Enhanced Long-Term Cathode Stability by Tuning Interfacial Nanocomposite for Intermediate Temperature Solid Oxide Fuel Cells



Hu, Dingyue, Dawson, Karl ORCID: 0000-0003-3249-8328, Zanella, Marco ORCID: 0000-0002-6164-6169, Manning, Troy D ORCID: 0000-0002-7624-4306, Daniels, Luke M ORCID: 0000-0002-7077-6125, Browning, Nigel D ORCID: 0000-0003-0491-251X, Mehdi, B Layla ORCID: 0000-0002-8281-9524, Xu, Yaobin, Amari, Houari, Shin, J Felix
et al (show 8 more authors) (2022) Enhanced Long-Term Cathode Stability by Tuning Interfacial Nanocomposite for Intermediate Temperature Solid Oxide Fuel Cells. ADVANCED MATERIALS INTERFACES, 9 (14). p. 2102131.

Access the full-text of this item by clicking on the Open Access link.

Abstract

<jats:title>Abstract</jats:title><jats:p>Performance durability is one of the essential requirements for solid oxide fuel cell materials operating in the intermediate temperature range (500–700 °C). The trade‐off between desirable catalytic activity and long‐term stability challenges the development and commercialization of electrode materials. Here an oxygen cathode material, Ba<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>(Co<jats:sub>0.7</jats:sub>Fe<jats:sub>0.3</jats:sub>)<jats:sub>0.69−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>Mg<jats:italic><jats:sub>x</jats:sub></jats:italic>W<jats:sub>0.31</jats:sub>O<jats:sub>3−</jats:sub><jats:italic><jats:sub>δ</jats:sub></jats:italic> (BSCFW‐<jats:italic>x</jats:italic>Mg), that exhibits excellent electrocatalytic performance through the addition of an optimized amount of Mg to the self‐assembled nanocomposite Ba<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>(Co<jats:sub>0.7</jats:sub>Fe<jats:sub>0.3</jats:sub>)<jats:sub>0.69</jats:sub>W<jats:sub>0.31</jats:sub>O<jats:sub>3−</jats:sub><jats:italic><jats:sub>δ</jats:sub></jats:italic> (BSCFW) by simple solid‐state reaction is reported. Distinct from the bulk and surface approaches to introduce vacancies and defects in materials design, here the Mg<jats:sup>2+</jats:sup> ions concentrate at the single perovskite/double perovskite interface of BSCFW with dislocations and Mg<jats:sup>2+</jats:sup>‐rich nanolayers, resulting in stressed and compositionally inhomogeneous interface regions. The interfacial chemistry within these nanocomposites provides an additional degree of freedom to enable performance optimization over single phase materials and promotes the durability of alkaline‐earth based fuel cell materials.</jats:p>

Item Type: Article
Uncontrolled Keywords: cathodes, long-term stability of cathode materials, perovskite, self-assembly, solid oxide fuel cells
Divisions: Faculty of Science and Engineering > School of Engineering
Faculty of Science and Engineering > School of Physical Sciences
Depositing User: Symplectic Admin
Date Deposited: 06 Apr 2022 12:59
Last Modified: 04 Sep 2023 03:14
DOI: 10.1002/admi.202102131
Open Access URL: https://doi.org/10.1002/admi.202102131
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3152278