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Abstract. A well-known result of Lagrange (1770) characterises qua-
dratic irrationalities as those real numbers that can be written as peri-
odic continued fractions. Hermite asked in 1848 if there exists some way
to write cubic irrationalities periodically. To approach this problem, Ja-
cobi and Perron generalised the classical continued fraction algorithm
to the three-dimensional case; this algorithm is called now the Jacobi-
Perron algorithm. It is known only to provide periodicity for some cubic
irrationalities.

In this paper we introduce two new algorithms in the spirit of the
Jacobi-Perron algorithm: the heuristic algebraic periodicity detecting
algorithm and the sin2-algorithm. The heuristic algebraic periodicity
detecting algorithm is a very fast and efficient algorithm, its output is
periodic for numerous examples of cubic irrationalities, however its peri-
odicity for cubic irrationalities is not proven. The sin2-algorithm is lim-
ited to the totally-real cubic case (all the roots of cubic polynomials are
real numbers). Recently we proved the periodicity of the sin2-algorithm
for all cubic totally-real irrationalities. To the best of our knowledge this
is the first Jacobi-Perron type algorithm for which the cubic periodicity
is proven. The sin2-algorithm provides an answer to Hermite’s problem
for the totally real case (let us mention that the case of cubic algebraic
numbers with complex conjugate roots remains open).

We conclude this paper with one important application of Jacobi-
Perron type algorithms to the computation of independent elements in
the maximal groups of commuting matrices of algebraic irrationalities.
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This paper is dedicated to periodic representations of algebraic numbers.
Recall that a number α is algebraic if it is a root of some polynomial with
integer coefficients. The smallest degree of any integer polynomial with root
α is called the degree of α. It is well known that decimal representations for
all rational numbers are eventually periodic or finite, so the case of algebraic
numbers of degree 1 is straightforward. Let us consider a similar question
for algebraic numbers of higher degrees.

It turns out that the study of this question has a rich history. Our
journey starts in ancient Greece with the invention of Euclid’s algorithm
about 300 BC. Euclid’s algorithm was originally developed for computing
the greatest common divisor of two integers. It was two millennia after its
invention when Euclid’s algorithm was used in the study of quadratic irra-
tionals (i.e. algebraic numbers of degree 2). An important stage here was
the introduction of the concept of regular continued fractions by J. Wallis in
1695, that finally linked Euclid’s algorithm to irrational numbers in general
and to quadratic irrationalities in particular. In 1770 J.-L. Lagrange proved
the periodicity of continued fractions for quadratic irrationalities, closing
the question for the quadratic case (see Section 1).

For the first time the problem of the generalisation of the Lagrange
theorem on periodicity of continued fractions for quadratic irrationalities to
the case of algebraic numbers of degree three was posed by Ch. Hermite in
1848 in a very general setting. Hermite was wondering if there is a periodic
description to cubic irrationalities. There are many different interpretations
of this question that led to remarkable theories in geometry and dynamics
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of numbers (see a small survey on various multidimensional generalisations
of ordinary continued fractions in Chapter 23 in [18]).

For this paper we restrict ourselves entirely to the algorithmic approach
to the problem that was initiated by C. G. J. Jacobi in 1868 and further
developed by O. Perron in 1907. They developed the multidimensional con-
tinued fraction algorithm, now known as the Jacobi-Perron algorithm. The
Jacobi-Perron algorithm generalises the Euclidean algorithm and provides
a sequence of pairs of integers similar to the regular continued fractions
provided by the Euclidean algorithm. The output of the algorithm is peri-
odic for certain cubic numbers, however it is believed to be non-periodic for
some others. For that reason the Jacobi-Perron algorithm does not provide
a complete solution to Hermite’s problem, however it suggests that an al-
gorithmic approach might be beneficial to the question. A similar situation
occurs with many other Jacobi-Perron type algorithms, that are neither
proved nor disproved to produce a periodic output.

Recall that Jacobi-Perron type algorithms in the three-dimensional case
work with single vectors (1, α, β) as an input. Informally speaking one vec-
tor, even if it is cubic, does not represent any algebraic cone (while in fact
the periodic structure is derived from the cone). As a result such algorithms
should not always produce periodic sequences. In order to tackle the peri-
odicity problem we suggest to start with triples of vectors rather than with
single ones. Once these vectors are conjugate for some cubic extension we
should get periodicity.

In this paper we introduce two new modifications of the Jacobi-Perron
algorithm. We call the first one the heuristic algebraic periodicity detect-
ing algorithm (or heuristic APD-algorithm for short) and the second —
the sin2-algorithm. The heuristic APD-algorithm demonstrates periodicity
in numerous experiments and is conjectured to be periodic for all cubic
numbers. The sin2-algorithm works only in the totally real case (all three
roots of the polynomial are real numbers). For the sin2-algorithm we were
able to prove periodicity for triples of cubic conjugate vectors in [19]. (To
the best of our knowledge, this is the first complete proof of periodicity
for Jacobi-Perron type algorithms.) So the sin2-algorithm provides an an-
swer to Hermite’s problem in the form of Jacobi-Perron type algorithm for
the totally real cubic case. The non-totally-real case remains open, however
we believe that the techniques of the proof for the sin2-algorithm can be
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adapted for that case as well. Both the heuristic APD-algorithm and the
sin2-algorithm are discussed in Section 2.

In Section 3 we say a few words regarding higher dimensional cases,
which currently remains open.

Further we address an important application of Jacobi-Perron type algo-
rithms. It turns out that such algorithms provide a simple way to write
independent (with respect to the matrix multiplication operation) com-
muting pairs of matrices for the corresponding Dirichlet group. Recall that
groups of commuting matrices (so called Dirichlet -groups) are described by
the mysterious Dirichlet’s unit theorem (we formulate and discuss it later
in Subsection 4.3), whose complete understanding will probably cast light
on the periodicity of generalised Euclidean algorithms. Classical proofs of
Dirichlet’s unit theorem provide huge estimates on the coefficients of the
generators of the Dirichlet groups. The brute force algorithms provided by
this theorem are very slow and seem to have no practical value. We discuss
a simple and fast approach to the problem in the last two sections of the
paper.

1. Euclid’s algorithm for quadratic irrationalities

As we have already mentioned, the periodicity of quadratic irrationalities
is closely related to Euclid’s algorithm. Recall that the classical Euclid’s
algorithm computes the greatest common divisor of two integer numbers.
Let us first write down a slightly extended form such that it can be applied
to arbitrary numbers (not necessarily integers).

Extended Euclid’s algorithm

Input:We start with a pair of real numbers (p, q) = (p0, q0) such that
q0 > 0.
Step of the algorithm: Assume that we have found two real num-
bers (pi, qi) with qi ≥ 0. Then the next step is:

(pi, qi) 7→ (pi+1, qi+1) = (qi, pi − bpi/qicqi)
Here we call the value ai = bpi/qic the i-th element of the algorithm.
Termination of the algorithm: In case that we have arrived at the
pair (pi, qi) with qi = 0 we do not proceed further. Here the algorithm
terminates.

Remark 1.1. Note that in the case of a pair of integers (p, q) with q > 0

we have the classical Euclid’s algorithm. Here the algorithm terminates in
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a finite number of steps and at the last step we get (gcd(p, q), 0) where
gcd(p, q) is the greatest common divisor of p and q.

Remark 1.2. The algorithm terminates if p/q is a rational number, and it
does not terminate otherwise.

Example 1.3. Let us apply the algorithm to the pair (21, 15). We have:

(21, 15) 7→ (15, 6) 7→ (6, 3) 7→ (3, 0).

The output of the algorithm is as follows:

a1 = 1, a2 = 2, and a3 = 2.

Note that

gcd(21, 15) = 3 and
21

15
= 1 +

1

2 + 1/2
.

Now let us focus on the case of pairs (α, 1) where α is any real number. In
this case the extended Euclid’s algorithm generates a remarkable sequence
of numbers ai. If α is a rational number, then the algorithm terminates (on
the n-th step for some integer n) and the output sequence (ai) satisfies the
following identity:

α = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an
The expression on the right hand side is called a regular continued fraction
for α and denoted by [a0; a1 : · · · : an]. (The term continued fraction was
introduced by J. Wallis in 1695.)

The above identity for rational α is extended to the case of irrational α
by the following limit

lim
k→∞

[a0; a1 : · · · : ak],

which we call the regular continued fraction for α and denote by [a0; a1 :

· · · ]. Let us just notice that this limit always exists and distinct sequences
converge to distinct irrational numbers. (For the details of the classical
theory of continued fractions we refer e.g. to [21].)

We are finally arriving at a very non-trivial theorem on periodicity of
continued fractions for quadratic irrationalities. This theory was introduced
by J.-L. Lagrange in 1770, almost a century after the studies by J. Wallis
(see in Chapter 34 of [28]).
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Theorem 1.4. (J.-L. Lagrange.) A regular continued fraction of α is

periodic if and only if α is a quadratic irrationality (i.e. a+ b
√
c

d
for some

integers a, b, c, and d, where b 6= 0, c > 1, d > 0, and c is square-free).

Probably we should note that Lagrange proved the if statement, while the
only if statement was proved by Euler. This theorem gives a complete answer
to the question of periodic representations for quadratic irrationalities.

Example 1.5. Let us apply the extended Euclidean algorithm to (2
√

5, 1).
We have

(2
√

5, 1) 7→ c1(1 +
√

5/2, 1) 7→ c2(4 + 2
√

5, 1) 7→ c3(1 +
√

5/2, 1) 7→ . . .

where

c1 = 2
√

5− 4, c2 = 9− 4
√

5, c3 = 34
√

5− 76, . . .

Note that the vectors obtained on the first and on the third step are pro-
portional. Hence the output of the Euclidean algorithm is periodic with one
element in the pre-period and two elements in the period. Here we have

a1 = 4, a2k = 2, and a2k+1 = 8

for all integer k ≥ 1. We obtain

2
√

5 = [4; 2 : 8 : 2 : 8 : 2 : 8 : . . .].

2. On periodicity of cubic irrationalities

The problem of exhibiting periodicity for cubic irrationalities was posed
by Ch. Hermite in 1848 (see e.g. [33], [14]), where he was asking whether
there exists some way to write cubic irrationalities periodically? In this sec-
tion we discuss the Jacobi-Perron algorithmic approach and recent advances
in it.

2.1. Jacobi-Perron algorithm. The Jacobi-Perron algorithm is one of
the possible ways to generalise the extended Euclid’s algorithm to higher
dimensions. It was proposed by C. G. J. Jacobi in 1868 in [15] and further
developed by O. Perron in 1907, see [32]. The algorithm is as follows.

Jacobi-Perron algorithm

Input: We start with triples of real numbers (x, y, z).
Step of the algorithm: In the previous step we have constructed
(xi, yi, zi). Then we proceed with the following iteration:

(xi, yi, zi) 7→ (xi+1, yi+1, zi+1) =
(
yi, zi −

⌊zi
yi

⌋
yi, xi −

⌊xi
yi

⌋
y
)
.
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Here the i-th element of the corresponding multidimensional contin-
ued fraction is set to be the pair of integers(⌊zi

yi

⌋
,
⌊xi
yi

⌋)
.

Termination of the algorithm: If we have arrived to a triple
(xi, yi, zi) where yi = 0, then the algorithm terminates.

Remark 2.1. (How to generate cubic vectors.) As we have seen the
input data for the Jacobi-Perron algorithm is a triple of numbers. Let us
discuss how to write a cubic vector starting from a cubic number α. For the
first two coordinates of this vector we take 1 and α. Now it remains to find
out how to pick the last coordinate of this vector. There is a natural answer
to this question. Consider an arbitrary polynomial q of degree 2 with integer
coefficients and let us take the vector

(1, α, q(α)).

The simplest choice here would be (1, α, α2), taking the polynomial q(x) =

x2.

In general, one can pick three numbers in Q(α) that form a basis of the
linear space Q(α) over Q. Different choices of the basis of Q(α) will result in
different outputs of the Jacobi-Perron algorithm. The problem of describing
all possible periods for continued fraction algorithms for different vectors in
Q(α) remains open for every single α. In particular the sets of available
periods for the classical case of regular continued fractions of quadratic
irrationalities in Q(

√
2), Q(

√
3), Q(

√
5) are unknown.

Let us continue with the following example.

Example 2.2. Let ξ be a real root of the polynomial x3 + 2x2 + x + 4,
namely

ξ = −(53 + 6
√

78)1/3

3
− 1

3(53 + 6
√

78)1/3
− 2

3
.

Now consider the vector
(1, ξ, ξ2 + ξ).

Then the Jacobi-Perron algorithm will generate the following periodic
output.

1 2 3 4 5 6 2k + 1 2k + 2

bx/yc -1 1 1 1 2 6 3 7
bz/yc -2 0 0 0 2 4 1 1
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(Here k ≥ 3.) After the first 6 steps of the algorithm the sequence starts to
be periodic with period 2.

The question of periodicity for the Jacobi-Perron algorithm is known in
mathematical folklore as Jacobi’s Last Theorem.

Problem 2.3. (Jacobi’s Last Theorem.) Let K be a totally real cubic
number field. Consider arbitrary elements y and z of K satisfying 0 < y, z <

1 such that 1, y, and z are independent elements over Q. Is it true that the
Jacobi-Perron algorithm generates an eventually periodic continued fraction
with starting data v = (1, y, z)?

The answer to the question of Jacobi’s Last Theorem seems to be nega-
tive. Let us consider another example to see this.

Example 2.4. Let us consider the vector

v = (1,
3
√

4,
3
√

16).

Numerical computations suggest that the output of the Jacobi-Perron al-
gorithm for this vector is not eventually periodic. Here we show the output
elements for the first several steps of the algorithm (for further numerical
computations and discussions we refer to [12]).

1 2 3 4 5 6 7 8 9 10 11 12 . . . 94 . . .

bx/yc 0 1 13 1 6 1 1 3 2 3 4 1 . . . 476 . . .
bz/yc 1 1 9 1 2 0 0 2 0 1 1 1 . . . 388 . . .

2.2. A few words about Gauss-Kuzmin statistics. It follows a brief
informal discussion of the last example. The sequence of the last example
seems to be non-periodic. One could notice that the sizes of the elements
are relatively small; we have a few bumps only. In fact, this is a rather
predictible behaviour for non-periodic sequences. Let us consider the first
30 digits for the regular continued fraction for π. We have

π = [3 : 7; 15; 1; 292; 1; 1; 1; 2; 1; 3; 1; 14; 2; 1; 1; 2; 2; 2; 2; 1; 84; 2; 1; 1; 15; . . .].

As we see, the most frequent element is 1; the next frequent element is 2;
etc. This phenomenon is described by the Gauss-Kuzmin theorem stating
that the frequency of an element k is

1

ln(2)
ln

(
1 +

1

k(k + 1)

)
.

For the first time this was proved by R. O. Kuzmin in 1928 in [25] (see also
in [26]). It is interesting to notice that the Gauss-Kusmin statistics have a
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projective nature; it can be written in terms of cross-ratios:
1

ln(2)
ln

(
1 +

1

k(k + 1)

)
=

ln[−1, 0, k, k + 1]

ln[−1, 0, 1,∞]
.

It remains to say that the analogues of the Gauss-Kuzmin theorem for
Jacobi-Perron type algorithms in higher dimensions are not known, however
we might expect a similar behaviour for the elements in higher dimensions
as well.

For further discussions and the first successful generalisation of Gauss-
Kuzmin theorem to higher dimensional case we refer to [24] and [16]; see
also Chapter 19 in [18].

2.3. Heuristic algebraic periodicity detecting algorithm. Computa-
tions by L. Elsner and H. Hasse [12] suggest that the output of the Jacobi-
Perron algorithm for the cubic vector (1, 3

√
4, 3
√

16) of Example 2.4 is non-
periodic. However the proof of this fact is missing, there is only a strong
belief that the sequence is indeed not periodic.

Let us informally say a few words on the reason for the Jacobi-Perron
algorithm potentially to be non-periodic for cubic vectors. In fact, any cubic
vector has a pair of algebraically conjugate vectors that are completely
defined by the original vector. The pairs of these three vectors generate an
arrangement of three planes with an action of the corresponding Dirichlet
groups that we will discuss in Section 4. In some sense the choice of the
elements in the classical Jacobi-Perron algorithm is blind to the action of
the corresponding Dirichlet group; it follows more the Euclidean distances
to nearest integers. The latter seems to be not appropriate for cubic vectors.

Let us introduce an important ternary form related to triples of vectors.
We will use it for triples of cubic conjugate vectors.

Definition 2.5. Consider three vectors

u = (u1, u2, u3), v = (v1, v2, v3), and w = (w1, w2, w3)

in C3. The following ternary form

det

 x y z
v1 v2 v3
w1 w2 w3

 · det

 u1 u2 u3
x y z
w1 w2 w3

 · det

 u1 u2 u3
v1 v2 v3
x y z


in three variables x, y, and z is called the Markov-Davenport characteristic
of (x, y, z) with respect to the vectors u, v, w. Denote it by χu,v,w.

Remark 2.6. Markov-Davenport characteristics were first studied in the
context of their minima in a series of works [7, 8, 9, 10] by H. Davenport in
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the middle of the 20th century. These minima generalise two-dimensional
Markov minima introduced by A. Markov in 1879 in [29] (for more details
see the very nice book [1] by M. Aigner and also the paper [20]).

Remark 2.7. Note that the set of zeroes for a Markov-Davenport charac-
teristic is the union of all invariant planes in C3. The Markov-Davenport
characteristic χu,v,w measures how close a point is to the union of planes
spanned by pairs of vectors (u, v), (v, w), and (w, u).

Now we would like to introduce a modification of the Jacobi-Perron algo-
rithm that will be aiming to minimise the Markov-Davenport characteristic
(rather than the Euclidean distance to the nearest integer vector). We would
like to call this algorithm the heuristic algebraic periodicity detecting algo-
rithm or the heuristic APD-algorithm, for short.

Heuristic APD-algorithm

Input: One starts with triples of real vectors (ξ, ν, µ) where the last
coordinate of ξ = (x0, y0, z0) is positive (i.e. z0 > 0),
Step 0: First of all let us make all the coordinates of ξ positive by
applying the following integer lattice preserving transformation:

T0 : (x, y, z) 7→
(
x−

⌊x
z

⌋
z, y −

⌊y
z

⌋
z, z
)
,

namely we consider
(ξ1, ν1, µ1) =

(
T0(ξ), T0(ν), T0(µ)

)
.

Step i for i ≥ 1: In the previous step we have constructed (ξi, νi, µi)
with positive coordinates of ξi = (xi, yi, zi).

• Stage 1: Determination of the element of the contin-
ued fraction: The new element of the heuristic continued
fraction (ai, bi) is defined by the following four conditions:

— 0 ≤ ai ≤ bxi/zic;
— 0 ≤ bi ≤ byi/zic;
— (ai, bi) 6= (0, 0) (with only one exception: we choose (0, 0)

if bxi/zic < 1 and byi/zic < 1);
— the triple (ai, bi, 1) provides the minimal possible value

for the absolute value of the Markov-Davenport characteristic
χξ,ν,µ among the vectors (a, b, 1) whose first two coordinates
satisfy the first three conditions.
• Stage 2: Iteration step:

Ti : (x, y, z) 7→ (y − biz, z, x− aiz).

Here we construct
(ξi+1, νi+1, µi+1) =

(
Ti(ξi), Ti(νi), Ti(µi)

)
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Termination of the algorithm. In the case that the last coordinate
of ξi is zero (i.e. zi = 0) we do not proceed further and the algorithm
terminates.

Remark 2.8. As one can see, the iteration step of the heuristic APD-
algorithm resembles the Jacobi-Perron algorithm. Here the main difference
between the algorithms is as follows. The Jacobi-Perron algorithm takes
maximal possible values for ai and bi, which would be the best to approx-
imate coordinatewise. However, as Example 2.4 shows, the coordinatewise
approximation is not a good approximation with respect to the Markov-
Davenport characteristic. In the heuristic APD-algorithm we are aiming to
minimise the Markov-Davenport characteristic, which owing to Remark 2.7
(informally speaking) provides a simultaneous approximation.

Remark 2.9. If the last coordinate of the vector (xi, yi, zi) is greater than
the other two coordinates, then the continued fraction element generated at
this step is (0, 0), and the corresponding transformation Ti is simply a cyclic
coordinate permutation. Hence the value of the continued fraction on the
next step will be distinct to (0, 0). In fact the algorithm does not produce
two consecutive (0, 0) pairs (disregarding Step 0).

Remark 2.10. The idea of the heuristic APD-algorithm appeared during
a study of Klein polyhedra by the author. Klein polyhedra were introduced
in 1895 by F. Klein in [22, 23] (roughly at the same time when the Jacobi-
Perron algorithm appeared for the first time). Theory of Klein polyhedra
represents the combinatorial periodicity of algebraic cones. They are known
to be doubly periodic for the case of totally real cubic numbers. Not much
is known about the link between periodicity of Klein polyhedra and Jacobi-
Perron type algorithms, however they are both related to Dirichlet groups
discussed briefly below. (For further details of Klein polyhedra we refer
to [3, 2, 18].)

The heuristic APD-algorithm is designed to work with triples of cubic
conjugate vectors. For simplicity we define conjugate vectors using the fol-
lowing property.

Definition 2.11. Let M be a matrix with integer elements, and let the
characteristic polynomial of M be irreducible over Q. Then the triples of
linearly independent eigenvectors of M are said to be cubic conjugate vec-
tors.
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Remark 2.12. (How to generate triples of cubic conjugate vectors
from a single cubic number.) Let α be a cubic number and let p be
any polynomial with integer coefficients of degree 3 having α as a root. (We
assume that p is irreducible over Q.) Similarly to the case of single cubic
vectors (see Remark 2.1) we can construct triples of conjugate cubic vectors.
In order to do this we additionally pick an arbitrary degree 2 polynomial q
with integer coefficients. Now a triple of conjugate vectors can be naturally
derived from (α, p, q). Namely, let α, β, and γ be distinct roots of p. Then
we set

ξ =
(
1, α, q(α)

)
;

ν =
(
1, β, q(β)

)
;

µ =
(
1, γ, q(γ)

)
.

It turns out that these vectors are eigenvectors of some integer matrix, and
hence they are cubic conjugate vectors.

Example 2.13. Let us now consider the cubic vector of Example 2.4 for
which we did not see any periodicity of the Jacobi-Perron algorithm output:

ξ = (1,
3
√

4,
3
√

16).

Note that 3
√

4 is a root of x3 − 4. Note also that
3
√

16 = (
3
√

4)2

Let β and γ be two other complex roots of x3 − 4. Consider two vectors:

ν = (1, β, β2) and µ = (1, γ, γ2).

Then the output of the heuristic APD-algorithm for the triple of vectors
(ξ, ν, µ) is as follows (here k ≥ 1):

0 1 2 3 4 5 6 4k + 3 4k + 4 4k + 5 4k + 6

a1 0 0 1 0 0 0 1 1 1 0 0
b1 0 0 2 1 1 1 5 0 1 1 6

Note that Step 0 does not change the triple. At Step 1 we have a situation
when the last element is the greatest, so we have the exception (a1, b1) =

(0, 0). Hence we simply do the cyclic permutation of the coordinates. After
6 steps of the pre-period we have a periodic sequence with period 4.

Let us continue with the following conjecture.

Conjecture 2.14. The heuristic APD-algorithm is periodic for all triples
of cubic conjugate vectors as in Definition 2.11.

Remark 2.15. The conjecture can be considered separately for both totally-
real and complex cases. This conjecture has a straightforward generalisation
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to the case of d-tuples of conjugate algebraic vectors of degree d (see some
further discussions in Section 3).

2.4. Technical remarks on the heuristic APD-algorithm. When try-
ing to calculate the continued fractions for particular examples of quadratic
numbers, one can use the following two approaches. The first one is more
symbolic: we represent quadratic numbers as surds and do all our compu-
tations with them (e.g. see Example 1.5). The second approach is to work
with sufficiently precise rational decimal approximations of quadratic num-
bers and find the period using their continued fractions.

Similar to the quadratic case, cubic and quartic cases have a symbolic
approach due to Cardano’s formula and Ferrari’s method. It is easier to
detect periodicity using sufficiently good approximation of cubic vectors.
For instance, in order to find a periodic representation for the vector of
Example 2.4, it is enough to know only the first 5 decimal digits of the
coordinates of this vector. In general, the smaller the periods and the pre-
period are, and the smaller the elements of the pre-period and the period
are, the smaller the rate of approximation that is sufficient for constructing
the period and the pre-period.

Remark 2.16. (On Gauss-Kuzmin statistics.) Practically the algorithm is
very fast if the obtained elements of continued fractions are small, and it
is starting to be slower with the growth of the elements. Here we should
mention that in practice large elements occur very seldom, so on average
the algorithm works fast. As in the case of the Jacobi-Perron algorithm (see
Subsection 2.2) the distribution of frequencies is unknown for the case of
the heuristic APD-algorithm.

2.5. A remark on the periodicity of the sin2-algorithm in the cubic
totally real case. It seems that the heuristic APD-algorithm establishes
periodicity of cubic vectors. In addition it works very fast, so heuristically
it solves effectively the problem of finding the pre-periods and the peri-
ods for cubic vectors. Thus practically it can be effectively used for the
computations of the independent elements in Dirichlet groups (or units in
orders of algebraic fields). We discuss this later in Section 4. Currently, the
main concern regarding this algorithm is that a proof for cubic periodicity
is missing.

Recently we have developed an algorithm similar to the heuristic APD-
algorithm that is designed for the totally real case (i.e. when the correspond-
ing cubic extension of rational numbers is embeddable in the real line) and
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proved its periodicity (see [19]). As far as we are aware, this is the first
complete proof of periodicity for Jacobi-Perron type algorithms.

Let us outline the idea of the algorithm. Given three real vectors (ξ, ν, µ),
in each step of the algorithm we aim to maximise the sin2 of the angle
between the planes spanned by pairs of vectors (ξ, ν) and (ξ, µ). One can
say that the value of sin2 here replaces the Markov-Davenport characteristic
in the heuristic APD-algorithm.

sin2-algorithm

Input: We are given three vectors ξ, ν, µ such that
— ξ has positive coordinates (x, y, z) satisfying x > y > z > 0;
— all three coordinates for both ν and µ are neither simultaneously
positive nor simultaneously negative.

Step of the algorithm: Let us apply the following linear transfor-
mation

(ξi, νi, µi)→ (Φi(ξi),Φi(νi),Φi(µi))

with
Φi = TiMi.

Here Mi is taken to be the maximiser of the value of sin2 for the
angle between the plane spanned by Mi(ξi) and Mi(νi) and the plane
spanned by Mi(ξi) and Mi(µi). The maximisation is done among all
the transformations

Nα,β,γ : (x, y, z) 7→
(
x− αz − γ(y − βz), y − βz, z

)
satisfying

0 ≤ α ≤
⌊xi
zi

⌋
, 0 ≤ β ≤

⌊yi
zi

⌋
, and 0 ≤ γ ≤

⌊xi/zi − α
yi/zi − β

⌋
,

and the transformation
N0 = (x, y, z) 7→

(
x− y, y, z − (x− y)

)
,

which is considered only in case
zi > xi − yi > 0.

AfterMi is constructed we set Ti as a permutation of the basis vectors
that puts the coordinates of Mi(ξ) in decreasing order.

At each step the algorithm returns Φi as an output.

Termination of the algorithm: In the case that the last coordinate
of ξi is zero (i.e. zi = 0) we do not proceed further and the algorithm
terminates.
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Remark 2.17. Note that the triples in the input of the algorithm have
some initial conditions. There is a rather simple way to change the coordi-
nates of an arbitrary triple of vectors (by an integer lattice preserving linear
transformation) such that in the new basis this triple fulfills the input con-
ditions. We omit the technical details here. For further details and the proof
of periodicity for cubic vectors we refer the interested reader to [19].

Remark 2.18. Finally we would like to refer to several research papers on
cubic periodicity in some other settings. Cubic periodicity was also stud-
ied for the cases of the following generalised continued fractions: for Klein
polyhedra [27, 13], Minkovski-Voronoi polyhedra [35, 30, 5], triangle se-
quences [6], and ternary continued fractions (or bifurcating continued frac-
tions) [31].

3. The situation in degree greater than 3

This section is rather short as almost nothing is known in the cases of
degree greater than 3. Currently the main source of ideas that are applied
in the higher degree case come from the study of cubic vectors.

We should notice that there is a straightforward generalisation of the
heuristic APD-algorithm, which is likely to demonstrate periodicity for ir-
rationalities of degree d > 3. Let us briefly formulate it.

Consider an irreducible polynomial of degree d and let ξ1, . . . ξd be the
set of its roots. Let q1, . . . , qd be a basis of the space of polynomials of degree
less than d with rational coefficients.

Consider vectors

(q1(ξi), q2(ξi), . . . , qd(ξi)) for i = 1, . . . , d.

The Markov-Davenport characteristic for these vectors is now written as a
product of d matrices of size d× d:

ξ(x1, . . . , xd) =
d∏

k=1

Mk

where Mk(ξ) is obtained from the matrix
q1(ξ1) q1(ξ2) . . . q1(ξd)
q2(ξ1) q2(ξ2) . . . q2(ξd)

...
... . . . ...

qd(ξ1) qd(ξ2) . . . qd(ξd)


by replacing its k-th column by the column of variables (x1, . . . , xd). It is
interesting to note that after multiplication by some constant the coefficients
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of the Markov-Davenport characteristic are all integers; see e.g. Chapter 21.4
in [18].

The multidimensional heuristic APD-algorithm will be as follows.

Multidimensional heuristic APD-algorithm

Input: One starts with d-tuples of conjugate real vectors
(ξ1,0, ξ2,0, . . . , ξd,0) generated as above, where the last coordinate of
ξ1,0 = (x1,1,0, x1,2,0, . . . , x1,d,0) is positive (i.e. x1,d,0 > 0),
Step 0: First of all let us make all of the coordinates of ξ1,0 positive
by applying the following integer lattice preserving transformation:

T0 : (x1, x2, . . . , xd) 7→
(
x1−

⌊x1
xd

⌋
xd, x2−

⌊x2
xd

⌋
xd, . . . , x2−

⌊xd−1
xd

⌋
xd, xd

)
,

namely we consider
(ξ1,1, ξ2,1, . . . , ξd,1) =

(
T0(ξ1,0), T0(ξ2,0), . . . , T0(ξd,0)

)
.

Step i for i ≥ 1: In the previous step we have constructed the d-tuple

(ξ1,i, ξ2,i, . . . , ξd,i)

with positive coordinates of ξ1,i = (x1,1,i, x1,2,i, . . . , x1,d,i). In addition
from Step 2 on we have x1,d−1,i > x1,k,i for all k < d− 1 and k = d.

• Stage 1: Determination of the element of the contin-
ued fraction: The new element of the heuristic continued
fraction (a1,i, a2,i, . . . , ad−1,i) is defined by the following condi-
tions:

— 0 ≤ ak,i ≤ bx1,k,i/x1,d,ic for k = 1, . . . , d− 1;
— (a1,i, a2,i, . . . , ad−1,i) 6= (0, 0, . . . , 0) (with only one ex-

ception: we choose (0, 0, . . . , 0) if bx1,k,i/x1,d,ic < 1 for k =
1, . . . , d− 1);

— the d-tuple (a1,i, a2,i, . . . , ad−1,i, 1) provides the minimal
possible absolute value of the Markov-Davenport characteris-
tic among the d-tuples (a1, . . . , ad−1, 1) whose first two coor-
dinates satisfy the first two conditions.
• Stage 2: Iteration step:

Ti : (x1, x2, . . . , xd) 7→ (x2−a2,ixd, . . . , xd−1−ad−1,ixd, xd, x1−a1,ixd).
Here we construct

(ξ1,i+1, ξ2,i+1, . . . , ξd,i+1) =
(
Ti(ξ1,i), Ti(ξ2,i), . . . , Ti(ξd,i)

)
.

Termination of the algorithm. In the case that the last coordinate
of ξ1,i is zero we do not proceed further and the algorithm terminates.

Remark 3.1. The algorithm was tested for quartic irrationalities, in all the
examples the algorithm produced periodic output.
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4. Dirichlet groups

In order to understand better the reason for periodicity, let us study
maximal commutative subgroups of SL(d,Z). Such subgroups are called
Dirichlet groups.

4.1. Magic of integer commuting matrices. Let us start with a simple
exercise.

Example 4.1. Let

A =

 2 5 −1
3 6 1
4 7 1

 .

Find an integer matrix with unit determinant that commutes with A?

The obvious solution to this exercise is the identity matrix, but let us
disregard it. Let us first peek the answer to this question. The first matrix
that we are able to find is

B =

 88778750433916 1881948516620816 −1642359549748757
−77918418013751 −849278651461089 759124773173459
534000559063825 −721564227716990 360094549931638


The sizes of the elements of this matrix are rather impressive, are they not?
It is most likely that a brute force algorithm would find a solution of this
problem only in the next millennium.

Even if one notices that the matrix B is, in fact, a polynomial in A with
integer coefficients, namely

B = −147205796095883A2 + 1347947957556991A− 399030223241821,

the brute force search for the coefficients of such a polynomial is still very
long. This is very much in contrast to the complexity of the input matrix
A, each element of which requires 4 bits only.

Let us discuss how to find the answer efficiently.

4.2. Dirichlet groups. First we give some necessary definitions.

Definition 4.2. Let A be an n×n matrix with real coefficients. Denote by
Γ(A) the set of all integer matrices commuting with A.

(i) The Dirichlet group Ξ(A) is the subset of invertible matrices in Γ(A).

(ii) The positive Dirichlet group Ξ+(A) is the subset of Ξ(A) that consists
of all matrices with positive real eigenvalues.
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4.3. Dirichlet’s unit theorem. The first questions that one might ask
before approaching Example 4.1 is whether such a matrix does exist. Could
it be that all unit determinant integer matrices commuting with A are in
fact powers of A? In terms of Dirichlet groups, we ask wether the group
Ξ(A) is isomorphic to Z or not.

The answer to this question is provided by the Dirichlet’s unit theorem.
A precise formulation of the theorem is as follows.

Dirichlet’s unit theorem. Let K be a field of algebraic numbers of degree
n = s + 2t, where s is the number of real roots and 2t is the number of
complex roots for the minimal integer polynomial of any irrational element
of K. Consider an arbitrary order D in K. Then D contains units ε1, . . . , εr
for r = s+ t− 1 such that every unit ε in D has a unique decomposition of
the form

ε = ξεa11 · · · εarr ,

where a1, . . . , ar are integers and ξ is a root of 1 contained in D.

So what is hidden behind Dirichlet’s unit theorem? Rather than to go
forward with all the formal definitions involved in the formulation of this
theorem we prefer to reformulate this theorem simply in terms of matrices.
(For necessary definitions and the proof of the theorem we refer an interested
reader e.g. to the book [4]; for the justification of the reformulation we refer
e.g. to Chapter 17 of [18]. Also there is a lot of related material specifically
on algebraic cubic and quartic fields in the book [11].)

Dirichlet’s unit theorem in the matrix form. Let A be an integer ma-
trix whose characteristic polynomial is irreducible over the field of rational
numbers Q. Let it have s real and 2t complex eigenvalues. Then there exists
a finite Abelian group G such that

Ξ(A) ∼= G⊕ Zs+t−1.

For the positive Dirichlet group we have:

Ξ+(A) ∼= Zs+t−1.

Example 4.3. In the three-dimensional case we have two possible situa-
tions.

• Complex case: If the characteristic polynomial has two complex
roots, then both Dirichlet and positive Dirichlet groups are isomor-
phic to Z.
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• Totally real case: If all the roots of the characteristic polynomial
are real numbers, we have

Ξ(A) ∼= G⊕ Z2 and Ξ+(A) ∼= Z2.

4.4. Several questions that we can answer. The technique discussed
in this paper gives a constructive approach to the following questions.

Question 1. Find an SL(3,Z)-matrix commuting with a given integer ma-
trix with irreducible characteristic polynomial over Q.

Question 2. Find an SL(3,Z)-matrix with a given cubic vector as an eigen-
vector.

Question 3. Let M be any SL(3,Z)-matrix whose characteristic polyno-
mial is irreducible over Q. Find an SL(3,Z)-matrix commuting withM that
is not a power ofM . (Note that this question is interesting only in the totally
real case as otherwise Ξ(A) = Z.)

Remark 4.4. Currently the sin2-algorithm establishes the answers for the
totally real case only. Once Conjecture 2.14 if proven we have the complete
answers to all these three questions.

In the next section we rewrite Jacobi-Perron type algorithms in matrix
form and give answers to these three questions.

5. Jacobi-Perron type algorithms and Dirichlet groups

5.1. Jacobi-Perron algorithm in matrix form. Notice that Jacobi-
Perron type algorithms can be formulated in terms of matrix multiplica-
tion. This concerns both the Jacobi-Perron algorithm, the heuristic APD-
algorithm, the sin2-algorithm, and many other similar algorithms (various
types of such algorithms are collected in the book of F. Schweiger [34], see
also Chapter 23.4 in [18]). If an algorithm produces an eventually periodic
output, the answers to Questions 1—3 above can be obtained from the
matrix form as we explain in the next subsection.

5.2. Matrices with prescribed cubic eigenvectors. Assume that the
Jacobi-Perron algorithm is eventually periodic and its pre-period and period
for a given vector are respectively as follows:((

a1
b1

)
, . . . ,

(
an
bn

))
and

((
c1
d1

)
, . . . ,

(
cm
dm

))
.
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Denote

M1 =
n∏
i=1

 ai 0 1
1 0 0
bi 1 0

 and M2 =
m∏
j=1

 cj 0 1
1 0 0
dj 1 0

 .

and set
M = M1M2(M1)

−1.

Then M is an SL(3,Z)-matrix with the original cubic vector as the eigen-
vector whose absolute value of the eigenvalue is the greatest among all the
absolute values of the eigenvalues of M .

Remark 5.1. There are similar representations for both the heuristic APD-
algorithm and the sin2-algorithm. We omit them here, as they literally
repeat the representation for the Jacobi-Perron algorithm with obvious
changes to the matrices.

Example 5.2. Let us discuss the vector

(1, ξ, ξ2 + ξ)

considered in Example 2.2 above. Recall that ξ is a real root of the polyno-
mial

x3 + 2x2 + x+ 4.

The Jacobi-Perron algorithm generates a periodic sequence with 6 steps of
the pre-period and 2 steps of the period:

1 2 3 4 5 6 2k + 1 2k + 2

bx/yc -1 1 1 1 2 6 3 7
bz/yc -2 0 0 0 2 4 1 1

First of all, we write matrices for the pre-period and the period:

M1 =

 −1 0 1
1 0 0
−2 1 0

 ·
 1 0 1

1 0 0
0 1 0

3

·

 2 0 1
1 0 0
2 1 0

 ·
 6 0 1

1 0 0
4 1 0


=

 −22 −1 −3
51 2 7
−67 −3 −9

 ;

M2 =

 3 0 1
1 0 0
1 1 0

 ·
 7 0 1

1 0 0
1 1 0

 =

 22 1 3
7 0 1
8 0 1

 .

Finally we get

M = M1M2(M1)
−1 =

 5 −4 3
−12 9 −7
16 −12 9

 .

This concludes the computation of M .
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Example 5.3. Let us consider once more the vector

v = (1,
3
√

4,
3
√

16).

As we have seen in Example 2.4, we are unable to get a periodic sequence
generated by the Jacobi-Perron algorithm, and hence we cannot find a re-
quested matrix using the Jacobi-Perron algorithm.

Let us use the heuristic APD-algorithm instead (similarly multiplying
the corresponding matrices for linear maps used in the algorithm). Following
the results of the continued fraction computations in Example 2.13 we find
that v is an eigenvector of the matrix

M =

 5 8 12
3 5 8
2 3 5

 .

5.3. Answers to Questions 1–3. Finally we discus the answers to Ques-
tions 1–3.

Answer to Question 1. Let us show how to construct an SL(3,Z)-matrix
commuting with a given integer matrix A (assuming that the characteris-
tic polynomial of A is irreducible over Q). What we should do is take a
basis of eigenvectors of A and run the heuristic APD-algorithm for it (or
the sin2-algorithm in the totally real case). The algorithm will generate a
heuristically eventually periodic sequence. From its period and pre-period
sequences one computes the required matrix M (as discussed in Subsec-
tion 5.2). An example is shown in Example 4.1 above.

Answer to Question 2. The second question is very similar to the first
one. Here we are requested to find an SL(3,Z)-matrix having a given cubic
vector as an eigenvector. Assume we are given a cubic vector

(1, ξ, q(ξ)),

where ξ is a root of some cubic polynomial p. Then we construct the other
two conjugate vectors (following discussions of Remark 2.12), apply the
heuristic APD-algorithm (or sin2-algorithm in the totally real case) and
write the matrix from the period and pre-period of the algorithm.

Remark 5.4. Usually a cubic vector is defined by the corresponding poly-
nomials p and q. However, this might not be the case, and we might have
an expression for a root ξ of a cubic polynomial in the style of Kordano’s
formula instead. In this case the polynomials p and q can be guessed from
rational approximations of ξ3 and q(ξ) and their approximate formulae in
terms of approximations of ξ2 and ξ and 1.
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Answer to Question 3. Finally we write a matrix commuting with a
given matrix A ∈ SL(3,Z) that is not a power of A. As we have mentioned,
this question only makes sense for the totally-real case (in the complex case
the Dirichlet group of A is isomorphic to Z). Let ξ, ν, and µ be eigenvectors
of A. First of all we construct SL(3,Z) matrices Mξ, Mν and Mµ following
the computations for the triple vectors

(ξ, ν, µ), (ν, µ, ξ), and (µ, ξ, ν)

respectively. The main feature that we use further is that both the heuris-
tic APD-algorithm, and sin2-algorithm construct a matrix whose maximal
absolute value of the eigenvalue corresponds to the first cubic vector in the
corresponding triple.

Notice that maximal absolute values of the eigenvalues of An correspond
simultaneously to the same eigenline for n > 0; and to the same eigenline
for n < 0. Hence one of the vectors ξ, ν, and µ is not on these two eigenlines.
Therefore, the required matrix M can be chosen from Mξ, Mν , and Mµ by
comparing the sizes of absolute values of eigenvalues.

Let us illustrate the answers to Questions 2 and 3 with the following
example.

Example 5.5. Consider an irreducible cubic polynomial

p(x) = 2x3 − 4x2 − 7x− 2

with three real roots denoted by α, β, and γ. Our goal is to compute two
independent (with respect to matrix multiplication) SL(3,Z)-matrices with
eigenvectors

ξ = (1, α, α2), ν = (1, β, β2), and µ = (1, γ, γ2).

Direct computations using the heuristic APD-algorithm applied to triples

(ξ, ν, µ), (ν, µ, ξ), and (µ, ξ, ν)

result in the following three matrices:

A =

 55 210 176
176 671 562
562 2143 1795

 ; B =

 −497 −1122 400
400 903 −322
−322 −727 259

 ;

C =

 185 172 −72
−72 −67 28
28 26 −11

 .

Brute force search of the powers of matrices show that

A3B5C7 = Id,
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where Id is the identity matrix. Since at least two of these matrices are in-
dependent, we have that any two of these matrices are linearly independent.

Remark 5.6. Clearly the triples of matrices Mξ, Mν , and Mµ generate
a finite index sublattice in the positive Dirichlet groups. There exists a
technique to find the basis using constructions of multidimensional Klein
continued fractions and observing the combinatorics of their periods. We
do not discuss it in this paper and refer an interested reader to Chapter 20
of [18] (see also [17]).

Remark 5.7. The method described in this section works well for SL(3,Z)-
matrices but it has some limitations for SL(d,Z)-matrices with d > 3. For
instance, in the totally real case of the quartic case (d = 4) the corresponding
positive Dirichlet group is three-dimensional. A direct application of the
current method potentially can output 4 matrices spanning Z2, and not Z3

as expected. The author is not aware of any examples where this does occur,
if it does, such examples must be rare.
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