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Abstract. This paper contributes to the emergent area of Periodic Ge-
ometry, which studies continuous spaces of solid crystalline materials
(crystals) by new methods of metric geometry. Since crystal structures
are determined in a rigid form, their strongest practical equivalence is
rigid motion or isometry preserving inter-point distances. The most fun-
damental model of any crystal is a periodic set of points at all atomic
centers. The previous work introduced an in�nite sequence of density
functions that are continuous isometry invariants of periodic point sets.
These density functions turned out to be highly non-trivial even in di-
mension 1 for periodic sequences of points in the line. This paper fully
describes the density functions of any periodic sequence and their symme-
try properties. The explicit description con�rms coincidences of density
functions that were previously computed only through �nite samples.

Keywords: Periodic sequence · isometry invariant · density functions

1 Motivations for density functions of periodic point sets

Motivated by applications to solid crystalline materials, the �rst paper [10] in the
emergent area of Periodic Geometry rigorously stated the problem of designing
continuous invariants and metrics for periodic point sets such as lattices.

The past work [5] introduced such continuous invariants for any periodic sets
of points representing atoms in crystals. This point-set model is most fundamen-
tal for materials because nuclei of atoms are well-de�ned physical objects, while
chemical bonds are not real sticks or strings but abstractly represent inter-atomic
interactions depending on many thresholds for distances and angles.

Since crystal structures are determined in a rigid form, their most practi-
cal equivalence is rigid motion (a composition of translations and rotations) or
isometry that maintains all inter-point distances and includes re�ections [14].

Since atoms always vibrate at any �nite temperature above absolute zero,
X-ray di�raction patterns of the same material contain inevitable noise and lead
to slightly di�erent crystal structures determined at variable temperatures.

In the past, crystallography distinguished periodic structures by coarser isom-
etry invariants such as symmetry groups, which are discontinuous under per-
turbations [14, Fig. 1]. To continuously quantify the similarity between near-
duplicates among experimental and simulated structures, we need stronger isom-
etry invariants that continuously change under perturbations [1, Problem 3].
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The past work [5] introduced an in�nite sequence of density functions ψk[S](t)
that are continuous isometry invariants of a periodic point set S as de�ned below.
Let Rn be the n-dimensional Euclidean space, Z be the set of all integers.

De�nition 1 (a lattice Λ, a unit cell U , a motif M , a periodic set S = M +Λ).

For a linear basis v1, . . . , vn of Rn, a lattice is Λ = {
n∑

i=1

civi : ci ∈ Z}. The unit

cell U(v1, . . . , vn) =

{
n∑

i=1

civi : ci ∈ [0, 1)

}
is the parallelepiped spanned by the

basis. A motif M ⊂ U is any �nite set of points p1, . . . , pm ∈ U . A periodic point

set [14] is the Minkowski sum S = M + Λ = {u+ v | u ∈M, v ∈ Λ}. �

In dimension n = 1, a lattice is de�ned by any non-zero vector v ∈ R, any
periodic point set S is a periodic sequence {p1, . . . , pm}+ |v|Z of the period |v|.
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Fig. 1. illustration of De�nition 2 for the square lattice. Left: subregions Uk(t) are
covered by k disks for the radii t = 0.25, 0.55, 0.75, 1. Right: the nine density functions

are above the corresponding densigram of accumulated functions
k∑

i=1

ψi(t) [5, Fig. 2].

De�nition 2 (density functions). Let a periodic set S = Λ + M ⊂ Rn have
a unit cell U . For any integer k ≥ 0, let Uk(t) be the region within the cell U
covered by exactly k closed balls with a radius t > 0 and centers at all points
of S. The k-th density function is ψk[S](t) = Vol[Uk(t)]/Vol[U ]. The density

�ngerprint is the sequence Ψ [S] = {ψk(t)}+∞k=0, see [5, section 3] and Fig. 1, 2. �

The implementation [5] computes the density functions ψk(t) at uniform
radii t up to given upper bounds of t and k. This paper explicitly describes all
density functions ψk(t) for any periodic sequence S ⊂ R in Theorems 5 and 7.
Theorem 8 proves the symmetry and periodicity of ψk(t) in the variables t and
k. Corollary 12 concludes that the 1st density function ψ1(t) distinguishes all
non-isometric periodic sequences with distinct distances between motif points.
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Fig. 2. illustration of De�nition 2 for the hexagonal lattice. Left: subregions Uk(t) are
covered by k disks for the radii t = 0.25, 0.55, 0.75, 1. Right: the nine density functions

are above the corresponding densigram of accumulated functions
k∑

i=1

ψi(t) [5, Fig. 2].

2 Past work on isometry invariants of periodic point sets

The strongest result about the density �ngerprint Ψ [S] is [5, Theorem 2] proving
that any non-isometric periodic point sets in R3 have di�erent sequences ψk(t),
though there was no simple upper bound for k. However, the density �ngerprint
turned out to be incomplete [5, section 5] for the periodic sequences below.

Example 3 (periodic sequences S15, Q15 ⊂ R). [14, Appendix B] discusses
homometric periodic sets that can be distinguished by the recent invariant AMD
(Average Minimum Distances) and not by inter-point distance distributions. The

sets S15 = {0, 1, 3, 4, 5, 7, 9, 10, 12}+ 15Z, Q15 = {0, 1, 3, 4, 6, 8, 9, 12, 14}+ 15Z

have the period 15 and the unit cell [0, 15] shown as a circle in Fig. 3.

Fig. 3. Circular versions of the periodic sets S15, Q15. Distances are along round arcs.
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These periodic sequences [6] are obtained as Minkowski sums S15 = U +V +
15Z and Q15 = U −V + 15Z for U = {0, 4, 9} and V = {0, 1, 3}. The last picture
in Fig. 3 shows the periodic set 4 − S15 isometric to S15. Now the di�erence
between Q15 and 4− S15 is better visible: points 0, 1, 3, 4, 5, 12, 14 are common,
but points 6, 8, 9 ∈ Q15 are shifted to 7, 9, 10 in the circular set 4− S15. �

For rational-valued periodic sequences, [6, Theorem 4] proved that r-th or-
der invariants (combinations of r-factor products) up to r = 6 are enough to
distinguish such sequences up to a shift (a rigid motion of R without re�ec-
tions). The AMD invariant was extended to a Pointwise Distance Distribution
(PDD), whose generic completeness [13, Theorem 11] was proved in any dimen-
sion n ≥ 1, but there are �nite sets in R3 with the same PDD [11, Fig. S4]. In
addition to the completeness and continuity under perturbations, applications
also need a computable metric on isometry classes of periodic point sets. Such a
metric was de�ned on the complete isoset invariant [1, section 7] but has only an
approximate algorithm because of a minimization over in�nitely many rotations.

This paper fully elucidates all density functions and their exact computation
for any periodic sequence, leading to new problems at the end of section 4.

3 A description of density functions of periodic sequences

The key results of this section are Theorems 5 and 7 explicitly describing all
density functions ψk[S](t) for any periodic sequence S ⊂ R and k ≥ 0. For con-
venience, scale any periodic sequence to period 1 so that S = {p1, . . . , pm}+ Z.
Since the expanding balls in R are growing intervals, volumes of their intersec-
tions linearly change in the variable radius t. Hence any density function ψk(t)
is piecewise linear and uniquely determined by corner points (aj , bj) where the
gradient changes. Examples 4 and 6 explain how the density functions ψk(t) are
computed for the periodic sequence S = {0, 13 ,

1
2}+ Z, see all graphs in Fig. 4.

Example 4 (0-th density ψ0(t) for S = {0, 13 ,
1
2}+ Z). By De�nition 2 ψ0(t) is

the fractional length within the period interval [0, 1] not covered by the intervals
of radius t (length 2t), which are the red intervals [0, t]∪ [1− t, 1], green dashed
interval [ 13 − t,

1
3 + t] and blue dotted interval [ 12 − t,

1
2 + t]. The graph of ψ0(t)

starts from the point (0, 1) at t = 0. Then ψ0(t) linearly drops to the point
( 1
12 ,

1
3 ) at t = 1

12 when a half of the interval [0, 1] remains uncovered.

The next linear piece of ψ0(t) continues to the point ( 1
6 ,

1
6 ) at t = 1

6 when
only [ 23 ,

5
6 ] is uncovered. The graph of ψ0(t) �nally returns to the t-axis at the

point ( 1
4 , 0) and remains there for t ≥ 1

4 . The piecewise linear behavior of ψ0(t)
can be brie�y described via the corner points (0, 1), ( 1

12 ,
1
3 ), ( 1

6 ,
1
6 ), ( 1

4 , 0). �

Theorem 5 extends Example 4 to any periodic sequence S and implies that
ψ0(t) is uniquely determined by the ordered distances within a unit cell of S.
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Fig. 4. Left: the periodic sequence S = {0, 1
3
, 1
2
}+ Z with points of three colors. The

growing intervals around the red point 0 ≡ 1 (mod 1), green point 1
3
, blue point 1

2
have

the same color for various radii t. Right: the trapezoid functions η from Example 6.

Theorem 5 (description of ψ0). For any periodic sequence S = {p1, . . . , pm}+Z
with motif points 0 ≤ p1 < · · · < pm < 1, set di = pi+1 − pi ∈ (0, 1), where
i = 1, . . . ,m and pm+1 = p1 + 1. Put the distances in the increasing order
d[1] ≤ d[2] ≤ · · · ≤ d[m]. Then the 0-th density function ψ0 is piecewise linear

with the following (unordered) corners: (0, 1) and ( 1
2d[i], 1−

i−1∑
j=1

d[j]−(m−i+1)d[i])

for i = 1, . . . ,m, so the last corner is ( 1
2d[m], 0). If any corner points are repeated,

e.g. when d[i−1] = d[i], these corners are collapsed into one corner point. �

Proof. The function ψ0(t) measures the total length of subintervals in [0, 1] that
are not covered by growing intervals [pi − t, pi + t], i = 1, . . . ,m. Hence ψ0(t)
linearly decreases from the initial value ψ0(0) = 1 except form critical values of t
where one of the intervals [pi, pi+1] between successive points become completely
covered and can not longer shrink. These critical radii t are ordered according
to the distances d[1] ≤ d[2] ≤ · · · ≤ d[m]. The �rst critical radius is t = 1

2d[1],
when the shortest interval [pi, pi+1] of the length d[1] is covered by the intervals
centered at pi, pi+1. At this moment, all m intervals cover the subregion of the
length md[1]. Then ψ0(t) has the �rst corner points (0, 1) and ( 1

2d[1], 1−md[1]).
The second critical radius is t = 1

2d[2], when the covered subregion has the

length d[1] +(m−1)d[2], i.e. the next corner point is ( 1
2d[2], 1−d[1]− (m−1)d[2]).

If d[1] = d[2], then both corner points coincide, so ψ0(t) will continue from
the joint corner point. The above pattern generalizes to the i-th critical radius

t = 1
2d[i], when the covered subregion has the length

i−1∑
j=1

d[j] (for the �nally

covered intervals) plus (m − i + 1)d[i] (for the still growing intervals). For the

�nal critical radius t = 1
2d[m], the whole interval [0, 1] is covered by the grown

intervals because
m∑
j=1

d[j] = 1. So the �nal corner point of ψ0(t) is ( 1
2d[m], 0).
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Theorem 5 for the sequence S = {0, 13 ,
1
2} + Z gives the ordered distances

d[1] = 1
6 < d[2] = 1

3 < d[3] = 1
2 , which determine the corner points (0, 1), ( 1

12 ,
1
2 ),

( 1
6 ,

1
6 ), ( 1

4 , 0) of the density function ψ0(t) in Fig. 4, see Example 4.

By Theorem 5 any 0th density function ψ0(t) is uniquely determined by
the (unordered) set of lengths of intervals between successive points. Hence we
can re-order these intervals without changing ψ0(t). For instance, the periodic
sequence Q = {0, 12 ,

2
3}+Z has the same set of interval lengths d[1] = 1

6 , d[2] = 1
3 ,

d[3] = 1
2 as the periodic sequence S = {0, 13 ,

1
2}+ Z in Example 4.

The above sequences S,Q are related by the mirror re�ection t 7→ 1− t. One
can easily construct many non-isometric sequences with ψ0[S](t) = ψ0[Q](t). For
any 1 ≤ i ≤ m−3, the sequences Sm,i = {0, 2, 3, . . . , i+2, i+4, i+5, . . . ,m+2}+
(m+2)Z have the same interval lengths d[1] = · · · = d[m−2] = 1, d[m−1] = d[m] =
2 but are not related by isometry (translations and re�ections in R) because the
intervals of length 2 are separated by i− 1 intervals of length 1 in Sm,i.

Corollary 12 will prove that the 1st density function ψ1[S](t) uniquely deter-
mines a periodic sequence S ⊂ R in general position up to isometry of R.

Example 6 (functions ψk(t) for S = {0, 13 ,
1
2} + Z). The 1st density function

ψ1(t) can be obtained as a sum of the three trapezoid functions ηR, ηG, ηB , each
measuring the length of a region covered by a single interval (of one color). The
red intervals [0, t]∪ [1− t, 1] grow until t = 1

6 when they touch the green interval
[ 16 ,

1
2 ]. So the length ηR(t) of this interval linearly grows from the origin (0, 0)

to the corner point ( 1
6 ,

1
3 ). For t ∈ [ 16 ,

1
4 ], the left red interval is shrinking at

the same rate due to the overlapping green interval, while the right red interval
continues to grow until t = 1

4 , when it touches the blue interval [ 14 ,
3
4 ]. Hence the

graph of ηR(t) remains constant up to the corner point ( 1
4 ,

1
3 ). After that ηR(t)

linearly returns to the t-axis at t = 5
12 . Hence the trapezoid function ηR has the

piecewise linear graph through the corner points (0, 0), ( 1
6 ,

1
3 ), ( 1

4 ,
1
3 ), ( 5

12 ,
1
0 ).

The 2nd function ψ2(t) is the sum of the trapezoid functions ηGB , ηRG, ηRB ,
each measuring the length of a double intersection. For the green interval [ 13 −
t, 13 + t] and the blue interval [ 12 − t,

1
2 + t], the graph of the trapezoid function

ηGB(t) is piecewise linear and starts at the point ( 1
12 , 0), where the intervals

touch. The green-blue intersection interval [ 12 − t,
1
3 + t] grows until t = 1

4 , when
[ 14 ,

7
12 ] touches the red interval on the left. At the same time ηGB(t) is linearly

growing to the point ( 1
4 ,

1
3 ). For t ∈ [ 14 ,

1
3 ], the green-blue intersection interval

becomes shorter on the left, but grows at the same rate on the right until [ 13 ,
2
3 ]

touches the red interval [ 23 , 1]. Then ηGB(t) remains constant up to the point
( 1
3 ,

1
3 ). For t ∈ [ 13 ,

1
2 ] the green-blue intersection interval is shortening from both

sides. Finally, the graph of ηGB(t) returns to the t-axis at ( 1
2 , 0), see Fig. 4. �

Theorem 7 extends Example 6 and proves that any ψk(t) is a sum of trapezoid
functions whose corners are explicitly described. We consider any index i =
1, . . . ,m (of a point pi or a distance di) modulo m so that m+ 1 ≡ 1 (mod m).
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Theorem 7 (description of ψk, k > 0). For any sequence S = {p1, . . . , pm}+Z
with motif points 0 ≤ p1 < · · · < pm < 1, set di = pi+1 − pi ∈ (0, 1), where
i = 1, . . . ,m and pm+1 = p1 + 1. Any interval [pi − t, pi + t] is projected to
[0, 1] modulo Z. For 1 ≤ k ≤ m, the density function ψk(t) is the sum of m

trapezoid functions ηk,i with the corner points ( s
2 , 0), (di−1+s

2 , d), ( s+di+k−1

2 , d),

(di−1+s+di+k−1

2 , 0), where d = min{di−1, di+k−1}, s =
i+k−2∑
j=i

dj , i = 2, . . . ,m+ 1.

If k = 1, then s = 0 is the empty sum. So ψk(t) is determined by the unordered
set of triples (di−1, s, di+k−1) whose �rst and last entries are swappable. �

Proof. For simplicity, we separately prove the case k = 1. The 1st density func-
tion ψ1(t) measures the total length of subregions covered by a single interval
[pi − t, pi + t]. Hence ψ1(t) is the sum of the functions η1i, each measuring the
length of the subinterval of [pi − t, pi + t] not covered by other such intervals.

Each function η1i starts from η1i(0) = 0 and linearly grows up to η1i(
1
2d) = d,

where d = min{di−1, di}, when the interval [pi − t, pi + t] of the length 2t = d
touches the growing interval centered at the closest of its neighbors pi±1.

If (say) di−1 < di, then the subinterval covered only by [pi − t, pi + t] is
shrinking on the left and is growing at the same rate on the right until it touches
the growing interval centered at the right neighbor. During this period, when t
is between 1

2di−1 and 1
2di, the trapezoid function η1i(t) = d remains constant.

If di−1 = di, this horizontal piece collapses to one point in the graph of η1i(t).
For t ≥ max{di−1, di}, the subinterval covered only by [pi− t, pi + t] is shrinking
on both sides until the intervals centered at pi±1 meet at a mid-point between

them for t = di−1+di

2 . So the graph of η1i has a trapezoid form with the corner

points (0, 0), (di−1

2 , d), (di

2 , d), (di−1+di

2 , 0).

In Example 6 for S = {0, 13 ,
1
2}+Z, the distances d1 = 1

3 , d2 = 1
6 , d3 = 1

2 = d0
give η11 = ηR with the corner points (0, 0), ( 1

4 ,
1
3 ), ( 1

6 ,
1
3 ), ( 5

12 , 0) as in Fig. 4.

In the case k > 1, the k-th density function ψk(t) measures the total length of
k-fold intersections among m intervals [pi − t, pi + t], i = 1, . . . ,m.

A k-fold intersection appears only when two intervals [pi − t, pi + t] and
[pi+k−1 − t, pi+k−1 + t] overlap because their intersection is covered by the k
intervals centered at k points pi < pi+1 < · · · < pi+k−1. Since only k successive
intervals can contribute to k-fold intersections, ψk(t) becomes the sum of the
functions ηk,i, each equal to the length of the subinterval of [pi − t, pi+k−1 + t]
covered by exactly k intervals of the form [pj − t, pj + t], j = 1, . . . ,m.

The above function ηk,i(t) remains 0 until the radius t = 1
2

i+k−2∑
j=i

dj because

2t is the length between the points pi < pi+k−1. Then ηk,i(t) is linearly growing
until the k-fold intersection touches one of the intervals centered at the points
pi−1, pi+k, which are left and right neighbors of pi, pi+k−1, respectively.
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If (say) di−1 < di+k−1, this critical radius is t = 1
2

i+k−2∑
j=i−1

dj = di−1+s
2 . The

function ηk,i(t) measures the length of the k-fold intersection [pi+k−1− t, pi + t].

ηk,i(t) = (pi + t)− (pi+k−1 − t) = 2t− (pi+k−1 − pi) = (di−1 + s)− s = di−1.

Then the k-fold intersection is shrinking on the left and is growing at the same
rate on the right until it touches the growing interval centered at the right

neighbor pi+k. During this time, when t is between 1
2

i+k−2∑
j=i−1

dj and 1
2

i+k−1∑
j=i

dj ,

the function ηk,i(t) remains equal to di−1. If di−1 > di+k−1, the last argument
should include the smaller distance di+k−1 instead of di−1. Hence we will use
below the single value d = min{di−1, di+k−1} to cover both cases. If di−1 = di,
this horizontal piece collapses to one point in the graph of ηk,i(t). The k-fold in-
tersection within [pi, pi+k−1] disappears when the intervals centered at pi−1, pi+k

have the radius t equal to the half-distance 1
2

i+k−1∑
j=i−1

dj between pi−1, pi+k.

Then ηk,i(t) is the trapezoid function with the expected four corner points

expressed as ( s
2 , 0), (di−1+s

2 , d), ( s+di+k−1

2 , d), (di−1+s+di+k−1

2 , 0) for s =
i+k−2∑
j=i

dj

and d = min{di−1, di+k−1}. These corners are uniquely determined by the triple
(di−1, s, di+k−1), where the components di−1, di+k−1 can be swapped.

In Example 6 for S = {0, 13 ,
1
2}+Z, we have d1 = 1

3 , d2 = 1
6 , d3 = 1

2 = d0. For
k = 2, i = 2, we get di−1 = d1 = 1

3 , di+k−1 = d3 = 1
2 , i.e. d = min{d1, d3} = 1

3 ,
s = d2 = 1

6 . Then η22 = ηGB has the corner points ( 1
12 , 0), ( 1

4 ,
1
3 ), ( 1

3 ,
1
3 ), ( 1

2 , 0).

4 Symmetries, computations, and generic completeness

Theorem 8 (symmetries of ψk(t)). For any periodic sequence S ⊂ R with a
unit cell [0, 1], we have the periodicity ψk+m(t+ 1

2 ) = ψk(t) for any k ≥ 0, t ≥ 0,
and the symmetry ψm−k( 1

2 − t) = ψk(t) for k = 0, . . . , [m2 ], and t ∈ [0, 12 ]. �

Proof. To prove ψm−k( 1
2 − t) = ψk(t) for k = 1, . . . , [m2 ], we establish a bijection

between the triples of parameters that determined ψm−k and ψk in Theorem 7.

Take a triple (di−1, s, di+k−1) of ψk, where s =
i+k−2∑
j=i

dj is the sum of k − 1

distances from di−1 to di+k−1 in the increasing (cyclic) order of distance indices.
Under t 7→ 1

2 − t, the corner points of trapezoid function ηk,i map to(1− s
2

, 0
)
,
(1− s− di−1

2
, d
)
,
(1− s− di+k−1

2
, d
)
,
(1− di−1 − s− di+k−1

2
, 0
)
.

Notice that s̄ = 1−di−1−s−di+k−1 is the sum of the m−k−1 intermediate
distances from di+k−1 to di−1 in the increasing (cyclic) order of indices.
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The four corner points can be re-written with the above notation s̄ as follows:(
di−1 + s̄+ di+k−1

2
, 0

)
,

(
s̄+ di+k−1

2
, d

)
,

(
s̄+ di−1

2
, d

)
,
( s̄

2
, 0
)
.

These resulting points are re-ordered corners of the trapezoid function ηm−k,i+k.
Hence ηk,i(

1
2 − t) = ηm−k,i+k(t). Taking the sum over all indices i = 1, . . . ,m,

we get ψk( 1
2 − t) = ψm−k(t). Fig. 4 shows the symmetry ψ1(t) = ψ2( 1

2 − t).

For periodicity, we compare ψk and ψk+m for k ≥ 0. Any (k + m)-fold in-
tersection should involve intervals centered at k + m successive points of the
sequence S ⊂ R. Then we can �nd a period interval [t, t+ 1] covering m of these
points. By collapsing this interval to a single point, the (k+m)-fold intersection
becomes k-fold, but its fractional length within any period interval of length
1 remains the same. Since the radius t is twice smaller than the length of the
corresponding interval, this collapse gives us ψk+m(t+ 1

2 ) = ψk(t).

The �nal symmetry ψm( 1
2 − t) = ψ0(t) follows from ψm( 1

2 − t) = ψm( 1
2 + t).

Indeed, any trapezoid of ψm has s = 1− di−1. Since its four corners ( 1−di−1

2 , 0),

( 1
2 ,

di−1

2 ), ( 1
2 ,

di−1

2 ), ( 1+di−1

2 , 0) are symmetric in t = 1
2 , then so is the sum ψm.

Corollary 9 (computation of ψk(t)). Let S,Q ⊂ R be periodic sequences with
at most m motif points. For k ≥ 1, one can draw the graph of the k-th density
function ψk[S] in time O(m2). One can check in time O(m3) if Ψ [S] = Ψ [Q]. �

Proof. To draw the graph of ψk[S] or evaluate the k-th density function ψk[S](t)
at any t, we �rst use the symmetry and periodicity from Theorem 8 to reduce k
to the range 0, 1, . . . , [m2 ]. In time O(m logm) we put the points from a unit cell
U (scaled to [0, 1] for convenience) in the increasing (cyclic) order p1, . . . , pm. In
time O(m) we compute the distances di = pi+1 − p between successive points.

For k = 0, we put the distances in the increasing order d[1] ≤ · · · ≤ d[m] in
time O(m logm). By Theorem 5 in time O(m2), we write down the O(m) corner
points whose horizontal coordinates are the critical radii where ψ0(t) can change
its gradient. We evaluate ψ0 at every critical radius t by summing up the values
of m trapezoid functions at t, which needs O(m2) time. It remains to plot the
points at all O(m) critical radii t and connect the successive points by straight
lines, so the total time is O(m2). For any larger �xed index k = 1, . . . , [m2 ], in
time O(m2) we write down all O(m) corner points from Theorem 7, which leads
to the graph of ψk(t) similarly to the above argument for k = 0.

To decide if the in�nite sequences of density functions coincide: Ψ [S] =
Ψ [Q], by Theorem 8 it su�ces to check only if O(m) density functions coin-
cide: ψk[S](t) = ψk[Q](t) for k = 0, 1, . . . , [m2 ]. To check if two piecewise linear
functions coincide, it remains to compare their values at all O(m) critical radii
t from the corner points in Theorems 5 and 7. Since these values were found in
time O(m2) above, the total time for k = 0, 1, . . . , [m2 ] is O(m3).

To illustrate Corollary 9, Example 10 will justify that the periodic sequences
S15 and Q15 in Fig. 3 have identical density �ngerprints Ψ [S15] = Ψ [Q15].
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Example 10 (S15, Q15 have equal density functions). To avoid fractions, we
keep the unit cell [0, 15] of the sequences S15, Q15 because all quantities in The-
orem 7 can be scaled up by factor 15. To conclude that ψ0[S15] = ψ0[Q15], by
Theorem 5 we check that S15, Q15 have the same set of the ordered distances d[i]
between successive points, which is shown in identical rows 3 of Tables 1 and 2.

Table 1. Row 1: points pi from the set S15 in Fig. 3. Row 2: the distances di between
successive points of S15. Row 3: the distances d[i] are in the increasing order. Row 4:
the unordered set of these pairs determines the density function ψ1 by Theorem 7.Row

5: the pairs are lexicographically ordered for comparison with row 5 in Table 2. Rows

6,8,10: the unordered sets of these triples determine the density functions ψ2, ψ3, ψ4

by Theorem 7 for k = 2, 3, 4. Rows 7,9,11: the triples from rows 6,8,10 are ordered for
easier comparison with corresponding rows 7,9,11 in Table 2, see details in Example 10.

pi 0 1 3 4 5 7 9 10 12

di = pi+1 − pi 1 2 1 1 2 2 1 2 3
ordered d[i] 1 1 1 1 2 2 2 2 3

(di−1, di) (3,1) (1,2) (2,1) (1,1) (1,2) (2,2) (2,1) (1,2) (2,3)
order (di−1, di) (1,1) (1,2) (1,2) (1,2) (1,2) (1,2) (1,3) (2,2) (2,3)

(di−1,di, di+1) (3,1,2) (1,2,1) (2,1,1) (1,1,2) (1,2,2) (2,2,1) (2,1,2) (1,2,3) (2,3,1)
order (di−1,di, di+1) (1,1,2) (1,1,2) (2,1,2) (2,1,3) (1,2,1) (1,2,2) (1,2,2) (1,2,3) (1,3,2)

(di−1, s, di+2) (3,3,1) (1,3,1) (2,2,2) (1,3,2) (1,4,1) (2,3,2) (2,3,3) (1,5,1) (2,4,2)
order (di−1, s, di+2) (2,2,2) (1,3,1) (1,3,2) (1,3,3) (2,3,2) (2,3,3) (1,4,1) (2,4,2) (1,5,1)

(di−1, s, di+3) (3,4,1) (1,4,2) (2,4,2) (1,5,1) (1,5,2) (2,5,3) (2,6,1) (1,6,2) (2,6,1)
order (di−1, s, di+3) (1,4,2) (1,4,3) (2,4,2) (1,5,1) (1,5,2) (2,5,3) (1,6,2) (1,6,2) (1,6,2)

Table 2. Row 1: points pi from the set Q15 in Fig. 3. Row 2: the distances di be-
tween successive points of Q15. Row 3: the distances d[i] are in the increasing order.
Row 4: the unordered set of these pairs determines the density function ψ1 by Theo-
rem 7b. Row 5: the pairs are lexicographically ordered for comparison with row 5 in
Table 1. Rows 6,8,10: the unordered sets of these triples determine the density func-
tions ψ2, ψ3, ψ4 by Theorem 7 for k = 2, 3, 4. Rows 7,9,11: the triples from rows 6,8,10
are ordered for comparison with corresponding rows 7,9,11 in Table 1, see Example 10.

pi 0 1 3 4 6 8 9 12 14

di = pi+1 − pi 1 2 1 2 2 1 3 2 1
ordered d[i] 1 1 1 1 2 2 2 2 3

(di−1, di) (1,1) (1,2) (2,1) (1,2) (2,2) (2,1) (1,3) (3,2) (2,1)
ordered (di−1, di) (1,1) (1,2) (1,2) (1,2) (1,2) (1,2) (1,3) (2,2) (2,3)

(di−1,di, di+1) (1,1,2) (1,2,1) (2,1,2) (1,2,2) (2,2,1) (2,1,3) (1,3,2) (3,2,1) (2,1,1)
order (di−1,di, di+1) (1,1,2) (1,1,2) (2,1,2) (2,1,3) (1,2,1) (1,2,2) (1,2,2) (1,2,3) (1,3,2)

(di−1, s, di+2) (1,3,1) (1,3,2) (2,3,2) (1,4,1) (2,3,3) (2,4,2) (1,5,1) (3,3,1) (2,2,2)
order (di−1, s, di+2) (2,2,2) (1,3,1) (1,3,2) (1,3,3) (2,3,2) (2,3,3) (1,4,1) (2,4,2) (1,5,1)

(di−1, s, di+3) (1,4,2) (1,5,2) (2,5,1) (1,5,3) (2,6,2) (2,6,1) (1,6,1) (3,4,2) (2,4,1)
order (di−1, s, di+3) (1,4,2) (1,4,2) (2,4,3) (1,5,2) (1,5,2) (1,5,3) (1,6,1) (1,6,2) (2,6,2)
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To conclude that ψ1[S15] = ψ1[Q15] by Theorem 7, we check that S15, Q15

have the same set of unordered pairs (di−1, di) of distances between successive
points. Indeed, Tables 1 and 2 have identical rows 5, where pairs are lexicograpi-

cally ordered for comparison: (a, b) < (c, d) if a < b or a = b and c < d.

To conclude that ψk[S15] = ψk[Q15] for k = 2, 3, 4, we compare the triples
(di−1, s, di+k−1) from Theorem 7 for S15, Q15. For k = 2 and k = 3, Tables 1
and 2 have identical rows 7 and 9, where the triples are ordered for easier com-
parison as follows. If needed, we swap di−1, di+k−1 to make sure that the �rst
entry is not larger than the last. Then we order by the middle bold number s.
Finally, we lexicographically order the triples with the same middle value s.

Final rows 11 of Tables 1 and 2 look di�erent for k = 4. More exactly, the
rows share three triples (1,4,2), (1,5,2), (1,6,4), but the remaining six triples
di�er. However, the density function ψ4 is the sum of nine trapezoid functions.
Fig. 5 shows that these sums are equal for S15, Q15. Then the sequences S15, Q15

have identical density functions ψk for k = 0, 1, 2, 3, 4, hence for all k by the
symmetry and periodicity from Theorem 8. Fig. 6 shows ψk, k = 0, 1, . . . , 9. �

Fig. 5. The 4th-density function ψ4[S15] includes the six trapezoid functions on the left,
which are replaced by other six trapezoid functions in ψ4[Q15] on the right, compare
the last rows of Tables 1 and 2. However, the sums of these six functions are equal,
which can be checked at critical radii: both sums of six functions have η(2.5) = 2,
η(3) = 5, η(3.5) = 6, η(4) = 4, η(4.5) = 1. Hence the periodic sequences S15, Q15 in
Fig. 3 have identical density functions ψk for all k ≥ 0, see details in Example 10.

Recall that all indices i of distances di are considered modulo m.

Corollary 11 (k-th density ρk). For any periodic sequence S = {p1, . . . , pm}+Z
with inter-point distances di = pi+1−pi, where i = 1, . . . ,m and pm+1 = p1 + 1,

the k-th density ρk[S] =
+∞∫
−∞

ψk(t)dt de�ned as the area under the graph of ψk(t)

over R equals ρk[S] =
1

2

m∑
i=1

di−1di+k−1 for any k > 0 and ρ0[S] =
1

4

m∑
i=1

d2i . �

Proof. By Theorem 7 for k > 0, each ψk(t) is the sum of m trapezoid func-
tions. Hence ρk[S] equals the sum of the areas under the graphs of these trape-

zoids with corners ( s
2 , 0), (di−1+s

2 , d), ( s+di+k−1

2 , d), (di−1+s+di+k−1

2 , 0), where
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Fig. 6. The periodic sequences S15, Q15 in Fig. 3 have identical density functions ψk(t)
for all k ≥ 0. Both axes are scaled by factor 15. Theorem 8 implies the symmetry
ψk(

15
2
− t) = ψ9−k(t), t ∈ [0, 15

2
], and periodicity ψ9(t+

15
2
) = ψ0(t), t ≥ 0.

d = min{di−1, di+k−1}. The area of each trapezoid is Ai = d
2 (di−1+di+k−1

2 +

|di+k−1 − di−1|) = dD
2 , where D = max{di−1, di+k−1}. Then ρk =

m∑
i=1

Ai =

1
2

m∑
i=1

di−1di+k−1. Since ψ0(t) = 0 for t < 0, ρ0 is a half of the area ρm =
1

2

m∑
i=1

d2i

under ψm(t) due to ψm( 1
2±t) = ψ0(t) for t ∈ [0, 12 ] by Theorem 8, see Fig. 6.

For S = {0, 13 ,
1
2}+Z, Corollary 11 gives ρ0 = 7

72 , ρ1 = ρ2 = 11
122 as in Fig. 4.

Corollary 12 (generic completeness of ψ1). Let S ⊂ R be a sequence with
period 1 and m points 0 ≤ p1 < · · · < pm < 1. The sequence S is called generic

if di = pi+1 − pi are distinct, where i = 1, . . . ,m and pm+1 = p1 + 1. Then
any generic S can be reconstructed from the 1st density function ψ1[S](t) up to
isometry in R. Hence ψ1(t) is a complete isometry invariant for all generic S. �

Proof. As always, one can scale a unit cell of S to the standard interval [0, 1] as
in Theorem 7. Hence, up to translation and re�ection of R, one can assume that
p1 = 0 < p2 < 1 = pm+1. It su�ces to uniquely locate p2, . . . , pm ∈ (0, 1).

The 1st density function ψ1[S](t) is the sum of the trapezoid functions

that have the initial gradient 2 and the corner points (0, 0), (di−1

2 , d), (di

2 , d),

(di−1+di

2 , 0), where d = min{di−1, di}, i = 1, . . . ,m, all indices are modulo m.

Due to a cyclic order of inter-point distances di, one can assume that the
minimum distance is d[1] = d1. For any 0 ≤ t ≤ d1, the function ψ1[S](t)
is linearly increasing with the gradient 2m. This gradient drops to 2m − 2 at
the �rst critical radius t = d1

2 , which di�ers from all other larger points di

2

and di−1+di

2 where the gradient of ψ1(t) changes. Then the �rst corner of ψ1(t)
uniquely determines d1 and the second point p2 = d1 of the sequence S.



Density functions of periodic sequences 13

At the radius t = d1

2 , subtracting from ψ1(t) the contribution (m−1)d1 from

other still growing m−1 trapezoid functions, we get the value d1+d2

2 . So the �rst
corner of ψ1(t) also determines the length d2 = p3− p2 of the second inter-point
interval after [p1, p2] of the length d1, and the third point p3 = d1 + d2.

Since we know both d1, d2, we can subtract from ψ1(t) the whole trapezoid
function η(t) with the above corners for i = 2 for all t ∈ [0, 1]. The resulting
function ψ̃1(t) is the sum of m−1 trapezoid functions depending on m−1 inter-
point distances d2, . . . , dm. We continue analyzing ψ̃1(t) by looking at the �rst
corner where its gradient drops from 2m− 2 to 2m− 4, which gives us another
pair (di−1, di) of successive interval lengths, and so on. Since all distances di are
distinct, the above pairs uniquely determine the ordered sequence d1, . . . , dm of
all interval lengths, hence the points p2, . . . , pm ∈ (0, 1) of the sequence S.

The recent developments in Periodic Geometry include algorithms of metrics
on periodic point sets [2,8], Lattice Isometry Spaces in dimension two [9,3] and
three [7,4], Pointwise Distance Distributions [13], and applications to materi-
als [12,15]. This research was supported by the EPSRC grants EP/R018472/1,
EP/X018474/1, and the Royal Academy of Engineering Fellowship IF2122/186.
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