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Abstract. We renormalize the Wess-Zumino model at five loops in both the minimal subtraction
(MS) and momentum subtraction (MOM) schemes. The calculation is carried out automatically
using a routine that performs the D-algebra. Generalizations of the model to include O(N)
symmetry as well as the case with real and complex tensor couplings are also considered. We
confirm that the emergent SU(3) symmetry of six dimensional O(N) ¢ theory is also a property
of the tensor O(N) model. With the new loop order precision we compute critical exponents
in the e expansion for several of these generalizations as well as the XYZ model in order to
compare with conformal bootstrap estimates in three dimensions. For example at five loops our
estimate for the correction to scaling exponent is in very good agreement for the Wess-Zumino
model which equates to the emergent supersymmetric fixed point of the Gross-Neveu-Yukawa
model. We also compute the rational number that is part of the six loop MS S-function.



1 Introduction.

The Wess-Zumino model constructed in [1] is the simplest scalar supersymmetric quantum field
theory in four dimensions with chiral symmetry that is renormalizable. It comprises two scalar
fields and a Dirac fermion to have equal boson and fermion degrees of freedom. There are two
interactions one of which is a quartic scalar whereas the other is a scalar-Yukawa one. In this
respect it has the basic structure of the Standard Model in the absence of gauge fields and
flavour symmetry groups. Consequently the Wess-Zumino model forms a sector of the extension
of the Standard Model to the Minimal Supersymmetric Standard Model (MSSM) and as such
has been used as a simple laboratory to explore aspects of that potential theory for new physics
beyond the Standard Model. This property of the Wess-Zumino model has been one of the
motivations for its study since its construction in 1974. While the original article considered
the component field Lagrangian it has been reformulated in superspace [2] where it involves two
scalar superfields, one of which is chiral and the other anti-chiral. These separately have cubic
self-interactions in the superspace action. Several years after its inception the renormalization
group functions were determined beyond the one loop ones recorded in [1]. Indeed the four
loop expressions in the modified minimal subtraction (MS) scheme were determined in a very
short time span from 1979 to 1982, [3, 4, 5, 6]. The three loop S-function in the momentum
subtraction (MOM) scheme was also given in [4]. One reason for the rapid progress was the
calculational shortcut available from the supersymmetry Ward identity, [1, 2]. This ensures that
there is only one independent renormalization constant in the massless theory which is either
that of the wave function or the coupling constant. As the former is deduced from the 2-point
function this means that a relatively small number of Feynman graphs have to be evaluated
even to four loops in order to deduced the S-function. While this was manageable at very low
loop order, progress with the three and four loop renormalization was further advanced with
the use of superspace techniques, [2, 4, 6]. In addition to having a small number of supergraphs
to consider the superspace approach circumvents the issue of 7° if a regularization involving
analytically continuing the space-time dimension is employed, [4].

Aside from the main connection to a sector of the MSSM the Wess-Zumino model has enjoyed
a renaissance of interest in recent years due, for example, to an observation in condensed matter
physics. In [7, 8, 9, 10] it was shown that supersymmetry was present on the boundary of a three
dimensional topological insulator. This emergent supersymmetry is believed to be described by
the Wess-Zumino model. Another instance where the Wess-Zumino model can emerge is in a two
dimensional optical lattice with cold atom-molecule mixtures [11]. Equally there is a connection
with the four dimensional Gross-Neveu-Yukawa model [12] or XY Gross-Neveu model [13, 14, 15].
This is a theory with a scalar-Yukawa and a quartic scalar interaction. Both interactions have
independent coupling constants. However, it has been established [8, 13, 14, 15, 16, 17] that
there is a Wilson-Fisher fixed point in d = 4 — 2¢ dimensions where the critical couplings are
equal. Moreover the anomalous dimensions of all the fields are equal at criticality revealing
the emergent supersymmetry. This has been established at four loops in the € expansion, [15]
and the exponents have been shown to be equal to those of the Wess-Zumino model, [18].
The extrapolation to three dimensions is believed to be in the same universality class of the
supersymmetry associated with the topological insulator.

Given this renewed interest in the Wess-Zumino model and the potential for supersymmetry
to be realized in Nature, albeit not through observations using a particle collider, the main aim
of this article is to compute the five loop S-function of the Wess-Zumino model. While this
is around 40 years since the previous loop order appeared such a computation is possible now
given the revolution in automatically evaluating Feynman diagrams that has advanced the field
in the last decade. The main techniques that have been instrumental in this are the Laporta



algorithm [19] and the FORCER package [20, 21]. The former is a routine that systematically
uses integration by parts to relate specific classes of Feynman graphs to a small set of master
integrals whose Laurent expansion in € is known. The latter method is a four loop algorithm for
the evaluation of 2-point functions in d-dimensions and is the natural successor to the MINCER
package [22, 23] that has been the workhorse of four dimensional massless multiloop calculations
for a generation. For instance, both approaches have led to the five loop MS renormalization
of Quantum Chromodynamics (QCD) [24, 25, 26, 27]. Also the four loop [-function of six
dimensional ¢? theory has been given in [28]. More recently this has been superseded by the five
loop result [29, 30]. The latter computation, [30], was effected by a technique that successfully
extended our loop knowledge of scalar theories to much higher orders. The particular method
is known as graphical functions [31, 32, 33]. Prior to [29, 30] the six and seven loop ¢* MS
B-functions were computed using algebraic geometry as well as graphical functions, [32, 34].
Indeed it was mentioned in [31] that it may be possible to extend the field anomalous dimension
to eight loops in MS.

We will use both the Laporta and FORCER techniques in this article together with a routine
developed here to automatically carry out the D-algebra associated with superspace calculations
specifically for the Wess-Zumino model. Another motivation for extending the renormalization
to five loops is that in recent years the conformal bootstrap and functional renormalization group
techniques have been successful in determining critical exponents at very high numerical preci-
sion. These methods have also been used to study the Wess-Zumino model in three dimensions
partly for the emergent supersymmetry reasons but also for other more mathematical physics
problems, [17, 35, 36, 37, 38, 39]. Therefore we will carry out the analogous renormalization of
these theories to have five loop precision for the exponents of various operators as well as the
correction to scaling exponent by using the € expansion and extracting estimates in three dimen-
sions. For instance, in [40] the complex one dimensional conformal manifold that underlies the
infrared behaviour of a class of N' = 2 supersymmetric theories in three dimensions was studied
in depth using the conformal bootstrap. One aspect of the study of these more mathematical
three dimensional theories is that certain dualities have been found to exist. For instance, there
is believed to be a dual connection between supersymmetric Quantum Electrodynamics and an
SU(3) Wess-Zumino model, [41, 42, 43, 44, 45, 46]. In this context we will also examine the five
loop structure of the O(IN) model in two formulations. One is the standard one of the Hubbard-
Stratonovich decomposition used for ¢* theory. Indeed this case has already been examined in
the large N expansion [47, 48, 49] and we will use the information contained in the O(1/N3) d-
dimensional critical exponents of [48, 49] as a non-trivial check on our five loop renormalization
group functions. However, there is an alternative formulation of the O(NN) Wess-Zumino model
based on a tensor decomposition of the O(NN) quartic interaction. This was studied in non-
supersymmetric ¢ theory in six dimensions in [50, 51] at low loop order before being extended
to four loops in [52]. For the O(3) tensor model an emergent SU(3) symmetric fixed point was
found [50, 52]. The exponents of the constituent scalar fields are equal as are the critical cou-
plings thereby admitting the larger symmetry. This is in complete analogy with the emergent
supersymmetry in the chiral XY Gross-Neveu model. As the tensor O(N) Wess-Zumino model
has the same formal cubic interaction we will confirm that the tensor O(3) Wess-Zumino model
too has an emergent SU(3) fixed point which potentially adds to the set of theories connected
to the dual behaviour in three dimensions. In light of this it is not inconceivable that the chiral
XY Gross-Neveu theory can be extended to have a parallel tensor symmetry. In that case the
emergent supersymmetry and SU(3) symmetry should occur together at one of the fixed points
of that tensor theory.

The paper is organized as follows. The basic properties of the Wess-Zumino model that
are necessary for the five loop renormalization are introduced in Section 2. The computational



strategy for this is reviewed in Section 3 in the context of the four loop renormalization while
the details of the five loop algorithm that we used are given in Section 4. The main results for
the original Wess-Zumino model are given in Section 5 where the MS and MOM renormalization
group functions are recorded. The next few sections are devoted to the extension of the theory
to include various symmetries. For instance, a group valued coupling is considered in Section
6 where the e expansion is used to compare exponents with estimates of the same quantities
from the functional renormalization group and conformal bootstrap techniques. Endowing the
Wess-Zumino model with an O(N) symmetry is the subject of Sections 7 and 8 with the latter
concentrating on the tensor O(N) version of the model. Section 9 is devoted to the case where
the basic coupling constant is replaced by a rank three symmetric tensor coupling. This forms
the groundwork for studying the exponents connected with the three dimensional conformal
manifold which is discussed in Section 10. While the focus will have been on five loops to this
point, Section 11 explores some of the issues that would arise if the six loop renormalization
were to be computed. In fact we will provide the rational part of the six loop S-function in the
MS scheme from the MOM scheme expression that was deduced from a Hopf algebra argument.
Concluding renmarks are provided in Section 12 and two appendices contain definitions and
details of the tensor coupling renormalization.

2 Background.

In this section we review the Wess-Zumino model [1] and its properties that are relevant for the
renormalization. The superspace bare action is given by

S = /d4:r [/d29d2§¢>0(x,é)e_ze&eéo(m,ﬁ) + g?/dgefbg(x,@) + ?')/dQH_Qg(x,é)]

(2.1)
where we use type I chiral bare superfields ®q(z, ) and ®¢(x,0) and gq is the bare real coupling
constant. The superspace coordinates § and 6 are anticommuting and represented by 2 com-
ponent spinors. In light of this the 2 x 2 covariant Pauli spin matrices o are used in spinor
space leading to the shorthand notation § = 0#9,. The o/ matrices satisfy the same Clifford
algebra as the usual Dirac v matrices. This version of the action, (2.1), was used for the four
loop calculation of [6]. When the model was renormalized at lower loop order, the component
Lagrangian was employed, [1, 3], and for completeness we note that the bare Lagrangian in that
case is

- 1 1 - . 1
LWVZ = oo + 5(6#00)2 + 5(%”0)2 + 9ot (o0 +imoY°) ¥ + ﬂgg (03 +m3)" . (22)

It is this form of the Wess-Zumino Lagrangian that demonstrates the connection with the emer-
gent supersymmetry at one of the fixed points of the chiral XY Gross-Neveu-Yukawa theory,
[8, 13, 14, 15, 16, 17]. The only difference between (2.2) and that of the Gross-Neveu-Yukawa
Lagrangian is that there are two coupling constants ¢g; and gs respectively for the cubic and
quartic interactions. At the emergent supersymmetry fixed point both ¢g; and go are equivalent,
[8, 13, 14, 15, 16, 17]. Moreover the anomalous dimensions of all the fields are equivalent at the
fixed point.

One useful property of (2.1) that we used in the renormalization is that of the supersymmetry
Ward identity, [1, 3]. If we define renormalized entities via the renormalization constants Z
and Z,; with

Dy = VZe® , Do = \VZeP , go = pZyg (2.3)



where p is a mass dimension 1 object in d = 4 — 2¢ dimensions, then there is only one independent
renormalization since it has been shown that the vertex function is finite [1, 3]. As a consequence
we have

Zng%) =1 (2.4)
which implies
Bla) = 3ave(a) (2.5)
where
oz (2.6)
1672

and g (a) is the anomalous dimension of ® and ®.

L Real field | Complex field | Superfield k;,
1 1 1 1
2 8 7 1
3 96 90 4
4 1942 1797 13
5 49710 45183 63
Total 51757 47078 82

Table 1: Number of graphs at each loop order L for 2-point functions using real component,
complex component and superfield Lagrangians.

Figure 1: One loop 1PI 2-point function.

Having discussed the formulation of the superspace action we now outline the strategy taken
to carry out the five loop renormalization. One way to gauge the magnitude of a high loop order
computation is to tally up the number of Feynman graphs that have to be computed. This has
been recorded in Table 1 where the data for the 2-point function are given. These were compiled
using the QGRAF package, [53]. Due to the supersymmetry Ward identity the vertex function
is completely finite and so those graphs do not have to be calculated. There are several ways of
counting the diagrams for (2.1) which will determine the strategy we will follow. Aside from a
superspace approach, where the graph count is given in the final column of Table 1, the theory
can be formulated in terms of component fields. For (2.1) one can have real bosonic fields, as
in (2.2), or complex ones. The numbers of graphs for the bosonic field 2-point functions are
provided in the table too. Clearly there is a significantly larger number of graphs for both
component field calculations. We have chosen not to effect a calculation for either component
Lagrangian. This is not merely due to the number of graphs but also because in that case
one would have to use dimensional reduction [54] rather than dimensional regularization as the
latter does not preserve supersymmetry. The former regularization needs to be implemented
with care since additional evanescent fields have to be included in the dimensionally regularized



Lagrangian, [55, 56, 57]. By contrast, although the superfield formalism has less than a total of
100 graphs to compute, the superspace propagator in momentum space for (2.1) is

@ 0)B(-p.0) = 2 27)
where p is the momentum. Not only is the loop momentum integrated over in superspace
Feynman integrals but also the internal 6 coordinates that arise at each vertex of a supergraph. In
[4] a different form of the superpropagator was used which involved the supercovariant derivatives
D, and D?®. These satisfy an algebra, known as the D-algebra, which is used to simplify each
superspace integral before the integration over the loop momenta can be carried out. Ordinarily
the D-algebra is implemented by hand, which is straightforward to three loops for (2.1), but
this is not a practical approach for higher order calculations. As the superpropagator takes
the form (2.7) in (2.1) it is possible to implement the corresponding D-algebra in an automatic
Feynman diagram calculation. To do so we have written a module in the symbolic manipulation
language FORM and its threaded version TFORM, [58, 59|, to achieve this. Indeed the full
computation could only be carried out with several key features of the language. For instance, the
non-commuting function facility of FORM was essential for handling the D-algebra. Moreover,
once it has been applied to each Feynman graph they can each be evaluated in dimensional

regularization which is what we use throughout.

Figure 2: Two loop 1PI 2-point function.

3 Computational details.

We now discuss the technical aspects behind the five loop calculation which will involve ex-
plaining the algorithm for constructing an automatic five loop evaluation. In order to provide
the necessary introduction to all the ingredients required for this we focus on the lower loop
Feynman graphs for the moment and outline the first step of the process which is to reduce
the superspace integrals to momentum space ones. For instance the one and two loop graphs
contributing to the 1-particle irreducible ® 2-point function are illustrated in Figures 1 and 2.
Our notation throughout will be that Feynman graphs in superspace will have directed lines
as in these two figures. In this respect we note that from (2.1) the arrows on a propagator
will all be directed towards the vertex or away. The immediate consequence for this is that
there are no Feynman diagrams with subgraphs with an odd number of propagators. This is
evident in Figures 1 and 2 as well as ones that appear later. Though where some figures have
undirected propagators these represent Feynman integrals in ordinary momentum space and not
superspace. We will also use I';, to denote the 1-particle irreducible graphs at n loops and C,
to indicate the connected 2-point Green’s function at the same order. This will simplify our
illustration of the higher loop contributions to the 2-point function.



Figure 3: Momentum space representation of I's.

For I'; and I'y the D-algebra is simple to implement. Since the § and § dependence in (2.7)
is in the exponential of each propagator then each graph will have one exponential that depends
on all the anticommuting variables of each vertex of a Feynman diagram. So, for example, since
Iy has only two external vertices the overall exponential only depends on the external vertex
variables and factors off consistent with renormalizability in superspace. In fact this is a feature
of all higher loop graphs where the same factor emerges overall, [6]. Moreover when I'y appears
embedded in a higher loop graph this factor that was external contributes to the D-algebra
calculation of the remaining part of the higher loop graph. So for I's the only anticommuting
variable dependence that remains is a factor exp (201kf;) where k is the loop momentum and
61 and 0 are to be integrated over, [6]. This is after a change of variables on the original
internal anticommuting variables. Expanding the exponential then only the quadratic terms are
relevant for the f; and ) integration after a trace is taken over the o# matrices, [6]. This is
readily carried out by mapping the traces to the usual y-matrix trace routine but adjusted so
that the trace normalization is 2 and not 4. The resulting momentum space Feynman integral is
represented by the graph of Figure 3. We have detailed this relatively simple calculation as it is
an example of a deeper observation for the D-algebra of 2-point subgraphs in higher loop graphs.
It turns out that in the resulting momentum space integral one of the propagators connecting
any [',, subgraph is deleted in the same way as in Figure 3. This lemma was useful in the five

loop calculation.

Figure 4: Three loop 1PI 2-point function.

At next order the 4 three loop graphs are summarized in Figure 4 where Cy contains two
diagrams. The non-planar graph is primitive and is divergent. This is in contrast to the identical
momentum space non-planar integral with undirected edges which is finite being equal to 205



where ¢, is the Riemann zeta function. See, for example, the articles [60, 61, 62, 63| for the early
discussion on the connection of the Riemann zeta series with the topology of high loop Feynman
graph. To evaluate the primitive graph the D-algebra needs to be applied. This results in a set
of momentum space integrals that are given in Figure 5. In displaying these we note that in total
there are 14 integrals but we have used left-right and up-down symmetry to reduce these to the
four independent topologies. The non-planar graph contains the irreducible numerator which
becomes apparent when the trace is taken over the fermion propagators which are represented
by the dotted lines. It is important to note that these integrals result from the D-algebra
and have no connection with the Feynman integrals that one would have to compute using the
component Lagrangian. We have detailed the reduction for this graph as it differs from the way
it was evaluated in the four loop calculation of [6]. There the external momentum was nullified
in the numerator of the integral after carrying out the integration over the anticommuting
superspace coordinates. For the five loop renormalization we have to determine the integral to
the O(€) term rather than just isolate the divergence. We note that comment was also made in
[64] as to how to effect the D-algebra for this topology.

DO- <>

Figure 5: Momentum space integrals after applying the D-algebra to the three loop non-planar
graph.

At the next loop order the 13 2-point function graphs are given in Figure 6 where we have
introduced a shorthand definition of the two loop non-planar vertex which will be denoted by
Vo and is defined in Figure 7. The subgraph V5 of Figure 6 corresponds to the graph of Figure 7
but with the direction of the external legs reversed which is the origin of the conjugate notation.
In Figure 6 and later figures we do not display all the subgraph mirror images. To illustrate
what we mean by subgraph mirror image there is another graph similar to the final graph on the
first row of Figure 6 where the V5 subgraph is translated to the other external vertex whence it
would become V3. However in performing this translation there is no reflection of the direction
of any of the propagators which remains unchanged. The graphs of Figure 6 follow a similar
pattern to those at three loops in that the majority are decorations of the previous loop order.
This includes the three cases where there are propagator corrections on the three loop primitive.
The remaining undecorated planar four loop graph is a primitive at this order. It will have to
be evaluated without the re-routing simplification that was used in [6] since we will need the
finite part. Moreover it transpires that there are a significantly larger number of momentum
space integrals that result from the D-algebra compared to those of the three loop primitive.
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Figure 6: Four loop 1PI 2-point function.

Figure 7: Two loop non-planar vertex correction.

Although our aim is to renormalize (2.1) to five loops we pause at this point to discuss the
techniques we used to evaluate the momentum space integrals. To four loops the main tools
we employed were the three and four loop packages MINCER, [22, 23], and FORCER, [20, 21],
respectively. These are FORM encoded packages that evaluate dimensionally regularized 2-point
functions up to various orders in e. While MINCER is tied to theories in four dimensions FORCER
has the capacity to determine the € expansion of momentum space integrals in theories with even
critical dimensions. The usefulness of MINCER for example in its application to the Wess-Zumino
model is that it can determine the part of the S-function that solely involves rational numbers
to five loops. While it can equally be applied to the evaluation of most of the four loop graphs
we had to use FORCER to find the primitive of Figure 6 to the finite part. Another technique
we used, that is not limited to the computation of 2-point functions, was the Laporta algorithm
[19] encoded in the REDUZE package, [65, 66]. This was primarily required to check the four
loop primitive graphs but was also used more extensively at five loops to verify the simple pole
of certain difficult primitives. In applying both MINCER and FORCER to all the momentum
space integrals that result from the D-algebra we have verified the four loop S-function of [6].
As far as we are aware this is the first direct evaluation of the graphs where there has been
simplification involving the external momenta to extract the divergences.



4 Five loop calculation.

We turn now to the details of the five loop renormalization which first requires the evaluation of
the 63 graphs. We have chosen to illustrate these in a sequence of Figures and classify the graphs
by the underlying skeleton topology. Those given by propagator dressings of I'y are shown in
Figure 8 where we note that C3 and Cy include the respective three and four loop primitives.
As all the subgraphs within C,, and T, in the figure are available to the finite part from lower
loop computations their contributions to vg(a) are straightforward to determine. However this
is not the case for the decoration of the three loop primitive where the graphs are illustrated
in Figure 4. The reason for this is that after performing the superspace integration over the
internal anticommuting coordinates the set of momentum space integrals do not have a direct
correspondence with the decoration of the topologies of Figure 5 in all possible ways. This is not
unrelated to the irreducible scalar products that arise. For an L loop 2-point Feynman graph
there are (L — 1)(L — 2) irreducible scalar products. So to address this issue using a Laporta
algorithm approach would require an integral reduction of significant size. Instead as the four
loop FORCER package has no direct applicability we have followed a different tactic and that is to
apply the method outlined in the five loop renormalization of QCD in [25]. There the divergent
part of similar five loop integrals was determined by a combination of infrared rearrangement
and the method of subtractions. The external momentum is re-routed through the graph such
that it enters through one current external vertex but exits via the first vertex adjacent to that
one. For some of the graphs of Figure 9 there are several ways of achieving this which gives a
check on the procedure. As noted in [25] this produces an integral containing a four loop 2-point
subgraph that can then be evaluated using the FORCER algorithm, [20, 21]. In other words
this package is used indirectly to extract the five loop divergences. For the Wess-Zumino model
there are several additional simplifications compared to the QCD case. Aside from the fact that
the superspace graphs are zero dimensional, there are fewer graphs and within these there are
a small set of irreducible scalar products. Therefore we have constructed a procedure to effect
the subtraction approach for the subset of graphs of Figure 9. As a check on our method we
have applied it to the similar decorations of the three loop primitive shown in Figure 6 since we
know the correct answer from their direct evaluation in FORCER.

In applying that check we thereby verify that it is a valid procedure for evaluating the
decoration of the four loop primitive graph of Figure 6. The corresponding representative five
loop graphs are shown in Figure 10 and it is clear that the re-routing approach that exploits
FORCER is one of the few strategies we have. However for this skeleton topology we were also
able to check both poles in € of the four graphs of Figure 10 by following the algorithm given in
[6] for the underlying four loop graph. That method did not re-route the external momentum
but set the external momentum to zero where it appeared in the numerator of the integral after
the D-algebra had been applied. At five loops this produced a topology with a four loop 2-point
subgraph which had a different structure to that of the external momentum re-routing but which
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Figure 8: Five loop graphs based on the decoration of I'y.
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Figure 9: Five loop graphs based on decoration of three loop primitive graph.

could equally well be evaluated using FORCER. For each of the four cases we obtained consistent
expressions for the divergences.

The final subset of graphs for the five loop renormalization are provided in Figure 11 and
are the primitives. These can be divided into two classes. One class involves the decoration
of the three loop primitives by non-planar vertex corrections. In fact the first graph on the
top row is I'; where both external vertices are dressed with V5 and V. For both these graphs
we have evaluated them in several different ways. For the double dressing of I'y, for instance,
we can merely multiply the pole of I'y by the finite value of V5. We have determined this by
computing the two loop vertex function using either MINCER or FORCER with one external
momentum nullified. As an alternative we have also computed the underlying integral without
any restriction on the external momentum. In other words the integral is evaluated at a non-
exceptional subtraction point. More specifically we considered the fully symmetric point where
the squares of the external momenta are all equal. After applying the FOrRM D-algebra module
we used the REDUZE encoding of the Laporta algorithm to express the diagram in terms of the
various two loop master integrals which are available in [67, 68, 69, 70]. Either method produces
the value of 3(3 for the finite part of Vo and its conjugate. With this value it transpires that
both graphs in the top row of Figure 11 are proportional to C32. In each case we have checked
this argument by re-routing the external momentum. As the graphs are primitive where the
momentum enters the graph and leaves is not important as long as it is at two separate vertices.
This includes the case where only one external momentum is re-routed which we used on the lower
loop decorated primitives. The divergence was extracted using FORCER. Whichever approach
we used the same simple pole resulted for both these graphs. It also tallies with the method
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Figure 10: Five loop graphs based on decoration of four loop primitive graph.

used in [6] for the underlying skeleton topology. What is worth noting about this primitive is
that in non-supersymmetric models graphs with a non-planar vertex subgraph correction would
not ordinarily be regarded as a primitive. Indeed in the conventional understanding of the
appearance of (,, to five loops in 2-point function calculations the primitives are associated with
(3, (5 and (7. This product of (, values in a primitive appears to be solely peculiar to the
Wess-Zumino model. This leaves the graphs of the lower row of Figure 11 to evaluate. These do
not have any vertex subgraphs and so we do not have the same guidance into the final residue
of the simple pole. However we have applied the same techniques to extract the divergence and
find that both involve the underlying number which is %1@‘7 if one omits the symmetry factor.
That this combination appears is not surprising since it is not unrelated to a parallel primitive
Feynman graph in scalar ¢* theory. In [61, 62, 63, 71] the primitive graph was evaluated by the
use of conformal integration or the uniqueness method, [72, 73, 74|, after an initial numerical
evaluation [61, 62, 63]. In fact the residue was also recorded for what is termed the zigzag graph
in the prescient work of Broadhurst in [60]. In particular it is recorded in Table 3 of that article
where it corresponds to diagram c of Figure 6 there. The residue of the other five loop primitive
shown in the first row of Figure 11 is also apparent in Table 3 of [60] via diagrams d and e of
Figure 6. The fact that the zigzag topology arises in the seemingly topologically unconnected
lower row graphs of Figure 11 is as a consequence of the D-algebra. In the simplification of the
numerator scalar products after using the method of [6] several propagators are deleted to leave
the zigzag graph.

Having outlined in detail in this and the previous section how we have evaluated all the
diagrams to five loops to the requisite order in € to carry out the full renormalization we now
note some of the practical aspects of the automatic routine we have constructed. First all the
superspace graphs are generated electronically using the FORTRAN based QGRAF package, [53].
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Figure 11: Five loop primitive graphs.

To ease the implementation of the D-algebra routine that we have written we use the QGRAF
setting that equates to the MINCER or FORCER setup where each propagator is allocated a mo-
mentum p;. After the D-algebra has been carried out either the energy-momentum conservation
is implemented at each vertex to reduce the number of p; to the number of loops or values of
each p; are substituted explicitly. The latter is used for the cases where the REDUZE package
was required since the integral families are defined by the explicit values of the internal loop
momenta. This represents the core of the integration routine. Though for those five loop graphs
where a re-routing was necessary to find the divergence the value was constructed in a separate
routine and the result included in the automatic calculation which reduces the run time. This is
particularly important since although the focus thus far has been on the renormalization of (2.1)
we have also considered extensions of this action such as that with O(/N) symmetry which have a
significantly larger number of graphs to be determined. Once all the graphs have been computed
they are summed before the renormalization is carried out. This follows the established routine
of [75] where the calculation is carried out for bare parameters which in the Wess-Zumino case
is the coupling constant. Its renormalized partner is introduced through (2.3). As there is one
independent renormalization constant the coupling constant counterterms are formally deduced
by iteratively solving (2.4) and expressing them in terms of the Zg counterterms. These relations
are then included in the routine that ultimately determines the values of the Zg counterterms.
We close with a final remark on the evaluation of the diagrams. Although early loop compu-
tations of the B-function primarily concentrated on extracting the result in the MS scheme, in
[4] the S-function in the momentum (MOM) subtraction scheme was also determined at three
loops. This required knowledge of the higher order terms in the € expansion of each Feynman
graph to two loops. Those at three loop were not necessary, [4], as they would contribute to
the four loop MOM p-function. Therefore, as we have used FORCER to compute the four loop
graphs we have also found the finite part of those diagrams as well as the O(¢) terms. So we will
also be able to determine the five loop MOM scheme [-function for (2.1) and its extensions.
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5 Results.

After discussing the technical details of how we evaluated all 63 five loop graphs we now pro-
vide the results together with comments on internal checks on the final renormalization group
functions. We find in the MS scheme that the field anomalous dimension is

1 1, a’ a
a(a) = Ja = 5@ + (126457 + [18G 606 — 806 — 9] ¢
5
+ [504C2 + 858Cs — 441¢, + 18285 — 900(s + 2646¢7 + 79)] “—2 + O(a") (5.1)
implying
3 5 3 3 a* a®
Bla) = Ja® — Sa® + [36G3+15] & + [54Cs — 1805 — 240G; — 27]
6
+ [1512¢3 + 2574¢3 — 1323C4 + 54845 — 2700(s + T938C7 + 237 %
+ 0(a") (5.2)

for the f-function which are some of the main results of the article. In arriving at (5.1) the
non-simple poles of Zg are not independent from the property of the renormalization group
and are related to the residues of the lower loop order poles. That this is consistent validates
that aspect of the calculation. Another non-trivial check on the result will be discussed in a
later section. Also structurally the five loop S-function is formally the same as its scalar ¢*
counterpart, [61, 62, 63, 75, in terms of the rational and irrational dependence.

As the MOM scheme was considered in [4] we can also provide the renormalization group
functions to five loops for that case. For (2.1) the MOM scheme is defined such that at the
subtraction point there are no O(a) corrections to the 2-point function. In other words after
renormalization in that scheme the 2-point function is unity in superspace at the subtraction
point. This will determine the MOM expression for Zg. However in extracting it from the
2-point function the coupling constant has also to be renormalized in the same scheme. This is
effected by ensuring that the supersymmetry Ward identity (2.4) is preserved as otherwise the
scheme would not be consistent with this symmetry. Applying this procedure to the 2-point
function and retaining the necessary terms depending on € at each loop order we arrive at the

results
MOM 1 1 2 Cl3 CL4
5
+ [216¢3 + 7725 + 2305 + 1323¢7 + 1222] ;‘—6 + 0(a®) (5.3)
and
MOM 3 9 3 3 a’ a’
6
+ 3 [216¢3 + 7723 + 2305 + 1323¢7 + 1222] ?—6 + O(a") (5.4)

where both are provided for later purposes. Our convention is that when a renormalization group
function is labelled with MOM then the coupling constant a is the MOM coupling constant rather
than the MS one. For cases where there is potential ambiguity we denote the MOM coupling
constant by aMOM  Where this no ambiguity a will be regarded as the MS variable. There
are several interesting features of (5.3) and (5.4). First the coefficients of the one and two loop
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terms of wyOM (a) are the same as the MS ~g(a). This is a consequence of the supersymmetry

Ward identity ensuring the S-function and ¢ (a) are proportional. It appears to contradict the
accepted position that only the S-function in a single coupling theory is scheme independent at
two loops. In scalar ¢* theory the two loop term of the field anomalous dimension is independent
of the renormalization scheme but this is for a trivial reason since it is the first non-zero term.
The other peculiar feature of (5.3) for example is that there are no terms involving (a,,. In other
words only the odd integer argument Riemann zeta function numbers are present. Hence there
are no terms which involve even powers of 7 at least to five loops.

While we have found the five loop result for ’yg[OM(a) by direct evaluation it is possible

to determine it by another method. This was discussed in [4] and involves constructing the
map between the coupling constant in one scheme with that in the other. It only requires the
four loop calculation of Zg is each scheme to achieve this. First, we define the two conversion

functions oy
ZMS ZMOM
Cg(a) = (Zl\ibN[) ) C@(a) = (me (55)
9 ®

where each renormalization constant depends on the coupling constant in the indicated scheme.
Although each renormalization constant has poles in € the conversion function is finite as e — 0.
This is because the variables a and a™OM are not independent and in fact ensuring Cy(a) is
finite order by order determines the relation between the two. Thus we find

MOM 57 a®
a = al|l — 3a + 7 - [64C3+18C4+659]§
4
+ [2094C3 — 24¢3 + 3514 + 5045 + 30086 + 8895]?—6 + 0(@a%) (5.6)

where a on the right side is in the MS scheme. Equally once (5.6) has been established the wave
function scheme conversion function Cy(a) can be deduced as

15 5 a?
Co(a) = 1 — a + Za — [64¢s + 18(4 + 471]%
4
+ [1838C3 — 24¢3 + 2794 + 5045 + 300(s + 6156]2—8 + 0@ . (5.7

Equipped with these relations and using the renormalization group formalism the MOM renor-
malization group functions can be calculated using

MOM, (, MOM)  _ [ma)a“MOM] (5.8)
da  |§MS-MOM
and - -
AOMMOM) — 5880 4 () GO a) (5:9)
MS—MOM

where the restriction indicates that because the quantity inside the square brackets is a function
of a it has to be mapped to the aMOM yariable. This is achieved by the mapping which is the
inverse of (5.6). Following this we reproduce the five loop MOM results (5.3) and (5.4). Only
four loop information is required for this exercise which is also the reason why the finite parts of
the five loop Feynman graphs are not required to determine the five loop MOM renormalization
group functions.
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6 Group valued Wess-Zumino model.

We now turn to a variation on (2.1) which is to have a multiplet of N superfields where the
interaction contains a real tensor denoted by dY* where 1 < i < N. The bare action is
ijk o Jidk S
/ d*0 DL B)DE + go 2 / a0 @g@{@g}
(6.1)
where the aim is to determine the coupling constant renormalization. The notation for the tensor
derives from that of six dimensional scalar ¢® theory [77, 78]. To accommodate the different
combinations of tensors that appear in loop calculations a useful notation was also provided
in [77, 78] and extended to the four loop renormalization in [79]. This will introduce scalar
objects T; that play a similar role as the group Casimirs of a non-abelian gauge theory. As the
diagrams comprising the 2-point function of (6.1) only have subgraphs with an even number of
propagators, we only need to recall the relevant tensor combinations that will appear to five
loops. These are

S = / d*z [ / d*0d%0 B (z, 0)e 200 i (2, 0) + godg‘

Tyotl = giirizginniz
T5dljk — diil’ig dji3i4 dkisia di1i3i5 di2i4i6
T71dijk — diiliz dji3i4 dk‘ig,i@ di1i3i7 di2i5i8 di4i6i9 di7i8i9

T94dijk — itz giisia gkisiiz girisie Jiaitis Jizioii2 Jiai10i11 Jieirilo Jisiotnl (6.2)

The first digit of the subscript of any 7} indicates the number of d“* tensors comprising the
underlying graph or equivalently the number of propagators. So T5 denotes the one loop 2-point
bubble. The others correspond to vertex functions at two, three and four loops respectively.
Contracting these tensors with another tensor produces a 2-point function topology. These
then isolate the respective three and four loop primitive graphs of Figures 4 and 6. At five
loops the graphs that involve Ty are those of the lower row of Figure 11. Those in the top
row involve 7. One advantage of this notation is that the contribution to the renormalization
group functions from the primitive at each loop order can be identified and followed within a
calculation. Such an analysis was performed for scalar ¢* theory in [34] and suggested that the
percentage contribution from the primitive graphs at each loop order increases with the number
of loops.

Therefore we have computed the renormalization group functions for (6.1) and find

3

1 1 a
1r(a) = ;T - §T22a2 + Ty [12¢3T5 + 5T%] N
4
+ Ty [18¢,TTs — 60¢sToTs — 80C5Thy — 9T3] %
+ Ty [12¢3Ty + 79T5 + 846G T5Ts — 441U T3 Ts — 6126 T3 T — 216¢3 T2 T
6
+ 2440¢To T — 900(6To T + 7203 T + 2646(7To4] %2 + 0@ (6.3)

for the anomalous dimension in the MS scheme. As there is only one coupling and chiral field
in (6.1) the original supersymmetry Ward identity (2.4) is satisfied. At the same time it is a
simple matter to determine the MOM scheme version of (6.3) giving

1 1
wWOMa) = STha — ST5d?

3 4

& Ty [15GTTs — 26T + 20¢5Tr + 20T5] %

+ Ty [6¢3Ts + TT5] T
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+ Ty [1222T5 — 164¢3T5 + 936(3T5 T — 810¢T5T5 — 144¢3ToTr
5
+ 1040G5 Ty Try + 360C2T2 + 1323¢; T ] ‘11—6 + 0(a% (6.4)
where like (5.4) there are no even zetas. Formally setting 7; = 1 for all i recovers the analogous
equations of the previous section. It is clear from both expressions that the coeflicients of the
primitives are unchanged at the loop order where they first appear. We note that the coupling
constant map is

57 3
ayOM — 11 _ 3Tya + ZTQ%Q — T[72¢3T3 — 8CsToTs + 18C, T T + 659T22]%
+ T [8895T3 — 3003T5 + 23943 T Ty 4 351G ToTs — 336¢sToTs — 24C3 T
4
+ 8405 Ty + 300C6T71](11—6 a + 0(d) . (6.5)

To gauge the primitive contribution the numerical evaluations of (6.3) and (6.4) are

1 1
w(e) = Sha- §T22a2 + 15 [0.625T5 + 1.80308575] a®

— T [1.125T% + 6.580199T5Ts + 10.369277T71 ] a*
+ Ty [2.919521T5 — 2.967631T5T5 + 38.872050T5 71 + 32.511168T%
+ 83.377881Tp4] a® + O(a®) (6.6)

and

1 1
M) = Tha— STFa® + Ty [L75T3 + 180308575 o’

— T [8.797943T5 + 9.015427T5T5 + 10.369277T% | a*
+ Tb [64.053917T5 + 17.825861T5T5 + 54.395837T>Tr + 32.5111687%
+ 83.377881Tp4] a® + O(a®) (6.7)

respectively. If we recall that at five loops the graphs of the upper row of Figure 11 are what we
termed product primitives we can identity their contributions from the coefficient of T2T52. In
(6.4) that term is the penultimate one in the O(a®) coefficient. This is because Tk is associated
with the graph V5. If we compute the contribution from the primitives at three, four and five
loop order we find that respectively they contribute 74.26%, 57.37% and 74.91%. At lower
orders it is not meaningful to quote values as it would be 100% at one loop and there are no two
loop primitives. For the MOM scheme the analogous numbers are 50.75%, 36.79% and 45.96%.
The smaller relative contribution for the MOM scheme is due primarily to the increase in the
coefficient of the T terms at each loop order L. However for the MS scheme the observation of
[34] that the primitives make an increasing contribution at higher orders for ¢* theory seems to
hold here too for the MS scheme albeit at one loop order fewer than [34]. It would be interesting
if another scheme could be studied for the non-supersymmetric theory.

An additional motivation for examining the S-function of (6.1) is that it provides another
relatively trivial check on our five loop computation. It transpires that the coefficients of the
terms of T2 in (6.4) have already been computed before. More specifically we mean the three
loop and higher coefficients since the one and two loop terms are scheme independent. We stress
that we are indeed referring to the MOM result rather than the MS one. In [64, 80, 81] v¢(a) was
studied using the Hopf algebra construction of Broadhurst and Kreimer, [82, 83]. Specifically
it was used to determine the scalar field anomalous dimension in scalar ¢ and scalar Yukawa
theories for a specific class of Feynman diagrams. In particular the Dyson-Schwinger equation
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for embedding of basic one loop propagator correction within the skeleton one loop graph itself
was constructed and solved for the anomalous dimension. This was extended in [81] to the
Wess-Zumino model where the supersymmetry Ward identity was important in constructing and
solving the corresponding Dyson-Schwinger equation. Moreover, it is the first case we believe
where the S-function of any theory was accessed this way in the Hopf approach. Consequently
the first 200 coefficients of y¢(a) were determined for (2.1) with the analytic form given for the
first 12 terms for the class of diagrams considered. While the analysis of [81] centred on the
theory with action (2.1) a subset of the graphs making up the coefficients of (5.1) were found.
These are straightforward to isolate with the labelling used for (6.1). As [81] used the iteration
of the one loop bubble the T¥ terms of our five loop S-function should tally with the Hopf
algebra case. The question of which scheme was used can be established by the renormalization
condition used in [81] and it is clear it corresponds to the MOM one of [4]. This therefore
represents a specific check on the T§ coefficients of (6.4).

Having established the five loop renormalization group functions we can now extract esti-
mates for several critical exponents in the € expansion at the Wilson-Fisher fixed point where
again we take d = 4 — 2e. The specific exponents we will compute are n = vg(a*) and the
correction to scaling exponent 2/3’(a*) where a* is the critical coupling constant. We will denote
this combination here and later by @ rather than the more usual unhatted version to avoid
conflict with notation in a later section. From (5.2) we find

4 4 4
O = 2 — 362 + 5[12@, +1]e2 + 5[54@ — 84(3 — 240¢5 — 7)€t
4
+ 8—1[576C§ 4 396(3 — 378C4 + 1416(5 — 1800¢s + 5292¢7 + 19]> + O(€%)  (6.8)

or
& = 2 — 1.333333¢2 + 6.8554156% — 44.205924¢! + 290.9352506° + O(c%) (6.9)

numerically. The situation with 7 is somewhat simpler in perturbation theory due to the super-
symmetry Ward identity as has been noted in [15, 35] for example. As the dimensionality of the
coupling constant manifests itself in the O(a) term of 5(a) in d-dimensions then (5.1) implies

1

exactly. For the more general group valued case (6.1), and for later purposes, we note that the
critical coupling is

2 4 3 4
o= e+ —e? 4 2[T? — 43T, 81273 — 9¢ToTs + 40(5T:
ar 3T26+9T2€ +2[T5 — 4¢3 5] 973 + 8[2T5 — 9¢4ToT5 + 40¢5 71]81T4
+ 2[16Ty — 12G3Ty — 54GTaTs + 9GUTETs + 612¢T3Ts + 216315 Tr
5
— 520¢5To Ty + 900(6To Ty — 288C3T2 — 2646§7Tg4]ﬁ + O(é%) (6.11)
2
implying
4 4 28 €
or = 2 — —€2 + -8 — € 24¢3 +1
wor € 36 + 96 276 4[24¢3 + 9]81
16 8 8 T:
+ 7@,63 + —[9¢s — 14¢3)er + —=[62¢3 — 63¢4 — 204(5)€d %
9 27 T3
320 32 5] T
+ [— 7C56 27[110C5 — 18¢3 — 75¢s]e } T
448 T2 784 T
—gg, o ng & + 0 (6.12)
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where we have ordered the expansion in terms of the group invariants. The power of the
leading term in € of each of the invariants tallies with the loop order of the S-function where
the corresponding T; first appears. The leading order 7; independent terms correspond to the
bubble insertions associated with T5 with the primitive ranked by powers of 1/T5.

L || Padé Value | Average
2 | [2,0] | 0.666667 | 0.666667
31 [2,1] | 0.906650 | 0.906650
4 || 3,1] | 0.869530

[2,2] | 0.872352 | 0.870940
5| [4,1] | 0.879670

[3,2] | 0.877593

[2,3] | 0.878492 | 0.878585

Table 2: Estimates for @ in three dimensions from Padé approximants.

One comment concerning the use of different schemes to compute exponents is in order if
instead of the MS 3-function the MOM one was employed. For example, using (5.4) as it stands
to find @ would not produce the same expression as (6.8). However this does not contradict
the renormalization group invariance property of critical exponents. This is because (6.8) is the
MOM p-function in strictly four dimensions. In deriving the renormalization group functions
from the respective renormalization constants the calculations are carried out for non-zero e
before setting € = 0 to deduce the expressions in the critical dimension. Moreover in MOM and
other schemes where the renormalization constants contain finite parts, these play a crucial role
and lead to different coefficients in the renormalization group functions from the MS ones after
a few loop orders. In addition the finite parts appear in the renormalization group functions as
O(e) contributions in each of the loop coefficients. While setting € to zero produces expressions
like (5.4) it is the non-zero € renormalization group functions that are crucial to computing the
critical exponents at the Wilson-Fisher fixed point. Therefore to assist with understanding this
point we note that the ¢ dependent MOM f-function is

4 5

3 3 a a
MOM 3. 33 at a
B (a) o {Qa 50° + 3[60s+7] - — 3[13¢s +20G5 + 20]
6
+ 3[216¢2 + 772 + 230Cs + 1323¢7 + 1222] ?—6 + 0@d")

CL4

21
+ {— a+3a® — ?“3 + 3[64(3 + 18¢4 + 107] 2
5
+ 3[16¢2 — 500¢3 + 18¢4 — 336¢5 — 200¢s — 691]%
+ O(a%] € (6.13)

where the O(a%) linear term in € is not required to determine & at O(e’). Those terms would
contribute to the O(e%) piece of (6.8). Therefore using (6.13) to determine the critical S-function
slope one obtains exact agreement with (6.8) that was derived in the MS scheme.

One reason for determining @ in (6.8) is that there has been interest in estimating this
exponent in three dimensions using various methods, [15, 18, 35, 36, 37, 38, 39, 84]. Therefore
with the five loop extension of (5.2) we can update the four loop € expansion estimate noted
in [38]. To do this we have evaluated Padé approximants which are recorded in Table 2. In
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addition to the five loop estimates for completeness we have provided lower loop approximants.
In the table only estimates in three dimensions are given where there were no singularities in
the Padé approximant between 4 and 3 dimensions. In other words the approximant has to be
continuously connected to the value in the critical dimension. The final column gives the average
of the approximants at each loop order. If one focuses on the three and higher loop averages it
would appear that the approximants are converging but perhaps oscillating about the true value.
In order to place the five loop estimate in perspective we have gathered results from earlier work
on the exponent and recorded them chronologically in Table 3. Aside from the e expansion
the two main techniques are the conformal bootstrap and the functional renormalization group.
Some comments are in order. Errors on estimates are those given in the corresponding paper.
In [37] two sets of values were provided and distinguished by the parameter n. We have noted
both sets but mention that the authors regarded the n = 2 data as superior. Also the value we
quote for w is that designated as supersymmetric in Table I of [37]. The bracketed value for 1/v
from [36] was derived from the estimate of 7 using the superscaling law of [37, 85, 86]

1o %(d — ). (6.14)

14

We have also used this to extract the value recorded in the table from the exact value of % for
1 which would imply that % = % In [35] the value of v was determined but we have converted
it to % for consistency with the other entries in the table. This was used to deduce n from the
superscaling law. While the values of the exponents from [84] are noted as e expansion they
are not deduced in the same way as those of this paper. Instead they represent the result of a
matched Padé approach where the e expansion of two theories in the same universality class are
used but one theory has a critical dimension of 2 while the other is renormalizable in 4. Moreover
the universality class is the Gross-Neveu-Yukawa one and the values in the table correspond to
those for the emergent supersymmetry. As we took a direct supersymmetric approach our values
for n and % are exact due to the supersymmetry Ward identity and are within the errors given
in [84]. As an aside we note that the other e expansion result of [15] did not benefit from a
two-sided Padé approach which may be the reason why that estimate for % is low compared to
[84]. In terms of the overall picture there appears to be a consensus that the value of 1 is around
0.166 especially in the more recent articles that did not have the use of the supersymmetry
Ward identity present in the € expansion. The latest conformal bootstrap value appears to be
the most accurate numerically given the precision and tight error bars on 7 and % Indeed our
exact values differ by around 1.3% and 0.08% respectively with both conformal bootstrap values
satisfying (6.14). For @ the difference is roughly 0.5%.

One interesting application of considering (6.1) is that the renormalization group functions
can be deduced for Lie groups which have a non-trivial rank 3 fully symmetric tensor d”*. One
such class of groups are the SU(IN;) ones and in that case (6.2) reduce to

T, = Wcjvc_ll] , Is = — ]\12[]%2—10]
T = gl = SN~ 8N2 + 256
Toy = — [NS—64N*+1216N2 — 6784]41]\[64 (6.15)
using [87]. So, for example, for SU(3) we have
ve(a)|sy = %a — %2“2 + %6[48(3 + 125]a® + 62758[72(4 — 530¢5 — 225 — 240(3]a’

25
+ @[3684043 —9702¢3 — 17640¢ + 137170(5 — 59625(s + 78057(7
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Method | Reference n % w

CB [18] 0.166667 1.0902(20) 0.9098(20)
FRG [35] 0.114 1.443 0.796
CB [36] 0.164 (1.418)
FRG 37 (n=1) || 0.174 1.385 0.765
FRG [37] (n=2) || 0.167 1.395 0.782

€ [15] 0.166667 1.129(1) 0.871(1)
FRG [38] _ 1.1656 0.8344

€ [84] 0.1673(50) 1.415(12) _
CB [39] 0.168888(60) | 1.415556(30) | 0.882(9)

€ This work | 0.166667 1.416667 0.878585

Table 3: Summary of exponent estimates by conformal bootstrap (CB), functional renormaliza-
tion group (FRG) and e expansion methods.

+19750]a” + O(a’) (6.16)
and
5 25 5 25
ﬁ(a)’SU(B,) = 5(],2 _ Fa?’ + 5[48&3 + 125]@4 + 2716[72@1 _ 5304‘5 — 995 _ 240C3]a5
2
+ 5T;[36840C3 — 9702¢3 — 176404 + 137170(5 — 596256 + 78057¢7
+19750]a° + O(a’) (6.17)

which we record for later purposes. As there has also been recent interest in Wess-Zumino
models with Fy symmetry, [46], we note that the corresponding renormalization group functions
and exponents can be extracted from (6.3) and (6.12) with

T, ) T2
Ty = —[N—-2—2 | Ty = — [N2~ 10N — 16]——2
s [ ]2[N+2] e [ ]2[N+2]2
3 2 73

T = [N®-3N N+1

- [N3 — 3N% 4+ 80N + O(J]MH]3

4 3 2 T24

Tos = — [N*—14N® —12N? — 616N — 672]——2 6.18
o [ ]8[N+2]4 (6.18)

where NV is the dimension of an F) representation such as 2, 5, 8, 14, 26, 27, 90 or 324.

7 O(N) Wess-Zumino model.

As a second generalization of (2.1) we consider the Wess-Zumino model with an O(N) symmetry
as it will provide us with another check on our computation. This is because the O(N) model
admits a large N expansion and the renormalization group functions have been computed to
three orders in powers of 1/N in [48, 49]. The action in terms of bare quantities is

SOWN) - — /d4x [/ d20d20_i>6(x,5)6_29&(;(1)6(:5,0) + 5’0($,§)€_2e&500($,9)
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+ 20 [ doooeiey + L0 [ 265008,
+ 920/652903 + Q;O/d?e‘ag] (7.1)

and was given in [88] where 1 < ¢ < N. We regard the coupling constants as real and define
gi = 4mg;. In [88] they were taken to be complex but they will only appear as squares in the
renormalization group functions. In this case this combination will be equivalent to the squared
length of g1 and g respectively given in [88]. The superfields ®* and ®° lie in an O(N) multiplet
and the o and & fields would equate to auxiliary fields in non-supersymmetric four dimensional
¢* theory. In other words in that instance the quartic interaction can be rewritten as a cubic
interaction, akin to that of (7.1) with the g; coupling constant, and a non-kinetic quadratic term
equivalent to that for ¢ and & but without the 6 dependent exponential. For that reason one
can regard the O(N) Wess-Zumino model as a supersymmetric generalization of O(N) scalar ¢*
theory. This is apparent in the purely bosonic sector of the component Lagrangian (2.2). Indeed
it is that rewriting of the quartic interaction that is the key to accessing the large N expansion
through the critical point formalism developed in d-dimensions in [73, 74, 89] for scalar ¢* theory
as we will show later. This was extended in [48, 49| for (7.1) where more background on this
aspect to exploring the Wess-Zumino model can be found. It is also worth noting that when both
couplings are non-zero the action is formally equivalent to that of non-supersymmetric O(N) ¢>
theory in six dimensions that was analysed at three loops in [79, 90]. This is in the sense that
in six dimensions there are two interactions that ensure the theory is renormalizable. Finally
we note that the O(N) Wess-Zumino model also has only two independent renormalization
constants which can be expressed as

1 3
oM (g) = o1 [17 M (g0) + 299N (g, BN (gi) = 5078 (g)  (72)

where 7,(g;) is the anomalous dimension of the o and & superfields and we use g; as shorthand
for pair of couplings {g1, g2}

L 0] o
1 1 2
2 3 3
3 15 20
4 109 | 124
5 952 | 1063
Total || 1080 | 1212

Table 4: Number of graphs at each loop order L for the ® and o superfield 2-point functions in
the O(N) Wess-Zumino model.

To extract the renormalization group functions for (7.1) using QGRAF we have generated
all the supergraphs to five loops required for renormalizing the ® and o 2-point functions.
The number of graphs that we had to compute at each loop order are listed in Table 4. With
these graphs as input we applied the automatic integration routine that was outlined earlier and
extracted the corresponding renormalization group functions which are included in the attached
data file. To five loops we found

O(N 1 1 1 1
870) = |gmad+ 2t + 5Nt + | ~5ouad — obed - 20f - yNateh - 2Nk
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—Ng{ — =N?gig3

3, 1 11
9195 + 9395 + 29 + NngQ +4Ngig3 + 3

5
+ {89192—%2 5

+ §N2 + C39192 +12(39795 + 12¢391 ‘|‘ C3N9192 +3¢3Ngf

9 8 8 1 10 o 49 97
+ {—89193 - ggfgg — 59?93 — 59395 - ggl -5 Vo g5 — c ~—Ngig3 — 14Ng}

7 1 1 1
+gN %g7g3 — l %glg5 — 6N?g) — N 9195 + N g0 — 1059195

— 40¢597 g5 — 160¢591 95 — 80(59; — 40¢sNgig5 — 80(sNg{ g5 — 60(sN g
9 3
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for the B-functions in the MS scheme where the terms have been bracketed by loop order when
there is more than one contribution. As the anomalous dimensions of both fields in the O(N)
model have not been recorded before we found
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in the same scheme. We note that the first two loop orders of each S-function were recorded
in [88] with which we are in agreement. In [88] the higher loop terms were deduced from the
four loop results of [91]. Therefore the results (7.3), (7.4), (7.5) and (7.6) are the first direct
calculation of the O(N) theory renormalization group functions including v (g;) and v, (g;)-

We recall from [88] that there are four different fixed points given by the solutions of 8;(g;) =0
in d = 4 — 2e. Explicit expressions to two loops are recorded in equation (2.4) of [88]. One of
these is the trivial Gaussian one while two involve one or other of the couplings being zero. The
remaining fixed point has both g; and go non-zero which only exists for N < 2. In this instance
when N = 2 the solution for the critical couplings reduces to to the g; = 0 solution, [88]. In the
other case with N = 1 both critical couplings are equal and this corresponds to the emergent
supersymmetric fixed point in the Gross-Neveu-Yukawa theory. This can be seen by computing
the eigenvalues of the matrix

o) = () (.7)
at the critical point. We find these are
O = 2 — 262 + é[12<3 + 1] + ;[5454 — 843 — 240¢5 — 7)€t
+ 51 [576C3 + 396(3 — 3784 4 1416¢5 — 1800¢s + 5292¢7 + 19]e® + O(€%)
Dy = e 4 O (7.8)

3

where the first is equivalent to (6.8) and the second would appear to be exact.

While we have already noted several internal consistency checks on the earlier five loop
renormalization it is also possible to check the computation via the O(N) fixed point given by
go = 0. To assist with this we record the renormalization group functions for that and note

6
0™ (91.0) = 297 — [N+2)gl — [N?—10N —4-21¢] &
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for the two field anomalous dimensions. The non-trivial S-function is
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We recall that the O(N) Wess-Zumino model renormalization group functions are known to
several orders in the 1/N expansion, [47, 48, 49]. The O(1/N?) correction to the 3-function and
the O(1/N3) ones for v (a) were computed by exploiting the scaling properties of the propa-
gators at the Wilson-Fisher fixed point in d-dimensions using the large N formalism developed
in [73, 73, 89] for the non-supersymmetric version of (2.1) which is the O(N) non-linear sigma
model. That model is in the same universality class of O(N) ¢* theory in four dimensions. In or-

der to check (7.9) and (7.11) in large N we compute the critical exponents ng(N) = %ng) (97,0)

/
and @OW) = i (B?(N)) (g7,0) where g7 is the value of the coupling constant at the Wilson-

Fisher critical point in d-dimensions and the factor of 2 has been omitted here to be consistent
with the definition used in [48]. From (7.11) we have

2 16 1
g2 = NE + |:—8€ + 1662 — 83 — 364 + [8¢s — 4]€° N
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392 91 5] 1 6 1
+ [600¢s — 3 1248Cs + 108¢4 — 296(3 + 144(35]e } N2 + O (e ; N?’) (7.12)
to the necessary orders in powers of 1/N that are needed to compare with [47, 48, 49]. Thus we
have

1
ng™ = [2e — 262 — 268 + [A¢s — 2]t + [6¢s — 2 — 4¢3]€] ~
+ [~8¢ + 28¢ + 4€® — [16 + 64C3]e* + [176¢3 — 32 — 95(4)€"| 3
1
+ [32€ — 240€® + 288¢® + [368 + 624(3]€” + [144 + 936(s — 3312(3]€’] e
1
and
1
GO = e 4 [8¢% 4 86 + 8¢t + [8 — 16¢3]€°] N
+ [56€ + [48(3 — 136]€® + [72¢4 — 160 — 480¢5 — 144¢3)€*
1
+ [176 — 1200(s + 1696¢5 — 2164 + 528(3 — 288(3]€"] D
1

If one expands the d-dimensional expressions for 7 and @ of [48, 49] in powers of € we find
precise agreement. This is the other non-trivial check on our perturbative computation, that
we referred to earlier, since the higher order large N calculations involve the three and four
loop primitive topologies. Hence several of the dressed propagator graphs of Figures 9 and 10
arise in the higher order large N exponent calculations. The critical exponent associated with
77(9 ) = ’yg () (g7,0) is also in agreement. However this is a trivial check since the vertex of (7.1)
is not renormalized due to the supersymmetry Ward identity. Thus at the critical point this
(V) is not
independent of ng . We have checked that this is indeed the case to five loops and O(1/N3).
In fact given this identity the Wess-Zumino model is perhaps the first case where the anomalous
dimension of the linear field in the cubic interaction of the class of large N expandable theories
using the technology of [73, 74, 89] is available at O(1/N?) rather than O(1/N?).

implies that the vertex anomalous dimension exponent is zero to all orders and so 77?
()

One observation in respect of the connection between the Wess-Zumino model and the emer-
gent supersymmetry of the Gross-Neveu-Yukawa Lagrangian needs to be made in the context of
the large N expansion. First we set some notation and denote the O(1/N") term of the matter
field anomalous dimension by 7, for both theories. By matter field we mean ®° of (7.1) and 1°
of the O(N) extension of (2.2) when an O(N) symmetry is included. For background to this
point we recall that in the scalar O(NN) universality class containing four dimensional ¢* theory
the d-dimensional expression for 73, [89], involved a function I(u) which was related to an 4F3
hypergeometric function in [92, 93]. Its € expansion near four dimensions involves multiple zeta
values, [89, 92, 94], and implies that such irrationals will appear at high loop order in the renor-
malization group functions. The same function appears in 73 in various other models including
the O(N) Gross-Neveu model, [95, 96], and its N' = 1 supersymmetric extension [97]. What was
unusual about 73 computed for (7.1) in [49] was that the integral I(u) did not appear. This was
attributed to either the presence of supersymmetry, since simplifications in the renormalization
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group functions are known to occur when this symmetry is present, or chiral symmetry. Al-
ternatively both symmetries could have equally conspired to exclude the underlying topologies
that would have led to I(u). The key point is that to O(1/N3) no multiple zeta irrationals

will appear in fyg (V) (a). Since the simple O(N) Gross-Neveu model 73 contains I(u), [95, 96],
one question that was recently addressed, [98], was whether I(x) would be present in 73 of the
non-supersymmetric chiral XY or chiral Gross-Neveu model universality class where the theory
has a U(1) symmetry. This was particularly relevant since the four dimensional theory has an
emergent supersymmetry. It transpires that the d-dimensional expression for 73 in the chiral
Gross-Neveu theory does not contain I(u), [98]. Although the emergent supersymmetry occurs
for a specific value of N that is low, the large N critical exponent 73 contains information on
the renormalization group functions. While the absence of I(u) in the chiral Gross-Neveu model
at O(1/N3) is an indirect indication of the structural similarities of both models at criticality
it also suggests that the absence of I(u) is perhaps due to the chiral symmetry. One final com-
ment needs to be made concerning the multiple zeta irrationals. The absence of such numbers at
O(1/N3) does not necessarily imply that they are absent for all orders in large N or perturbation
theory. They could arise at much higher order. In perturbation theory for example the first
multiple zeta, (35, appears at six loops in ¢* theory B-function. That term would be present in
the critical B-function exponent at O(1/N3) in the large N expansion of the O(N) extension of
that model, [89, 93].

At the end of this section we pause to discuss a potential connection with the large N
expansion technique mentioned here in relation to the renormalization group functions and the
Hopf algebra solution of the Dyson-Schwinger equations of [81]. Indeed the large N methods
of [73, 74] also relies upon the solution of the Dyson-Schwinger equation in the critical region
close to the Wilson-Fisher fixed point. In the latter approach the use of the group invariants has
allowed us to identify that solution with a seemingly parallel bubble expansion. This is effected
through the group factor 75. For instance the € expansion of the correction to scaling exponent
was given in (6.12) through the critical coupling (6.11) and both have a similar structure to
each other. Both actions (6.1) and (7.1), however, are different in that the former involves one
field whereas the latter has an O(N) multiplet of fields in addition to a scalar field. Indeed the
interaction connecting both fields is akin to the force matter one of QCD which is a theory of
Ny quarks with gluons that are elements of the adjoint representation of the SU(N;) Lie group
with N, = 3. In addition to canonical perturbation theory it admits both a large Ny and large
N. expansion with the former being achieved using the same techniques as [73, 74]. The large
N, properties have also been widely investigated where background to the issues are given in
[99, 100]. There could not be a greater difference though in how the Feynman graphs of each
expansion are ordered. For instance in the solution of the large Ny Dyson-Schwinger equations
at criticality there is a finite and small number of graphs at leading order. By contrast in the
large N. case it is known that there are an infinite number of graphs at leading order, [20, 21].
This is evident in the structure of the QCD S-function. To two loops it is linear in Ny which
means the leading large Ny term of the critical coupling at the Wilson-Fisher fixed point has a
finite number of terms in e. In fact there is only one. The N, dependence for the SU(N;) colour
group by contrast is different in that the coefficient of the leading order 1/N, term of the critical
coupling is an infinite series in €. In the absence of the all orders S-function it therefore remains
unavailable. These two situations have parallels in the two actions (6.1) and (7.1). Clearly the
large N expansion discussed in this section is completely the same as the large Ny one of QCD
given the common use of [73, 74] in finding the d-dimensional critical exponents. Indeed the
critical coupling (7.12) has only one term at leading order as the S-function (7.11) is linear in
N. By contrast the -function of the other action, (6.3) is not linear in T, which leads to an
infinite number of terms in e at leading order in the 1/75 expansion of the critical coupling
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(6.11). Equally the correction to scaling exponent has the same property in complete parallel
with the large N. expansion.

This suggests that the 1/75 expansion of the renormalization group functions of (6.1) using
the Hopf algebra solution of the Dyson-Schwinger equation is a potential way of carrying out
a large N, expansion of the p-function of QCD. It is worth outlining the ingredients needed
for such an exercise. Indeed there are many challenges that would need to be resolved. First,
the Wess-Zumino model has a supersymmetry Ward identity that allows the g-function to be
deduced from the field anomalous dimension. So the Dyson-Schwinger equation for the vertex
function would need to be analysed in the Hopf algebra formalism. This could be played out
in the same laboratory of ¢® and scalar-Yukawa theory [82, 83] where the field anomalous
dimension was examined in the first instance. Next in the QCD case there is the complication of
gauge symmetry. Even for Yang-Mills theory one would have more Dyson-Schwinger equations
to consider. Aside from treating the transverse and longitudinal contributions to the gluon
equations separately, unless the focus was on the Landau gauge, the Faddeev-Popov ghost
Dyson-Schwinger equation would play a non-trivial role. The use of the Landau gauge may have
the advantage that the S-function could be accessible in the Hopf approach since the ghost-gluon
vertex is finite in this gauge due to Taylor’s theorem, [101]. This would be a parallel to the non-
renormalization of the Wess-Zumino vertex here due to the supersymmetry Ward identity. While
these observations have in the main concentrated on the close similarities there are inevitably
several technical differences. The obvious one is that the set of basic Feynman graphs of the
Wess-Zumino model is smaller than the QCD one. By set we mean the underlying graph topology
and the difference lies in the absence of one loop subgraphs with an odd number of propagators
as well as no quartic interaction. In turn this means that the group invariant designation 7;
does not have the same parallels as the group Casimirs in QCD. This is understandable since
the core tensor of (6.1) is symmetric in contrast to the antisymmetric structure constants of the
SU(N,) Lie colour group. In this case while T5 does have a partner group theory combination in
Yang-Mills, since the two loop non-planar vertex function has subgraphs with an even number
of propagators, it is actually zero in the adjoint representation in Yang-Mills theory. Instead
T71 would be the first topology that non-trivially connects with graphs in QCD where they
would equate with the so-called four loop light-by-light graphs. Despite these issues that we
have outlined it would seem that the Hopf algebra approach offers a viable way of probing ideas
concerning the renormalization group functions of QCD in the 1/N, expansion in parallel with
potentially the same benefit as the large Ny d-dimensional critical exponents. Finally we remark
that there is also the potential for the Hopf algebra constuction given in [81] to be extended to
the next order for the Wess-Zumino model. From the location of 75 in (6.11) and (6.12) it is
clear that the next topology to consider beyond the iteration of the one loop bubble used in [81]
is the bubble decoration of the non-planar primitive of Figure 4. The Chebyshev polynomial
approach to evaluate this graph given in the appendix of [4] should be useful in this respect.

8 Tensor O(N) Wess-Zumino model.

We now turn to an alternative version of the O(NN) theory which we will term the tensor O(N)
Wess-Zumino model as it also has an origin in non-supersymmetric O(N) ¢* theory. In that
case the interaction (¢?)? can be rewritten in terms of an auxiliary field o which leads to the
cubic interaction akin to that of (7.1). As pointed out in [50, 102] this is not the only way
of decomposing the quartic interaction since one can introduce a tensor channel rather than a
scalar one. In this case the auxiliary field is a vector in the O(NN) group and denoted by o®
where 1 < a < Ny with Ny = (N —1)(N +2). Since this decomposition has parallels with the
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canonical one of (7.1) it can also be incorporated in the Wess-Zumino case as well. This is the
focus of this section and we note the bare action is

SOAN) / o [ / 20020 8o (z, 0)e—0y(z,0) + 50 (z, 020 g8 (3. 0)
+ 90 [ gotainn el + 90 [ 26505iA0 )
9 0*®04Yi; %o 9 0o P04 %0

+ %dgbc / d*9 ofogol + %dg’m / d20080808] (8.1)

where the fully symmetric rank 3 tensor depends on the Ny real, symmetric, traceless matrices
Afj via
s = Tr (A“AbAC> (8.2)

which formally has similar interactions to the non-supersymmetric scalar tensor O(N) cubic
theory that is renormalizable in six dimensions [50, 102].

With this action we have constructed the five loop renormalization group functions using an
extension of the algorithm for the scalar decomposition of the previous section. The supersym-
metry Ward identities (7.2) remain the same. So all that is entailed is to append a FORM group
theory module to handle the presence of the matrix. Useful in implementing this is the relation
[50]

2
Ak = dindj + dudjr — 700k - (8.3)
Like [52] the expressions for the renormalization group functions for arbitrary N are sizeable

and included in the attached data file. However it is valuable to record them for one particular
value of N. For instance when N = 3 we have
20 5 20

S0 +§ [—13¢7 — 793] g7

276(391 + 241g] — 84(397g5 + 112¢7g5 + 14795] g7

Yo(9i)|ly=g =

57 |
20
o [—61254C368 + 19044¢4 g7 — 61680(595 — 1720148 + 2940(391 95

243
+ 5229049795 — 26880(591 95 — 16954915 + T938(3g7 95 — 4410(4g7 95
— 3864059797 — 88699795 — T224(3g5 — 2583sgs — 1097645 ] g7

5
+79 [2017008¢3 % + 12797088(34} — 6943608(4g} + 21262968(54;

— 10639800¢6g5 + 20806821¢7g5 + 2198908¢F — 3786048¢2 g0 g2

+ 2103360@“395"93 - 2771496449695 + 1717279256893 — 78120006695 g3
+ 52602487 ¢? 92 + 215490848 g3 — 784896(2 g1 gy + 233436439@3

+ 168462¢4 g7 92 + 15298584(541 g — 59136004691 g5 4 6306741¢7g1 95
+ 2861012¢7 g5 — 2010624¢3 9795 — 3192¢397 95 + 1006236(497 95

+ 11106984C5g1 295 — 540960059795 + 5093550¢7g7g5 + 88219697 ¢S

— 9240032 g5 + 2552508(3g5 + 73206(492 + 1000272¢595

+ 1155000695 + 138297645 ] g1 + O (g;?) (8.4)

and
2 4
Yo(9i)lv=s = 3 [30f +793] + 5 [-3091 — 219793 — 49g]
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828(3% + 66095 — 630C391 g5 + 23314195 + 29497 g5
+1722(395 + 171565

2
o7 |
4

+o7 [—30144(397 + 9522¢4g} — 30840597 — 1195097 — 2856(345 g3

— 6930C197 95 — 26880C597 g5 — 149389793 + 13818(391 92 — 220519192
— 77280C591 95 — 41503g1 g3 — 1654839795 + 103324795 — 60270345
+ 18081495 — 77000595 — 216095

1
+ 156 [2017008¢391° + 12023784(391" — 6277068(4g1" + 17472048(597°

— 10639800¢6g1° 4 20806821¢7g1° + 2440520910 — 6471360¢3 45 g3

+ 8625792(395 g5 — 1047312@9895 + 30972984(56% g2 — 9815400¢64% g2
4 9205434C7g% g5 + 749070095 g5 — 5869248C2 ¢S gs — 92316(395ga

+ 2862090(49% g5 + 60678240@“591 g3 — 24460800¢s4% g5

+ 18920223¢7¢% 92 + 382317648 g5 — 5540640¢2g1 g5 + 5826828(391 g5

— 2235618C491 95 + 44301264¢591 92 — 13524000¢6g7 95

+ 28014525¢7g g2 + 13341328¢1 g5 — 23100003 g% g5 + 7958580@,9%93
— 9122526(493 5 + 17502576597 g5 — 12705000(s97 g5 — 80673647 g5

+ 2651040¢2 30 + 24601332¢393° — 12403566490 + 48544888(5g3°

— 24255000695" + 47944197¢73° + 5311012¢3°] + O (g;?) (8.5)

for the MS field anomalous dimensions and
1 2
Bilg)ln=s = 3 [2301 + 73] gr + 5 [~160g1 — 919ig5 — 4995] 91
6348(391 + 548091 - 2310C39192 + 457lglg2 + 32349192

o7 |
+ 1722(395 + 171592} g1

2
543 [T702972301 + 219006GagT — 7093200597 — 20786097 + 20832(3970

+ 31500849995 — 349440¢54° 92 — 214354¢° 92 + 120834C391 g3
— 50715C4glg2 618240c5g1 g5 — 213199g1 g3 — 121884(39%4S
+ 5166(497 g5 — 10976097 ¢S — 180810(395 + 54243495

— 231000¢595 — 6482745] g1

1
+5016 [46391184¢3 91° + 292013112¢391° — 157703364C4g1" + 477675504¢591°

— 244715400(s9:° + 478556883<7g10 + 51299720g:° — 95135040<§g§g§
+ 6794457635 g2 — 58571856(495 g2 + 436374792(54° 92

— 185686200(s95 5 + 132821262(791 g3 + 6557026045 92

— 33305664<§g?g§ + 4391772395 g5 + 11955510g4g1 95

+ 488006400C5g1 g5 — 1916544008595 g5 + 18289548976 g5

+ 6868976895 g3 — 5683440029195 + 17416644C3979S + 13417866(4g1 g5
+ 355043472C5g1 195 — 148764000(s91 g5 + 185914575(7g1 g5

+ 5766790441 g5 — 8778000¢2 g% ¢S + 74925900(397 5

— 25903458(4g° gg + 72513168(59% g5 — 15015000¢69% g5

+ 25239312975 + 7953120¢2 g0 + 73803996(394° — 37210698(4g2°
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+ 145634664¢593° — 72765000¢695° + 143832591(7g3° + 1593303693°] g1

+ 0 (g:%) (8.6)
together with
2
Ba(9i)l s = [391 +793] g2+ = [ 3091 — 219795 — 49g3] g2
+§ (82839 + 66095 — 630(39195 + 23319193 + 29447 g5

+1722¢395 + 1715¢5] g2

+37 [~30144C3g5 + 9522¢4g5 — 30840¢595 — 1195095 — 2856(39% g2

- 6930@49192 - 26880(59192 - 149389192 + 13818C39192 - 2205C49319§
- 77280(59192 415039192 - 16548(39192 + 10332(49%93
— 60270(392 + 18081{492 — 77000(5572 — 2160993] g2

1
+357 [2017008¢591” + 12023784C391” — 6277068C49,” + 17472048Cs9,°

— 10639800¢6g1° + 20806821¢7g1° + 2440520910 — 6471360¢2 45 g3

+ 8625792¢39595 — 1047312<4gsg§ + 30972984¢595 93 — 9815400645 g3
+ 9205434¢768 % + 749070045 g5 — 586924829595 — 92316(395 g5

+ 2862090(49% g5 + 60678240@‘591 g5 — 24460800¢64% g5

+ 18920223C7¢% g5 + 382317695 g3 — 5540640¢2g1gS + 5826828¢3914S

— 2235618(49195 + 44301264¢597 92 — 13524000¢69195

+ 28014525C7g195 + 13341328195 — 2310000¢2 g7 g5 + 7958580(397 95
— 9122526(49192 + 17502576(59192 — 12705000(69192 8067369192

4 2651040¢2 g3° + 24601332¢393° — 124035664g5° + 48544888(593°

— 24255000¢695" + 47944197¢7g3° + 531101295°) g2 + O (g;°)  (8.7)

for the MS B-functions.

One property of the tensor O(N) model that was present in the six dimensional non-
supersymmetric cubic theory [50] and was illuminated in more detail in [52] was an emergent
symmetry. When N = 3 then Ny = 5 giving a total of 8 fields. This is the same dimension as
the adjoint representation of SU(3) and it was shown in [52] that there is an emergent SU(3)
symmetric in the tensor O(3) cubic theory in six dimensions. Given that this is an observation
at the level of group theory it is no surprise that there is a similar emergent SU(3) symmetry in
(8.1). This occurs when the couplings are equal as then the action can be reorganized into one
that is formally equivalent to (6.1). In particular the field anomalous dimensions become equal
since

1890 N=s.g1=g» = Vo(90)|N=391=g>

20 , 400 , 80 1600
= gg% - g1 + 5o 148G + 125)¢% (7261 — 24005 — 5305 — 225] g

. 800
+ 5336840Cs — 9702¢2 — 17640(4 + 137170(5 — 596256 + 78057¢7
+19750]g1° + O (91°) (8.8)

as well as the S-functions which is apparent from (8.6) and (8.7) since

ﬁ(gi)|N:3,glzg2 = B(gi)|N:3,91:g2

34



200 40 800
= 10g; — 79{’ + 5 [48Cs +125] gl + 57 [72Cs — 2403 — 5305 — 225]¢?
4
+ g[36840<3 — 9702¢3 — 176404 + 137170(5 — 596256 + 78057¢7
+10750)g}" + 0 (51?) 59)

to five loops. These are clearly consistent with the direct evaluation of the same quantities given
in (6.16) and (6.17) which affirms the emergent SU(3) symmetry.

While the emergent SU(3) theory from the O(3) theory is not a surprise given that it runs
parallel to the same observation in six dimensional ¢® theory, the SU(3) Wess-Zumino model
itself already had connections to other supersymmetric models in three dimensions [41, 42,
43, 44, 45, 46]. For instance in [44] a duality was observed in three dimensions between an
N = 2 supersymmetric U(1) gauge theory or supersymmetric Quantum Electrodynamics which
had an infrared enhancement of flavour symmetry to SU(3) and an N/ = 1 supersymmetric
Wess-Zumino model with an adjoint SU(3) symmetry corresponding to the action (6.1). It
was proposed that the latter theory has an N = 2 supersymmetry in the infrared in three
dimensions. This symmetry enhancement had been observed earlier in [41, 43] and explored
further in [44, 45, 46]. That the O(3) tensor model has also this connection with the SU(3)
Wess-Zumino model is perhaps not surprising as [46] studied various breakings and enhancement
of this group to SU(2) x U(1).

We close by noting that one can in principle construct a non-supersymmetric Lagrangian with
O(3) symmetry that has both SU(3) and supersymmetry emerging simultaneously at the same
fixed point. Such a Lagrangian would need the field content of both the ®° and ¢ superfields
and their conjugates. Consequently, the interaction Lagrangian would have a large number of
terms. A non-exhaustive representative set of the formal 3-point vertices is, for example,

{P AL, T WA W, GIAGXY, ALY E" ) (8.10)
where we have temporarily dropped the Dirac conjugate on the fermions briefly to avoid con-
fusion with the chiral aspect of the underlying supermultiplets. Here ¢' and ° are the fields

that would be in the ® supermultiplet while ¢, x® and £ are the analogous ones for the o
multiplet with the latter two being fermions. Similarly

{(¢Z¢z)2, dgbcgbgcA%(ﬁlgf)], A?kA?kC(l{bgf)zgf)J, §b§cA?j¢Z¢J, (dgbcgbg“(:) } (8.11)

are several formal quartic vertex structures. Such a Lagrangian with distinct couplings would
be non-trivial and would therefore require a large computation to determine its renormalization
group functions even at low loop order in order to explore this double emergence conjecture
further.

9 General action.

While we considered a generalization of the Wess-Zumino model to include interactions with
group valued tensor couplings which were real in (6.1) that was not the most general cubic
supersymmetric chiral theory. Instead the most general action involves tensors that themselves
undergo renormalization which we will determine to five loops in this section extending thereby
the four loop work of [91]. In other words the bare action has the form

o - ijk o 19k o
S = / d*z [ / d?0d%0 & (x,0)e 20V D} (x,0) + % / d*0 )&} df + ‘% d*0 @3@5@’5]
(9.1)
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where the tensor couplings are bare in contrast to (6.1). The corresponding renormalized quan-
tities are defined by

Oy = 7%l | By = ZYP (9.2)
for the superfields and
d’(i)jk _ Z;jk\Pqupqr 7 C{lojk’ _ ngpqrgpqr (93)
for the tensor couplings. However, the tensor renormalization constants are not independent due
to the supersymmetry Ward identity which implies that Z;] HPar ond its conjugate are constrained
to satisfy
78 7im zkn ghmnlear gpar - ik (9.4)

We have determined the conditions these place on the vertex counterterms to five loops and
implemented them within our automatic FORM programme to renormalize (9.1). Once Zg has
been calculated to this order in either the MS or MOM schemes then the renormalization group
functions are deduced from

) . 9 - _ o .
ik 7k r i r i
where the g-functions are defined by
g d o d -
§I = g B = (9.6)

The explicit form of the tensor S-function is found via the supersymmetry Ward identity (9.4)
which implies, [91],

We have followed this prescription and as a check have reproduced the four loop MS result of [91]
for 7. That result was expressed as a sum of tensors which have a close correspondence with
the individual four loop graphs of the superfield 2-point function. In other words it contained
19 tensors which were presented in a relatively compact way. At five loops there are 63 five loop
graphs as indicated in Table 1 and we take a similar approach here. First if we formally define
the field anomalous dimension tensor by

5 kg
ERD WL 03
L=1r=1

where S denotes the renormalization scheme, cfr are the numerical coefficients of the tensors

T g;, L labels the loop order and r identifies the specific tensor. The explicit expression for each
tensor is provided in Appendix A which also records the connection to the underlying five loop
graphs of the 2-point function.

Having set this notation we have determined the values for each of the coefficients. For the
MS scheme to four loops we have

NS 1 NS 1 NS 3 NS 1 NS 1 NS
MS MS MS MS MS MS
‘fum T 50 1 T T5 o B T §C3 G2 T Tgo B3 T Ty G4 = 1
MS NS 3 3 i 3 3 i 3
A’ = —10G , A = SG—-5G o, A = TGa—-5G, ab = 5G-3G
4 2 4 2 2
NS 1 1 NS 1 NS 3 3 NS 5 i 1
MS MS MS MS MS
G5 = *ngZCB R T (A *ZC4*§C3 v G8 T gy 0 Q9 T o3
NS 1 NS 1 1 NS 5 1 NS 5
MS MS MS MS
C410 = 3 Cq11 = —§+1C3 » Ca12 = ﬁ‘ﬁ@ y €413 = ) (9.9)
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which are in agreement with [47, 91]. At five loops we find

o = 34?? L = _%<5_%C4+%C3 A = —%%—?’%@%-%CS
A = a6, M= Te-urie, =2 la-26
AF = G- ety M =186-Ja+6, M= - Ve Do+ 5@
c% = _ZEC6+2§C5+%C§ , c@ = %g} , c@ = _%C‘S‘*‘%@‘F%Cg

A = —?Cs—l%QﬁréC:a , M = %g , M= é

W= 26+26-2¢ . dF = -Za+26-13

C% = —%CﬁﬂL%@—%ﬁ , c% = 9¢2 c% = 9¢2

= _%@_%Qﬁ'é@ , &8 = —%Cs—%@%—%@

Cg = _1%345—%€4+3§1<3 ; Cgf = _%CB_%C4+%€3

A = 186G+ 6 . M = 186G G+ G

c@ = —%CE)—%sz-i-éCg , c% = _%Q’)_%Q*‘é@

% = %Q’J_%@JF%@ , M= %C5-%C4+%C3

ng*% = %C5+3%<4—§C3, C%@ZO, C§Z%+3%C4_T56C3

= %+%<4_%C3 - A = _%+%€4_é43 , & = —%Q—%@
M=l M= =26+ D658 A = set

c@ = %Cs—i—?(;; , c@ = —Z§5+4C30% = %—%Q_%@ , c% - _g
M = %C5+%C4—%C3, C%Z%C&'Hr?%ﬁ—%@, M=o, =0
c% = %*F?’%@—%Cs, 6%2%4—%(4—%@,, clggi%: _%@_1716@’
3 = _g_%C‘lJFgCB , B = —g—l%CMrgQa M = %—gézﬁréé)
A = —%Jr%czw%cg , S =7, (9.10)
We have repeated this exercise for the MOM scheme and found to four loops

MOM - _ %7611\%OM: _%’C¥OM22C3’C%OM:%76§§OM_%
AoM

oM = 100G, M = —gﬁg , g™ = —;43 , MOM — 3¢,
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MOM 3 1 MOM 5 1 MOM 3 MOM 3
C15 =~y T8 as = - t5G, ar = —56 ., ag = — o
Mom D MOM _ 9 MOM _ 3 MOM _ 3

49 = 1 C410 = 1 C411 = 1 C412 = 9

MOM o

MM = 2. (9.11)

To two loops the respective coefficients are the same as those of the MS scheme consistent with
earlier expectations. At three and four loops a few of the coefficients also match between schemes
aside from the primitive graphs. At next order the coefficients are

MOM 9 MOM 75 3 MOM 75 3
C51 = §C§ y iCr2 = - §<5+ZCS , C53 = - §C5+Z<3
3 1 9 3
C¥OM = Z*gfa , ngOM = 15¢s +3¢3 C%OM = Z*QQ , Cg/%OM = 15¢5 + 3¢3
441
AMOM - — 505 4+3¢s , AMOM = q0¢5 , MOM = 10¢; , MM = <
175 3 441 7
™M = 10, M = —?C5+§C3 , M = TGC? , oM = 1—43
M = 106 -3¢, MM = 10G -3¢, MM = 56 -3¢ , APV = 93
85 3 85 3
MM =0 M = ~ 656 AN = - 765G
75 75
Clgg:?M = _ZC5+3<3 ; C%?M = _ZC5+3C3 ; c%g?M = 15¢5 + 3(3
75 3 75 3 65
ng(?M = _ZC5+§C3 ; ngz(g)M = _ZC5+§C3 ; c%%é)M = ZC5+343
MOM 65 MOM 3 MOM 9 1 MOM 9 5
530 = ZC5+6C3 y Csp = 5(3 , Chzy = §—§CS , Cs33 = Z_ZCS)
MOM 9 5 MOM 3 3 MOM 9 MOM [
C534 = Z_ZC?’ » C535 = 5—1@ y C536 = Z_CB y C537 = 5—543
7
le}gg)M = 5 ’ clf:gg)M = 10€5 ) CEEOOM = 3(3 y C%?M = 3(3 s Cg&g)M = 6<3
1 9 1 3 3
MOM MOM MOM MOM
g™ = 3-5G B = 37 3% chig = 268 chig " = 563
Mom 9 nom _ 9 mom _ 9 mom _ 9 mom _ 9
547 ] ) 548 ] 3 549 4 ) 550 4 3 551 4
Mom 9 nom _ T mom _ T mom _ 3 wmom _ 9
552 4 ) 553 9 3 554 92 ) 555 9 3 556 4
MOM MOM 9 MOM 9 MOM 9 MOM
Cs57 = 3G . C558 = 10 C559 = 9 C560 = 9 C561 =3
MOM 9 MOM
s = 3 s =T (9.12)

To assist with the derivation of both sets of coeflicients from the value of Zfbj in each scheme we
have recorded the explicit expression in Appendix B. Indeed by providing them for each specific
tensor means the divergence structure of all the individual diagrams are provided to five loops.
More tensors appear in Zg than g . The extra ones arise in terms with poles in € higher than
the simple one. They correspond to connected one-particle reducible Feynman graphs of the ®
2-point function. Such topologies and hence tensors clearly cannot appear in the final expression
for ng in either scheme which is a non-trivial check on the overall expression. This is because it
is the generalization of the observation that in a conventional coupling constant renormalization
the coefficients of the non-simple poles in € are determined by the lower order renormalization
constants.
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10 XYZ model.

As an application of the general tensor renormalization we consider a particular theory that
is connected to the Wess-Zumino model which was examined in [40, 103]. It was investigated
in [40] due to its connection with a one dimensional conformal manifold. In particular several
theories are of interest for the case when the Wess-Zumino model has three chiral superfields as
they lie on the manifold. These are the XYZ model and a version of the model itself with three
copies. First we recall the relevant properties of the more general model in order to extend the
four loop analysis of [91] to five loops here. As indicated in [40] the model involves three chiral
superfields and their anti-chiral counterparts with superpotential

92
W(®i) = g1®1®2®3 + = (@7 + @3 + @3) (10.1)
and its conjugate where g; and go are complex coupling constants. Therefore the non-zero tensor
coupling entries are

These variables were mapped to others which are similar to polar coordinates in geometry
through, [40, 104], B
= 20151 + QG2 , T = 92 , T = ? (10.3)
g1 g1
where the parameter 7 takes values in CP(1), [104]. Using these combinations certain values
of 7 and 7 allow one to define various different theories with the justification recorded in [40].
We have provided these in Table 5 where the first three were given in [40] and cWZ? is used as
shorthand to denote the three copy Wess-Zumino model. This is also equivalent to the parameter
choice of the final row of Table 5 which was not noted in [40] and will be another useful limit for
checking results. For the Zo x Zs symmetric model the complex number w and its conjugate
appear are

1 v3 1 V3
T T Theory
0 XYZ model
1 1 cWZz?
(1—v3)w? | (1 —+3)w? Zo x Zg symmetric
00 00 Wess-Zumino model (2.1)
Table 5: Definition of various models from the values of 7 and 7.
With (10.3) the anomalous dimension is formally written as
e .
Yo(r,7,7) = > filr,7)r® (10.5)
i=1

where the coefficients are given by

I

3[(r3 +2)(73 +2) + 1877]
+ 2 2+ 77]3 G

) f3(7—77__> - g

DN | =
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9 9 15 1 [(72 4 2)(7 + 2) + 1877]
[(2+77)%—8(1—73)(1—7%)
-1
0 2+ ] s
19 3 423 [(m3 +2)(73 +2) + 1877] 441 [(13 + 2) (72 + 2) + 1877
fsnm) = 5+ [8 16 2+ 773 G- 5 2+ r7)3 4
305 [2+77)* =81 7)1 —7%)] 153 [(r* +2)(7* + 2) + 1877] c
4 2477 8 2477 °
22524 77)' —8(1—77)(1 - %3)]§
8 2+ 77 ¢
45 9[@+77) =801 =) =7)]  45[(r° 4+ 2)(7° + 2) + 1877 2
42 2+ 7] 2 2+ 773 3
1323 [(2 + 77)* — 10(1 — 73)(1 — 73)]
16 2+ 77]4 < (106)
with f1 to f4 in accord with [40]. It is straightforward to check that f;(1,1) = f;(c0,00) for
i = 1 to 5. Moreover the f;(1,1) correspond to the respective coefficients of (5.1). While we

have checked the values f;(7,7) to four loops and found f5(7,7) using (10.2) and (10.3) they
could also have been derived from (6.3) from the simple identifications

(73 4+ 2)(72 + 2) + 1877]
2+ 77]3
24+ 77) =81 —73)(1-7° 24 77)* —10(1 — 73)(1 — 73
N (RS, . (e (C ) RPN (C R et ) k) QS
[2 4 77] 2+ 77]

thereby making the connection with the primitive graphs for the conformal manifold case. It is
worth remarking that given this relation between the 7T; invariants one could in principle repeat
the analysis of [40] and that which follows here for non-supersymmetric scalar ¢ theory. While
that theory is renormalizable in six dimensions the four loop renormalization group functions
have been expressed in terms of the four T; that appear here for chiral ¢? theory.

I, = 1, 15 =

The main topic of study in [40] was the evaluation of the critical exponents of the dimension
two bilinear operators denoted by A; where i € {1,2,2'/2” 2"} correspond to the different
representations of the 3 ® 3 decomposition of the 9 operators. These operator dimensions were
determined in three dimensions using conformal bootstrap methods as well as resumming four
dimensional perturbation theory. For the latter the matrix of operator anomalous dimensions
was computed to four loops prior to being evaluated at the Wilson-Fisher fixed point. The
critical point eigenvalues of this matrix then corresponded to the critical exponents A;, [40]. We
are now in a position to extend the four loop analysis of [40] to five loops in order to compare
with the bootstrap exponent estimates. First, the location of the Wilson-Fisher fixed point
has to be found. Since the S-function is synonymous with g (r, 7,7) in this model then the €
expansion of the critical value of r, denoted by 74, is given by solving ve(r«,7,7) = 4e. From
(10.5) and defining

=1

the various coefficients of the critical coupling are

_ L _ _2f3 f3 _ Shfs  5f3 fa
hl - 57 h2 = T 4373 3 — 5 ) h4 — 6 7 5

1415 713 f3 /3 2f2fa /5
hy = 2 - L+ =+ = - 5 - (10.9)
243 3 81 81 81f7 243 ¢
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The 3 x 3 matrix of mass anomalous dimensions that was constructed in [40] is defined by

dMI
= g (10.10)

where the matrix M% corresponds to the mass dimension 2 matrix (m?)” of [40] which is
computed from 'y;] using

. g 3’7”
) —
Vi = 2MY 4 [MPRET o MTAPT o M)
_ _ Oy
+ [MPSd*T + MPdPT 4+ M dP9®] —ar ;1’ : (10.11)

The next stage is to construct the 9 x 9 matrix, A%* the eigenvalues of which produce the
scaling dimensions of the bilinear operators. It has 81 elements since the matrix is labelled by
the pairs of indices (ij) and (kl) and defined by

67}&

igkl ik 57l
AT = dgtel +

(10.12)

Following the prescription given in [40] we have extended the four loop expressions for the five
critical exponents A; to the next order. In particular we found

Ay = 2 — §e2 + [;L + L36 (" + 2)[(27_—_7_::7—_2]?3+ 18Tﬂ] (3¢
28 112 [(73 + 2)(73 + 2) + 1877] (73 +2)(F3 + 2) + 1877]
- [27 T 2+ 77 =8 2+ 77]3 “
320 (77 +2)* = 8(1 = 7*)(1 = 7] 45] g
9 24 774
76 [496 [(T3 +2)(F +2) + 1877] 56 [(13 + 2)(73 + 2) + 1877
R = e
{3520 (77 +2)* = 8(1 —73)(1 — 73)} (TP +2)(7 +2) + 187’7"]] ¢
27 2+ 77 9 2+ 7] 5
800 [(r7 +2)" = 8(1 =) (1 = 77)] &
9 2+ 77]*
[256 [9 [(2+77)' =8(1—=7%)(1-7%)] 45 L4 (T3 +2)(7* +2) + 187%]}
81 [2 2+ 77)* 4 2 [2 4+ 77]3
C64[(TP+2)(7 4+ 2) + 1877]2] %
3 24 77]6 s
T7)% — —73 — 73
+ % [(2 + ) [213_(1_7__]4 )(1 )]<7j| 65 + 0(66) (10'13)
for the singlet operator as well as
{4 [t = r7][10 —77] E B(l—77)*+ (1 -7%)(1 - 7‘3)]C 3
9 2 : 73 3 2+ 77]4 ’
{ 4 [ — 2677 + 100][1 — 77]
[2 + 77]*
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16201 —77)2+77)2+ 31 —77)2 + (1 —3)(1 — 73)](2 + 777)]

9 2+ 7] s
B(l—77)2+ (1 -7 -7
+ 8 [2 + 77]* G
320 3r7(2+77)(1 —77)2 4+ 8(1 =) (1 —7%)] . ] 4
27 2+ 77]° G| €
_ [ 4 197272 — 3877 4 100][1 — 77][10 — 77]
T Ln 2+ 77
+ ;; 3172721 = 7%)(1 = 7%) = 32r7(1 = 7%)(1 = 7%) + 28(1 = 7%)(1 = 79)
— (277" +857%7% — 2377272 + 14877 — 52)(1 — 77)] = f’; =T
- g [7(1 — ) (1 =77+ 2177 (1 — 77)* + 12(1 — 77)
3 _3 G4
- 517? [3(7073#" — 3867°7° — 56677 + 207)(2+ 77)(1 — 77)
— 1447272 (1 = 7%)(1 — 7%) + 191677 (1 — 7°) (1 — 7%)
3 3 G
800 [8(1—7)(1—=7)A+7+7)(A+7+72) + 3772+ 77)(1 — 77)?]
27 24 77] e
+ % (187474 — 727373 4+ 1377%7% — 20577 — 34)(1 — 77)
+67°7°(1 = 7°)(1 = 7°) + 467272 (1 — 7°) (1 — 7%)
— 777 (1= 7)1 = 7%) +9(1 = 7°)? + 9(1 — 7°)°
3 sy G
+52(1 = 77) 4+ 52(1 — 77)] 2r T
L 302 [rr(1+277)(1 —77)* +4(1 — 7°)(1 — %3)]C7 S 1o . (1014)

3 [2 + 77]°

Electronic expressions for these are included in the attached data file. While we have also
calculated expressions for Ag/, Agr and Agm explicitly they can also be deduced from the
following mappings given in [40],

[T+ 2] _ [T + 2]
A Ao : - -
2 — Ag T—>[T_1] ,T—>[%_1]
[wT + 2] _ [T + 2]
A A//:
2 = A2 wr—1 7 jor—1
[w?T + 2] _ (@27 + 2]
A A///: - —— -~ 1 1
2 — Ag T — Wi =1 T — o7 = 1] (10.15)

We note that each expression resulting from applying the mappings to Ag is consistent with
the direct five loop evaluation which provides a useful check on the critical exponents. Another
consistency check is that setting both 7 and 7 to be equal to 1 or oo in Aj reproduces the
coefficients of ¢ in (6.8). The discrepancy in the O(e) term is due to the canonical part of AY.

Having determined the five loop corrections to A; we can now extract estimates for them
in three dimensions. First we record the explicit expressions for the e expansion of the various
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Padé Al Az/
] || 1.859277 | 1.632346
] || 1.868528 | 1.660704
| |l 1.777975 | 1.633073
] 1.633070
| 1l 1.797562 | 1.639170
]
]
]
]

1.669152 | 1.638139

3,2 — | 1.632229
2,3 1.637434
1,4] || 1.705650 | 1.637537

Table 6: Padé approximants at three, four and five loops for non-exact operator dimensions in
the XYZ model.

exponents for each of the three theories. We have

4 3 4
APYE = 2 - 2 + 4(6C3+1)% + 4(27g4f42g3f12045f7);—7
5
+ 2(72¢2 + 420C5 — 378C4 + 1416¢5 — 18005 + 3969¢7 + 38)2—1 + O(e%)
AXYZ = 9 — 2
AFYZE = AFYE = ARX?
o~ 2c_ 2oy ynac 1)63 + A(54¢s — 56¢; — 160C5 — 3) ¢
= — -€ — —¢ -1)—= - - —3)=—=
379 Y ! s ° Y81
5
+ 2(528¢F + 248C3 — 504¢, + 1467¢5 — 2400(s + 5292¢7 — 14)&3
+ O(%) (10.16)
3 3
AVE = AgVZ
4, e et
= 2 = g+ 402G+ 1) + 4540 — 84Cs — 240G — 7)o
5
+ 4(5T6¢2 + 396(s5 — 378Cs + 1416¢5 — 1800s + 5292(7 + 19)2—1 + O(9)
4
AGVE = AWV = AWZ g = (10.17)
and
Loy X7 4 5 e et
ATPE = 2 = 2@ 4 A9 1)+ 281G — 126G — 3005 — 14)
5
+ (2376¢3 + 2424C3 — 2268¢, + 58565 — 9000Cs + 22491¢7 + 152)% + O(e%)
A§2XZQ — Ag%XZQ
26— 1 265 — 1
P (26 5‘/§)e+ (265 53\/5)62

(713 — 123) 3(71V/3 — 123)
3

+ (1590v/3¢3 — 41V/3 — 2754¢3 + 71)9(71x/§—123)
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+ (14310V/3¢4 — 17452v/3¢3 — 53000v/3¢5 — 1011v/3 + 30228(3 — 24786(4
4

54(714/3 — 123)

+ (177624/3¢2 + 107664v/3(3 — 157068+v/3C4 + 451070v/3¢5 — 795000v/3Cs

+1912617v/3¢r — 1602v/3 — 307656(3 — 186480(s + 272052, — 781293(;
5

324(71v/3 — 123)

+91800¢5 + 1751)

+ 1377000(s — 3312792(7 + 2774) + O(e%)

Aglg X 7o AZ2 X Lo

= AL
P (97 — 561/3) N (11v/3 - 19)
B (713 —123)° | 3(71v/3—123)°

3

(143G +41VE = 1986~ T1)

+ (1026v/3¢4 — 724/3(3 — 3800V/3¢5 + 3013 + 1260¢3 — 1782(4

64

54(71v/3 — 123)
+ (6408v/3¢2 + 1392V/3¢3 — 6516V/3¢4 + 48983+/3¢5 — 57000v/3Cs

+ 122598v/3¢7 + 2170v/3 — 11160¢2 — 2448(3 + 11340(, — 84996(5
5

324(71v/3 — 123)

+ 6600¢5 — 521)

+ 99000¢s — 2130037 — 3758) + O(e%) . (10.18)

We note that both AﬁWZS and AEWZS are indeed consistent with (6.8) as expected after allowance
is made for the canonical dimension contribution of 2 — 2¢. For several exponents the series
truncates at O(e) and no order symbol is included. This is because these are exact to all orders
in € and their three dimensional values tally precisely with those of [40]. In deriving (10.16),
(10.17) and (10.18) we have encoded (10.13) and (10.14) together with the 7 and 7 dependent
expressions for Ag/, Ao and Asgw in one programme and then evaluated each explicitly. For
the XYZ and the cWZ? cases we find that several non-exact exponents are equal and this agrees
with [40]. However in the Zg x Zg case we disagree with the equivalences recorded in Table 2 of
[40] for the 2” and 2" dimensions. Instead we found A52*%2 = AZ2x%2 and AZ2x%2 — AZ2xZe,
To see the alternating sign pattern and the magnitude of the coefficients the numerical values
of the non-exact exponents are

ARYZ = 9 — 1.333333¢ + 3.649929¢% — 22.621480¢* + 95.728196¢° + O(c%)
AZYZ = AZYZ — AXY7Z
= 2 — 0.666667¢ — 0.444444€> + 1.988842¢3 — 8.779169¢' + 40.471457¢
+ O(€%)
AVE = AgY
= 2 — 1.333333¢2 + 6.855415€> — 44.205924¢* 4 290.935250¢> + O(€%)
AZ2xZ2 — 9 _ 1.333333¢2 4 5.252672¢° — 28.805134¢* + 145.920995¢° + O(€°)
A%QXZQ — A%/Q/XZQ
2 — 1.577350e + 0.051567€2 + 0.278877¢> — 0.888082¢* + 5.331310€°
+ O(€%)
Zo X7, Lo X7,
AGT = AT

= 2 — 0.422650¢ — 0.718233€> + 2.926608¢> — 16.028343¢ 4 78.326933¢°
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+ O(%) . (10.19)

For the exponents which have an O(e) term the series are alternating when the canonical value
of (2 — 2¢) is allowed for.

Padé Aq

2,1] || 1.906650
[1,2] || 1.910813
3,1] || 1.869530
2,2] | ——
[1,3] || 1.874821
[4,1] || 1.879670
3,2] || 1.877593
2,3] || 1.879319
[1,4] || 1.879929

Table 7: Padé approximants at three, four and five loops for the non-exact operator dimensions
in cWZ2 model.

Padé Al Az Az/
| || 1.887757 | ——— | 1.729559
] 1l 1.893722 | 1.253242 | 1.747789
] |l 1.842132 | 1.237664 | 1.706973
]| —— | 1.237098 | 1.702425
] || 1.850355 | ——— | 1.716789
]
]
|
]

»—l[\:c,o:J;HwooH
= W DN W N DN

1.813663 | 1.245205 | 1.684017
: 1.255392
1.243920

1.821597 | 1.253878 | 1.692667

Table 8: Padé approximants at three, four and five loops for the non-exact operator dimensions
in Zg X Zo model.

In [44] the perturbative expansion was used to estimate the exponents in three dimensions in
order to compare them with the conformal bootstrap calculation. Therefore we have extended
that study here using the same method. This was to construct the Padé approximants for the
five loop non-exact exponents. The results for each of the three theories are given in Tables 6,
7 and 8 where the Padé approximants for three and four loops are also given. The [L, 0] and
[0, L] approximants at each loop order L are excluded as they either do not converge or are
singular in 2 < d < 4. There are no entries in each table for some operator dimensions. This
is because for those cases the Padé approximant is also singular above three dimensions. So
because there is no continuous connection down from four dimensions to three in these cases
any evaluation at the latter dimension is unreliable. What is generally evident for each of the
theories is that the five loop Padé approximants are similar especially in the cases where there
are no singularities. Table 9 summarizes the situation at three, four and five loops for each of
the three theories and also records the conformal bootstrap results of [40]. Each loop estimate
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is the average of the Padé approximants in the individual table of each theory. In [40] the three
loop Padé approximants were used to compare with the bootstrap. By providing the same data
for the next two loop orders gives an overall indication of the trend of including higher order
loops. For the XYZ model the Ay estimates are decreasing towards the bootstrap value and is
a significant improvement on the three loop estimate. The estimates for the other exponents
are slowly decreasing away from the value given in [40]. It might be tempting to surmise that
the operator dimensions in the XYZ model have been interchanged since swapping them would
give agreement to a few percent. However this is not the case from analysing (10.16). A
similar feature occurs for the non-exact exponent of the cWZ?3 theory although the five loop
value is within 2% of the bootstrap value. The situation for the three non-exact dimensions
for the Zy x Zs case is somewhat mixed. Clearly the estimate for A%QXZQ is within less than
a percentage of the value of [40] and is stable at each loop order. For the other operators the
tolerance is around 5% but the trend with loop order is not as settled.

Model | Dimension 3 loop 4 loop 5 loop [40]
XYZ Aq 1.863902 | 1.787768 | 1.687401 || 1.639
Aoy 1.646525 | 1.635104 | 1.636335 || 1.681

cWZ3 Aq 1.908732 | 1.872175 | 1.879128 || 1.910
Zo X Lo Aq 1.890740 | 1.846243 | 1.817630 || 1.898
Ag 1.253242 | 1.237381 | 1.249599 || 1.259

JADY; 1.738674 | 1.708729 | 1.688342 || 1.727

Table 9: Averages of three, four and five loop Padé approximants for non-exact operator dimen-
sions compared with conformal bootstrap results.

Figure 12: Six loop product primitive graphs.
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11 Beyond five loops.

While our focus to this point has been on the five loop renormalization group functions, the next
stage in studying (2.1) would be to extend this to six loops. Given what we have established
here it is worth giving guidance on what would be required for that as several common features
emerged. First, at six loops there are 324 Feynman graphs contributing to the ® 2-point function.
The content of v3(a) at that order will involve rationals as well as what we term irrationals.
The majority of these will be (, for n = 3 to 9. In addition their products such as (3¢5 and
(3, which are both present in the six loop ¢* S-function [32, 34], should appear if the structure
of the renormalization group functions of this non-supersymmetric paradigm theory is valid.
That would therefore imply the potential additional presence of the multiple zeta (3 5. As noted
earlier the O(1/N?3) expression for the exponent 7, [49], may indicate that such an irrational is
actually absent. However if it were present it would have to arise in a primitive graph whose
O(N) group theory factor is beyond O(1/N3). Alternatively candidate primitive graphs from
¢* theory may be excluded because of the restriction the chiral symmetry places on the graph
topologies.

A
Y

Figure 13: Three loop planar vertex correction.

Of the 324 graphs it turns out that 17 of these are primitive. One feature to emerge from
the five loop evaluation of the Feynman graphs was the appearance of what was termed the
product primitives. These are 2-point graphs with vertex subgraphs. As the vertex function is
finite, we noted that the simple pole can be deduced from the finite value of the vertex itself.
At six loops we have illustrated the 8 graphs of the total primitives that are product primitives
in Figure 12 where the vertex V3 is defined in Figure 13. The residue of the simple pole in € of
each of the graphs will be proportional to (3(5 and have a group factor of T5T5T% for (6.1). The
explicit coefficient of this residue requires the implementation of the D-algebra. This is also an
issue for the remaining non-product primitives especially as the power of the irreducible scalar
products increases with loop order. The remaining graphs intermediate to those with rational
contributions and the primitives correspond to the decoration of the lower loop primitives with
an extra one loop bubble. A subset of these should be calculable with the use of subtractions
and FORCER. The remainder of this type, similar to the non-product primitives, could only be
reliably evaluated with a five loop version of FORCER.

Next we note that the concept of product primitives naturally continues at higher loop order.
We have provided several examples in Figure 14 to illustrate the point. A new vertex function
V4 has been defined in Figure 15 where the actual 3-point function is isolated by amputating
the right external vertex. In Figure 14 the graphs are 8, 10, 9 and 13 loops respectively from
top left to bottom right. The simple pole residue of each would be (32C5, Cg, C3C52 and (3C52C7 in
the same respective order with the equally associated group factors of ToT2Tr1, ToT2,, ToT5T%
and T2T5T721T94. So there is a clear association of each group factor with a specific ¢,.
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Y

Y
Y

Figure 14: Higher order product primitive graphs.

Finally we return to the rational part of vg(a) and note that it is possible to deduce the
contribution in the MS scheme purely from the five loop computation. This is because the
rational part of the six loop MOM scheme is known from the Hopf algebra solution of the
Dyson-Schwinger equation given in [81]. As we showed earlier the five loop MOM expression for
v (a) could be deduced from the MS expression by using the coupling constant map (5.6) and
the formalism of (5.8) and (5.9). To extract the rational part at six loops requires one ingredient
which is the finite part of the ® 2-point function at five loops. This is because the coupling
constant mapping at L loops determines the (L 4 1) loop renormalization group functions from
(5.8) and (5.9) once they are available at L loops in one specific scheme. Previously the MOM
five loop -function was deduced from the MS one. Here we reverse the process given the result
of [81]. So all that is required is the rational part of the ® 2-point function at five loops. As
these are the bubble graphs which are simple to evaluate to the finite part we have applied the

Figure 15: Definition of four loop primitive vertex.
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formalism to find the rational piece of the six loop MS S-function which is

4 5

Bla) = gaQ - ;cﬁ FB6G +15) % 4 [34Gs — 180G — 240G — 27] &
6
+ [1512¢5 + 2574¢3 — 1323(4 + 5484¢5 — 27006 + 7938(7 + 237 a—2
369 . I 7 8
+ |- 20 + non-rational contribution| a’ + O(a®) (11.1)

and we note that the alternating sign pattern of the rationals is maintained. To determine the
non-rational contribution of (11.1) is of course a more strenuous exercise.

12 Discussion.

We have completed a comprehensive study of the Wess-Zumino model at five loops. This has
proceeded in two phases with the initial one outlining the algorithm for carrying out the compu-
tation of the five loop Feynman graphs that are required for the S-function of the original model
of [1]. Once established the second part addressed applications to various extensions of the core
theory by allowing the fields to lie in various symmetry groups or take the couplings to be general
tensors. One consequence was to extend the precision of the e expansion of critical exponents
to a new order. This is important in the context of other methods such as the conformal boot-
strap and the functional renormalization group techniques. These have been applied to several
problems like the emergent supersymmetric fixed point that is present in Gross-Neveu-Yukawa
systems which relate to materials in Nature and could be the first manifestation of supersym-
metry in reality. As a corollary the five loop Wess-Zumino renormalization could be a useful
independent check on any future higher order renormalization of that system. However, to effect
such a calculation in the Gross-Neveu-Yukawa model in four dimensions at five loops would be
a massive undertaking especially given the number of graphs that would need to be evaluated.
At four loops either 7384 or 188531 Feynman graphs were determined in [15] where the two
totals depend on whether real or complex scalars were used together with their respective Dirac
or left and right handed Weyl fermions. These are substantially larger numbers than the four
loop ones given in Table 1. This is primarily due to the fact that unlike the component Wess-
Zumino model each interaction of the Gross-Neveu-Yukawa system has an independent coupling
constant. Consequently all the 3- and 4-point vertices have to be renormalized separately in the
absence of any Ward identities. One interesting aspect of the € expansion analysis was the close
agreement of the five loop estimates with other methods for the Gross-Neveu-Yukawa system as
is evident from Table 3. While the five loop results appear competitive with the latest bootstrap
estimates there is still not precise agreement. Whether this is an indication of some discrepancy
or not, such as non-perturbative contributions outside the scope of perturbation theory, is worth
pursuing. If so it should not violate the underlying supersymmetry in the extension from four
to three dimensions in an e expansion approach. The other case where we produced exponent
estimates to compare with bootstrap methods, which concerned the one dimensional conformal
manifold connected to the XYZ model, we found values that in some instances were close to
the values quoted in [40]. This suggests that perhaps higher orders in € would be necessary to
produce a more accurate comparison. While we have sketched out some basic ideas as to how
a six loop computation could proceed again such a task is not trivial. Perhaps the graphical
function methods of [31, 32, 33| offers the best direction to follow especially if the method could
be adapted to superspace in the first instance rather than have to use a component Lagrangian.
Such a six loop renormalization would give insight into whether there are multiple zetas in the
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B-function of the Wess-Zumino model. This is the order where (35 first appears in its non-
supersymmetric cousin ¢* theory which also has no chiral symmetry. If it was present at this
order in (2.1) then there would be no more debate.
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A Tensor definitions.

In this appendix we define the tensors TEJT that appear in the anomalous dimension of the general
action (9.1). Each of these tensors depends on the tensor couplings d% and dV*. The subscript
of each dummy index j, in each of the definitions is in direct correspondence to the label used
in the QGRAF electronic output that defines the underlying graph. In particular the bridge
between Tfr and the settings of the qgraf.dat file in partnership with the form.sty style file
is to use the onepi and nosnail options. To three loops the first set of tensors is

ij1j2 Jijije — g
d d = T
dW132 Ji3dads Jii1ds gizdajs — Tg{
(1132 gd33537 Jiadeds Jidsia Jirisie Jizitis  — Tgﬁ
ij172 7737576 Jiad7s Jidsja Ji1dsde Ji2iris — i
d d d d d d = T5
419132 Jisdedn giadsis Jij1ds Jizdads gisjeir  — T§§
1172 gisiade gisivis giiiis Jizdads gieitis  — T??ZL ) (A1)

For orientation T1”1 and TZZ{ correspond to the graphs of Figures 1 and 2 respectively while Tg{
is the non-planar graph of Figure 4. We note that in [91] a factor of  was included in the
definition of the tensor corresponding to T}]. At four loops the 13 tensors are

ij1J2 7i3dsd9 Jiadrito jiedsii1 Jijsda Ji1jsje Ji2ivis jiojiojin  — td
d?192d. d d d d d d = Ty
ij1j2 Jd3dsde Jiadedio Ji1137ds Jidsda Jirdsje Ji2gris Jiojiojin  — td
d172d. d d d d’17598d d = T
9334 irdsde gizitis qiediodni Jijijz Jisisio Jisdeiio Jirijris — ng
dH172 Ji33537 Jiadeds gisitodn Jidsia girisie Jiziis giojioin  — Tﬁ
ij1J2 Ji3dsd6 Jiadodio Jivisgi1 Jisda Jirdsje Ji2gris Jitijejio — id
d*1792 737536 d d d’17578d d = Ty
J132 isdsde giajrio gisiiodn Jijsja Jirisie Ji2dtis giojrodin  — Ti%
dU1I2 933637 Jiaisio isir0in Jij1ds gizjajs giejsito girjeiin  — Tf?
ij152 333637 Jiaisdo Jisi10d11 Jij1ds Ji2jads Jiejsio giriioin  — il
d172d. d d d d d d = Ty
J1132 isdedn giajsis giediodni Jij1ds Jiejads Jivirodn gisjeds  — Ti%
19133 i2dads gitirodn gisieds Jijiiz Jisiedr Jiadsis giojrodin  — Tﬁo

ij1J2 7737637 Ji4dsds Ji0J10d11 Ji13 Jiedads Jiedrde Jisjiojin  _ itd
d d d d d d d d = Ty
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Jd¥I2 isiade Jisitis givijodio Jij1is gizjajs giejeito Jirisiin  — TEZ
JH172 gisjade gisivis giojiodn Jij1is Jizjads Jieirde gisjroin  — Tﬁg (A.2)
where Ty} and T respectively correspond to the graphs in the bottom row of Figure 6.

At five loops the 63 different tensors are

dW132 gisiedno Jiajniiiz gisirins giejsiia Jijaia girisie gi2jiis gitajoi giajiojiz — Té{

dU9132 Jd3J9d0 Jiainiiiz isjeiis Jivisiia gijsia ginisie gi2jris gitsjoit giajiojiz — Tgé

J4I374 Ji13536 (25778 JI13J9011 Jiradr0d12 Jidrj2 gisjodio giaiiiiiz gisjejis givisiia  — Tg%

JU1I2 Isdedno giajirinz gisjeiis givisiia gijsia giijsie gizivis giisjosio giiajinjiz — Tgi

dW9132 (337539 JI410011 Ji6j12J13 Ji7i8 14 Jiiaja girisie gi2Jris giojiajiz gisjojin — ng

Ji1I2 i3T50 giairodnn giej12J13 givisiia gijsia girisie Jizivis gioji2iis gitajiojin — Tg%

di1I2 333539 giadrodn giejrirz gisiisita Jijsia giijsie gizivis giejisia giizjiojin — Tg;

dW334 Ji1J536 J327778 (J39713714 gir2J1011 Jidjz gisisie giajioii gieiriiz Jisjizjia  — ng

Ji9192 JI33sdo giajrodn giejrire gisiiaita gijsia girisie Jizivis gioji2iis gitajiojin — ng

1334 qirisde gi2dnis gioj12J13 gitajiojin Jijrjz Jisisdo Jiadrodi giejriiz gisjisjia  — ngl'o
dW132 Jd3Jsdo Jiaji0d11 gieiii2 Jisiiajia Jijaja girisie gi2Jjiis giojioiis gizjiijia  — Tgl
Ji9192 Ji3dsdo giadrodin giejriiz gisiizjia Jijsisa girisie Ji2iris gioji2ito giijisiia — T;{Z
Ji1I2 33359 giairiro gieniiiz gisiisita gijsia giijsie gizivis giejisia gitojinjiz — T§{3
JdH192 gisisde giadnito gieiiiinz gisjisjia Jijsia Jirisie Jizivis giojiiiis Jitojizjia — T;{;
Ji9192 JI3dsdo giairiro gieniiie gisiiaiia Jijsja Jirisie Jizivis giojiiiiz Jitojizjia — T;{E)
1132 isdsdo giajino giedsini girziisiia Jijsia giiisie Jizizis qiejiidiz Jiojizjia — Tg{ﬁ
49374 JI17536 (25778 JI9T11012 Jir0J13]14 JiT12 JI3579 Jiadrito Jiedsi giizjizjia — Té{}
dW132 (337539 JI477310 JI6T8I11 Ji12J13]14 JiT3Ja Ji1J5J6 JI2J778 Jiojroi1z ginjizjia  — ng
Ji1I2 Ji3dsdo gisjedio giriniiiz gisiiaita gijsia giiisie gizivis gioji1is gitojizjia — T;{Q
49374 JI17536 (25778 3911013 Jir0J12]14 JIT1J2 JI3J579 Jiajeiio JiTiingize Jisiizjia — ngo
dW9132 337539 Jiadedo Jiriniii2 isiiaiia Jijsja girisie gi2jris giojiijiz giojizjia  — ngl
J4I374 917536 (25778 JI0T11512 Ji10J13714 JiT12 JI3I579 Jiajeiro Jiriiniiz Jisjizjia  — ngg
Ji192 i3T50 giajedio gisiiziia girigriiz Jijsja giijsie gizivis giejioia giizjizjia — ngg
dV334 Ji1J536 J327778 Ji9T1011 gir2d13j14 Jid gz gisisio giajeiio Jisiiziia Jiniiriiz — ng4
Ji9192 Ji3dsdo gisjeiio girisii gir2J13i14 Jijsia girisie Jizivis giojiiiiz Jitojizjia — ngg,
J4I374 JI17536 (25778 JI9T11012 Ji10J13]14 JIT12 JI3I579 Jiajeiio JiTisi Ji12iizjia — ngﬁ
dW132 337539 Jiaedo Jiisiin qir2d1jia Jijaja girisie gi2jiis giojiojiz ginijizjia  — T§g7
J49374 Ji13536 Ji2J7I8 Ji9T10012 Ji11J13]14 JiT172 JI3J579 Jiadedio Jirisii gi2jisiia — ngs
Ji1I2 333507 Jiajedo Jisdroiit Ji1adn2d1s Jijsja gi1jsie gizivis gioji2iis gitojiijia — ngg
dW132 733537 Ji476J9 Jis10d11 qir2d13714 Jijada girisie gi2J7is giojiojiz ginijizjia  — Tégo
Ji9192 JI3dse giajodio gitiniiie gisiiaiia Jijsja Jirisie Jizivis giojiiis Jitojizjia  — ngl
Ji1I2 Ji3dse giajodio giriniiiz gisiiaiia gijsia giijsie gizivis giojiiiz gitojizjia  — ngg
di91I2 JI33s36 Jiajodio gitisii gi12disiia Jijsia giijsie gizivis gitojisjia gitijojiz — ngg
dW334 J317536 (J327778 (Ji10J13714 31159712 JiT1J2 JI3576 Jiajodro Jirisiit gizgizjia  — ng4
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dij1j2 djajsjﬁ dj4j9j1o dj?jsjn dj12j13j14 Jjj3j4 lejsja Jj2j7j8 Jj9j10j12 Jj11j13j14 _ TU

- 7535
Ji1I2 JI33sd6 Jiairio Jisr0i1t Ji1ad1231s Jijsja girisie Jizivis gioji2iis gitojinjia — ngG
dU1I2 333536 (Jai7I9 JIsTr0011 Ji12013714 JIT3J4 JI1J5T6 JI2T78 Jioji0d12 Jii1jizjia — T§§7
dW132 337637 Ji47sdo Jisi10d11 qir2d13]14 Jii1Js Ji2jads giejsiiz Jiriisiia Jiojiojin  — ngs
JU9192 933637 Jiaisio Jisir0d11 Ji12J13714 JiI1J3 Ji24d5 JieJsii2 Jiti10013 Jioj1ijia — ngg
19132 isdedn giajsio qisitodnt girziisiia Jijiis giziads Jiejsiz giviodis girajiojin — Tgio
d9173 Ji2Jads Jieisinz ji1iod1s girajiojin Jiinjz gisiedr giajsio gisjiojin gizjizjia  — Tgil
di9192 933617 Jiajsio Jisiroinn Ji12J13J14 Jirgs gi2jajs Jiedsio Jivjediz gijisiia — TgiZ
9132 Jisdedn giajsio gisitodni giradi2jis Jijiis giziads Jiejsio Jivii2d1s gitojiijia — Tgig
JdH1752 Jisiedn Jiadsio gisiton ji12j1314 Jid1Js Jizjads Jiedsde givioii2 Jiijizjia — T5ZZ4
JU9192 933657 Jiai5I8 39511513 Ji10J12714 JIT173 Ji24T5 Ji6Joiro JiTi11i12 Jisizjia — T;ir)
19133 i2dads gisiodno giviviiiz gisiisiia Jijiie gisjedr Jiajsis Jiejiniiz girojizjia — Tgiﬁ
dU9192 333637 (JI4J578 39710013 Jiradi1drz JidrJs gi2jads giejoiio Jiriinjize Jisjizjia — Téi?
dW173 Jd2Jads gieiodo gitiniii2 isiiaiia Jiijz gisjedr giajsis giojioiis giajijiz — Tgis
Ji9192 933657 JiaisI8 Jiodr0d11 Ji12J13714 J3I173 Ji2J4T5 JieJoiio Jiti1nii2 Jisjizjia  — Tgig
JU91I3 JI234d5 giejodio gitiiiiz gisiisiia gijnz gisjedr giajsjs giejioi giizjizjia — ngo
dW192 (737637 JI47578 (J39912J13 JI10J11714 JiJ173 JI2J4T5 Jiri10d11 gisiede giajizjis  — ngl
JU9133 923435 girirodn gisjejo Ji1aii2d1s Jijriz Jisjedr Jiajsjs gioji2i1s gitojinjia — ngg
Ji9192 333637 (JJaJ578 JI0T10512 Ji11013714 JIT1]3 Ji24T5 JiTTr0]11 JI8T6Jo Ji12i13j14 — ng?)
dW178 Jd2Jads Jirit0d11 gisjede qir2d13jia Jiinjz gisjedr giajsis giojiojiz ginijizjia  — ng4
JU9192 933657 Jiai5I8 39712513 JI10J11714 JIT1]3 Ji294T5 JI6T7I9 Jisir0d11 Ji1aj12j1s  — ngg,
1132 Jisdedr giajsis gieitodiz qiviiisjia Jijiis giziads Jieirio gisitojin giziizjia — ngﬁ
dW132 Ji3jage Jis1ds Ji9d1113 giroji2gia Jiinis gizjads giejoiio Jirinijiz Jisjizjia  — ng7
di9192 Ji3dade gisivis 43911512 Ji10J13J14 Ji1Js Ji2jads Jiededio Jitiiiii2 Jisjisiia — ngs
1132 isdade Jisitis qirodisiia gitijeiiz Jijiis giziads gisjodio givisii giziizjia — ngg
JH173 Ji23435 giedodto Ji1isin Ji12j1314 Jid1J2 Jisjade Jisivis girodisiia gitijojiz  — T;%O
JU9192 JI3dade gisiris Jiod10512 Ji11J13714 JiI13 Ji24d5 JieJoiio Jitisin Ji12i13j1a — Tgél
Ji9192 Ji3dade Jis I8 39712513 Ji10J11714 JII173 Ji2J4T5 JI6T7I9 Jisji0d11 Ji1aji2jis  — ngQ
JdH132 qisiade isivis giojioi2 Jit1jisji4 Jijris jizjads Jieivie gisjrodni Jit2jizjia — ngg . (A3)

Ag‘ain to assist with orientation the graphs in the top row of Figure 11 are respectively Tg{l and
T.1,. Those of the lower row correspond to the tensors T5] and Tgl,.

B Renormalization constants.

In this appendix we record the explicit form of the wave function renormalization constant for
the action with the general tensor couplings (9.1). This is primarily to illustrate the structure
of such a tensor renormalization constant as well as to provide the numerical value of each pole
in € for each tensor. To record the result in a compact way we decompose the renormalization
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constant Zfbj into a basis of tensors as well as the residues of the respective poles giving

L kg 1 L dp
Zg = o7 + ZZZ%LT et ZZZ%LT v (B.1)
L=1qg=0r=1 L=2q=0r=1

where kj, is defined in the last column of Table 1. The coefficients a‘qu ., and b‘zq| 1, have pairs
of labels. The first pair identifies the loop order and the power of the € pole while the second
pair relates to the 1 relevant tensor. The label S denotes either the MS or MOM scheme. Clearly

MS () and pM

aroiLr = 0 as ¢ = 0 would indicate the finite part of the renormalization constant.

L0|Lr

In addition to the tensors TEJT that ultimately appear in the related renormalization group
functions, other ones arise for poles in € of order higher than the simple one. These are denoted
by D} and those that arise to five loops are

Dy = (13)" D?ﬂ = (13)7 , D = (TuTi)”

Dy = (rh)” . Df = (13)” . Df = (tuTR)” . DY = (TuTu)”

D = (TnTw)” , Di = (TwTw)” , D = (TsuTu)”?

Dy = (1h)7 , DY = (1})7 , DY = (taT()” , DY = (T3Tn)"

D = (TaTw)” , Dy = (TTu)? , DY = (TssTon)” , Diy = (TsaTor)”

D?é = (T31T121)ij J D?io = (T32T121)ij J D?n = (T33T121)ij ) D?m = (T34T121)ij
Diy = (TuTw)? , Dfy = (TwTn)? , D5 = (TusTn)” , Dfg = (TusTin)”
DY, = (TsTu)? , D¥g = (TuTi)? , Diy = (TwTu)”? , Dy = (TasTin)”
D%, = (TwTu)” , D%y = (TweTu)” , D&y = (TmTu)” , Dy = (TueTu)?
D = (TusTi)" . (B.2)

Graphically these correspond to the product of one-particle irreducible graphs. Their coeffi-
cients in the Laurent expansion in € are determined by lower loop orders consistent with the
renormalization group function.

For the MS scheme the residue of the poles to three loops are

1 1 1 1 s 1
MS MS MS MS MS
i = Ty o0 %2221 T T g oo 211 T og oo a3z T T g 0 98333 T T o)
1 1 1 1 s 1
MS MS MS MS MS
3334 = Toq o 3232 T g 0 93233 T g9y 0 234 T g o 93131 T _Z@
1 1 1
MS MS MS
3132 = 18 431033 = 54 o+ 93134 T 6 (B.3)
with those at four loop being given by
MS 1 MS 1 s 1 NS 1
Ggaja5 = 64 Gyqja6 = T 64 Ayaja8 = — 192 ° Gyala9 = 64
1 1 1 3 1
MS MS MS MS
Qaglaro = Tgg 0 Qaan T T gy 0 Qaamz T T g 0 %z T T gp
s o 1w 1 o b s 1 owms 1
Qa3las = g 0 Qasle T o4 o Qa3ls T gy 0 Baslae T o5 o sl T gy
s oo 1 s o 1 ows o 1
Ag3ja11 = 64 Ay3j412 = 39 y31413 = 16
1 1 1 S 1
MS MS MS MS
Qo422 = ——=G Aa2)43 = _T6C3 v Qg4 = _§C3 v Qyo45 = 64
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MS 5 MS 3 MS 1 NS 5
Qo146 = T192 Ago)47 = _EQ% v Qyopug = 192 ° Ago149 = 192
NS 5 NS 1 NS 1 NS 19
GJMS o s -2 ms o L o ws D

42|410 192 42|411 64 42|412 96 42|413 96

MS 5 MS 3 3 MS 3 3

dpp = 36 e = T lt G anpy = 500t 10

MS 3 3 MS L1 MS 1

Oq1jaa = _EC4+§C3 v Q4145 = @‘@CS v Qaiae T T oy

MS 3 3 MS 5 MS 1 MS 1
Aqjar = §C4+T6C3 v Qqipa8 = T 192 Qaijag = ~ 94 0 Qa0 T T oy
MS 11 NS 5 1 MS 5
410411 674_372@’ v Q41412 = _%"‘E@ CVIVIE 16 (B.4)

The coefficients of the connected higher pole tensors are

s o 1oows s o LS 1

22|21 - 32 ’ 33|31 - 128 ’ 33|32 — 32 ) 32|32 - 32

pMS O Ms o1 MS 3 Ms o1
44|41 - 2048 ’ 44|42 - 128 ) 44‘43 - 256 ) 44|45 - 192
s 1S 1

44|46 - 96 ) 44|47 - 96

s 1 s 3 Ms o L s o booows 1
43|42 64 ’ 43‘43 256 ) 43|45 192 ) 43|46 96 ) 43|47 392
AV MS _LC Ms L Ms o L

42|42 128 ’ 42‘44 16 3 42‘45 192 ’ 42‘46 96

NS 1

MS

b42|47 Y] (B.5)

where obviously there can be no one loop coefficient.

Given that there are more tensors at five loops we record the data for this part of Zfbj by the
order of the pole. First, the leading pole coefficients are

S s oo L s o L
55(54 320 ’ 55|56 160 55515 320 55/532 480
s oo 1w 1 w1 s 1
55(533 160 55/534 160 55/535 160 55536 24()
M5 B ¥ N - SN 1 - S
55(537 240 55538 160 °’ 55/543 320 ’ 55(544 320
oS s o o s o 1 s o L
55(547 480 ° 55548 480 55(549 160 55/550 160
Moo ows o ms o 1 oowms 1
55(551 240 °’ 55552 240 55/553 240 55(554 240)
M o Vw1 ows 1w 1
55/555 160 55|556 160 55|558 960 ’ 55/559 320
MS 1 MS 1 MS 1 MS 1
aie = ~330 adiie = ~ 350 ey = ~ 180 ° adiies = ~ 150 (B9
then

s o1 owms 1 s 1 s 11

54|54 320 °’ 54|56 64 ° 54/515 80 ’ 54|532 1920

Mo - LS s b s 11

54/533 64 54|534 64 54/535 160 54/536 960

M. - M Al oo s 3 IS L

54(537 480 54/538 40 54|543 320 54|544 60



Ms U Ms M Ms 1 ms 1
Udlsar T qgop 0 YBdlsas T g 0 Y54l549 T gy 0 YBdlss0 T gy
MS 1 s IS v 11 55 11
54551 = g0 0 Y452 T ggp 0 84553 T 4gp 0 s T )
_ 1 o 1 o h - )
MS MS MS MS
Usalsss = Tgp 0 Pe4isse T gz 0 salss T gp 0 %40 T g
_ 1 o 3 o ) o |
MS MS MS MS
54560 — o 0 546l T 39p 0 UB4alse2 T gy 0 Ysdlses T g (B.7)
are the quartic pole ones. Continuing the triple pole coefficients are
MS L 13 MS 1 MS 11
453/563 Tog 0 Y32 T T oggp 0 %ssls6l T T 359 0 8360 = T 39
MS 11 MS 13 MS 1 s 1
a53\559 _% , G/53\558 - _% s a53|556 = _TGO , (l53‘555 = ﬁ
NS e s 7T owms _ o 1oows o 1
MS 11 MS 1 s 17 s 7
@53]544 T390 0 843 = T390 0 Ye3sss T T oggp 0 983537 T T Iop
NS tloows Y ows 1 ows o 17
53]535 160 53]534 160 ° 53|533 160 53]515 960
MS 1 MS 1 S 3 NS 9
MS 9 MS 3 MS 3 S 3
953545 _@@ ) o3z T _ZOC?’ » 53541 = _%43 53540 = _%53
MS 9 MS 1 MS 1 MS 1
G = Tyept v GEbm = T gl G = T 3p% e Gmbs = g0
_ 1 o ) o ) - !
531527 _%Cg » 953j526 _E@ » O53j525 = _ECS » O53524 = _%Cg
_ 1 o ) o | o ;
@53/523 _@@ (53522 = _%63 053521 = —%C?) » O53)513 = —%C?)
MS 1 MS 1 MS 1 MS 1
53158 0% 0 9T = T g% o s = T8 0 93 = T 1%
MS 1
53]52 ~160% (B.8)
with
MS 3 3 MS 3 3 MS 1 1
‘Rz = Tt g0 0 % = T 30% T g% 0 Ut T 330 160
MS 3 3 MS 3 1 MS 3 3
“52/55 7%<4+E<3 » 95256 *%*ﬁ@ v Aso)57 = *%C4+@C3
MS 3 3 MS 1 VS 1 VS 1
@52(58 _%C4+EC3 @529 = ZCE’ v G52)510 = Z€5 v Usoj512 = 1€5
M 3 3 MS LI 1 7S 1
52513 _mCzL‘F%é?) » O52515 = 120 U52(516 — 1(5 v Qsa517 = 1(5
MS 1 MS 3 3 MS 3 3
@52|518 §C5 v Osos21 = T ﬁ@l‘i- %C?) » Q52500 = ﬁ@;-i— %Cg
MS 3 7 MS 3 7 MS 3 3
A59)523 —ﬁg-i-%@ ) Ggolras = —ﬁgﬁ-%@) L gy = _%QH_E@’
MS 3 3 NS 3 3 NS 3 3
452|526 _%<4+EC3 » U527 = _ﬁ@l‘{'%@ v Asolp28 = —EQ‘F%CS
452529 *%<4+E<3 s Osaf530 = *%C4+EC3 » U5a31 = @C4+ﬁf3
19 MS  _ 3 1 MS 3 1
452|532 1920 O52)533 = — 320 ﬁCS v O5o534 = T 3920 ﬁg‘}



NS _ 1 1 G MS 19 1 G MS 19 MS 1

%5255 7 160~ 80 %5253 = 960 T 160 Y2537 T gz v B2 T g
ag‘%w = G ag\sﬂo = _%C‘H‘%@ , agﬁu = —%Cri-%@

ag\smz = _8%@-1-%(3 , agﬁms = —ﬁ_%@ ’ agﬁ%@ _ 2%40

ag‘s&m B %QﬂL%@ ’ ag/[?|s546 = %Qﬂ-%@ , ag‘%u — _%

s = _% @k = _%_%Q” a0 = —%—%Cs

ag\%sﬂ = %Q*—%Qz , ag%% = ﬁ , ag%g)g — ﬁ—i_%@

“5@\8563 = % (B.9)

as the coeflicients for the double pole. Finally the simple poles that lead to yfg are

1 s 143 9 1
C3 ;

agﬁl = —%{; , afﬁw = %@ + %Q ~ 160 U51jp3 = ﬁ@ + %@ - @C?)
alngFM = 37;0 - %44 + %OC:% : a?“T%g, = - %CE) + %sz - 4*10C3

ag/IT%g = _§<5 + %sz - Zl()<3 ; agﬁg = gCG - ZCB - 2*104:%

ag\s&,m = gCG - 245 - %C?? ) a¥|8511 = - %47 ) ag/IT|S512 = g( - 245 . %Cg
ag\%lg = %% + %@L - %Cs ) ag\%m = - %47 ) a¥|8515 = - %

ag‘%m = 246 - Z% + i(g ) GIQAT%N = g% - ZCE) + iCSQ

ag‘smg = 1%(6 - 245 + %{32, , agfglg = - %C:’)Q ) CL5W|S520 = - %Cg

ag%m = %C{, + %Q — %C?, , ag‘%n = %CE) + %Q — %CS

agﬁsgg = %45 + %sz - %@ 5 ag‘%m = %Q + %Q - %43

alg/IT%% = —§C5 + %Cz; — 4%C3 , ag‘%% = - §C5 + %CZL - Zl()C:’,

ag\%y = %@ + %Q — 8710@ ; ag\sms = %@ + %54 - %C?)

ag‘%% = —%45 + %Q; - %C&; , G5W|S530 = - ;%CL% + %Q — %Cs

a@%m = *%45 - %Q + %43 , agﬁgg = - % - %Q + 3%(3

My = s e Gibals o ol = 1o TGt oG
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alg/{‘sg)% = %Q-l- 160C3 ) aﬁm = % ) alg/IT|S538 = _%

ag‘%gg = —*Cﬁ 4C5+ OC‘% ) alg/llﬁr)m = —%C —%CZ% ; ag/{%le = _$C5_%<3
alg/ljfm = *C5 ;C ) ag\smg = 20"'@@“‘ 563 a¥|8544 = %

My = 5 sl TG s Al = —%Ocs——gﬂ%cg

ag\smg = —%—%CMrlC ; a%ﬁsm: _%_%@JF;C

agﬁ)m = %444‘ éOC ; 15\/55552 = %C 160C3 ; a¥\8553 = % , agﬁsm = %
alg/[T‘S555 = %O—ﬁélﬂr 568 G%Sg,% = —%—%er 1C

a%%m = *CE)—EC —*CS ) ag/{\ssyss = % ) ag/{|s559 = 1 "‘ﬁcﬁl_ 43

ag/{%ﬁo = i—l—ﬁQ—SloCs ; a15vhs561 = —%4-*(4—*(3

“%S%Q = %*ﬁ@l* OCS , alf}/{|8563 = *% (B.10)

from which it is straightforward to see the connection with CMS.

For the coefficients of D L]T we have

pMus - _ .7 M _ 5 s _ 3 M5 1
55|51 8192 55|53 1024 55|54 512 5556 384

bs5|57 = —%2 ; b55\58 = —% ; b¥|s510 = —5% , bgsm = _%

b55|512 - _% ’ b55\517 = —% ) 555\518 = —% , bgsmo = _7%8

b55|521 = _ﬁ , b55\522 = —ﬁ ; 555\523 = —ﬁ , bg%% = —3%4

b55|525 = —%4 (B.11)

for the = coefficients and

5 1 1
b54|53 = 1024 b54|54 = 256 b54|56 = 192 b54|57 = 9
pMS x Ms o 1 pMS 1 pMS 3
54|58 - 48 ) 54|510 - 512 ’ 54‘511 - 256 ) 54|512 - 256
1 1 1 1
b54|517 = 256 b54\518 = 96 b54\520 = 256 b54|521 = 96
1 MS 1 NS 1 1
b54|522 = 96 54523 = 256 b54\524 = 128 b54|525 = 64 (B-12)
for the next order. The remaining two sets of coefficients are
3 MS 1 MS 7 3
b53\54 = “512 b53|55 = _543 ) b53\58 = T 192 b53|59 = _@C?»
1 NS 1 1 1
b53|510 = 512 b53|511 = 256 b53|512 = T 64 b53\514 = _QCS
1 1 MS 1 NS )
b53|515 = _@C3 J b53|516 = _3§C3 J b53|517 = 956 b53\518 = T 768
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3 MS 1 MS ) )
_7<3 )

b53l519 = bssjse0 = 7R bajzo1 = ~ 63 b53|522 = e
b53|523 = % ) b¥|8524 = _ﬁ ) b¥|8525 = _% (B.13)
and
b52|514 - _T28<4+ C3 ) b52\515 = _1728<4+634C3 ) b52‘516 = —a@—l—g%@,
b52|517 = %—%Cz& ; b§§|s518 = —% , bg\%w = 7@4_@43
b52|520 - _% ’ bgﬁm - _% ' b52\522 = _% ; b52|523 = % m@é
b52|524 = 324"'614C ; bgﬁ)% = 6574 (B.14)

MOM

bMOM
Lq|Lr

The analogous expressions for a and LolLr 2T€ available in the attached data file.
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