
si

∑si
j=1(r

i
j − Eσ,τ (rij | Hij)), i ≥ 1, are sequences of bounded martin-

gale differences. Therefore, by the weak law of large numbers (or the large
deviations inequality) for bounded differences of a martingale, Pσ,τ (βi ≥
γi + ε) →n→∞ 0 and 1

n

∑n
i=1 1{βi≥γi+ε} →n→∞ 0. Therefore, using the

monotonicity of the sequence si and the equality nsn
Sn

= Θ(1), we have

1

Sn

n∑
i=1

si1{βi≥αi+2ε} ≤
1

Sn

n∑
i=1

si1{βi≥γi+ε} ≤
nsn
Sn

1

n

n∑
i=1

1{βi≥γi+ε} →n→∞ 0 Pσ,τ -a.e.,

which proves (27). As 1{βi≥3ε} ≤ 1{αi≥ε} + 1{βi≥αi+2ε}, we deduce, using
(26) and (27), that

(28) 0 ≤ 1

Sn

n∑
i=1

si1{βi≥3ε} →n→∞ 0,

which proves (14).

We proceed to prove (15). Let nε be a sufficiently large integer so that

K n−ε
2

ε < ε/4 (and an additional condition will be imposed later). Hence,
si
Sn
≤ iε2−1ε/4 for every n ≥ nε and iε < i ≤ n. Then, using inequality (25),

we have

(29) Eσ,τ
1

Sn

n∑
i=1

si1{αi≥ε} ≤ Eσ,τ
n∑
i=1

iε
2−11{αi≥ε}ε/4 < ε/2 ∀n ≥ nε.

Next we prove that

(30) Eσ,τ
1

Sn

n∑
i=1

si1{βi≥αi+2ε} ≤ ε/2 ∀n ≥ nε.

Recall that si →i→∞ ∞. Hence, by the weak law of large numbers (or
the large deviations inequality) for bounded differences of a martingale,
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Pσ,τ (βi ≥ γi + ε) →n→∞ 0 and the rate of convergence is independent
of τ . Hence, for a sufficiently large nε,

Eσ,τ
1

Sn

n∑
i=1

si1{βi≥γi+ε} ≤ ε/2 ∀n ≥ nε.

As 1{βi≥αi+3ε} ≤ 1{αi≥ε} + 1{βi≥αi+2ε} ≤ 1{αi≥ε} + 1{βi≥γi+ε}, we deduce
that

(31) Eσ,τ
1

Sn

n∑
i=1

si1{βi≥3ε} < ε ∀n ≥ nε.

which proves (15). �

End of proof. The constructed strategy σ is in M3. The results of
lemmas 3, 8, and 9 shows that σ satisfies for every strategy τ of Player 2
inequalities (9) and (10). This complete the proof of the main result.

6. Open problems

The main open problem is whether or not in any finite stochastic game
each player has a finite-memory strategy that is ε-optimal. We do not know
if Player 1 has an ε-optimal strategy in the following stochastic game, due
to Beweley and Kohlberg, with two non-absorbing states, see Figure 2. We
suspect that finding a finite-memory ε-optimal strategy for this game will
lead to a finite-memory strategy for all finite stochastic games.

1 1∗

1 1

−1 −1

−1∗ −1

Figure 2. A game due to Beweley and Kohlberg for which
we do not know a finite-memory clock-dependent strategy
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