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Abstract 
Skeletal muscle homeostasis depends on an intricate balance between muscle 
hypertrophy, atrophy and regeneration. As we age, maintenance of muscle 
homeostasis is perturbed, resulting in a loss of muscle mass and function, termed 
sarcopenia. Individuals with sarcopenia exhibit impaired balance, increased falls 
(leading to subsequent injury) and an overall decline in quality of life. The 
mechanisms mediating sarcopenia are still not fully understood but clarity in our 
understanding of the precise pathophysiological changes occurring during skeletal 
muscle ageing has improved dramatically. Advances in transcriptomics has 
highlighted significant deregulation in skeletal muscle gene expression with ageing, 
suggesting epigenetic alterations may play a crucial and potentially causative role in 
the skeletal muscle ageing process. microRNAs (miRNAs, miRs), novel regulators of 
gene expression, can modulate many processes in skeletal muscle, including 
myogenesis, tissue regeneration and cellular programming. Expression of numerous 
evolutionary conserved miRNAs is disrupted in skeletal muscle with age. Given that a 
single miRNA can simultaneously affect the functionality of multiple signaling 
pathways, miRNAs are potent modulators of pathophysiological changes. miRNA-
based interventions provide a promising new therapeutic strategy against alterations 
in muscle homeostasis. The aim of this review is two-fold; firstly to outline the latest 
understanding of the pathophysiological alterations impacting the deregulation of 
skeletal muscle mass and function with ageing, and secondly, to highlight the 
mounting evidence for a role of miRNAs in modulating muscle mass, and the need to 
explore their specific role in sarcopenia.   
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1. Introduction 
As we age, our ability to maintain muscle homeostasis is impaired and results in a 
progressive loss of muscle mass and function (Cruz-Jentoft et al., 2010; Goodpaster et 
al., 2008; Nilwik et al., 2013; Snijders et al., 2014; Visser et al., 2005). This 
phenomenon has been termed “sarcopenia” and has been associated with impaired 
balance, increased prevalence of falls, elevated sense of frailty, and reduced 
independence (Cruz-Jentoft et al., 2010; Rhodes et al., 1999; Visser et al., 2005). 
Maintenance of healthy, functional skeletal muscle mass as we age is fundamental to 
maintaining quality of life and increasing our “health-span” (duration of life spent in a 
healthy state). At the molecular level, there is a significant deregulation in skeletal 
muscle gene expression with ageing (Sifakis et al., 2013; Welle et al., 2003), 
suggesting epigenetic alterations may play a crucial and potentially causative role in 
the skeletal muscle ageing process. This review outlines the latest understanding of 
the pathophysiological alterations underlying the deregulation of skeletal muscle mass 
and function with ageing. Furthermore, we aim to highlight the mounting evidence for 
a role of miRNAs in modulating muscle mass and the need to explore their specific 
role in sarcopenia. 
 
2. Sarcopenia: Diagnostic criterion, prevalence and impact 
Sarcopenia comprises a combined loss of muscle mass and strength or performance 
associated with ageing (Cruz-Jentoft et al., 2010) which ultimately impacts mobility 
and all-cause mortality (Landi et al., 2013; Visser et al., 2005). The European 
Working Group on Sarcopenia in Older People (EWGSOP) recently provided a 
consensus clinical diagnostic criterion for the assessment of sarcopenia (Cruz-Jentoft 
et al., 2010), detailing a loss of muscle mass and/or function, largely defined by a cut-
off criterion of two standard deviations below the mean value of a young adult 
reference population. Using this criterion, it was reported that that between 6-8% of 
community dwelling men (n = 103; mean age of 73 years) have sarcopenia (Patel et 
al., 2013). The assessment of an older cohort of males and females (n = 364; mean 
age of 82 years), revealed 22% of individuals had sarcopenia (Landi et al., 2013), 
suggesting the prevalence of sarcopenia may increase substantially between the ages 
of 70-80 years. Moreover, Lauretani et al. (2003) examined a large population cohort 
(1,030 people aged 20-102 years) to reveal that with increasing age, both men and 
women exhibit a progressive decline in muscle strength/power and a reduction in their 
ability to walk 1km. Walking related assessments (either distance covered or maximal 
walking speed) have also proven excellent markers of health related events in older 
populations (Cesari et al., 2009; Lauretani et al., 2003; Yazdanyar et al., 2014), 
suggesting the capacity of skeletal muscle to function within the context of the 
individuals cardiovascular and respiratory systems is of particular prognostic value. 
Recent evidence also implicates that a “muscle mass index” (relative muscle mass) is 
a good predictor of longevity in humans (Srikanthan and Karlamangla, 2014), 
demonstrating the importance of maintaining muscle mass with ageing. Ultimately, 
skeletal muscle forms a fundamental component of the human locomotive system and 
thus understanding age-associated alterations in muscle pathophysiology and 
examining interventions to ameliorate sarcopenia is of international importance to 
increase the health span of an increasingly longer living population.  
 
3. Pathophysiological alterations in skeletal muscle during ageing  
The multifactorial and progressive nature of sarcopenia makes a single definition or 
diagnostic criterion difficult and perhaps unrealistic. Alchin (2014) recently discussed 



that despite the efforts of the EWGSOP, the current definition of sarcopenia is 
somewhat incomplete and perhaps presents a description rather than a definition per 
se. Although recognition of the symptoms of sarcopenia has been broadly understood 
for a while, it’s only recently that the multifactorial pathophysiological alterations 
underlying sarcopenia have really come to light and will be reviewed in this section. 
A graphical summary of alterations occurring during muscle ageing is displayed in 
Figure 1.  
 
 3.1 Targeted atrophy of type II muscle fibres  
There is a characteristic and well-documented decline in muscle mass or muscle 
cross-sectional area (CSA) with ageing, reported in both humans (Goodpaster et al., 
2008; Nilwik et al., 2013; Snijders et al., 2014) and rodent models (Akasaki et al., 
2014; Houtkooper et al., 2011). A recent series of studies in humans, however, have 
consistently identified a specific reduction in type II, but not type I, muscle fibre CSA 
in elderly men (Gueugneau et al., 2014; Hvid et al., 2014; Nilwik et al., 2013; 
Snijders et al., 2014), suggesting age-associated muscle atrophy is strongly dependent 
on muscle fibre type. The CSA of type II muscle fibres can have functional 
consequences, impacting overall muscle strength (Akasaki et al., 2014). The targeted 
atrophy of type II muscle fibres in elderly men can be so severe that type II fibre CSA 
can become significantly smaller than type I fibre CSA (Gueugneau et al., 2014; 
Snijders et al., 2014), thus deregulating the normal fibre-type fibre-size relationship. 
By comparing shifts in muscle fibre CSA and whole muscle CSA in young and old 
men prior to and following a 6 month resistance training program, Nilwik et al. 
(2013) suggested that the alterations in type II muscle fibre CSA account for the 
changes in whole muscle CSA observed with ageing. The authors therefore dismissed 
the loss/death of muscle fibres in mediating the reduction in whole muscle CSA with 
ageing in humans. The involvement of muscle fibre loss/death in sarcopenia remains 
an unresolved point of controversy amongst the literature (Brown, 1987; Deschenes, 
2004; Eddinger et al., 1985; Faulkner et al., 2007; Lushaj et al., 2008). Reasons for 
this controversy are currently unknown but may reflect difficulties in accessing whole 
muscle samples from human subjects, relying primarily on small muscle biopsy 
sampling. Recent evidence has also proposed that muscle fibre loss may be an artifact 
of muscle ageing in rodent models (Sheard and Anderson, 2012) and may not occur in 
humans (Nilwik et al., 2013). The existence of species-specific differences in muscle 
fibre loss/death with ageing warrants investigation as it may elucidate a role for 
anatomical and postural differences in regulating the maintenance of muscle fibre 
number. The loss of muscle fibres in aged mouse models has been shown to vary, 
with fibre loss occurring in loaded limb muscles but not in muscles supporting the 
neck (Sheard and Anderson, 2012), highlighting that muscle fibre loss with ageing 
may occur in a muscle-specific and activity-dependent manner.  
 
 3.2 Muscle fibre type dependent alterations in satellite cell biology 
Skeletal muscle contains its own resident population of self-renewing stem cells, 
commonly termed satellite cells due to their location under the basal laminar on the 
muscle fibre periphery, which contribute to postnatal muscle fibre repair and 
regeneration (Relaix and Zammit, 2012; Zammit et al., 2006). Muscle fibres of 
rodents show a significantly reduced satellite cell content with ageing (Bernet et al., 
2014) and demonstrate abnormalities such as an increased susceptibility to apoptosis 
(Jejurikar et al., 2006) and an impaired ability to proliferate ex vivo (Bernet et al., 
2014). Using human muscle biopsy samples, Snijders et al. (2014) and Verdijk et al. 



(2014) have recently shown that age associated alterations in satellite cell content is 
specific to muscle fibre type; type II, but not type I, muscle fibres from older people 
contain fewer satellite cells per fibre compared to that of their young counterparts. In 
addition, satellite cells associated with type II, but not type I, muscle fibres were 
shown to exhibit a delayed increase in cell number following a single bout of 
resistance exercise (Snijders et al., 2014). Taken together, these data suggest fibre 
type specific differences in satellite cell content and behaviour may differ between old 
and young individuals, a phenotype that may exacerbate the reduced ability to 
maintain type II muscle fibre mass during ageing. However, although partial depletion 
of satellite cells impairs the regenerative capacity of skeletal muscle, it does not 
worsen the muscle fibre atrophy associated with the development of sarcopenia in 
aged mice (Fry et al., 2014).  
 
 3.3 Role of the neuromuscular junction in maintaining muscle mass 
The role of motor neurons and the neuromuscular junction (NMJ) in maintaining 
muscle homeostasis during ageing is difficult to examine in humans but has been 
highlighted by a collection of recent studies in rodent models (Butikofer et al., 2011; 
Hettwer et al., 2014; Sakellariou et al., 2014; Valdez et al., 2010). A time-course 
analysis of the NMJ in ageing mice (between 1 and 24 months of age) clearly 
highlights progressive detrimental alterations in NMJ morphology with ageing 
(Valdez et al., 2010), leading to destabilization of the NMJ. Using neurotrypsin over-
expressing mice to sporadically destabilize NMJs in skeletal muscle, Butikofer et al. 
(2011) demonstrated a critical role of NMJ stability in regulating muscle fibre mass 
and function. Although neurotrypsin does not mediate sarcopenia, this work 
demonstrated that the loss of muscle mass and function can be mediated by NMJ 
destabilization (Butikofer et al., 2011). Hettwer et al. (2014) recently reported that 
administration of an Agrin fragment, resistant to neurotrypsin cleavage, re-stabilized 
the NMJ in neurotrypsin over-expressing mice and subsequently maintained body 
mass during early postnatal ageing and improved early age-associated decrements in 
muscle function. A study by Sakellariou et al. (2014) elegantly demonstrated a 
significant role of the motor neurons in regulating muscle homeostasis in a mouse 
model of oxidative damage induced accelerated muscle ageing (Sod1-/- mice; Muller 
et al. (2006)). Using a transgenic approach to specifically re-express Sod1 in neuronal 
cells of Sod1-/- mice, the authors demonstrated a substantial recovery in the loss of 
muscle mass and function normally exhibited by the Sod1-/- mice. Taken together, 
oxidative damage of neuronal cells and alterations in NMJ morphology play a critical 
role in mediating the loss of muscle mass and function during ageing. As such, it is 
imperative that the interplay between muscle and nerve are considered when 
investigating age-associated alterations in muscle homeostasis.  
 
 3.4 Muscle fibre type switching 
Adult muscle is composed of a heterogeneous population of muscle fibre types, 
displaying a broad range of contractile characteristics (Gundersen, 2011). Different 
muscle fibre types express distinct isoforms of the sarcomeric myosin heavy chain 
(MyHC; types I, IIa, IIx and IIb), which elicit different ATPase activities and 
therefore dictate the contractile capacity of the fibre (Weiss and Leinwand, 1996). 
Klitgaard et al. (1990b) revealed an increase in co-expression of multiple MyHC 
isoforms in single muscle fibres with ageing, which may represent ongoing transitions 
in muscle fibre type. The general consensus is of a shift towards slower muscle fibre 
types with ageing (Gannon et al., 2009; Nilwik et al., 2013; Ohlendieck, 2011), thus 



reducing the capacity to perform fast, powerful contractions, like those often required 
to prevent a fall. However, some have shown either no change in muscle fibre type 
(Gueugneau et al., 2014; Klitgaard et al., 1990b) or even an increase in fast fibres 
(Frontera et al., 2000) with ageing. Muscle fibre type is largely influenced by the 
innervating neuron (Buller et al., 1960) and thus alterations in NMJ morphology and 
extensive re-innervation may influence muscle fibre type with ageing. Furthermore, 
reduced mechanical loading of muscle induces a transition from slow-to-fast muscle 
fibre types (Caiozzo et al., 1996; Loughna et al., 1990) and thus lower levels of 
physical activity in elderly populations may also impact fibre type with ageing. It is 
noteworthy that inference of muscle fibre type transitions occurring in rodent models 
should be interpreted with caution as, unlike rodents, humans only express three 
MyHC isoforms, lacking the fast contracting type IIB MyHC isoform (Pellegrino et 
al., 2003; Smerdu et al., 1994), due to a genetic difference in the promoter of this gene 
(Brown et al., 2014; Harrison et al., 2011).  
 
 3.5 Nutrient repartitioning and disrupted lipid deposition 
The age-associated loss of muscle mass and function is often accompanied by an 
increase in whole body fat mass (Akasaki et al., 2014; Houtkooper et al., 2011). 
Furthermore, there is significant accumulation of fat mass in non-adipose tissues and 
accompanying metabolic consequences of such nutrient repartitioning with ageing. 
Inter- and intra- muscular fat content increases with ageing in humans (Conte et al., 
2013; Goodpaster et al., 2008; Gueugneau et al., 2014; Marcus et al., 2010) and the 
inter-muscular fat infiltration is associated with a loss of muscle function (Marcus et 
al., 2012) and presents a good predictor for loss of mobility in aged populations 
(Visser et al., 2005). Using a rodent model, Tardif et al. (2014) recently demonstrated 
that aged rats, challenged with a high fat diet, display an inability to uptake lipids into 
adipose tissue and show an increased lipid deposition in skeletal muscle, compared to 
young rats. The accumulation of lipids in non-adipose tissue is considered a strong 
contributor to insulin resistance (Slawik and Vidal-Puig, 2007), linking age-associated 
alterations in muscle composition with whole body metabolism in aged individuals. 
Tardif et al. (2014) also demonstrated that ectopic lipid deposition in skeletal muscles 
of old rats reduced protein synthetic rate, suggesting a “toxicity” effect of lipid 
accumulation in muscle cells, which may subsequently accelerate the symptoms of 
sarcopenia. Thus, altered homeostasic control in adipose tissue and subsequent fat 
infiltration of skeletal muscle may present detrimental effects on muscle function, 
dysregulation of whole body metabolism and resistance to anabolic signals in muscles 
of older individuals.   
 
Taken together, the underlying pathophysiology of sarcopenia is multifactorial and 
progressive, resulting in an impaired ability to maintain healthy muscle mass with 
age. Interventions to ameliorate these alterations would improve the quality of life, 
independence and health care costs of an increasingly longer living population.  
 
4. Exercise as a therapeutic intervention against sarcoponia 
There is currently no optimal treatment for sarcopenia. Exercise interventions 
improve quality of life in older adults (Napoli et al., 2014) and some forms of 
exercise, particularly resistance exercise, effectively modulate muscle mass and 
function in older populations (Klitgaard et al., 1990a; Nilwik et al., 2013). Akasaki et 
al. (2014) recently demonstrated that targeted restoration of type II muscle fibre mass 
in middle aged mouse models (using muscle specific over-expression of constitutively 



active Akt1; Izumiya et al. (2008)) effectively reduced the age-associated increases in 
whole body fat mass, circulating leptin and insulin levels and hepatic steatosis. This 
highlights that exercise interventions that maintain type II muscle fibre mass 
positively impact muscle function and whole body physiology with ageing 
(LeBrasseur et al., 2011). However, simple dissemination of this information has not 
resulted in adherence to such lifestyle modifications by the general population, 
including older adults (Biedenweg et al., 2014; Dunn, 2009). An elevated perception 
of frailty and poor health are considered major barriers to exercise adherence in older 
adults (Rhodes et al., 1999), thus limiting the effectiveness of exercise prescription as 
a therapeutic strategy against sarcopenia. With an increasingly longer living 
population, it is important to explore alternative therapeutic options that perhaps 
mimic the effects of lifestyle modifications to improve the quality of life and 
independence that is lost with the development of sarcopenia in old age.  
 
Resistance exercise or increased muscle loading induces a myriad of intracellular 
signaling events in muscle cells, such as activation of the Akt/mTOR (Bolster et al., 
2003; Dreyer et al., 2008; Sakamoto et al., 2003) and myostatin pathways (Louis et 
al., 2007; Matsakas et al., 2005). Experimental manipulation of “exercise-inducible” 
factors such as Akt and myostatin demonstrate a powerful role for these factors, and 
their associated signaling pathways, to regulate muscle size (Akasaki et al., 2014; Lee 
and McPherron, 2001; McPherron et al., 1997; Schiaffino and Mammucari, 2011). 
We discuss herein how miRNAs, novel regulators of gene expression (detailed 
below), are capable of modulating “exercise-inducible” signaling pathways that 
determine muscle size, thus presenting exciting alternative therapeutic avenues to 
maintain muscle homeostasis in elderly populations.   
 
5. microRNAs, potent regulators of gene expression 
microRNAs (miRNAs; miRs) are short, non-coding RNAs that regulate gene 
expression at the post-transcriptional level. miRNAs are predicted to regulate two-
thirds of all protein-coding genes in the human genome, suggesting that miRNAs 
modulate many physiologically relevant processes (Friedman et al., 2009). miRNAs 
have been strongly implicated in regulating muscle development and maintaining 
muscle homeostasis (Goljanek-Whysall et al., 2012c). Although the fundamental 
biogenesis of miRNAs is broadly understood (described below), it is noteworthy that 
the intricate pre- and post-transcriptional mechanisms regulating miRNA abundance 
are multifactorial and still poorly understood (Ha and Kim, 2014). Mature miRNAs 
are generated from primary-miRNA (pri-miRNA) precursors, which are cleaved in 
the nucleus by the enzyme Drosha to form the pre-miRNA transcript. The pre-
miRNA, containing a hallmark stem-loop, is transported into the cytoplasm, whereby 
it is cleaved by the enzyme Dicer to generate a 19–24 base pairs long miRNA duplex 
(Bartel, 2004). This duplex is unwound and the mature miRNA strand is incorporated 
into a protein complex called RISC (RNA Induced Silencing Complex). The non-
incorporated strand is often degraded however in some cases it may also be 
incorporated into the RISC complex. miRNAs function to guide the RISC to partially 
complementary sequences, usually contained within the 3’ UTR of target mRNA 
transcripts. The result of miRNA interaction with its target(s) is a translational block 
and often degradation of the transcript. miRNAs operate on a “many-to-many” 
relationship, whereby a single miRNA can regulate many target genes, and a single 
gene can be regulated by many miRNAs. In addition, most mammalian miRNAs only 
have partially complementary sequences to their target mRNAs (Bartel, 2004) 



resulting in difficult bioinformatic-based prediction of the, sometimes hundreds of, 
microRNA target genes. Several algorithms exist to predict target gene(s) for known 
miRNAs; for example, microcosm targets (http://www.ebi.ac.uk/enright-
srv/microcosm/htdocs/targets/v5/), TargetScan (http://www.targetscan.org/), miRanda 
(http://www.microrna.org/microrna/home.do), miRWalk (http://www.umm.uni-
heidelberg.de/apps/zmf/mirwalk/), however the distinct lack of consensus overlap 
between the predictions of miRNA targets (Goljanek-Whysall et al., 2012b) makes 
interpretation difficult. miRNAs are also not restricted to the cell in which they were 
transcribed and can be released into extracellular spaces and systemic circulation, 
packaged in microvesicles/exosomes or complexed with Argonaute2 (Ago2) or high-
density lipoproteins (HDL) (Arroyo et al., 2011; Camussi et al., 2011; Guescini et al., 
2015; He et al., 2014; Vickers et al., 2011). Secretion of miRNAs permits systemic 
transfer of genetic material, enabling miRNA mediated epigenetic cross-talk between 
tissues (Camussi et al., 2011).  
 
By influencing the mRNA and protein expression of multiple target genes, miRNAs 
provide a potent and highly responsive mechanism that enables cells to react to 
changes within their immediate or surrounding cellular context. Given their role as 
novel regulators of gene expression and their vast deregulation in a myriad of 
pathophysiological conditions, functional experiments are beginning to improve our 
understanding of these powerful regulatory molecules and exposing their potential as 
novel therapeutic agents (Van Rooij and Kauppinen, 2014).  
 
6. The potential role of miRNAs in modulating muscle homeostasis during ageing 
 

6.1 miRNAs are an important component of muscle cell biology 
By manipulating expression levels of the miRNA biogenesis machinery, a significant 
role of miRNAs in muscle cell biology has been exposed (Cheung et al., 2012; 
Hitachi et al., 2014). Using inducible, satellite cell specific knock out mice for the 
gene, Dicer, effectively ablating satellite cells of miRNAs, Cheung et al. (2012) 
demonstrated an impaired maintenance of satellite cell quiescence and reduced 
survival of proliferating satellite cell progeny. Ablation of miRNAs in satellite cells 
(due to the absence of Dicer) resulted in a reduced number of satellite cells in the 
muscle, mild muscle atrophy with ageing and an impaired ability to regenerate muscle 
fibres following muscle injury. Using siRNAs specific to the Dicer1 gene in post-
mitotic, 5-day differentiated myotubes, Hitachi et al. (2014) showed an induction of 
myotube atrophy within 48 hours, revealing the dependence on miRNAs to maintain 
myotube size, at least in culture. Expression levels of the miRNA machinery also 
appear to be dynamic in response to mechanical stress (McCarthy and Esser, 2007). 
Analysis of 7-day functionally overloaded mouse muscle revealed an up-regulation of 
transcripts encoding both Drosha and Exportin-5, but no change in Dicer expression 
(McCarthy and Esser, 2007). Taken together, miRNAs are a critical component 
capable of modulating muscle cell biology, both in vitro and in vivo.  
 
 6.2 Muscle enriched miRNAs regulate myogenic processes 
Muscle contains its own set of muscle-enriched miRNAs, which include, but are not 
restricted to, miR-1, miR-206, miR-208, miR-208b, miR-133a, miR-133b, miR-486, 
and miR-499, and have appropriately been termed “myomiRs” (Sharma et al., 2014).  
MyomiRs exhibit significant and dynamic roles in myogenic processes during 
embryonic development and in adults by regulating quiescence and myogenic 



differentiation of satellite cells (Chen et al., 2009; Cheung et al., 2012; Crist et al., 
2012; Crist et al., 2009; Goljanek-Whysall et al., 2012a; Goljanek-Whysall et al., 
2011; Nakasa et al., 2010).  In order to promote myogenesis, miR-1/206 and miR-27 
are required to down-regulate Pax3 expression during embryonic development and 
during muscle regeneration in adults, respectively (Crist et al., 2009; Goljanek-
Whysall et al., 2011). Following injury of rat skeletal muscle, injection of miR-1, 
miR-133 or miR-206 into the injured muscle enhanced regeneration (Nakasa et al., 
2010). This was associated with increased expression of myogenic markers, such as 
MyoD, myogenin and Pax7. miR-489 and miR-31 have also been shown to control 
muscle regeneration via regulation of satellite cell quiescence (Cheung et al., 2012; 
Crist et al., 2012). Crist et al. (2012) demonstrated that miR-31 regulates translation 
of Myf5 by sequestration of Myf5 mRNA in mRNP granules. mRNP granules are 
dissociated upon the activation of satellite cells resulting in accumulation of Myf5 
protein. The study demonstrated that manipulation of miR-31 expression could affect 
satellite cell differentiation and muscle regeneration. These data strongly implicate 
miRNAs in holding quiescent stem cells poised to enter the myogenic differentiation 
program and thereby influencing myogenesis in both embryonic development and 
adult myogenesis.  

miRNAs have also been shown to control muscle fibre type during development (Van 
Rooij et al., 2009). Intronic regions of myosin heavy chain genes, Myh6, Myh7, 
and Myh7b, contain muscle-enriched miRNAs, miR-208b and miR-499 (Van Rooij et 
al., 2009). The authors generated miR-208b and miR-499 double knock-out mice and 
revealed a substantial loss of type I muscle fibres in the soleus muscle as well as a 
reduced expression of slow beta-myosin heavy chain and increase in the expression of 
type IIx/d and IIb (fast) myosin isoforms (Van Rooij et al., 2009). Conversely, 
overexpression of miR-499 only was sufficient to induce conversion of all fast muscle 
fibres in the soleus muscle to a slow phenotype. To conclude, miR-208b and miR-499 
redundantly program skeletal muscle fibres to a slow (type I) phenotype at the 
expense of the fast phenotype. 

 6.3 Non-consensus deregulation of miRNAs during muscle ageing  
The skeletal muscles of young and old animals display substantially different gene 
(Sifakis et al., 2013; Welle et al., 2003) and protein (McDonagh et al., 2014) 
expression profiles. Given that miRNAs elicit their effects by post-transcriptional 
regulation of mRNA transcripts, it is perhaps unsurprising that miRNAs in muscle 
also elicit differential expression with ageing. Recent evidence has highlighted 
significant deregulation of many muscle enriched as well as non-muscle specific 
miRNAs in skeletal muscle during ageing in multiple species, including mice (Kim et 
al., 2014), rats (Hu et al., 2014), rhesus monkeys (Mercken et al., 2013) and humans 
(Drummond et al., 2011; Rivas et al., 2014; Zacharewicz et al., 2014). Furthermore, 
Zacharewicz et al. (2014) and Rivas et al. (2014) showed differential expression of 
miRNAs in skeletal muscle of young and old humans in response to an acute bout of 
resistance exercise, suggesting an altered capacity to regulate miRNA expression in 
muscles of the elderly. However, it is imperative to note that there is a considerable 
lack of overlap in deregulated miRNA expression in skeletal muscles of old/ageing 
animals amongst the available literature and an explanation as to why is of critical 
importance to the progress of this field. This may be due to the use of different 
transcriptomic platforms between studies or perhaps due to differential ageing 
processes in anatomically distinct muscle types.  



Potential miRNAs capable of modulating age-associated changes in muscle 
homeostasis are summarized in Figure 1. 
 
The levels of circulating miRNAs are also altered with ageing (Jung and Suh, 2014). 
Recent evidence has highlighted that muscle cells can modulate intracellular miRNA 
content during dexamethasone induced atrophy by extracellular release of specific 
miRNAs (Hudson et al., 2014a; Hudson et al., 2014b). It is therefore possible that 
systemically released miRNAs, packaged in exosomes/microvesicles or complexed 
with Ago2 or HDL, may provide useful biomarkers of intracellular events occurring 
during muscle ageing. Secreted miRNAs may also mediate epigenetic mediated cross 
talk between tissues (Camussi et al., 2011) during the ageing process.  
 
 6.4 A unique “miRNA signature” during muscle catabolism 
Soares et al. (2014) recently demonstrated differential miRNA expression profiles in 
murine skeletal muscle during several catabolic conditions induced by a variety of 
different stimuli, such as denervation, starvation, diabetes and cancer cachexia. These 
data demonstrated that a unique and dynamic “miRNA signature” may exist for 
specific catabolic conditions in skeletal muscle, and thus likely modulate muscle 
atrophy in a condition specific manner. By conducting an intricate time course 
analysis following denervation induced muscle atrophy, Soares et al. (2014) showed 
that maximal changes in miRNA expression were delayed in comparison to maximal 
changes in mRNA transcript abundance, with peak miRNA changes occurring 7 days 
post-denervation compared to only 3 days for mRNA transcripts. The authors thus 
implicate that miRNAs may serve a modulatory or fine tuning role on an already 
initiated muscle atrophy program rather than causatively initiating muscle atrophy per 
se.  

Elucidating causative and/or compensatory roles of specific miRNAs during muscle 
catabolism with ageing is a challenging and complex task. Although, to our 
knowledge, there are few studies examining the causal effects of deregulated miRNA 
expression in ageing muscle (Hu et al., 2014), recent studies have implicated miRNAs 
in modulating multiple signaling pathways regulating muscle size, as detailed below.  
 
7. miRNAs modulate signaling pathways that regulate muscle mass 
 

7.1 miR-23a modulates expression of MuRF1 and MAFbx atrophy genes 
Molecular analysis of skeletal muscle atrophy revealed an up-regulation of two 
ubiquitin ligases, Muscle RING Finger 1 (MuRF1) and Muscle Atrophy F-box 
(MAFbx; Bodine et al. (2001)). Mice lacking MuRF1 or MAFbx are resistant to 
muscle atrophy (Bodine et al., 2001), demonstrating a causative role of these factors 
in mediating muscle atrophy. These genes have appropriately been termed 
“atrogenes” and are considered a critical component of the muscle atrophy program. 
Due to the powerful role of these genes in regulating muscle atrophy, Wada et al. 
(2011) conducted bioinformatic analysis to predict miRNAs targeting the 3’ UTRs of 
both MuRF1 and MAFbx. The authors revealed only two miRNAs, miR-23a and 
miR-23b, showed complementarity to the 3’ UTRs of both atrogenes. Interestingly, 
the miR-23a binding site in the 3’ UTRs of MuRF1 and MAFbx 3’ is highly 
conserved across mice, rats and humans. Using 3’ UTR reporter plasmids, the authors 
demonstrated a direct interaction of miR-23a with MuRF1 and MAFbx. Over-
expression of miR-23a in cultured myotubes was capable of inhibiting dexamethasone 



induced myotube atrophy (Wada et al., 2011). Accordingly, transgenic mice over-
expressing miR-23a were partially protected from dexamethasone induced muscle 
atrophy (Wada et al., 2011), revealing miR-23a as a molecule with therapeutic 
potential for perturbing atrogene (MAFbx/MuRF1) mediated muscle atrophy. Recent 
findings from Hudson et al. (2014b) also show reduced intracellular expression of 
miR-23a and increased exosomal release of miR-23a from cultured myotubes, 
suggesting altered miR-23a expression/release may be a useful diagnostic biomarker 
in conditions causing muscle atrophy.  

 
7.2 miR-182 regulates expression of atrophy genes by modulation of Foxo3  

The family of Forkhead (FoxO) transcription factors, particularly FoxO1 and FoxO3, 
have been implicated in regulating muscle atrophy by modulating expression of 
several atrogenes involved in the ubiquitous protesome system (Sandri et al., 2004). 
During muscle atrophy, FoxO3 binds the MAFbx promoter to elevate MAFbx 
transcription (Sandri et al., 2004). Consequently, over-expression of FoxO3 in murine 
skeletal muscle in vivo upregulates MAFbx promoter activity and induces myofibre 
atrophy (Sandri et al., 2004). Pharmacological interventions to inhibit FoxO3 are 
attractive anti-atrophy therapeutics. Hudson et al. (2014a) investigated whether 
miRNAs could interact with the FoxO3 transcript to post-transcriptionally modulate 
levels of FoxO3 expression in muscle. The authors demonstrated that miR-182 
directly interacts with the FoxO3 3’ UTR and that over-expression of miR-182 in 
cultured C2C12 muscle cells is sufficient to reduce FoxO3 protein expression. 
Treatment of cultured C2C12 myotubes with atrophy inducing drugs, dexamethasone 
or streptozotocin, resulted in an increase in FoxO3 mRNA expression with a 
concomitant reduction in miR-182. Over-expression of miR-182 was capable of 
blunting the dexamathosone induced increases in expression of FoxO3 target genes, 
including MAFbx, microtubule-associated protein light chain 3 (LC3), autophagy-
related protein 12 (ATG-12) and Cathepsin L (Hudson et al., 2014a). Therefore, miR-
182 modulates expression of genes involved in the autophagy/lysosome system via 
post-transcriptional regulation FoxO3 expression in muscle (Hudson et al., 2014a). 
 

7.3 miR-486 targets FoxO1 and PTEN to modulate muscle size 
Another member of the Forkhead family, FoxO1, is a potent regulator of muscle 
atrophy and induces atrogene expression when de-phosphorylated (Sandri et al., 
2004). Recent studies show miR-486 can target FoxO1 to effectively modulate 
muscle size (Hitachi et al., 2014; Xu et al., 2012). Over-expression of miR-486 in 
C2C12 myotubes causes a modest increase in myotube diameters, whilst inhibition of 
miR-486 induces mild myotube atrophy (Hitachi et al., 2014). Inhibition of miR-486 
in mouse skeletal muscle reduces muscle fibre cross sectional area, confirming the 
role of miR-486 both in vitro and in vivo (Hitachi et al., 2014). The work of Xu et al. 
(2012) demonstrated that miR-486 blunts dexamethasone-induced atrophy in primary 
myotubes by ablating the activity of FoxO1. Interestingly, over-expression of miR-
486 not only inhibited expression of FoxO1 and its target atrogenes, MuRF1 and 
MAFbx, it also inhibited the expression of Phosphatase and Tensin Homolog (PTEN; 
Xu et al. (2012)). The inhibition of PTEN by miR-486 caused an increase in 
phosphorylation of the Serine/Threonine Protein Kinase, Akt, which subsequently 
phosphorylates and sequesters FoxO1 into the cytoplasm, perturbing its ability to up-
regulate atrogene expression (Xu et al., 2012). Thus, miR-486 represses FoxO1 
expression via direct post-transcriptional regulation and also indirectly regulates 
FoxO1 nuclear localization via inhibition of PTEN expression. Over-expression of 



miR-486 significantly blunted dexamethasone induced increases in protein 
degradation, but interestingly had no impact on protein synthesis (Xu et al., 2012). 
During muscle atrophy, miR-486 is an exciting therapeutic candidate that regulates 
the ubiquitous proteasome by modulating Foxo1 activity.  
 

7.4 Context dependency of miR-21 and miR-206 in muscle atrophy 
Recent evidence has revealed that the cellular environment is of critical importance in 
determining the function of miRNAs (Carroll et al., 2013; Erhard et al., 2014) and 
examples of miRNA context specificity have been observed in skeletal muscle 
(Soares et al., 2014; Williams et al., 2009; Winbanks et al., 2013). Denervation 
induced muscle atrophy is associated with an increase in muscle enriched miRNAs, 
miR-21 and miR-206 (Soares et al., 2014). Although over-expression of miR-21 in 
skeletal muscle of healthy mice induced no change in muscle fibre diameters, over-
expression of miR-21 in denervated muscle exacerbated muscle atrophy (Soares et al., 
2014). The authors suggest that these results imply an already initiated atrophy 
program is required for miR-21 to modulate muscle atrophy and that miR-21 may 
“fine-tune” the muscle atrophy process. Similarly, although miR-206 over-expression 
induced mild muscle atrophy in skeletal muscles of healthy mice, over-expression of 
miR-206 in denervated muscles capable of exacerbating muscle atrophy (Soares et al., 
2014). Both miR-21 and miR-206 were shown to inhibit expression of translation 
initiation factor, EIF4E3, and programmed cell death factor, PDCD10, which were 
both reduced during denervation-induced muscle atrophy (Soares et al., 2014). It is 
noteworthy that others have shown no effect of miR-206 over-expression on muscle 
fibre diameters in healthy mice (Winbanks et al., 2013), but this may be due to 
differences in the magnitude of miRNA over-expression (Soares et al., 2014). 
Expression levels of experimental manipulated miRNAs must be closely monitored as 
saturation of, or competition for, miRNA processing machinery has practical 
implications for interpreting results (Grimm et al., 2006; Khan et al., 2009). 
Furthermore, both Soares et al. (2014) and Winbanks et al. (2013) prompted the 
hypothesis that muscle enriched miRNAs may also interact or work in conjunction 
with other miRNAs, thus mediating context dependent effects on target gene 
expression and physiological outcomes. These data reveal that the functions of 
miRNAs in regulating muscle atrophy display a dependency on the cellular 
environment within which they reside.  
 

7.5 miR-27a/b modulates muscle size by inhibiting myostatin 
The transforming growth factor family member, Myostatin, is a well-characterized 
negative regulator of muscle size (McPherron et al., 1997; Trendelenburg et al., 
2009), making it an attractive candidate for therapeutic interventions to modulate 
muscle mass. The Myostatin 3’ UTR contains a highly conserved binding site for 
miR-27a/b (Allen and Loh, 2011; McFarlane et al., 2014), a miRNA highly enriched 
in skeletal muscles of mice (Allen and Loh, 2011). Over-expression of miR-27a in 
cultured primary myotubes caused an increase in myotube size, a response that was 
not observed in primary myotubes lacking myostatin (McFarlane et al., 2014), 
confirming that miR-27a modulates myotube size via myostatin. Similarly, over-
expression of miR-27a in mouse skeletal muscle caused a substantial reduction in 
myostatin mRNA expression and a modest increase muscle fibre cross sectional area 
(McFarlane et al., 2014). Interestingly, myostatin and miR-27 show opposing fibre 
type dependent expression profiles (Allen and Loh, 2011). It has been postulated that 
miR-27 may therefore regulate the fibre type dependent expression profile of 



myostatin (Allen and Loh, 2011). It is also noteworthy that manipulation of myostatin 
signaling results in differential expression of miRNAs involved in myogenic and 
growth process (Javed et al., 2014; Rachagani et al., 2010).  
 

7.6 miR-128 is a modulator of the insulin/IGF1 signaling pathway 
Insulin like growth factor 1 (IGF1) demonstrates a potent ability to modulate muscle 
mass (Adams and McCue, 1998; Lee et al., 2004). IGF1 signals predominantly via the 
IGF1 receptor and to a lesser extent, the insulin receptor (Pandini et al., 2002), to 
activate a myriad of intracellular signaling events, via the well-described Akt/PKB 
pathway (Schiaffino and Mammucari, 2011). Elevated expression of IGF1 in old mice 
is protective against the age-associated decline in muscle mass and function (Barton-
Davis et al., 1998). Motohashi et al. (2013) recently demonstrated that miR-128 (a 
microRNA highly enriched in skeletal muscle and brain) directly targets the 3’ UTRs 
of multiple genes involved in the insulin/IGF1 signaling pathway, including the 
insulin receptor (INSR), insulin receptor substrate 1 (IRS1) and phosphatidylinositol 
3-kinases regulatory 1 (PIK3R1). Inhibition of miR-128 in cultured muscle cells 
revealed an increase in muscle cell proliferation and a dramatic induction of myotube 
hypertrophy, independent of alterations in differentiation (Motohashi et al., 2013). 
Confirmation of a role for miR-128 in negatively regulating muscle cell size was 
confirmed in vivo, with several muscles exhibiting an increase in mass following 35 
days intravenous delivery of vectors over-expressing an antagonist against miR-128 
(Motohashi et al., 2013). Therefore, interventions that inhibit miR-128 can act as an 
“enhancer” of IGF-Akt signaling in skeletal muscle.  

7.7 miR-206 modulates “muscle-nerve communication”  
Stability of the NMJ is progressively perturbed with ageing (Valdez et al., 2010) and 
is considered a critical stimulus for maintaining muscle mass with ageing (Butikofer 
et al., 2011; Sakellariou et al., 2014). A role for miRNAs in mediating homeostatic 
control of the NMJ was highlighted by Valdez et al. (2014) who used a muscle-
specific conditional Dicer knockout mouse, effectively ablating the muscle of 
miRNAs, to reveal impaired re-innervation of muscle fibres following nerve injury. 
Using a mouse model of Amyotrophic lateral sclerosis (ALS), whereby mice show 
considerable NMJ destabilization, Williams et al. (2009) reported that an absence of 
miR-206 was sufficient to accelerate muscle fibre atrophy and ultimately exacerbated 
disease progression. The authors demonstrated that miR-206 targeted histone 
deacetylase 4 (HDAC4) and was required for fibroblast growth factor (FGF) 
signaling-induced compensatory neuronal re-innervation following nerve injury. 
Interestingly, miR-206 expression is also specifically enriched in synaptic regions of 
muscle fibres (Williams et al., 2009), suggesting miRNAs can display heterogeneity 
in expression levels within a single muscle fibre. Therefore, localization of miRNAs 
in muscle to within close proximity of NMJs may impact muscle-nerve 
communication and indirectly regulate muscle mass and function by modulating 
innervation.  
 
A summary of miRNAs that target genes involved in signaling pathways that regulate 
muscle size is detailed in Table 1. 
   
8. Conclusions and future work 
Sarcopenia is underpinned by a myriad of progressive pathophysiological alterations, 
which ultimately perturb the maintenance of muscle homeostasis with ageing. Type II 



muscle fibres appear to be more susceptible to atrophy than their type I counterparts, 
which is also consistent with fibre type dependent alterations in satellite cell biology 
and behaviour. Skeletal muscle is increasingly infiltrated with lipid during ageing, 
ultimately impacting muscle function, anabolic resistance and whole body 
metabolism. Finally, neuromuscular junction morphology becomes progressively 
disrupted with age and the subsequent alterations in interplay between muscle and 
nerve may be critical for the maintenance of healthy, functioning muscle mass.  
  
Interestingly, it has become clear that miRNAs modulate many signaling pathways 
associated with the regulation of muscle mass. The manipulation of miRNA 
expression offers exciting therapeutic potential for correcting detrimental reductions 
in muscle mass with sarcopenia. However, with regard to restoring perturbed miRNA 
expression with ageing, it is imperative to explore whether the deregulation of 
endogenous miRNAs changes progressively, chronically, or dynamically with age or 
whether there is a “trigger point” of vast and chronic deregulation in miRNA 
expression. Furthermore, the field of miRNA therapeutics requires functional studies 
to establish which differentially expressed miRNAs initiate age-associated alterations 
in muscle homeostasis, those which fine-tune an already initiated pathophysiological 
process, and those which compensate for perturbed muscle mass and function in older 
individuals. 
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