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Abstract 

Jessica Henderson, Investigating the Neural Basis of Texture Processing during Active Touch  

Humans typically explore their haptic environments with the glabrous skin on their hands 

through dynamic interactions with surfaces, termed active touch. The somatosensory input 

transduced by low-threshold mechanoreceptors facilitates discrimination of tactile stimuli and 

informs decision making to subsequently guide behaviour and decision-making. However, 

research considering the neural correlates of texture processing has primarily employed 

passive stimulation devices due to difficulties in time-locking signals to behaviour during 

active exploration, which lacks ecological validity. Consequently, the neural correlates of 

texture processing during active touch were previously not well understood. This thesis 

utilised a novel approach to investigate the modulation of neural oscillatory activity in 

relevant frequency bands during active exploration of textured surfaces, which was enabled 

by combining electroencephalography and novel force plate technology. 

The findings of this thesis demonstrate cortical activation across sensorimotor brain 

regions in response to texture processing during active touch. Further, sensorimotor cortex 

activation was modulated by texture during active touch in the three electroencephalography 

experimental chapters. Increased alpha-band event-related desynchronisation was observed 

for rough textures and increased beta-band event-related desynchronisation for smooth and 

soft textures. These findings may reflect distinct cortical responses to different peripheral 

tactile coding mechanisms during active touch. Furthermore, alpha-band sensorimotor power 

was found to be modulated by texture change during complex ongoing tactile exploration 

which may represent an important mechanism for change detection in humans. Other findings 

point towards the role of higher-order regions in texture processing and estimation of tactile 
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surface properties. The estimation of hedonic preference modulated event-related 

desynchronisation in frontal, temporoparietal, and occipital brain regions. Further, meta-

analysis of functional magnetic resonance imaging studies revealed that texture-specific 

processing elicits activation in secondary somatosensory regions, which may encode higher-

order aspects of tactile processing.  

For the first time, the novel fusion of force plate and electroencephalography data 

developed in this thesis allowed for the accurate investigation of the neural correlates of 

texture processing during active touch. Furthermore, tactile estimation and detection of 

texture change were found to modulate oscillatory brain responses, demonstrating new targets 

for future research. Overall, this thesis provides new and unique insights into the neural basis 

of texture processing in humans.  
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Chapter 1 

General introduction 

The somatosensory system allows for the perception of the body and the environment, and is 

responsive to several types of stimuli, including pressure, vibration, temperature, and position 

of the joints and muscles (Bear et al., 2020). The sense of touch refers to the perception of 

tactile stimuli though cutaneous mechanoreceptors in the skin and joints. Touch is broadly 

divided into two main types, discriminative and affective touch (McGlone et al., 2014). 

Discriminative touch allows humans to detect, discriminate, and identify external stimuli, 

which enables fast decision making to guide subsequent behaviour (McGlone et al., 2014), 

whilst affective touch is thought to facilitate emotional and social bonds between humans 

(Hertenstein et al., 2006; McGlone & Walker, 2020; Morrison et al., 2010). Discriminative 

and affective touch are thought to be encoded by different nerve fibres, with discriminative 

touch mediated by fast Aβ fibres and affective touch facilitated by slow C-tactile (CT) fibres.  

1.1 Discriminative touch 

From the start of life humans engage in tactile perception, first by manipulating objects with 

their mouth (Essick & Trulsson, 2009), then as we age haptic attention shifts from the mouth 

to the hands (Rochat & Senders, 1991). Discriminative touch provides information about 

surface properties, such as texture or shape, and builds a representation of objects and hand 

movements (Ryan et al., 2021). Discriminative touch is linked with motor control, whereby 

voluntary movements are made to obtain information about tactile properties, which also 

guides subsequent behaviour, particularly during object handling and exploratory procedures. 

As a result, the speed of transduction, transmission and central processing are incredibly 

important (McGlone et al., 2014). To quickly discriminate external tactile stimuli, cutaneous 
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mechanoreceptors in the skin and joints transduce incoming information, which is then 

conducted by large myelinated cutaneous Aβ afferents with a fast conduction velocity.  

1.2 Active and passive touch 

Active and passive touch are distinct modes of touch (Gibson, 1962). Active touch employs 

voluntary movements, to explore the environment to gather information about surface 

properties and objects. For this reason, active touch is associated with discrimination of 

external stimuli. On the other hand, passive touch refers to sensory input that is generated by 

an external agent. In the lab setting, passive touch is used to stimulate a section of skin, whilst 

controlling for stimuli properties such as force, which can be delivered to the hand or fingers 

under discrimination paradigms (Aviles et al., 2010; Essick et al., 2010; McGlone et al., 

2012; Weber et al., 2013). This can be dynamic, which implies movement between the 

surface and the skin, or static, where there is no movement (Chapman, 2008).  

1.2.1 Active touch 

Gibson (1962) first defined the term “active touch” as the touching we perform when we 

explore our environments, whereby the impression on the skin is brought about by the 

perceiver themselves. Active touch is a complex goal-oriented behaviour that combines both 

cutaneous and proprioceptive input to derive information about the properties of surfaces and 

objects as they are explored (Bajcsy, 1988; Lederman & Klatzky, 2009).  

Specialised touch organs are used in active tactile exploration; in humans and other 

primates, this is typically the hand (Jones & Lederman, 2006). The hand has a high density of 

cutaneous and subcutaneous mechanoreceptors that transduce incoming tactile information 

(Johansson & Vallbo, 1979). The human hand also has a large cortical representation in the 

primary somatosensory cortex (SI), as well as the primary motor cortex (MI; Penfield et al., 
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1937). Taken together, this means that the hand has high sensory acuity while also being able 

to perform complex individual movements of the digits.  

There has been much debate as to whether active and passive touch are perceptually 

equivalent (Chapman, 2008). Studies suggesting that tactile perception is greater during 

active touch have investigated perception of Braille, simulated shapes, object shapes, and 

vibrotactile stimuli (Heller, 1984, 1986; Heller et al., 1990; Smith et al., 2009; Voisin et al., 

2002). Though, no difference in perceptual abilities was observed when contrasting active 

and passive touch during roughness magnitude estimations (Friedman et al., 2008; Lamb, 

1983; Lederman, 1981; Yoshioka et al., 2011). 

While some argue that perceptual performance during active and passive touch are 

comparable, it has been found that this is only true when conditions are suitably matched. 

Chapman (1994) found that perceptual performance was comparable between 30 seconds of 

passive touch and five seconds of active touch, suggesting that active touch is the most 

efficient mode. Importantly, active touch is representative of how humans explore their 

natural environments. This mode of touch allows us to orient digits to optimise skin object 

contact (Xu et al., 2021b), whilst movement speed can be modulated at critical times during 

exploration (Morley et al., 1983; Smith et al., 2002a), and force can be varied between and 

during explorations. Therefore, results from passive touch paradigms may not be 

representative of the processing that is involved during active touch (Iwamura, 2009).  

1.2.2 Haptic exploration  

It is generally acknowledged that tactile perception is better with dynamic stimuli especially 

for fine textures. During haptic exploration, humans use a wide range of relatively 

stereotyped movements, referred to as exploratory procedures, to optimise and seek specific 

sensory information (Figure 1.1; Lederman & Klatzky, 1987). The patterns of movements 
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used by humans differ based on the information the individual is trying to gain, for example, 

perception of texture uses lateral motion, which manifests as sideways movement between 

the skin and object surface. Roughness estimates have been found to be modulated by force 

exerted, suggesting that the way we perform haptic exploration changes the way we perceive 

surface and object properties (Lederman & Taylor, 1972; Tanaka et al., 2014). Ultimately, 

haptic exploration allows humans to modify their exploratory patterns according to the 

features they are trying to detect, thus optimising sensory feedback. 

 

Figure 1.1 Exploratory procedures from Lederman & Klatzky (1987). 
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1.3 The neurobiology of touch and movement 

Nerve fibres in the hand can be classified into two functional types; afferent fibres conduct 

impulses towards the spinal cord, whilst efferent fibres carry signals away from the spinal 

cord to the skeletal muscle, blood vessels and sweat glands (Gardner & Johnson, 2012b).  

1.3.1 Afferent neurons  

Afferent neurons, also known as sensory neurons, transmit signals from distinct types of 

cutaneous mechanoreceptors, proprioceptors, thermoreceptors, nociceptors, and at least one 

type of itch receptor from the periphery to the central nervous system. Cutaneous 

mechanoreceptors contribute to the tactile perception of texture, while proprioceptors 

contribute to the perception of limb position and movement in space, which is essential for 

active touch (Goodman & Bensmaia, 2020; Taylor, 2009).  

Afferent fibres can be classified into four functional groups based on the fibres' 

diameter, myelination, conduction velocity, and whether they innervate muscles or skin 

(Lloyd, 1943; Sherrington, 1893). Groups I to III are myelinated and decrease in diameter 

and conduction velocity respectively, whereas group IV is unmyelinated and has the smallest 

diameter and slowest conduction velocity. In muscle nerves, group I fibres innervate muscle 

spindle receptors and Golgi tendon organs, and group II fibres innervate secondary spindle 

endings and receptors in joint capsules. Both group III and group IV fibres send signals 

relating to disorders in muscles and joints that may be sensed as painful. In cutaneous nerves, 

Aβ fibres (group II) innervate cutaneous mechanoreceptors, while Aδ (group III) and C 

(group IV) afferents play the same role as in muscle nerves, mediating thermal and noxious 

stimuli (Gardner & Johnson, 2012b). 
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Tactile perception relies on the activation of mechanosensitive sensory neurons, 

which are responsible for detecting both innocuous and noxious touch sensations. 

Mechanoreceptors can be divided into two categories: low-threshold mechanoreceptors 

(LTMR) that respond to innocuous mechanical stimulation and high-threshold 

mechanoreceptors (HTMR) that react to harmful mechanical stimulation (reviewed in Abraira 

& Ginty, 2013).  

Four types of LTMR innervate the glabrous skin: Pacinian corpuscles, Meissner 

corpuscles, Merkel cells, and Ruffini endings (Hagbarth & Vallbo, 1967; Johansson & 

Vallbo, 1979; Vallbo & Johansson, 1984). These LTMR can be subdivided based on their 

receptor size, location, and whether they have slowly or rapidly adapting fibres. During 

sustained mechanical deformation of the skin, rapidly adapting (RA) afferents spike during 

the onset and/or offset of stimulation. These RA afferents are further split into two types of 

LTMR; type I (RAI-LTMR) and type II (RAII-LTMR), which innervate Meissner and 

Pacinian corpuscles respectively (Table 1.1). Slowly adapting (SA) afferents show sustained 

firing to continuous mechanical deformation. SA afferents are also subdivided further into 

two types of LTMR; type I (SAI-LTMR) and type II (SAII-LTMR), innervated by Merkel 

cell and Ruffini end organs respectively (Table 1.1). 
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Table 1.1. Cutaneous and subcutaneous mechanoreceptors adapted from Abraira & Ginty (2013).

Subtype Fibre 
Conduction 

velocity 

Skin 

type 
End organ Stimuli 

SAI-

LTMR 
Aβ 16–96m/s Glabrous Merkel cell Indentation 

SAII-

LTMR 
Aβ 20–100m/s 

Glabrous Ruffini 

Stretch 
Hairy unclear 

RAI-

LTMR 
Aβ 26–91m/s 

Glabrous Meissner corpuscle Skin movement 

Hairy 
Longitudinal lanceolate 

ending 

Hair follicle 

deflection 

RAII-

LTMR 
Aβ 30–90m/s Glabrous Pacinian corpuscle Vibration 

Ad-LTMR Aδ 5–30m/s Hairy 
Longitudinal lanceolate 

ending 

Hair follicle 

deflection 

C-LTMR C 0.2–2m/s Hairy 
Longitudinal lanceolate 

ending 

Hair follicle 

deflection 

HTMR Aβ/Aδ/C 0.5–100m/s 
Glabrous 

Free nerve ending 
Noxious 

mechanical Hairy 

 

The location of end organs differs based on the type of afferent; end organs of type I 

afferents (Merkel cell and Meissner corpuscles) are located in the superficial layers of the 

skin at the dermo-epidermal junction, whereas end organs of type II afferents (Pacinian and 

Ruffini endings) are located deeper in the dermis (Figure 1.2). Further the receptive fields of 

type I and type II fibres differ, with type I afferents having a small receptive field and type 2 

fibres have large receptive fields.  

  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811145/table/T1/?report=objectonly#TFN4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811145/table/T1/?report=objectonly#TFN2
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Figure 1.2 Organisation of cutaneous mechanoreceptors in the skin from Gardner et al. (2012). 

Various aspects of tactile stimulation are encoded by LTMR afferents to facilitate 

discriminative touch. Merkel cells (SAI) are particularly sensitive to edges, corners, and 

points and indicate how much pressure has been applied to the skin. Ruffini endings (SAII) 

are more sensitive to skin stretching than skin indentation and are therefore particularly 

sensitive to the shape of large objects held in the hand. Meissner corpuscles (RA1) encode 

low-frequency vibration and therefore detect hand contact with objects, the slipping of 

handheld objects, as well as the motion of the hand over textured surfaces. Finally, Pacinian 

corpuscles (SAII) are extremely sensitive to high-frequency vibration and responds to motion 

in the nanometre range (Abraira & Ginty, 2013; Jänig et al., 1968; Lynn, 1971). 
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In humans, C-LTMR, referred to as CT afferents, have been found to innervate the 

hairy skin and respond to slowly moving (1-10 cm/s), low force mechanical stimulation 

(Johansson et al., 1988; Nordin, 1990; Vallbo et al., 1999). Further, CT afferents are 

associated with pleasantness encoding, subsequently, CT optimal touch has been termed 

“affective touch” since it is thought to convey positive affect (Morrison et al., 2010; Olausson 

et al., 2010; Pawling et al., 2017; Walker et al., 2022).  

Sensory fibres that innervate the skin facilitate discriminative touch, while Aα and Aβ 

fibres that innervate the muscles enable proprioception. The sense of limb location, 

movement and joint positions is mediated by muscle and skeletal mechanoreceptors (Table 

1.2), these include primary and secondary muscle spindles, which convey information about 

muscle stretch. Golgi tendon organs and joint capsule receptors which transduce muscle force 

and tension in the joint capsule, respectively (Loeb & Mileusnic, 2015). Humans need 

proprioception to update the desired behaviour and to estimate body positions resulting from 

motor commands (Taylor, 2009).  

Table 1.2. Muscle and skeletal mechanoreceptors that facilitate proprioception from Gardner & Johnson 

(2012a).  

Subtype Fibre Receptor type Modality 

Ia-LTMR  Aα Muscle spindle primary Muscle length and speed 

II-LTMR Aβ Muscle spindle secondary Muscle stretch 

Ib-LTMR Aα Golgi tendon Muscle contraction 

II-LTMR Aβ Joint capsule Joint angle 

 

1.3.2 Efferent neurons 

Motor neurons, also known as efferent neurons, can be categorised into upper and lower 

motor neurons. Lower motor neurons transduce signals from the central nervous system 

effector organs and tissue in order to facilitate muscle contraction and secretion of substances 
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from glands. Lower motor neurons can be split into three types, somatic, general visceral and 

special visceral motor neurons (Zayia & Tadi, 2021). Somatic motor neurons innervate 

skeletal muscles, controlling movement and muscle tone. They can be separated into three 

subtypes based on the muscle fibre type they innervate (Stifani, 2014): alpha motor neurons 

innervate extrafusal muscle fibres, beta motor neurons innervate both extrafusal and 

intrafusal fibres, and gamma motor neurons innervate muscle spindles.  

1.3.3 Spinal pathways  

The spinal cord is divided into thirty-one segments along its length corresponding to each 

vertebra, from the brain stem running inferiorly down the trunk of the body. Each spinal cord 

segment has a separate pair of dorsal and ventral nerve roots, which are numbered according 

to where they exit the vertebral column. Information from the body is conveyed to the central 

nervous system by afferent sensory nerve fibres contained within the dorsal root, whereas the 

ventral root carries efferent nerve fibres, which control muscles. The spinal cord is composed 

of both white matter containing nerve fibres, and grey matter containing the cell bodies and 

dentaries of the spinal neurons (Burke, 2008). The grey matter is organised into ten 

functionally distinct laminae, which are numbered from I to X from dorsal to ventral and 

distinguished according to cytoarchitecture (Gebhart & Schmidt, 2013; Rexed, 1952). 

1.3.3.1 Dorsal column-medial lemniscal pathway 

The dorsal column-medial lemniscal (DCML) system carries tactile and conscious 

proprioceptive information to the brain (Figure 1.3). Information is conveyed by first-order 

neurons, which have a cell body located in a ganglion on the dorsal root of a spinal or cranial 

nerve. These neurons have two branches, one projecting to the periphery and one projecting 

to the central nervous system. The central branches terminate in the spinal cord or brain stem 

and form the first synapses on the somatosensory pathway. The axon of each dorsal root 
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ganglion cell serves as a single transmission line between the receptor terminal and the 

central nervous system, called the primary afferent fibre (Gardner & Johnson, 2012b). In the 

spinal cord, lamina III to V neurons receive tactile input from Aβ fibres from LTMR (Abraira 

& Ginty, 2013; Brown, 1981; Li et al., 2011). Further, neurons in lamina V receive low-

threshold input from Aβ as well as input from Aδ and C fibres, hence they are referred to as 

wide-dynamic-range neurons as they respond to more than one modality (Gardner & 

Johnson, 2012b; le Bars & Cadden, 2008). 

Central branches of Aα and Aβ afferents are contained on each side of the dorsal 

column. Individual primary afferent fibres innervating a particular region of the body are 

grouped together into fascicles: the gracile fascicle conveys information from the legs and 

trunk, while the cuneate fascicle transmits information from the arms and trunk. The gracile 

and cuneate fascicle terminate in the anatomically distinct gracile and cuneate nuclei in the 

caudal brain stem, respectively (Gardner & Johnson, 2012b). Together they form the dorsal 

column nuclei and represent second-order neurons of the DCML pathway. 

Axons of second-order neurons in the dorsal column nuclei cross over the midline, at 

the sensory decussation in the medulla, forming the medial lemniscus (Gardner & Johnson, 

2012b). The medial lemniscus terminates and synapses in the ventral posterior nucleus (VPL) 

of the thalamus. VPL neurons are third-order neurons of the DCML pathway, axons project 

laterally out of the thalamus and ascend to the SI and secondary (SII) somatosensory cortex 

via the posterior limb of the internal capsule (Al-Chalabi et al., 2021). The DCML pathway 

maintains somatotopic organisation from fascicle to the SI and SII (Michael-Titus et al., 

2010; Ruben et al., 2001).  
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Figure 1.3 Neural connection sin the DCML pathway, adapted from Betts et al. (2013). 
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1.3.3.2 Corticospinal tract 

Information from the brain is sent to the spinal cord via white matter tracts referred to as 

descending or motor tracts (Ganapathy et al., 2021). Tracts can be grouped by functionality 

into pyramidal or extrapyramidal tracts. Pyramidal tracts originate in layer V of the MI and 

are responsible for the control of voluntary movement, whereas extrapyramidal tracts 

originate in the brain stem and are responsible for involuntary and automatic control of 

muscle tone, balance, posture, and modulation of motor plans. Pyramidal tracts consist of the 

corticospinal tract controlling motor activity from the neck down, and corticobulbar tract 

responsible for control of facial, head, and neck muscles.  

The corticospinal tract projects from axons of the MI to the ventral horn of the spinal 

cord. Axons from upper motor neurons of the MI descend through the internal capsule, the 

cerebral peduncle in the midbrain. In the medulla, most of the fibres in the tract cross to the 

opposite side of the spinal cord, forming the lateral corticospinal tract that sends fibres to 

extremity muscles (Javed et al., 2021). The fibres that do not cross in the medulla instead 

cross at the level of the spinal cord where they synapse, these fibres form the 

anterior corticospinal tract and are sent to the trunk or axial muscles (Amaral, 2012).  

Both tracts descend through the spinal cord, the lateral corticospinal tract descends 

through the lateral funiculus and the anterior corticospinal tract descends via the anterior 

funiculus (Khan & Lui, 2021). Both tracts then synapse with lower motor neurons on the 

ventral horn and leave the spinal cord through the ventral root to innervate and contract 

muscles (Javed & Daly, 2021; Welniarz et al., 2017). Lamina IX of the ventral horn receives 

somatic motor neurons which innervate skeletal muscles responsible for movement (Rexed, 

1952). Somatotopic organisation is preserved from the cortex along the corticospinal tract 

(Emos & Agarwal, 2021).  
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1.4 Tactile texture perception 

Information about surface texture may be obtained through vision (Heller, 1989), audition 

(Lederman, 1979) and touch (Bensmaia, 2009), although touch provides humans with richer 

and more complex textural information (reviewed in Lieber & Bensmaia, 2022). When 

humans actively touch a surface, they are processing information about the surface texture 

and material properties. Often textural properties are quantified across perceptual scales; with 

roughness/smoothness, hardness/softness, stickiness/slipperiness, and warm/cool argued as 

the most salient dimensions (Hollins et al., 1993, 2000). However, a more recent review 

suggests that roughness/smoothness, hardness/softness, and coldness/warmness are the most 

prominent psychophysical dimensions of tactile texture (Okamoto et al., 2013). 

1.4.1 Psychophysics of tactile texture perception 

Psychophysics is the study of perception, with a particular focus on the relationship between 

stimuli and sensations (Baird & Elliot, 1978). The investigation of texture perception in 

previous psychophysical experiments tends to focus on roughness/smoothness (Bensmaia, 

2009). As the distance between tactile elements increases the perceived roughness increases, 

this effect has been found using magnitude estimations during stimulation with varying grit 

sandpaper (Lederman & Abbott, 1981; Stevens & Harris, 1962), gratings (Cascio & Sathian, 

2001; Lederman, 1974, 1976, 1981; Morley et al., 1983), and raised dots (Connor et al., 

1990; Connor & Johnson, 1992; Li et al., 2022; Sutu et al., 2013).  

Roughness estimation of dot patterns and gratings follow an inverted U-shaped 

function, whereby stimuli with a spatial period in the middle of the continuum are perceived 

as the roughest relative to either end of the spectrum where they are perceived as least rough 

(Connor & Johnson, 1992; Morley et al., 1983). Dot height has also been found to play a role 

in the perceived roughness, with greater height resulting in increased roughness estimates 
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(Sutu et al., 2013). The perceived roughness of gratings is also modulated by the groove and 

ridge width of the gratings, with wider groove and narrower ridge width resulting in greater 

perceived roughness (Lederman & Taylor, 1972; Sathian et al., 1989). Further, tangential 

force, which is the force acting along the direction of motion, is thought to play a role in the 

perception of roughness (Smith et al., 2002b). Overall, this suggests that the spatial patterns 

of skin deformation play an important role in the perceived roughness of a stimulus. 

The perception of hardness/softness is related to the compliance of the surface 

(Harper & Stevens, 1964; Srinivasan & LaMotte, 1995). When the hand or digits are pressed 

against a hard surface or object the skin is intended, whereas the skin indents soft surfaces or 

objects. This means that hard and soft surfaces have differing spatial patterns of skin 

deformation. During passive stimulation of the skin, LTMR provide information about skin 

displacement. During active exploration, the perception of softness is also facilitated by 

proprioceptors which provide information about hand movement and force (Srinivasan & 

LaMotte, 1996; Xu et al., 2021a). This suggests that the perception of hardness/softness may 

be enhanced during active exploration.  

Stickiness/slipperiness perception is linked to the friction between skin and surface. 

Tangential force is considered a contributing factor in the perception of stickiness (Smith & 

Scott, 1996). The perception of stickiness is often associated with roughness (Hollins & 

Risner, 2000), where smoother textures are distinguished by increases in tangential forces 

between the skin and material surface (Gueorguiev et al., 2016). The perception of stickiness 

is important for handling objects, as it allows for the applications of appropriate levels of grip 

force (Augurelle et al., 2003). 

Further, the perception of surface temperature contributes to the recognition of 

materials (Katz, 1925, 1989), e.g., at room temperature metal generally feels cooler than 
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plastic (Ho & Jones, 2006). The perception of surface temperature depends on the thermal 

conductivity of the material, which determines the duration required for heat to be conducted 

in and out of the skin (Ho & Jones, 2008). The perception of warmth/cool is mediated by 

thermoreceptors afference in the skin instead of by LTMR which mediate other aspects of 

texture (i.e., roughness, softness, and stickiness; Darian-Smith et al., 1973, 1979; Johnson et 

al., 1973, 1979). 

1.4.2 Texture perception and mechanoreceptors 

There are three LTMR in the glabrous skin, all innervated by large myelinated Aβ fibres, that 

are thought to transduce incoming textural information (Bensmaia, 2009); SAI-, RAI-, and 

RAII-LTMR, which are associated with the anatomical end organs of Merkel cells, Meissner 

corpuscles, and Pacinian corpuscles, respectively (Gardner & Johnson, 2012b).  

1.4.2.1 Slowly adapting fibres 

Sustained indentation activates SAI-LTMR, fibres with small receptive fields, a conduction 

velocity of 16–96 m/s, which innervate the skin of the finger at a period of approximately 1 

mm (Johansson & Vallbo, 1979, 1983; Vallbo et al., 1995). SAI-LTMR are sensitive to 

edges, corners, and curvatures of objects, with firing rates greater when touching an edge 

rather than touching a flat surface (Gardner et al., 2012). Further, SAI-LTMR have high 

spatial resolution of up to 0.5 mm for individual human SAI afferents, making them sensitive 

to stimulus position and velocity (Abraira & Ginty, 2013). Taken together, this means that the 

spatial configuration of coarse tactile elements is reflected in the spatial pattern of SAI-

LTMR activation (Blake et al., 1997). 
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1.4.2.2 Rapidly adapting fibres 

Movement produces vibrations that arise from the skin-surface interaction, which reflect the 

micro geometric properties of the surface and fingerprint, thus enabling one to perceive fine 

texture (Bensmaïa et al., 2005a; Bensmaia & Hollins, 2003; Hollins et al., 2001a, 2001b, 

2002; Manfredi et al., 2014; Scheibert et al., 2009). Fine textures are incredibly complex and 

can be defined as textures with element sizes measuring less than 100 µm (Hollins et al., 

1996; Hollins & Risner, 2000). Without movement, perception of fine textures is near 

impossible (Hollins & Risner, 2000). 

RA receptors respond to motion between a surface and the skin rather than static 

indentation. RAI-LTMR encode low-frequency vibrations, with small receptive fields and a 

conduction velocity of 26–91 m/s, which can detect tactile elements as small as 10 µm 

(Piccinin et al., 2022). RAII-LTMR are extremely sensitive afferent fibres, with larger 

receptive fields, a conduction velocity of 30–90 m/s, which respond to high-frequency 

vibrations in the 250 nm range (Jänig et al., 1968; Lynn, 1971). Both RAI- and RAII-LTMR 

provide humans with a vibrotactile pattern related to the surface texture, which allows for the 

identification and discrimination of texture (Weber et al., 2013).  

1.4.2.3 The Duplex theory 

The Duplex theory of tactile texture perception, as proposed by Katz (1925, 1989), posited 

that perception of fine textures is facilitated by temporal cues in the form of high-frequency 

vibrations; investigations of vibratory coding support this hypothesis (Bensmaia & Hollins, 

2003; Hollins et al., 2002). Vibrotactile cues were found to contribute to the perception of 

smoothness, with an increase in vibratory amplitude leading to a decrease in smoothness 

ratings (Hollins et al., 2001b). RAII afferents transduce high frequency vibrotactile 

information that arise from motion between the skin and a textured surface. Adaptation to 
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high frequency vibrotactile stimuli diminishes the discrimination of fine surfaces but has 

negligible effect on coarse surfaces (Hollins et al., 2001a, 2006), whilst adaptation to low-

frequency stimuli does not affect the perception of fine textures (Bensmaïa et al., 2005b). 

Research suggests that RAII-LTMR are important for the textural processing of fine textures 

(Bensmaïa et al., 2005a; Bensmaïa & Hollins, 2005; Bensmaia & Hollins, 2003), thus 

supporting the Duplex theory that perception of fine surface textures is modulated by 

vibration.  

Spatial cues, determined by the size, shape, and distribution of surface elements, are 

proposed to facilitate the perception of coarse textures (Hollins et al., 1998; Katz, 1989). 

Coarse surface elements can be perceived through static touch (Lederman, 1974; Taylor & 

Lederman, 1975), suggesting that coarse elements are encoded by SAI-LTMR since they 

have sustained firing without movement (Hollins & Risner, 2000). Although, Cascio & 

Sathian, (2001) suggest that roughness magnitude estimates depend on both spatial and 

temporal frequency. Investigation of vibratory adaption has shown that SAI- and RAI-LTMR 

can be desensitised with 10 Hz vibration, which did not affect the discrimination of fine 

textures (Bensmaïa et al., 2005b). Further Weber et al. (2013) suggests that textures that are 

exclusively coarse or fine will rely on spatial or temporal cues respectively, but textures that 

include a range of tactile elements will require both mechanisms. Therefore, RAI-LTMR may 

not contribute to the discrimination of fine texture but may play a role in the perception of 

roughness (Gamzu & Ahissar, 2001). 

1.5 Brain correlates of tactile texture perception and active touch 

Tactile and proprioceptive information from LTMR travel through the DCML pathway and 

terminate in the thalamus. Thalamocortical afferents convey signals to the SI and SII in the 

parietal lobe (Raju & Tadi, 2021). Projections to the SI and SII are thought to be processed 
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either in parallel (i.e., thalamus to SI and SII) or in serial (i.e., thalamus to SI and then to SII; 

Kaas & Garraghty, 1991; Song et al., 2021). A combined functional magnetic resonance 

imaging (fMRI) and magnetoencephalography (MEG) study hypothesised that parallel 

projections are made to the SI and SII during in the first 100 ms of somatosensory stimulation 

and serial projections are made from the SI to the SII subsequently (Klingner et al., 2016). 

From the SI, projections are made to the MI and the posterior parietal cortex (PPC; Gardner 

et al., 2012).  

The MI, supplementary motor area (SMA), dorsal premotor cortex (PMd) and ventral 

premotor cortex (PMv) have reciprocal connections with each other, while the PPC and 

premotor areas also are reciprocally connected (Kalaska & Rizzolatti, 2012). Somatosensory 

and parietal inputs provide sensory information to the MI and premotor areas to inform motor 

planning and control. The corticospinal tract receives input from the MI, SI, and superior 

(SPL) and inferior parietal lobules (IPL) of the PPC. Premotor areas including the SMA, PMd 

and PMv send indirect projection to the corticospinal tract via other subcortical structures 

(AbuHasan & Munakomi, 2022). These connections and projections play a crucial role in 

coordinating and executing voluntary movements, making them essential for texture 

perception during active touch.  

Positron emission tomography (PET) and fMRI measure haemodynamic changes in 

the brain (Doria, 1995). Both techniques have excellent spatial resolution and are used to 

image the brain to identify regions associated with external stimulation. 

Electroencephalography (EEG) and MEG measure the summation of postsynaptic potentials, 

these techniques have a relatively poorer spatial resolution but have a high temporal 

resolution in the magnitude of milliseconds (Hari & Puce, 2017). As described in Chapter 2, 

this range of neuroimaging techniques allows for the investigation of both the regions 
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associated with the processing of textured stimuli but also the period in which the brain 

processes the information.  

1.5.1 Brain regions associated with tactile stimulation and voluntary movement  

Motor function is key for active tactile explorations, sensory and motor information is 

integrated in the brain. This allows humans to use sensory information from their 

environment to inform motor actions, this integrated system is referred to as the sensorimotor 

system (Helms Tillery & Sainburg, 2012). 

1.5.1.1 Somatosensory regions 

The contralateral SI and bilateral SII have been found to be reliably activated in response to 

glabrous skin stimulation with textured stimuli (Burton et al., 1997, 1999; Ledberg et al., 

1995; O’Sullivan et al., 1994; Roland et al., 1998), with effects reproducible over time (Carey 

et al., 2008). It is well established that the SI is responsible for processing tactile stimuli as 

well as discriminating between tactile stimuli (Morley et al., 2007; Tamè & Holmes, 2016). 

Lesions in the SI result in the diminished ability to discriminate objects and surfaces when 

exclusively using touch (Pause et al., 1989; Raju & Tadi, 2021).  

Interestingly, SI response is greater during active touch paradigms rather than passive 

touch paradigms (Simões-Franklin et al., 2011). The MI is thought to send an efference copy 

(von Holst & Mittelstaedt, 1950), or corollary discharge (Sperry, 1950), to the SI for the 

prediction and processing of the sensory consequences of motor actions. Recently, a series of 

fMRI experiments have been conducted to examine the link between motor planning in the 

MI and somatosensory processing in the SI. These studies provide evidence that motor 

planning activates the human SI (Ariani et al., 2022; Gale et al., 2021). Suggesting that 

increased SI activation during active touch is possibly due to sensorimotor control which 
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manifests as projections of an efference copy from the MI to the SI to allow prediction of 

sensory feedback from motor commands.  

Receptive fields of neurons in the SII are often bilateral and contain symmetrical 

maps of the contralateral and ipsilateral body halves (Lin & Forss, 2002; Picard et al., 1990; 

Woolsey & Fairman, 1946). The SII is located on the parietal operculum on the upper bank of 

the Sylvian fissure, extending medially to the insular cortex (Eickhoff et al., 2006). Humans 

with SII lesions suffer from tactile apraxia, where they have trouble performing purposeful 

and coordinated movements when manipulating objects, despite having normal sensation the 

stimuli and normal movements of the hand without the use of an object (Raju & Tadi, 2021). 

Suggesting deficits are more cognitive rather than sensorimotor (Binkofski et al., 2001). 

Research also suggests that the SII engages in the processing of other higher-order features 

such as attention (Chen et al., 2008; Hämäläinen et al., 2000), learning (Mishkin, 1979; 

Ridley & Ettlinger, 1976), and tactile memory and decision making (Romo et al., 2002).  

The insular cortex is activated in response to tactile and proprioceptive stimulation 

(Craig, 2002). Kurth et al. (2010) conducted a coordinate-based activation-likelihood 

estimation (ALE) investigating the human insula, showing that somatosensory stimuli evoked 

activations of the left central region of the insula. More specifically, insula activation has 

been reported during stimulation of the hand/digits with textured stimuli (Gurtubay-Antolin 

et al., 2018; Kim et al., 2015; Kitada et al., 2006; Mueller et al., 2019; Sathian et al., 2011; 

Simões-Franklin et al., 2011; Stilla & Sathian, 2008; Yang et al., 2017). The insula is 

conceptualised as an integration hub and has been linked with cognitive and emotional 

evaluation (Craig et al., 2000; Jensen et al., 2016; Segerdahl et al., 2015). Therefore, it is 

possible that the insula integrates somatosensory information with higher-order cognitive and 

emotional processing.  
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Pleasant affective touch stimulation of the hairy skin is commonly associated with 

posterior insula (PI) activation (Morrison, 2016) through the CT pathway (Björnsdotter et al., 

2009, 2010; Olausson et al., 2002, 2008). A recent ALE meta-analysis investigating the effect 

of CT optimal brushing demonstrated significant PI activation during pleasant affective touch 

of the glabrous and hairy skin (Morrison, 2016). Further, the glabrous skin has been 

consistently associated with subjective pleasantness despite the lack of CT fibres (Etzi et al., 

2014; Klöcker et al., 2012, 2013; Löken et al., 2012; Perini et al., 2015), and no difference 

has been found between pleasantness ratings in the hairy and glabrous skin (Cruciani et al., 

2021). Therefore, it is possible that the PI plays a role in perceived subjective pleasantness 

during discriminative touch as well as affective touch.  

1.5.1.2 Motor regions 

Voluntary movement requires continuous sensory feedback (Prochazka, 2015). Motor 

neurons carry information from the brain and spinal cord to the muscle fibres throughout the 

body, allowing one to take physical action in response to stimuli in the environment (Gautam, 

2017). The MI, SMA and premotor cortex are the main motor regions associated with action 

execution, imitation, observation, motor learning, preparation, and imagery (Papitto et al., 

2020).  

The MI is in the frontal lobe and projections are mapped contralateral to stimulation 

in somatotopic organisation (Penfield & Boldrey, 1937; Penfield & Broldrey, 1950). The MI 

is responsible for generating neural impulses to control the execution of movement with brain 

activation seen contralaterally to the muscle movement (Brown & Staines, 2015). Lesions in 

the MI typically result in motor deficits such as muscle weakness, slowing of movements, 

and discoordination of joint motions (Friel & Nudo, 1998; Glees & Cole, 1950).  
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The human premotor cortex is split into ventral and dorsal regions. The PMv is 

predominantly linked with grasping and object manipulation hand movements (Davare et al., 

2006, 2008, 2009; Fogassi et al., 2001; Reader & Holmes, 2018; Vingerhoets et al., 2013), 

and evaluating sensory information to inform motor action (Romo et al., 2004). The PMd 

plays a role in goal-directed reach actions and is concerned with motor preparation and 

execution (Beurze et al., 2007; Hoshi & Tanji, 2007). Lesions PMd result in deficits in visual 

guidance of goal-orientated movements, whilst damage to the PMv results in deficits in 

object manipulation (Chang et al., 2010; Rizzolatti et al., 1983). Together the premotor cortex 

plays a key role in formulation of motor actions and object manipulation.  

The SMA is split into two functional regions, the pre-SMA and SMA (Vorobiev et al., 

1998; Woolsey et al., 1952). The pre-SMA is thought to play a more cognitive role, whilst the 

SMA is concerned more with the planning of motor commands (Obeso et al., 2013; Picard & 

Strick, 2003). The SMA has been established as playing a role in movement preparation and 

bimanual coordination (Welniarz et al., 2019).  

1.5.1.3 Sensorimotor integration 

The PPC is thought to be a multimodal association area as it combines inputs from several 

brain areas (Buneo & Andersen, 2006; Whitlock, 2017). Importantly, the area receives 

information from both the SI and MI and plays a role in sensory guidance of movement rather 

than discriminative touch (Hyvärinen, 1982; Mountcastle, 1998; Mountcastle et al., 1975, 

1995; Rushworth et al., 1997). In humans, the PPC is split into two regions: the SPL and IPL. 

The role of the SPL is to integrate proprioceptive information to guide movements (Johns, 

2014), whilst the role of the IPL is to aid in preparation of motor acts such as hand grasping 

movements (Elk, 2014; Fogassi et al., 2005; Fogassi & Luppino, 2005; Jeannerod et al., 

1995). Lesions in the PPC lead to tactile apraxia, which is characterised by kinematic deficits 
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when interacting with objects (Binkofski et al., 2001; Pause et al., 1989). Further, lesions of 

the SPL can impair sensorimotor integration of proprioceptive signals and cause optic ataxia, 

a deficit in control of arm movements under visual and proprioceptive guidance (Andersen et 

al., 2014). Neuroimaging studies demonstrate that the PPC is activated by grasping, reaching, 

and interacting with objects (Vingerhoets, 2014). Taken together, this suggests that the PPC 

plays a significant role in motor control by integrating sensory information, known as 

sensorimotor control.  

1.5.2 Electrophysiological correlates of tactile stimulation and voluntary movement 

 EEG can be used to measure electrophysiological changes that arise from the cortex, these 

comprise of phase- and non-phase-locked activity. As discussed in Chapter 2, EEG activity 

which is phase-locked can be investigated by measuring event-related potentials (ERP), 

whereas non-phase-locked EEG activity can be examined during rest or following a time-

locked stimulus (Kalcher & Pfurtscheller, 1995). 

1.5.2.1 Cortical oscillations 

EEG oscillations can be classified by their frequency, and changes in the amplitude, 

suppression, or enhancement of oscillations within specific frequency bands are associated 

with different functional characteristics. 

Alpha-band oscillations occur within the 8-13 Hz range and can be observed over 

occipital, parietal, and sensorimotor cortices (Kropotov, 2009). The first report of oscillatory 

changes was made by Hans Berger (1929; as cited in Gloor, 1970) in the alpha-band, 

whereby alpha-band rhythms are enhanced during EEG recordings when the eyes are closed 

and are attenuated when the eyes are opened (Adrian & Matthews, 1934; Jung & Berger, 

1979). The enhancement of occipital alpha-band rhythms is thought to be due to decreased 
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visual input to occipital areas. Therefore, occipital alpha-band oscillations have been 

proposed to reflect idling, whereas attenuation of alpha-band rhythms is thought to be a 

correlate of cortical activation (Adrian & Matthews, 1934). Enhancement of occipital alpha-

band rhythms as a reflection of idling or cortical deactivation has also been evidenced 

through investigation of simultaneous EEG and fMRI; opening and closing the eyes produced 

suppression and enhancement of occipital alpha-band activity which corresponds to increased 

and decreased activation in blood-oxygen-level-dependent (BOLD) signals, respectively 

(Feige et al., 2005).  

Alpha-band rhythms that occur over sensorimotor regions at ~10 Hz can be referred 

to as mu rhythms or sensorimotor rhythms. The mu rhythm gets its name from its distinctive 

sharp negative peaks which appear similar to the Greek letter µ (mu) and is sometimes 

referred to as rolandic mu due to its presence above the rolandic fissure (Kropotov, 2009). 

Alpha-band rhythms over sensorimotor regions are observed in the absence of movement and 

are attenuated during voluntary movement, motor imagery or tactile stimulation (Chatrian et 

al., 1958; Cheyne et al., 2003; Gaetz & Cheyne, 2006; Pfurtscheller & Neuper, 1997; 

Salmelin & Hari, 1994; Stancak & Pfurtscheller, 1996a). As with occipital alpha, attenuation 

of sensorimotor alpha-band rhythms reflects cortical activation, whilst enhancement is 

considered a correlate of active inhibition of task-irrelevant stimuli (Fry et al., 2016; Jensen 

& Mazaheri, 2010; Neuper & Pfurtscheller, 2001). Simultaneous EEG-fMRI investigations 

demonstrate a negative correlation between BOLD signals and sensorimotor alpha-band 

power (Ritter et al., 2009). 

In further research, Berger found alpha-band waves were attenuated when subjects 

opened their eyes and if their attention was occupied, leading to the discovery of “beta 

waves” (Adrian & Matthews, 1934; Kropotov, 2009). Beta-band rhythms are classified as 
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occurring within the 14-30 Hz range and manifest over frontal and sensorimotor regions 

(Kropotov, 2009). Sensorimotor alpha- and beta-band oscillations originate from the SI and 

MI, respectively (Hari & Salmelin, 1997; Salmelin & Hari, 1994).  

Attenuation of beta rhythms occur following voluntary movement, motor planning 

and tactile stimulation (Neuper & Pfurtscheller, 2001; Pfurtscheller, 1981; Pfurtscheller et al., 

1998; Stancak et al., 2003; Stancak & Pfurtscheller, 1996b). Enhancement of beta-band 

oscillations are observed in the MI following movement-related beta suppression, referred to 

as beta rebound (Cheyne et al., 2003; Gaetz & Cheyne, 2006; Pfurtscheller et al., 2005). 

Beta-band oscillations are sensitive to Gamma-aminobutyric acid (GABA) agonists, whereby 

the power of beta rhythms is enhanced after administration of GABA agonists (Jensen et al., 

2005). Movement induced beta-band event-related desynchronisation (ERD) has been linked 

to levels of GABA (Hall et al., 2010, 2011). Importantly, GABA has been found to decline 

with age (Gao et al., 2013), which may contribute to changes in motor control. Therefore, 

attenuation of beta-band rhythms during voluntary movement, motor planning and tactile 

stimulation may be impacted by age.  

Theta-band oscillations occur within the 4–8 Hz frequency range over frontal midline 

regions in response to cognitive tasks and attention-related processes (Kropotov, 2009). A 

positive correlation between theta-band power and working memory load has been 

demonstrated, suggesting that theta-band oscillations are linked with top-down memory 

processes (Gevins, 1997; Klimesch, 1999; Klimesch et al., 2008). In addition, theta-band 

oscillations are thought to play a role in sensorimotor integration via connectivity between 

the hippocampus and sensorimotor areas (Karakaş, 2020). Thus, suggesting a role for theta-

band oscillation during active touch.  
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1.6 Effects of texture processing on electrophysiological and haemodynamic 

response 

Neuroimaging studies using fMRI have also reliably demonstrated SI activation after 

stimulation of the hand with sandpaper (Kim et al., 2015; Simões-Franklin et al., 2011), 

gratings (Kitada et al., 2005, 2006), ridged textures (Mueller et al., 2019; Tang et al., 2021a), 

dot patterns (Yang et al., 2017), and textiles (Wang et al., 2016). The haemodynamic 

response from SI has been shown to vary based on roughness (Kim et al., 2015), amplitude of 

vibratory stimuli (Nelson et al., 2004), attention (Hämäläinen et al., 2000), and to unexpected 

stimuli (Gurtubay-Antolin et al., 2018). Studies using fMRI have also confirmed the role of 

bilateral activation of the SII in response to textured stimuli (Kitada et al., 2005, 2006; 

Sathian et al., 2011; Stilla & Sathian, 2008; Yang et al., 2017). Evidence suggests that the SII 

may be responsible for encoding surface roughness (Kitada et al., 2005; Sathian et al., 2011; 

Servos et al., 2001; Stilla & Sathian, 2008). Together, neuroimaging studies have 

demonstrated the consistent activation of the SI and SII during processing of textured stimuli. 

Using ERP analysis, textured stimuli have been found to evoke N100, P100, P200 and 

P300 ERPs (Ballesteros et al., 2009; Chen & Ge, 2017; Muñoz et al., 2014; Tang et al., 2020, 

2021b). Further, surface properties modulate the ERP response, with increased P300 

amplitude for rough compared to smooth textures (Chen & Ge, 2017; Muñoz et al., 2014; 

Tang et al., 2020). Although, Moungou et al. (2016) found that the amplitude of steady-state 

evoked-potentials (SS-EP) were greater in magnitude with increased surface smoothness, 

hypothesised to be due to increased high-frequency vibrations induced by movement across 

the texture. Further, the N100 and P200 peaks occur earlier for smoother textures compared 

to rough textures (Ballesteros et al., 2009).  
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Time-frequency analysis of ongoing oscillations has revealed bilateral alpha- and 

beta-band ERD, with greater alpha-band ERD with decreased stimulus roughness (Genna et 

al., 2018). A recent study by Taleei et al. (2022) demonstrated that functional conectivity in 

alpha- and beta-band were responsible for discrimination between surfaces. More recently, 

machine learning techniques have been employed to classify the EEG signal between 

different surface properties; EEG nonlinear characteristics were affected by alteration of 

surface roughness (Baghdadi et al., 2021) and EEG spectral features provided higher 

accuracy in discriminating surface roughness in alpha- and beta-band (Eldeeb et al., 2019).  

1.7 Tactile suppression/movement-related gating 

Active touch is associated with highly refined tactile abilities (Chapman, 1994), though, 

voluntary movement has been associated with a reduction in tactile perception, referred to as 

tactile suppression or movement-related gating (Chapman et al., 1987; Williams et al., 1998). 

Internal models of motor control can predict the sensory consequence of a motor command 

and calculate motor outputs from sensory inputs, referred to as the forward and inverse 

models respectively (Figure 1.4; Flanagan et al., 2003). In order to achieve a desired sensory 

consequence, the inverse model computes motor commands needed to produce movements. 

Motor areas in the brain send a copy of the descending motor command, known as the 

efference copy (Sperry, 1950; von Holst & Mittelstaedt, 1950), to somatosensory regions of 

the cortex. This process provides information to the forward model on intended actions and 

facilitates the prediction of neural response to tactile stimuli. This efference copy is thought 

to suppress redundant movement-related feedback; as a result, the perception of tactile 

stimulation that was not predicted is enhanced. 
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Figure 1.4 Inverse and forward model of motor control from Amaral (2012). 

Tactile suppression begins before the onset of voluntary movement and passive 

movement of the limbs (Chapman & Beauchamp, 2006; Williams & Chapman, 2002). It is 

thought that movement itself does not induce tactile suppression, but motor planning initiates 

the efference copy (Voss et al., 2005, 2008). Tactile suppression is most prominent on the 

moving limb (Williams et al., 1998), and during tactile stimulation at near-threshold 

intensities, as the intensity of the stimuli increases tactile suppression decreases (Chapman et 

al., 1987; Post et al., 1994; Williams & Chapman, 2000). Further, the relative difference 

between two stimulus intensities is maintained during tactile suppression, meaning that 

humans can still discriminate between stimuli during onset of voluntary movement (Chapman 

et al., 1987; Post et al., 1994).  

The speed of movement modulates tactile suppression, wherein, the faster the 

movement the greater the suppression (Angel et al., 1982; Cybulska-Klosowicz et al., 2011; 

Schmidt et al., 1990). Although, exploration of surfaces is associated with slow movement 
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speeds, which may facilitate tactile processing (Fraser & Fiehler, 2018; Juravle et al., 2013). 

Therefore, the accurate recording of touch behaviour is necessary when considering the 

neural correlates of texture processing.  

Despite the evidence supporting tactile suppression during movement and tactile 

stimulation, we know that movements made to gain information about a surface (i.e., active 

touch) enhance perception and reflect how humans gather textural information in the real-

world (Juravle et al., 2013, 2016a). In the human brain, tactile suppression results in a 

reduction of short-latency somatosensory evoked potentials (SEP) during EEG recordings 

(Giblin, 1964; Papakostopoulos et al., 1975; Rossini et al., 1996, 1999). Investigation of SEP 

responses in single neurons of the non-human primate SI demonstrated a decreased response 

during movement of the limb (Chapman et al., 1988; Jiang et al., 1990, 1991). Whilst 

evidence from humans suggests a decrease in short-latency SEP in both contralateral and 

ipsilateral SI (Cohen & Starr, 1987; Lei & Perez, 2017), thus evidencing that decreased 

cortical response is present in somatosensory processing areas during movement. 

Investigation of SEP has included the study of both short- and long-latency evoked 

potentials, providing evidence that while voluntary movement diminishes short-latency SEP, 

the amplitude of long-latency SEP is increased (Lee & White, 1974; Nakata et al., 2003, 

2011). Furthermore, goal-directed movements elicit an enhancement of SEP during 

movement and tactile stimulation compared to pre- and post-movement (Juravle et al., 

2016b), which supports the theory that movements made to gain information about surface 

properties enhance tactile perception (Juravle et al., 2016a). Therefore, to fully understand the 

neural correlates of texture processing during active touch, investigation over a prolonged 

exploration period may be necessary to overcome the initial tactile suppression.  
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Chapter 2 

General methods 

2.1 Principles of electroencephalography 

2.1.1 Physiological basis of the EEG signal 

EEG can be used to investigate task-related changes in brain activation by measuring 

differences in electrical potentials at the scalp. The human brain consists of several billions of 

neurons which conduct electrical activity (Azevedo et al., 2009). Each neuron in the human 

brain consists of a cell body, dendrites, and an axon. When a neuron receives a signal, an 

electrical impulse, referred to as an action potential, is transmitted along the axon. This 

induces a temporary shift in the neuron’s membrane potential, which is caused by the flow of 

sodium and potassium ions into and out of the neuron (Schneider & Strüder, 2012). Action 

potentials are brief, lasting between one to two milliseconds, and are not generally 

synchronised. Further, action potentials are biphasic, and the nature of the depolarising and 

repolarising currents may result in mean electrical field cancellation. Consequently, action 

potentials are not detectable at scalp electrodes (Buzsáki et al., 2012; Speckmann et al., 

2011). 

Postsynaptic potentials, however, are monophasic and sustained for hundreds of 

milliseconds (Buzsáki et al., 2012). An influx of positive sodium ions at dendrites causes 

depolarisation of the postsynaptic cell (excitatory), whereas an influx of negative chloride 

ions causes hyperpolarization of the postsynaptic cell (inhibitory; Purves et al., 2001). 

However, it is not possible to ascertain through EEG whether excitatory or inhibitory 

postsynaptic potentials are being recorded. Signals recorded by EEG reflect the summation of 
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synchronous postsynaptic potentials across a neuronal population, referred to as a field 

potential (Bastiaansen et al., 2011).  

Pyramidal cells make up 70 to 85% of all neurons in the mammalian cortex and are 

the major excitatory neuron type in the cerebral cortex (DeFelipe & Fariñas, 1992; Markram 

et al., 2015). The neocortex is organised into six layers, numbered from the outer surface of 

the cortex to the white matter (Amaral & Strick, 2012). Pyramidal cells are found in layers 

II/III and V, and are organised so the primary axis is perpendicular to the cortical surface. 

Consequently, EEG signals are mostly generated by pyramidal neurons from both radial 

(from the gyri) and tangential (from the sulci) sources (Cohen & Halgren, 2015). Signals that 

are not nonaligned cancel each other out (cancellation effect). Therefore, EEG is dominated 

by radial sources, as they generate large electrical fields that are perpendicular to the scalp 

and therefore are easily recorded by the scalp electrodes. On the other hand, tangential 

sources produce weaker EEG signals, but still contribute to the measurable signal due to their 

proximity to the scalp. Overall, the open field layout of postsynaptic potentials from 

pyramidal cells is detectable with EEG.  

2.1.2 EEG acquisition 

EEG records fluctuating electrical fields of the brain across time via electrodes placed on the 

scalp (Malmivuo & Plonsey, 1995). Electrodes are typically placed according to a derivative 

of the 10-20 system, which is an internationally recognised method for the application of 

scalp electrodes to maintain standardised placement across research studies, thus aiding 

reproducibility, interpretation, and comparison of findings. Electrodes are placed at 10% and 

20% points from the nasion to the inion, and from the left to the right preauricular points 

(Jasper, 1958; Klem et al., 1999). Dense electrode nets are often placed according to 

alternative systems, for example, the Geodesic layout specifies that electrodes are placed 
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equidistant to one another (Magstim EGI, UK), though many electrodes correspond to 

electrodes in the 10-10 system (Luu & Ferree, 2005), which is an extension of the original 

10-20 system with a higher channel density (Chatrian et al., 1985).  

Amplitudes recorded from raw EEG are typically under 100 µV, therefore, the signal 

for each electrode is usually amplified by a factor of 1000-100000, referred to as the gain of 

the amplifier (Luck, 2014). EEG uses three types of electrodes: active, reference, and ground. 

The EEG signal is recorded as the potential for a current to pass from the active electrode to 

the ground electrode. However, there is often noise in the ground circuit, which is solved by 

use of a differential amplifier, wherein activity at active electrode sites is computed as the 

difference between active-ground electrodes and reference-ground electrodes (Luck, 2014). 

In this thesis, EEG studies employed the use of a 129-channel sponge-based Geodesic 

sensor net (Magstim EGI, UK), the electrodes location map is illustrated in Figure 2.1. Use of 

a Geodesic sensor net allows researchers to quickly place a dense array of electrodes, which 

covers the whole head including the forehead and suborbital regions of the face. A saline 

solution was used as the conducting medium and the position of the Geodesic sensor net was 

aligned to three anatomical landmarks, two preauricular points and the nasion. Electrode to 

skin impedances were kept below 50 kΩ, and a recording band-pass filter was set at 0.001–

200 Hz with a sampling rate of 1000 Hz. Electrode Cz, located at the vertex, was used as a 

reference electrode for recording, and COM, located posterior to electrode Cz, was used as 

the isolated common/ground electrode, Figure 2.1. 
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Figure 2.1 Distribution of 129 electrodes across the scalp for the sponge based EGI net. 
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2.1.3 Artefact correction 

EEG is susceptible to artefacts from extracerebral sources which may impact the 

interpretation of the EEG signal. These artefacts can be classified into two types: 

physiological and non-physiological. Physiological artefacts encompass electrooculographic 

(EOG), electrocardiographic (ECG), electromyographic, electrodermal, and respiration-

related activity. Non-physiological artefacts are primarily due to hardware problems, poor 

electrode-to-skin contact, and electrical interference caused by alternating mains power 

supply of either 50 Hz in Europe or 60 Hz in the USA (Luck, 2014). Researchers can visually 

inspect EEG data for the presence of artefacts, where contaminated trials are marked for 

rejection. Alternatively, reoccurring artefacts such as EOG and ECG can be removed from 

the EEG signal with adaptive artefact correction in the Brain Electrical Source Analysis 

software (BESA, GmbH; Berg & Scherg, 1994; Ille et al., 2002). This method uses a spatial 

filter to disentangle neural activity from artefacts without distorting the data. Segments of 

data are determined to represent brain activity if they demonstrate a low correlation with the 

artefact topography, and if the signal amplitudes are below a specified threshold. Data 

sections identified as an artefact are subjected to principal component analysis (PCA), where 

artefacts are removed from the raw data by decomposing the data into a linear combination of 

independent brain and artefact activities, enabling the estimation and subtraction of artefact 

signals from the raw data (Ille et al., 2002; Lagerlund et al., 1997).  

2.1.4 Time-frequency analysis 

2.1.4.1 Quantifying cortical oscillations 

There are several characteristics of EEG oscillations that one can use for classification, 

including amplitude, frequency, and morphology (Nayak & Anilkumar, 2022). The most 

commonly used method to classify EEG oscillations is by frequency, where the classical 
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bands for EEG analysis are: delta- (1-4 Hz), theta- (4-7 Hz), alpha- (8-13 Hz), beta- (14-30 

Hz), and gamma-band (>30 Hz). Each frequency band has different functional characteristics 

(Saby & Marshall, 2012), with somatosensory and motor processing typically inducing 

oscillatory activity in alpha- and beta-bands. Though, it should be noted that frequency bands 

can differ across populations (Hashemi et al., 2016; Newson & Thiagarajan, 2019; Polich, 

1997)  

Fourier analysis is the most widely used algorithm for decomposing the EEG signal 

from the time domain into specific frequency components, modelled by sine and cosine 

waves. The Fourier transformation contains two Fourier components, which are the weights 

of the cosine and sine basis functions. From these components, power and phase may be 

extracted (Nunez et al., 2016). A sliding time window is used when conducting a Fourier 

transform. A taper is a mathematical function which is multiplied with the data to reduce 

spectral leakage, where the power spectrum is smeared across the frequency spectrum due to 

the measured signal being non-periodic in the sample window (Cohen, 2014). The power 

spectrum is then calculated for each time window, which is a frequency domain 

representation of the magnitude of activity present in a series of data points for different 

frequencies (Keil et al., 2022). Time-frequency decomposition is limited by the Fourier 

uncertainty principle, which requires researchers to make a trade-off between temporal 

resolution and frequency resolution, where the higher the frequency resolution, the lower the 

temporal resolution and vice versa (Cohen, 2014). 

Edge artefacts are spectral distortions that occur due to large variations at the 

beginning and end of the time series. A further issue of Fourier transformation, as previously 

mentioned, is spectral leakage. To minimise the effects of edge artefacts and spectral leakage, 

researchers can apply window or taper functions, where the data at either end of the segment 
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are weighted to zero. Common window functions include Hann(ing) and Hamming, Kayser, 

Bartlett, Tukey, Blackman, and cosine-square functions (Keil et al., 2022). Further, 

multitaper analysis can be used, where multiple window functions are applied prior to the 

moving-window Fourier Transformation (e.g., the Slepian sequence; Slepian, 1978). The 

multitaper method is beneficial for controlling smoothing and is typically used for 

frequencies above 30 Hz. In this thesis, Chapter 5 and Chapter 7 implemented a time-

frequency analysis with a Fourier transform and a Hanning window to investigate the effect 

of texture processing.  

An alternate method for time-frequency decomposition is wavelet analysis. Wavelets 

have the advantage of variable time and frequency smoothing, whereby lower frequencies are 

more precisely represented in the frequency domain and higher frequencies are more 

precisely represented in the time domain (Cohen, 2014; Tallon-Baudry & Bertrand, 1999). In 

neuroscience, the most used mother wavelet function is Morlet wavelets: they represent 

segments of sine and cosine functions at the frequencies of interest in a window of time, 

which is multiplied by a Gaussian. The width of the Gaussian is given by the researcher and 

is often between 5 and 10, this determines the temporal and frequency smoothing. A 

consequence of this is the Fourier uncertainty principle, where a wider Gaussian decreases 

temporal resolution whilst increasing frequency resolution, and vice-versa for a narrower 

Gaussian (Keil et al., 2022). In Chapter 6 of this thesis, time-frequency decomposition was 

performed using a wavelet analysis with a Morlet wavelet mother function and five wavelet 

cycles.  

The power spectrum can be evaluated in terms of absolute or relative power. Absolute 

power can differ greatly between individuals due to neurophysiological, anatomical, and 

physical properties of the brain and surrounding tissue (Kropotov, 2009). Conversely, relative 
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power has lower variability when compared to absolute power. Researchers can investigate 

relative power of each frequency band by dividing the absolute power of each band by the 

total power, or by the sum of powers in the frequency band of interest.  

2.1.4.2 Event-related de/synchronisation 

The ERD method can be used to investigate time-locked oscillatory changes associated with 

an event such as somatosensory stimulation (Chatrian et al., 1958; Pfurtscheller, 1981; 

Stancak et al., 2003) or movement (Pfurtscheller et al., 1993; Pfurtscheller & Neuper, 1992; 

Stancak & Pfurtscheller, 1996a). Computation of the time course of ERD includes bandpass 

filtering all trials, followed by squaring the amplitude samples to obtain power samples. After 

this, power values are averaged across all trials and averaging of time samples is performed 

to smooth data and reduce variability (Pfurtscheller & Lopes da Silva, 1999).  

Equation 1. The ERD transformation 

ERD% =  (
𝐴 − 𝑅

𝑅
∗ 100 ) 

In Equation 1, ERD% is the percentage power change during event epochs (𝐴) 

relative to the baseline period (𝑅; Pfurtscheller, 2001; Pfurtscheller & Aranibar, 1979). 

Negative values of ERD% refer to the amplitude decreases of band power which signify the 

presence of cortical activation (ERD; Pfurtscheller & Aranibar, 1977; Pfurtscheller & 

Neuper, 1992). In contrast, positive ERD% values refer to the amplitude increases of band 

power, known as event-related synchronisation (ERS), which in certain circumstances can be 

interpreted as a correlate of deactivation (Pfurtscheller, 1992, 2001; Pfurtscheller et al., 

1996a, 1996b).  
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Where no suitable baseline period is available, oscillatory changes can be quantified 

in terms of event-related band power by computing z-scores after the band power calculation 

across the frequency band of interest for each participant, electrode, and experimental 

condition (Klimesch et al., 1998; Pfurtscheller, 1999). In this thesis, Chapter 5–7 investigate 

the neural correlates of texture processing using EEG and relative power: Chapter 5 and 

Chapter 6 use the ERD/S method, while Chapter 7 uses a z-score transformation. 

2.1.5 Statistical analysis of time-frequency data 

EEG yields rich data with many time points, frequencies, and electrodes to consider. 

Therefore, statistical analysis of EEG data is confounded by the multiple comparison 

problem, due to the vast number of comparisons necessary to evaluate the difference between 

experimental conditions at different electrode-time-frequency pairs. Assumptions for data 

analysis may be based on previous research (Luck, 2014), particularly with the time-

frequency approach where the researcher is aware of certain frequency bands of interest, e.g., 

movement-related beta-band ERD. However, while averaging over frequency reduces the 

number of data points, multiple comparisons is still an issue when evaluating the vast number 

of electrodes.  

2.1.5.1 Permutation analysis 

To help solve the problem of multiple comparisons, one can employ a permutation analysis 

(Maris & Oostenveld, 2007). During a permutation test, all the trials from the experimental 

conditions are collated into a single set. Then, the total number of trials from each 

experimental condition are randomly drawn and placed into subsets, referred to as a random 

partition. The test statistic is then calculated on the randomly partitioned data. A Monte Carlo 

estimate is obtained by repeating the previous steps many times and comparing these random 

test statistics with the observed test statistic, referred to as the permutation distribution 
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(Neumann & Ulam, 1945). The Monte Carlo estimate of the permutation p-value is the 

proportion of random partitions where the observed test statistic is larger than the value 

drawn from the permutation distribution. If the p-value is smaller than the critical alpha level 

one can conclude that the data in the experimental conditions are statistically significantly 

different (Maris & Oostenveld, 2007).  

2.1.5.2 Statistical parametric mapping 

Another approach for statistical analysis of exploratory research questions is the mass 

univariate approach, e.g., statistical parametric mapping (SPM; Friston, 1997). Classically, 

SPM is a method used to analyse functional images obtained by measuring the 

haemodynamic response (Friston, 2007a). Statistical parametric maps are images constructed 

with statistics that are calculated for each brain voxel. Data from each voxel is analysed 

independently using a general linear model (GLM) and standard univariate statistical tests. 

The resulting voxel-wise statistics are assembled into an image and interpreted as continuous 

statistical processes. Random field theory (RFT) is used to correct for multiple comparisons 

(Adler, 1981; Worsley et al., 1992, 1996), including adjusting degrees of freedom for non-

sphericity (Brett et al., 2007). Classical inference is used to interpret regionally specific 

responses to experimental factors (Friston, 1994, 1997, 2004). 

Over the past two decades SPM has been applied to EEG data to analyse evoked and 

induced responses (Friston, 2007a; Kilner et al., 2005). For EEG data, both 3D (X × Y × 

time) or 2D (time × frequency) images can be created, the former incorporating amplitude or 

power across peristimulus time and scalp location (X × Y) and the latter incorporating power 

and peristimulus time-frequency (Kiebel et al., 2007). A statistical value is calculated for 

each voxel (a volume created by SPM based on the desired image, e.g., scalp × time), 

representing the level of evidence against the null hypothesis (Friston, 1994, 2007b). 



41 

 

Statistical maps are produced based on the GLM which are corrected for multiple 

comparisons using RFT (Brett et al., 2007).  

The statistical analysis of EEG data is performed in two stages; the first level is 

performed within individual subjects and the second level (also referred to as group-level) is 

conducted across subjects. During first level analysis each individual voxel is entered into a 

GLM; at this stage extra regressors (covariates) can be entered into the model (Kiebel & 

Holmes, 2007). Effects of interest are defined for each subject using a contrast vector; this 

generates an image containing the contrast of the parameter estimates at each voxel (Penny & 

Holmes, 2007). The second stage of analysis takes the contrast images from all subjects from 

the first stage and enters them into a GLM to test for the effect of interest using t- or F-

statistics. 

With SPM, researchers can analyse EEG data from large arrays of electrodes across 

all timepoints in a single model, allowing for the testing of several hypotheses without model 

refitting. Therefore, the SPM method for statistical analysis of EEG data is an appropriate 

approach to take when investigating more exploratory research questions (Friston & Stephan, 

2007). In this thesis, SPM12 is used in Chapter 6 to compare EEG power in the form of 

ERD/S in alpha- and beta-band during tactile exploration of two textures under differing 

estimation conditions. Touch behaviours were used as GLM regressors. 

2.1.6 Strengths and Limitations of EEG 

As a neuroimaging technique, EEG is cost-effective when compared to other methods such as 

magnetic resonance imaging (MRI) or MEG, as EEG hardware is relatively inexpensive and 

has a long lifetime. Further, many pre-processing and analysis packages are available for free, 

for example, EEGLAB, FieldTrip, and SPM (Delorme & Makeig, 2004; Oostenveld et al., 

2011; Penny et al., 2007), which enables researchers to develop customised data-analysis 



42 

 

pipelines without additional costs. The accessibility of EEG has led to a wealth of EEG 

research from labs across the world. 

Further, other imaging methodologies, such as MRI, have many exclusion criteria, 

including participants who are fitted with a cardiac pacemaker, any shrapnel injuries over the 

lifetime, and claustrophobia. Meanwhile, EEG is a suitable method for participants with MRI 

contraindications as the method does not require a magnetic field. Furthermore, participants 

can sit comfortably during EEG recordings, or may even be navigating the environment if 

using mobile EEG (Tivadar & Murray, 2019). Therefore, EEG is appropriate for use across 

populations, from neonates to the elderly, including those with neurodevelopment and 

neuropsychiatric disorders, as well as those with neurological disease (Sanei, 2009).  

The temporal resolution of EEG allows for ~1 ms sampling simultaneously from 

many channels (Schneider & Strüder, 2012). This allows researchers to assess the temporal 

dynamics of the brain and the underlying cognitive processes, which is more accurate than 

behavioural measures alone, for example, reaction times or hedonic ratings (Luck, 2014). 

Whilst the temporal resolution of EEG is excellent, the spatial resolution is poor when 

compared to other methods, such as MRI (Gage & Baars, 2018). This is because cortical 

current must travel through different resistive layers, such as the skull, before being recorded 

by scalp electrodes (Srinivasan et al., 1996), resulting in a distorted view of brain activity at 

the scalp level (Hämäläinen et al., 1993; Nunez et al., 1994). Therefore, the poor spatial 

resolution of EEG makes it difficult to infer the location of neuronal activity in cortex, 

referred to as the inverse problem. Source analysis is a technique used within in field of EEG 

to determine the origins of electrical activity recorded from scalp electrodes. However, the 

inverse problem is ill-posed, there are many possible solutions for the underlying sources of 

electrical activity in the brain that may produce the same observed EEG signals at the scalp 
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(Michel & He, 2011). As such, definitive source localisation is not possible from EEG alone 

(Iramina et al., 1996; Schneider & Strüder, 2012).  

Deep or sub-cortical sources are small and enclosed by cortical activity and therefore 

have a low signal to noise ratio. The general rule of thumb is that at least 6 cm2 of 

synchronous cortical activity is needed to generate a detectable signal (Nunez & Srinivasan, 

2006). Further, deep and sub-cortical structures have a closed field; therefore, they do not 

reach far distances due to the cancellation effect. As such, recording from deep subcortical 

regions is challenging, though it is possible with the use of high-density EEG (Seeber et al., 

2019). 

2.2 Functional magnetic resonance imaging 

fMRI is a widely used non-invasive neuroimaging technique that produces three dimensional 

images which can used for both clinical and research purposes (Mandeville & Rosen, 2002). 

In contrast to EEG, fMRI provides an indirect measure of neuronal activity by measuring 

changes in cerebral blood flow (Mandeville & Rosen, 2002).  

2.2.1 Physics of fMRI 

The principles underlying fMRI are based on nuclear magnetic resonance (Slichter, 1992), 

whereby certain nuclei absorb energy from an electromagnetic field at a specific frequency 

when placed within a magnetic field (Brown et al., 2007). In fMRI studies the measured 

signal arises from hydrogen nuclei as they have a large magnetic moment, and they are 

abundant in biological tissue (Narashiman & Jacobs, 2002). The strong magnetic field of 

fMRI during scanning aligns hydrogen protons in brain tissue in the direction of the magnetic 

field, referred to as longitudinal magnetisation (Hendee & Morgan, 1984). Short radio 

frequency (RF) pulses are delivered at a specific frequency, known as the Larmor frequency, 
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known to target hydrogen protons. The RF pulse disrupts the alignment of protons, causes 

protons to precess, and induces transverse magnetisation (Brown et al., 2007). After the RF 

pulse ends, the precessing protons quickly reorient to the static magnetic field through a 

process called longitudinal relaxation. Additionally, the excited hydrogen protons realign 

with the external magnetic field and lose their phase coherence, known as transverse 

relaxation. T1 and T2 are two parameters in MRI that describe the behaviour of hydrogen 

protons during relaxation processes; T1 represents longitudinal relaxation, reflecting the time 

it takes for protons to return to their original alignment after being disturbed by an RF pulse, 

whereas T2 represents transverse relaxation and indicated the time it takes for protons to lose 

phase coherence (Narashiman & Jacobs, 2002).  

2.2.2 The BOLD signal 

The brain cannot store oxygen or glucose; therefore, the normal functioning of brain tissue 

relies on a constant and adaptable blood supply to replenish energy levels. When an area of 

the brain is more active, more energy is needed to resupply cells with oxygen or glucose, and 

so blood flow through that area increases (Logothetis, 2008). However, the neural tissue 

cannot absorb all the excess oxygen in the blood, resulting in a localised increase in the ratio 

of oxygenated to deoxygenated haemoglobin (Logothetis, 2008). Deoxyhaemoglobin 

attenuates the MR signal, therefore, changes in regional haemodynamic response, known as 

the BOLD signal, are measurable with fMRI (Mandeville & Rosen, 2002). The BOLD 

contrast was proposed as a naturally occurring alternative to exogenous contrast agents, as it 

results from changes in the magnetic field associated with distortions caused by blood flow, 

and thus reflects regional activation (Glover, 2011; Kim & Ogawa, 2012; Ogawa et al., 

1990b, 1990a). While this method is an indirect measurement of neural activity, simultaneous 

fMRI-EEG have established strong correlations between local field potentials and BOLD 
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signal, validating its use as a neuroimaging technique (Logothetis et al., 2001; Ogawa et al., 

2000).  

2.2.3 fMRI Meta-Analysis 

As a research method, fMRI is expensive relative to EEG (Crosson et al., 2010). As a result, 

fMRI studies often recruit small samples of participants (Szucs & Ioannidis, 2020), making it 

difficult to draw conclusions from single studies due to low reliability and power (Bennett et 

al., 2010; Raemaekers et al., 2007; Zuo et al., 2019; Zuo & Xing, 2014). Further, the 

popularity of fMRI research has increased over the past 30 years (Wager et al., 2007), from 

around 44 journal articles published in 1992 to over 3000 published in 20221. The increase in 

fMRI studies means that there is vast amount of neuroimaging data available. However, 

published findings from different labs often have a great deal of heterogeneity in task 

designs, such as differences in stimulus presentation and task instructions, and can vary in 

scanning procedures (Kober & Wager, 2010; Salimi-Khorshidi et al., 2009; Wager et al., 

2007). These issues can contribute to the lack of reproducibility in fMRI studies (Bishop, 

2019), and so it is vital that research findings are collated to give a more complete overview 

of the current literature. 

Meta-analysis is a tool used by researchers to examine the convergence of findings by 

combining results from multiple independent studies (Herrera Ortiz et al., 2021). There are 

two standard approaches for conducting a meta-analysis on fMRI data: image-based meta-

analyses (IBMA) or coordinate-based meta-analyses (CBMA; Salimi-Khorshidi et al., 2009). 

IBMA combines whole-brain statistic volumes by using the full T statistic images; this allows 

for the use of hierarchical mixed effects models that account for both intra-study and random 

 
1 A rough estimate based on an inclusive search in PsychInfo (which excludes many non-psychological 

medical studies) ‘functional magnetic resonance imaging OR fMRI’.  
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inter-study variation (Salimi-Khorshidi et al., 2009; Samartsidis et al., 2017). Conversely, 

CBMA uses the x y z coordinates from each peak location reported, providing a sparser 

representation of findings in comparison to IBMA. While whole-brain statistical images can 

be shared on platforms such as NeuroVault (Gorgolewski et al., 2015), authors are typically 

not required by journals to share their data and as such rarely do so (Müller et al., 2018). 

Therefore, any researcher conducting IBMA must directly contact the authors of their cohort 

papers to obtain T statistic images that are not published to online repositories. This 

requirement can lead to bias of only collating data from authors who respond and bias of not 

being able to obtain images from older studies (Poldrack et al., 2008). As a result, IBMA is 

unable to answer most meta-analytic research problems (Müller et al., 2018).  

2.2.3.1 Activation Likelihood Estimation 

ALE is the most widely used CBMA (Eickhoff et al., 2009). ALE meta-analyses pool results 

across multiple studies in a systematic manner, allowing researchers to perform analysis with 

a standardised methodology that allows for identification of convergence of activation 

probabilities between research experiments (Eickhoff et al., 2012; Turkeltaub et al., 2002). 

To achieve this, ALE treats activation foci as spatial probability distributions which are 

centred at the coordinates specified and a 3D Gaussian spatial variance model is employed to 

replace coordinates (Eickhoff et al., 2009, 2016). Significance is determined by testing the 

null hypothesis of random spatial association between independent groups of coordinates 

(i.e., experiments; Eickhoff et al., 2012; Turkeltaub et al., 2002).  

ALE analysis computes an ALE value for each voxel in the brain and performs tests 

to determine if there is any convergence among foci that cannot be explained by the null 

distribution of the ALE statistic (Eickhoff et al 2012). First, foci contributing to an ALE are 

grouped by experiment before being inputted into BrainMap GingerALE v3.0.2, where the 
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ALE algorithm is implemented (Eickhoff et al., 2009, 2012; Turkeltaub et al., 2012). Then, a 

modelled activation (MA) map is created for each experiment group using the mask, which 

defines the outer limits of Talairach or Montreal Neurologic Institute (MNI) space. The foci 

and a Gaussian kernel at full width at half maximum are determined from the subject size of 

the experimental group, with larger subject sizes yielding a tighter and taller Gaussian 

(Eickhoff et al., 2009). The ALE image is a combination of all the MA maps from the 

experiments entered into GingerALE (Eickhoff et al., 2009, 2012; Turkeltaub et al., 2012). A 

p-value image is created after calculation of the probability of finding voxels in MA maps, 

which is used to set a significance threshold on the ALE scores to create a thresholded ALE 

map. Conjunction and contrast analyses can then be employed to compare resulting ALE 

maps (Eickhoff et al., 2011). 

2.2.3.2 Systematic review 

The results from the ALE are affected by the foci given, which means that studies 

contributing foci should be carefully considered to ensure results are robust and replicable. 

To achieve this, a systematic review guided by the standards of the Preferred Reporting Items 

for Systematic Review and Meta-Analysis (PRISMA) statement (Page et al., 2021), is 

conducted to identify journal articles for inclusion in meta-analyses. Conducting a systematic 

review according to PRISMA guidelines involves following a procedural checklist and 

completing a flow diagram specifying the number of records identified and rejected at each 

stage of the review. The process of conducting a systematic review first involves creating a 

list of eligibility criteria where inclusion and exclusion criteria are specified. Then, a 

comprehensive literature search of specified databases with a set of predefined search terms 

is performed. Journal articles identified from the literature search are then screened for 

eligibility and the number of studies that met the criteria as well as those rejected are 
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reported. Data is then extracted from accepted journal articles, which is subsequently used in 

meta-analyses.  

In this thesis, a systematic review was conducted to identify journal articles 

investigating texture perception with fMRI methods. Coordinates were extracted from 

accepted research articles and subjected to an ALE meta-analysis using GingerALE v3.0.2 

(Eickhoff et al., 2009, 2012; Turkeltaub et al., 2012). The results of the systematic review and 

meta-analysis are discussed in Chapter 4.  

2.3 Active touch 

Active touch has often been neglected in previous EEG research as it is difficult to accurately 

quantify parameters necessary to epoch EEG data, e.g., precise stimulus onset times. Most of 

the previous research has utilised passive touch paradigms, where robotic stimulation devices 

are used to present stimuli to the skin. As a result, the neural correlates of active touch during 

texture perception are poorly understood. The use of touch sensor technology allows for the 

recording of both EEG and touch data simultaneously. During data-processing, touch and 

EEG triggers are integrated, allowing for the investigation of the neural correlates of active 

touch with appropriate temporal resolution. Further, behaviours quantified by touch sensor 

technology (i.e., load and friction) can be entered into the EEG analysis as covariates, 

allowing for the control of variance in exploration procedures.  

2.3.1 Linear sensor  

Initially, a linear sensor was purchased from Hopkinson Research, which allowed for 

measurement of finger load (g), which is the downward pressure, and finger position (mm) 

along a sample during unilateral finger movement. This was measured by two single-point 

load cells at two different positions on the X axis. Load is calculated from the sum of the two 
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load cells, whereas the calculation of position involves first calculating a torque moment 

around a horizontal Y axis which is orthogonal to the X axis and places at any arbitrary 

location along the X axis. This torque is then divided in Newtons-meters by the finger load in 

Newtons to derive a distance in meters, which is the distance between the centre of pressure 

from the finger and the Y axis where it was defined (Hopkinson, 2020). The linear sensor and 

its components are depicted in Figure 2.2. In this thesis, a Hopkinson Linear Sensor was used 

investigate the neural correlates of texture perception during active touch of different natural 

textures using EEG, discussed in Chapter 5.  



 

 

 

5
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Figure 2.2 Hopkinson Research linear sensor. (A) Top view of sensor system showing the amplifier housing, the flexures from which the strain-gauge sensors are mounted, 

and the sample chassis attached to the sensors. (B) Front view of the sensory system showing the amplifier housing with its cover removed, the RS232 connecting cable, the 

strain-gauge sensors (sample chassis removed). (C) The LabJackU6 housing, a diecast box containing the Lab Jack U6 multifunctional data acquisition system, a passive 

signal filter for the sensor signals, a passive voltage divider for user's timing voltage pulse, and sockets for cables to connect to the sensor system, the source of the user's 

timing voltage pulse, and a host PC or laptop via USB 2.0 or higher. (D) View of the diecast box. The left image shows the connections to the sensor system (labelled 1) and 

trigger pulse (labelled 3) are visible, the connection labelled 2 is currently unused and is for a planned future application involving more sensors. The right image shows the 

USB-A female socket for connection to the host laptop or PC. Adapted from Hopkinson (2020a). 
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2.3.2 Six-axis sensors  

Following the purchase of the linear sensor, a six-axis sensor was purchased from Hopkinson 

Research to allow for measurement of multidirectional finger movement, shown in Figure 

2.3. The sensor was designed to measure finger load (g) in the Z axis, and finger position 

(mm) in both the X and Y axes. Three large load cells measure the downward force at three 

locations in a tripod arrangement. These load cells effectively measure the downward force 

and the torques around the X and Y axes. In addition, the six-axis sensor measures friction 

force along the X and Y axes as well as the torque around the Z axis with 3 smaller load cells 

(Hopkinson, 2020b). In this thesis, a Hopkinson Research six-axis sensor was used 

investigate electrophysiological changes during active texture change, discussed in Chapter 6, 

as well as the evaluation of textural properties during active touch, discussed in Chapter 7.  
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Figure 2.3 Hopkinson Research six-axis sensor. (A) Set up of force plate with the load cells connected to the 

junction boxes. (B) Force plate with aluminium composite panel fitted. Adapted from Hopkinson (2020b). 
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Chapter 3 

Research problems and hypotheses 

3.1 Research problems  

The variability in perceptual scales used to quantify surface texture has led to researchers 

using a vast array of textured stimuli, from smooth natural textures such as silk to rough 

artificial gratings (Kitada et al., 2005; Wang et al., 2016). As a result, neuroimaging studies 

are difficult to compare. The SI is thought to be responsible for encoding tactile information 

related to surface texture (Lieber & Bensmaia, 2019), though previous research hypothesises 

that the SII plays a role in texture discrimination (Kitada et al., 2005; Roland et al., 1998; 

Sathian et al., 2011; Servos et al., 2001; Stilla & Sathian, 2008). Due to variations in 

paradigm and stimuli, fMRI studies demonstrate heterogeneous patterns of brain activity 

associated with texture processing. This thesis set out to investigate the relationship between 

neural activity and the processing of texture, taking into account physical characteristics of 

the texture as well as the influence of higher-level cognitive processes. 

Humans navigate their tactile world through active touch, which allows for the 

modulation of movement speed and digit orientation to optimise skin-surface contact. EEG is 

used to record oscillatory brain activity, to examine the effect of external events on cortical 

rhythms data must be time locked to a common event, which is typically the onset of a 

stimulus. Consequently, current EEG literature investigating the neural correlates of texture 

processing mostly relies on passive stimulation devices (Ballesteros et al., 2009; Genna et al., 

2018; Moungou et al., 2016). The results from passive touch paradigms may not be 

representative of how the brain processes texture under active touch conditions (Simões-
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Franklin et al., 2011). Therefore, modulation of oscillatory brain rhythms during texture 

processing via active touch is not well understood and remains to be elucidated.  

The investigation of texture perception often involves the researcher asking 

participants to provide a tactile estimation (Bensmaia, 2009; Hollins et al., 1993; Hollins & 

Risner, 2000). Perceptual judgements require both sensory and cognitive processing; 

incoming tactile information must be processed in order to inform perceptual judgements by 

comparing current information with past experiences. Estimation tasks have been shown to 

modulate the haemodynamic response during tactile discrimination tasks, demonstrating 

increased activation in higher-order brain regions such as the SII and the prefrontal cortex 

relative to no estimation conditions (Kitada et al., 2005). Therefore, perceptual judgements of 

surface texture likely alter brain activations. Despite this, investigations of perceptual 

judgements of texture using EEG are lacking, thus the electrophysiological underpinnings of 

perceptual judgement during active exploration of surface texture are yet to be delineated.  

Investigation of active touch allows one to assess texture processing under more 

naturalistic conditions. During real-word explorations, humans perceive changes in surface 

texture. Typically, change detection in the brain is investigated using oddball tasks, wherein 

participants are exposed to one repetitive stimulus and then presented with a novel “oddball 

stimulus” (Naatanen et al., 1978). This method requires clean baselines where participants are 

at rest before the stimulation period for each trial, which does not reflect the continuous 

tactile exploration that is performed via active touch in the real word. Further, use of this type 

of paradigm assumes detection of change is an isolated feature, rather than an additive 

experience. Therefore, alternative methods that better simulate real-world conditions and 

consider the complexity of change detection in active touch should be explored. 



 

55 

 

3.2 Thesis chapters 

Chapter 4 describes a systematic review and ALE meta-analysis of fMRI studies 

investigating texture processing (H1, see section 3.3 below). The systematic review was 

conducted to identify studies that stimulated the glabrous skin on the hand, through either 

passive or active stimulation, with textured stimuli. Coordinates were collated from identified 

studies and subjected to an ALE meta-analysis which identified concordant activations across 

studies (H1). Further, secondary analysis contrasted the processing of texture compared to a 

non-haptic baseline (e.g., rest or visual control) with texture processing compared to a haptic 

control (e.g., shape or orientation). This analysis aimed to reveal the structures associated 

with texture-specific processing, i.e., when other haptic processes are accounted for in the 

baseline or contrast (e.g., shape; H2).  

Chapter 5 examined the effect of natural textures, which varied in textural properties, 

on cortical oscillations during active touch (H3). Three natural textures were chosen, smooth 

silk, soft brushed cotton, and rough hessian. EEG was used to record electrical field 

potentials from the scalp and the ERD method was used to investigate cortical activation 

changes during unilateral finger movement across each texture (H3). Force plate technology 

was used to quantify active touch, allowing for computation of EEG trigger based on touch 

behaviour. Covariate analysis was used to assess whether hedonic and sensory estimations 

accounted for variance in the cortical oscillatory activity. 

Chapter 6 investigated the neural underpinning of hedonic, sensory and no estimations 

during active exploration of natural textures (H3, H4). EEG and the ERD method were used to 

quantify neural oscillations during active exploration of two textures, smooth silk, and rough 

hessian. Prior to exploration, participants were instructed to either evaluate hedonic or 

sensory properties or told that they did not have to perform an evaluation (H4). Sensory and 
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hedonic ratings were recorded after touch exploration was complete. Objective data from the 

force plate sensor recorded physical properties of touch, which were implemented as 

covariates in analysis on a single-trial level to account for individual variance in touch 

behaviour, thus allowing for the investigating of the invariant effect of texture and estimation 

on the neural response 

Chapter 7 explored the electrophysiological correlates of texture change (H5). A 

texture change tile was 3D printed, whereby the middle portion of the tile consisted of a 

transition between two distinct textures (one rough and one smooth). Force plate technology 

was used to calculate when the index finger crossed the texture change boundary. Absolute 

power (z-score normalised) was investigated to examine the neural markers of texture change 

detection in the brain (H5). Subsequently, data were split into transitioning from rough to 

smooth and vice-versa to investigate differences in textural roughness whilst transitioning 

from one texture to the other (H3). 

Chapter 8 discusses the overall results from all experimental studies. In addition to 

discussing the implications of the findings, and future directions in the field of texture 

processing. 

3.3 Overarching hypotheses 

H1 Texture processing will elicit brain activation in areas associated with tactile 

processing, including the SI, SII and the insula.  

H2 Texture-specific processing will recruit higher-order integrative structures such as the 

SII. 
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H3 Decreasing textural roughness will be associated with increased alpha- and beta-band 

ERD in sensorimotor regions during active touch.  

H4 Encoding of hedonic and sensory evaluations of textural properties, relative to no 

estimation, during active exploration will increase ERD in prefrontal and 

temporoparietal regions. 

H5 Detection of textural change will manifest as an increase in theta-band power in 

frontocentral regions.  
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Abstract  

Humans use discriminative touch to perceive texture through dynamic interactions with 

surfaces, activating LTMR in the skin. It was largely assumed that texture was processed in 

primary somatosensory regions in the brain, however, imaging studies indicate heterogeneous 

patterns of brain activity associated with texture processing. To address this, we conducted a 

coordinate-based activation likelihood estimation meta-analysis of thirteen fMRI studies 

(comprising 15 experiments contributing 228 participants and 275 foci) selected by 

systematic review. Concordant activations for texture perception occurred in contralateral 

primary somatosensory and motor regions, with bilateral activations in the secondary 

somatosensory, insula, premotor and supplementary motor cortices. We also evaluated 

differences between studies that compared touch processing to non-haptic control (e.g., rest 

or visual control), or those which used haptic control (e.g., shape or orientation perception) to 

specifically investigate texture encoding. Studies employing a haptic control revealed 

concordance for texture processing only in contralateral secondary somatosensory cortex. 

Contrast analyses demonstrated greater concordance of activations in contralateral primary 

somatosensory regions and inferior parietal cortex for studies with a non-haptic control, 

compared to experiments accounting for other haptic aspects. These findings suggest that 

texture processing may recruit higher-order integrative structures, and the secondary 

somatosensory cortex may play a key role in encoding textural properties. The present study 

provides unique insight into the neural correlates of texture-related processing by assessing 

the influence of non-textural haptic elements and identifies opportunities for future research 

design to understand the neural processing of texture. 
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4.1 Introduction 

Humans typically explore and gather haptic information using discriminative touch through 

the glabrous skin on their hands and digits (Gibson, 1962; Lederman & Klatzky, 1993; 

Wagner & Gibson, 2016). Previous research investigating texture perception and brain 

activation commonly focus on one textural feature, with roughness the most studied (Hollins 

et al., 2000). This meta-analysis aimed to collate research articles using fMRI methods to 

identify regions of the brain associated with texture perception of various stimuli during 

discriminative touch. For the purpose of this review, texture perception was defined as 

activation of LTMR and the DCML pathway. Importantly, this excludes thermal perception 

via thermoreceptors and the spinothalamic tract, which has previously been included as a 

dimension of texture (Okamoto et al., 2013). 

The glabrous skin of the hands contains LTMR, which transduce incoming tactile 

information from surface texture (Gomez-Ramirez et al., 2016; Harvey et al., 2013; Johnson 

et al., 2000; McGlone & Reilly, 2010). Tactile information from LTMR travels through the 

DCML pathway to the brain, and thalamocortical afferents convey signals to the primary (SI) 

and secondary somatosensory cortex (SII; Klingner et al., 2016; Raju & Tadi, 2021). In 

humans, texture processing elicits bilateral activation in the SI and SII (Genna et al., 2018; 

Simões-Franklin et al., 2011). Lesions in the macaque SI and SII lead to impairment of 

texture perception (Garcha & Ettlinger, 1980; Randolph & Semmes, 1974). Moreover, the SII 

is hypothesised to be responsible for roughness discrimination (Kitada et al., 2005; Sathian et 

al., 2011; Servos et al., 2001; Stilla & Sathian, 2008). 

Activation of LTMR requires voluntary movement or dynamic passive touch and 

contact pressure. The MI and non-primary motor regions, split into the SMA and premotor 

cortex, are responsible for planning and initiating limb movements (Rizzolatti & Kalaska, 
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2012; Rizzolatti & Luppino, 2001). Therefore, in contrasts employing voluntary movement 

(i.e., active touch), the MI and premotor areas would be activated due to motor preparation 

and execution. 

Further, somatosensory information is processed in the insula, with the posterior 

region of the insular cortex found to be functionally connected to sensorimotor areas 

including the SI, SII, MI and SMA (Deen et al., 2011; Taylor et al., 2009). The insula is 

conceptualised as an integration hub as it is connected to many brain regions and is 

associated not only with sensory inputs (Craig et al., 2000; Jensen et al., 2016; Segerdahl et 

al., 2015) but also with affective processing (Björnsdotter et al., 2009, 2014; Morrison, 2016; 

Olausson et al., 2016) and higher-level cognition such as decision-making (Gogolla, 2017; 

Uddin et al., 2017). Therefore, texture perception in the brain likely involves the insula 

(Kitada et al., 2005; Stilla & Sathian, 2008). 

Additionally, the PPC is associated with multisensory integration, combining inputs 

from several brain areas, including somatosensory, auditory, visual, motor, cingulate and 

prefrontal cortices (Whitlock, 2017). The PPC has been shown to play an important role in 

sensory guidance during active touch rather than texture perception specifically (Hyvärinen, 

1982; Mountcastle et al., 1975), with increased activation during grasping (Konen et al., 

2013; Vingerhoets, 2014), reaching (Blangero et al., 2009; Vesia & Crawford, 2012; 

Vingerhoets, 2014), and interaction with objects (Bodegård et al., 2001; O’Sullivan et al., 

1994; Peltier et al., 2007; Zhang et al., 2004). Thus, texture discrimination through active 

touch is likely to include activation of PPC to aid in sensory guidance. 

The present study performed a coordinate-based meta-analysis with an ALE of 

published fMRI findings relating to the neural correlates of texture perception (Eickhoff et 

al., 2009, 2012). Firstly, we aimed to identify key brain regions involved in texture 
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perception at hand and/or digit skin sites using concordance analysis to identify regions of the 

brain with the highest activation likelihood. Secondly, we attempted to identify key brain 

regions involved in texture-specific perception when controlling for other haptic elements 

involved in discriminative touch (e.g., location, orientation, and shape). For this purpose, we 

performed conjunction and contrast analyses to compare fMRI studies which contrasted 

texture perception with a resting or non-haptic control with those which used a haptic 

baseline to control for these non-texture aspects of discriminative touch.  

We hypothesised that areas consistently reported in tactile perception studies would 

result in activation, which are bilateral SI, SII and insular cortices. Further, we expected areas 

associated with voluntary movement and motor planning would show activation, including 

bilateral MI, SMA, premotor cortex, and PPC. When controlling for the influence of haptic 

processing we anticipated an increased likelihood of activation in medial brain regions 

associated with higher-order processing or texture-specific processing such as the SII and 

insular cortex.  



 

63 

 

4.2 Method 

This systematic review is reported following the PRISMA guidelines (Moher et al., 2009). 

The review protocol was registered on Open Science Framework on the 3rd November 2020. 

4.2.1 Data search and extraction 

Three electronic databases were examined during February 2023 (PubMed, PsycINFO, and 

Web of Science) using the Medical Subject Headings (MeSH) search terms (Magnetic 

resonance imaging OR fMRI) AND (functional OR brain activation OR neural activity OR 

BOLD) AND (texture OR rough* OR smooth* OR soft*) AND (touch OR tactile OR haptic 

OR somatosensory). No date limit was set for the searches. A citation search was conducted 

of the five most recent research papers accepted for analysis. 

4.2.2 Article selection and extraction of data 

Article selection consisted of two stages and was conducted by the same two authors (J.H. 

and T.M.). Firstly, the title and abstract for all unique search results were assessed separately 

by the two authors, studies identified as relevant were retrieved for full-text review. During 

the second stage, full-text articles, retrieved from stage one, were reviewed independently for 

inclusion, disagreements were resolved via discussion or presented to a third arbiter (N.F.). 

One author (J.H.) extracted the relevant coordinate data, which was cross-checked and 

confirmed by a second (T.M.). Studies that reported coordinates in Talairach space were 

converted into MNI using GingerALE software for analysis and reporting (Eickhoff et al., 

2009, 2012; Turkeltaub et al., 2012). Studies that employed a region of interest (ROI) 

analysis to investigate the contrast of interest were included in the cohort when whole brain 

statistical data was available from online repositories, such as NeuroVault (Gorgolewski et 

al., 2015). In such instances, the unthresholded t-maps resulting from the fMRI analysis 

https://osf.io/kz7mg/?view_only=f47532ac93e64598b56c5c488e651845
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were manually thresholded at 𝑝 < .001 uncorrected voxelwise throughout the whole brain 

with a 𝑝 < .05 cluster level correction to give whole brain results. 

4.2.3 Eligibility criteria 

The criteria for inclusion were: (i) fMRI studies; (ii) original English language articles; (iii) 

published in a peer-reviewed journal; (iv) healthy human participants aged 18+; (v) using a 

paradigm where the hand and/or fingers are either passively or actively stimulated by 

textured stimuli, i.e. three-dimensional (3D) printed texture, natural texture, or man-made 

textures; (vi) coordinates were reported in the paper or supplementary material in either MNI, 

(Evans et al., 1994) or Talairach space (Talairach & Tournoux, 1988); (vii) studies which 

analysed either of the two contrasts of interest: (1) texture perception through hand and/or 

finger stimulation compared to non-haptic control conditions, such as rest, visual control 

(e.g., visual instructions or rating scales with the absence of textured stimuli) or motor control 

(e.g., hand motion with the absence of textured stimuli), and (2) texture perception through 

hand and/or fingers stimulation compared to haptic control conditions, which included shape, 

location and orientation tasks. See Figure 4.1 for a flowchart showing the study selection 

steps.  
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Figure 4.1 Flow chart depicting the screening process. 
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ALE meta-analyses were performed in BrainMap GingerALE v3.0.2 (Eickhoff et al., 

2009, 2012; Turkeltaub et al., 2012). The ALE method computes an ALE value for each 

voxel in the brain and performs tests to determine the null distribution of the ALE statistic at 

each voxel, with increased ALE values suggestive of more studies reporting activated peaks 

in specific loci or at neighbouring voxels using a Gaussian distribution. Next, p values 

computed from the previous step, are used to calculate a thresholded ALE map, and 

thereafter, cluster analysis is performed on the thresholded map. 

For the primary analyses, the comparison of texture perception > control, texture 

perception> non-haptic control and texture perception > haptic control were evaluated with 

permutation analyses performed with 5,000 permutations. Firstly, a cluster forming threshold 

of uncorrected 𝑝 < .001 was applied (Eickhoff et al., 2012), followed by cluster-level 

Family-wise error (FWE) correction (𝑝 < .05) as recommended (Eickhoff et al., 2016). For 

the secondary analyses, the thresholded ALE images from the primary analysis were 

compared using conjunction and contrast analyses; this was executed by permutation analysis 

with 10,000 permutations and a cluster-level false discovery rate (FDR) threshold of 𝑝 < .05, 

with a minimum cluster size of 200 mm3 as recommended (Eickhoff et al., 2016), and in line 

with previous research (Morrison, 2016). 
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4.3 Results 

A total of 870 articles were identified from searches (PubMed; 244, PsycInfo; 362, Web of 

Science; 264; Figure 4.1). Of these, 485 articles were removed due to duplication from 

repeated searches. An additional 337 articles were removed during the titles and abstracts 

review stage. Studies excluded at this stage included: those where it was clear and obvious 

that no suitable population was reported (106), not an experimental report published in a 

peer-reviewed journal (16), did not use fMRI methods (80), not using suitable textured 

stimuli (130), and not addressing one of the outcomes outlined (5). Following full-text 

review, a further 35 articles were removed including those which used an unsuitable contrast 

(121), did not utilise appropriate textured stimuli (13), did not conduct an fMRI contrast 

study (5), were not an experimental report journal article (3), only reported ROI analysis and 

whole brain data was not available (1; see section 4.2.2 above), or which did not report 

findings in English (1). This resulted in a final cohort of 13 studies for the analyses of texture 

perception (Table 4.1), with the age range of participants recruited being 18-47 years. The 

citation search did not lead to the inclusion of any additional studies. Studies contributing to 

this ALE stimulated the right hand, with Kitada et al. (2006) stimulating both hands and 

combining results. Therefore, concordant activation in the left and right hemispheres 

correspond to contralateral and ipsilateral activation, respectively. 
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Table 4.1. Studies included in ALE meta-analysis. 

Author Year Title N 

Mean 

age 

(SD) 

Description of 

tactile stimuli 

Stimulation 

site 

Type of 

stimulation 

Task used in 

contrast 

Included 

experiments 

Gurtubay-

Antolin et 

al. 

2018 Neural Evidence of 

Hierarchical 

Cognitive Control 

during Haptic 

Processing: An fMRI 

Study 

17 23.4 

(1.5) 

Six real 3D 

objects and six 

textures 

Right 

palm/hand 

Active Congruency Haptic texture > 

Haptic shape 

Kim et al. 2015 Decoding Accuracy 

in Supplementary 

Motor Cortex 

Correlates with 

Perceptual Sensitivity 

to Tactile Roughness 

13 25.3 

(3.8) 

Five grades of 

aluminium oxide 

sandpaper 

Right index 

fingertip 

Active Perception Haptic texture (3 

µm) > rest 

Haptic texture (5 

µm) > rest 

Haptic texture (9 

µm) > rest 

Haptic texture (12 

µm) > rest 

Haptic texture (40 

µm) > rest 

Kitada et 

al. 

 

 

 

 

2006 Multisensory 

activation of the 

intraparietal area 

when classifying 

grating orientation: A 

functional magnetic 

resonance imaging 

study 

16 22-47* 

(range) 

Nine rectangular 

gratings with 

three degrees of 

roughness 

Right and 

left middle 

finger 

Passive Estimation Roughness task > 

button press  

Roughness task > 

tactile orientation+ 
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Kitada et 

al. 

2005 Tactile estimation of 

the roughness of 

gratings yields a 

graded response in 

the human brain: an 

fMRI study 

14 23-26* 

(range) 

Linear gratings 

with three ridge 

heights 

Right 

middle 

fingertip 

Passive Perception No estimation > 

Rest 

Mueller et 

al. 

2019 Neural correlates of 

top-down modulation 

of haptic shape versus 

roughness perception 

21 25.33 

(3.44) 

3D printed 

cuboids with five 

levels of shape 

and roughness 

Right thumb 

and index 

finger 

Active Comparison Roughness > Rest 

Podrebarac 

et al. 

2014 Are visual texture-

selective areas 

recruited during 

haptic texture 

discrimination? 

13 27* Two 3D shapes 

with two 

indented texture 

patterns 

Right hand Active Comparison Haptic texture > 

haptic shape 

Sathian et 

al. 

2011 Dual pathways for 

haptic and visual 

perception of spatial 

and texture 

information. 

18 20.8* Textiles attached 

to a piece of 

cardboard 

Right hand Active Comparison Haptic texture > 

haptic location 

Simões-

Franklin et 

al. 

2011 Active and passive 

touch differentially 

activate 

somatosensory cortex 

in texture perception 

16 23.6* Three grades of 

aluminium oxide 

sandpaper 

Right 

middle 

finger 

Active & 

passive 

Estimation Active & passive 

> control 
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Stilla & 

Sathian. 

2008 Selective visuo-haptic 

processing of shape 

and texture. 

6 22* 3D meaningless 

objects. Textiles 

attached to a 

piece of 

cardboard 

Right hand Active Comparison Haptic texture > 

haptic shape 

Tang et al. 2022 Brain activation 

related to the tactile 

perception of 

touching ridged 

texture using fingers. 

10 22 

(2.3) 

Ridged textures 

with different 

edge shapes 

Right index 

finger 

Passive Perception Sharp shape > rest 

Rounded shape > 

rest 

Flat shape > rest 

Wang et al. 2016 Brain discriminative 

cognition on the 

perception of 

touching different 

fabric using fingers 

actively 

8 28.6* Silk and linen 

swatches 

Right thumb 

and index 

finger 

Active Estimation Linen > rest 

Silk > rest 

Yang et al. 2021 Different activation 

signatures in the 

primary sensorimotor 

and higher-level 

regions for haptic 

three-dimensional 

curved surface 

exploration 

20 22 

(0.63) 

3D printed 

surfaces with 

four levels of 

raised dot 

patterns and four 

types of 

curvature, plus 

one flat surface. 

Right index 

and middle 

finger 

Active Estimation Roughness 

estimation > hand 

motion and visual 

control 

(Roughness 

estimation - hand 

motion and visual 

control) > (curve 

estimation - hand 

motion and visual 

control)+  

Yang et al. 2017 Brain networks 

involved in tactile 

speed classification of 

20 21.9 

(2.6) 

Two surfaces 

with identical or 

pseudo-randomly 

Right 

middle 

fingertip 

Passive Estimation Speed 

classification 

periodic > visual 
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moving dot patterns: 

the effects of speed 

and dot periodicity 

distributed dot 

patterns 

motor control 

periodic 

Speed 

classification non-

periodic > visual 

motor control 

non-periodic  

*Did not report standard deviation (SD); Estimation = Participants estimated textural properties, e.g., roughness; Comparison = Presented participants with two stimuli in 

succession, participants had to indicate if the stimuli were identical or different; Congruency = Judge whether a touched stimulus corresponded to an expected stimulus 

which had been presented before stimulus exploration; Perception = Exploration of the textured stimuli with a rest period between trials. +Not combined as a single 

experiment because they contribute to different analyses (i.e., texture perception > non-haptic control or texture perception > haptic control). 
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4.3.1 Primary analyses 

4.3.1.1 Texture perception > control 

Texture perception > control contrast ALE meta-analysis pooled data from 13 studies which 

contributed 15 experiments, with a total of 228 participants and 275 reported foci. The results 

revealed seven significant clusters (Table 4.2). One cluster originated in the right hemisphere 

and spanned from the superior temporal gyrus to the postcentral gyrus, corresponding to both 

the right PI and SII. One cluster was identified in the left hemisphere from the supramarginal 

gyrus (SMG) in the IPL to the SI. Further clusters were identified in the bilateral SMA with 

one peak in the right SMA, two clusters encompassed the bilateral PI, and two clusters 

encompassed the bilateral PMv. Significant ALE cluster locations are illustrated in Figure 

4.2. 

Table 4.2. Locations of significant clusters from the ALE map of texture perception > control. 

Cluster # Label Volume (mm3) x y z #Experiments ALE 

1 Insula R 1752 58 -20 20 7 0.021 

Postcentral Gyrus R 64 -16 22 0.021 

2 Postcentral Gyrus L 1600 -54 -20 48 8 0.023 

3 Precentral Gyrus L 1424 -48 6 24 7 0.019 

Precentral Gyrus L -58 8 28 0.014 

Precentral Gyrus L -58 2 32 0.012 

4 Insula L 1224 -36 -6 10 6 0.022 

Insula L -42 -4 2 0.014 

5 Inferior Frontal Gyrus R 984 50 8 24 4 0.025 

6 Insula R 816 40 -8 8 4 0.020 

7 Superior Frontal Gyrus R 816 4 16 48 4 0.018 

L, left hemisphere; R, right hemisphere. 
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Figure 4.2 The location of significant ALE clusters from the meta-analysis of concordant activations for texture 

perception > control. Results are displayed overlaid onto a standardized MNI template anatomical brain in (A). 

3D surface projection from superior, left, and right views, respectively. (B) As a montage of coronal slices 

throughout the whole brain, L and R denotes the left and right hemisphere, respectively. ALE scores are 

indicated by the colour bar.  
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4.3.1.2 Texture perception > non-haptic control 

The texture perception > non-haptic control (e.g., rest or visual control) contrast ALE meta-

analysis pooled data from nine studies which contributed 9 experiments, with a total of 138 

participants and 240 reported foci. The results revealed six significant clusters (Table 4.3); 

one cluster spanned from the right superior temporal gyrus to the postcentral gyrus, consistent 

with both PI and SII. Cluster two, in the left hemisphere, spanned from the SMG in the IPL to 

the SI. Cluster six corresponded to the left SI and MI. Further clusters encompassed the 

bilateral SMA and the bilateral PMv. Significant ALE cluster locations are illustrated in 

Figure 4.3. 

Table 4.3. Locations of significant clusters from the ALE map of texture perception > non-haptic control. 

Cluster # Label Volume (mm3) x y z #Experiments ALE 

1 Insula R 1864 58 -20 20 7 0.021 

Postcentral Gyrus R 64 -16 22 0.021 

2 Postcentral Gyrus L 1832 -54 -20 48 8 0.023 

3 Inferior Frontal Gyrus L 1336 -58 6 22 5 0.016 

Precentral Gyrus L -58 8 28 0.014 

Precentral Gyrus L -58 6 14 0.013 

Precentral Gyrus L -58 2 32 0.012 

4 Inferior Frontal Gyrus R 1120 50 8 24 4 0.025 

5 Superior Frontal Gyrus R 944 4 16 48 4 0.018 

6 Postcentral Gyrus L 752 -44 -12 58 
 

0.016 

Precentral Gyrus L -38 -20 52 4 0.013 

L, left hemisphere; R, right hemisphere. 

  



 

75 

 

 

Figure 4.3 The location of significant ALE clusters from the meta-analysis of concordant activations for texture 

perception > non-haptic control. Results are displayed overlaid onto a standardized MNI template anatomical 

brain in (A). 3D surface projection from superior, left, and right view, respectively. (B) As a montage of coronal 

slices throughout the whole brain, L and R denotes the left and right hemisphere, respectively. ALE scores are 

indicated by the colour bar.  
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4.3.1.3 Texture perception > haptic control 

The texture > haptic control contrast ALE meta-analysis pooled data from a total of six 

studies which contributed six experiments, with 90 participants and 35 reported foci. Findings 

demonstrated one significant left hemisphere clusters located in the SII (Table 4.4). Figure 

4.4 illustrates the location of significant ALE clusters from the meta-analysis of texture 

perception when controlling for other haptic processes. 

Table 4.4. Locations of significant clusters from the ALE map of texture perception > haptic control. 

Cluster# Label Volume (mm3) x y z #Experiments (#Studies) ALE 

1 Postcentral Gyrus L 608 -54 -14 22 2 (2) 0.010 

Postcentral Gyrus L -50 -10 16 0.009 

L, left hemisphere.

 

Figure 4.4 The location of significant ALE clusters from the meta-analysis of concordant activations for texture 

perception > haptic control. Results are displayed overlaid onto a standardized MNI template anatomical brain 

as a montage of coronal slices throughout the whole brain, L and R denotes the left and right hemisphere, 

respectively. ALE scores are indicated by the colour bar. 
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4.3.2 Secondary analyses 

4.3.2.1 Conjunction analysis 

The conjunction analysis of ALE maps representing texture perception relative to non-haptic 

control and texture-specific perception (relative to haptic control) pooled data from a total of 

23 experiments, with a total of 245 participants and 273 reported foci. There were no findings 

of overlap of activation likelihood coordinates across both contrast types. 

4.3.2.2 Contrast analyses 

Contrast analysis comparing the ALE maps of concordant activations for each process 

pointed to a significantly greater likelihood of activation during general texture perception 

(texture perception > non-haptic control) relative to texture-specific perception (texture 

perception > haptic control) in three clusters (Figure 4.5, Table 4.5). Two contralateral 

clusters included the SI and the SMG in the IPL, as well as the SI, MI, and premotor areas. 

The third cluster was located in the ipsilateral IPL and corresponded to the SMG. The reverse 

contrast did not reveal any clusters indicative of increased activation likelihood estimates 

during texture-specific perception relative to general texture perception studies. 

Table 4.5. Locations of significant clusters from contrast analysis of non-haptic - haptic control. 

Cluster # Label Volume (mm3) x y z #Experiments Extrema (Z) 

1 Inferior Parietal Lobule L 1832 -53.3 -22.3 48.2 8 3.156 

2 

Postcentral Gyrus L -41.2 -12.3 55.2 4 3.719 

Postcentral Gyrus L 640 -40.9 -18.7 54.5 3.156 

3 Inferior Parietal Lobule R 232 55.4 -24.6 19.8 1 3.036 

L, left hemisphere; R, right hemisphere. 
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Figure 4.5 The location of significant clusters from contrast analysis of ALE maps for greater likelihood of 

texture perception > non-haptic control relative to texture perception > haptic control. All clusters are overlaid 

onto a standardized MNI template anatomical brain in (A). 3D surface projection from superior, left, and right 

views, respectively. (B) As a montage of coronal slices throughout the whole brain, L and R denotes the left and 

right hemisphere, respectively. Relative Z scores are indicated by the colour bar.  
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4.3.3 Sensitivity analysis 

To assess the stability of results, thirteen leave-one-out analyses (also known as jack-knife 

analyses) were conducted, whereby the primary analysis of texture perception > control was 

rerun, each time excluding a different single study (Supplementary material 1; Radua et al., 

2012; Radua & Mataix-Cols, 2009). The sensitivity analysis confirmed the stability of the 

right SII cluster and left SI/IPL across all thirteen studies. Leaving out Yang et al. (2017) 

resulted in the left PMv and left PI clusters no longer reaching significance. The SMA cluster 

was not identified when leaving out Mueller et al. (2019), Yang et al. (2017), Simões-

Franklin et al. (2011), and Kitada et al. (2006). In addition, leaving out Kitada et al. (2006) 

and Mueller et al. (2019) resulted in the loss of the right PMv cluster. The right PI cluster was 

not identified as significant when leaving out Kitada et al. (2006), Mueller et al. (2019), 

Sathian et al. (2011) and Stilla and Sathian (2008). Further, an additional cluster in the right 

PI/SII was identified when removing Simões-Franklin et al. (2011), Yang et al. (2021), Wang 

et al. (2016), Mueller et al. (2019), and Kim et al. (2015). Removing Kitada et al. (2005) and 

Yang et al. (2021) led to the identification of a further cluster in the left dorsolateral 

prefrontal cortex (DLPFC). Finally, a cluster from the left SI to the left MI was uncovered 

when removing Kitada et al. (2005), Sathian et al. (2011), Simões-Franklin et al. (2011), and 

Yang et al. (2017, 2021).   
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4.4 Discussion 

Findings from the primary ALE meta-analysis of texture perception relative to control 

revealed nine significant clusters with activation in contralateral SI and SMG, bilateral PMv 

and SMA, and ipsilateral SII and PI, consistent with our hypotheses that texture perception 

would activate the sensorimotor regions that are well-associated with tactile perception and 

movement planning and execution. The presence of haptic control conditions during texture 

perception identified activation in contralateral SII, in line with our hypothesis that texture 

processing activates brain regions associated with higher-order processing. Further, contrast 

analyses revealed sensorimotor (SI, MI, and SMG) activations as more predominant in the 

non-haptic control contrast than when controlling for other haptic processing, suggesting that 

texture-specific processing may require the activation of higher-order cortical regions.  

Contralateral SII was the only region selectively activated by contrasting texture 

processing with a haptic control, indicating its role in texture-specific processing. The SII has 

previously been implicated in higher-order processing such as: attention (Chen et al., 2008; 

Hämäläinen et al., 2000), learning (Mishkin, 1979; Ridley & Ettlinger, 1976), and roughness 

discrimination (Kitada et al., 2005; Sathian et al., 2011; Servos et al., 2001; Stilla & Sathian, 

2008). Research with non-human primates show that lesions to the SII result in deficits in 

texture and shape discrimination (Garcha & Ettlinger, 1980; Murray & Mishkin, 1984), and 

humans with lesions in the area suffer from tactile apraxia (Binkofski et al., 2001). Further, 

single cell recordings from macaques demonstrated texture encoding in the SII (Jiang et al., 

1997; Pruett et al., 2000; Sinclair & Burton, 1993). Taken together with the results from this 

meta-analysis, it is likely that the SII plays a significant role in the higher-order encoding of 

textural properties.  



 

81 

 

Conjunction and contrast analyses were computed to examine similarities and 

differences between the processing of generic discriminative touch, by comparing texture 

processing to non-haptic control conditions, relative to brain regions that are more selectively 

activated during texture processing/evaluations, which were determined by comparing texture 

processing to haptic control conditions. Concordant activation in the contralateral SI and 

bilateral SMG was more likely to be activated during texture perception compared to non-

haptic control contrast, relative to touch minus haptic control contrast tasks which accounted 

for other aspects of discrimination (e.g., shape). Interestingly, the conjunction analysis did 

not identify any overlap of findings across studies with these differing approaches. 

Demonstrating that concordant activation of the SII cluster in the texture relative to haptic 

control ALE analysis may be specific to texture processing. These findings indicate that 

broad aspects of tactile information are processed in the sensorimotor areas, hence the 

dominance in contrasts which do not correct for this in the baseline. However, the absence of 

deeper SII or PI clusters indicates that important aspects of texture-specific processing may 

occur in higher-order medial regions such as the SII and insular cortex (Eck et al., 2016; 

Jiang et al., 1997; Roland et al., 1998), which may require careful consideration of 

experimental design, and particularly baseline, to investigate. This aligns with the presence of 

an SII cluster in the texture relative to haptic control ALE analysis. 

Bilateral PI was found to be active when investigating texture processing compared to 

control (i.e., non-haptic and haptic control conditions combined). The insular cortex has been 

linked with somatosensation (Kurth et al., 2010), and has been associated with intensity 

processing of thermosensory (Craig et al., 2000) and noxious stimuli (Frot et al., 2007; 

Iannetti et al., 2005). Roughness-related activation has been reported in the parietal 

operculum and insula (Kitada et al., 2005). Therefore, the insula may play a role in 

processing or evaluation of texture intensity. Ten studies contributing to the present meta-
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analysis asked participants to complete an estimation or comparison task where participants 

would evaluate textural features with a response (Gurtubay-Antolin et al., 2018; Kitada et al., 

2006; Mueller et al., 2019; Podrebarac et al., 2014; Sathian et al., 2011; Simões-Franklin et 

al., 2011; Stilla & Sathian, 2008; Wang et al., 2016; Yang et al., 2017, 2021). As an 

integrative region associated with both sensory input (Craig et al., 2000; Jensen et al., 2016; 

Segerdahl et al., 2015) and decision-making (Gogolla, 2017; Uddin et al., 2017), insula 

activation may reflect the integration of sensory input which may be crucial for higher-order 

cognitive decisions based on sensory features. 

SI and SMG were found to be active when comparing texture processing to both 

control and non-haptic control conditions, while the MI demonstrated concordant activation 

only when comparing to the non-haptic control condition. The SI is responsible for tactile 

processing (Case et al., 2016; Chapman, 1994; Lieber & Bensmaia, 2019, 2020; Lin et al., 

1996). Active touch engages sensorimotor circuits in the PPC, including the SMG located in 

the IPL, activation in these regions has been associated with sensorimotor integration (Batista 

et al., 1999; Battaglia-Mayer et al., 2000; Buneo et al., 2002; Buneo & Andersen, 2006; 

Ferraina et al., 1997; Hyvärinen, 1982; Mountcastle et al., 1975; Snyder et al., 1997). MI 

activation is associated with execution of voluntary movement (Kalaska & Rizzolatti, 2012); 

an exploratory analysis of experiments employing active touch found concordant activation 

in premotor and motor areas, whilst passive touch did not (Supplementary material 2). 

Although, two studies contributing to the concordant activation identified in the SI/SMG/MI 

cluster employed dynamic passive touch (Kitada et al., 2005; Tang et al., 2021a); therefore, 

concordance of MI activation may also be due to force exerted by the finger during passive 

paradigms rather than solely due to active touch (Dettmers et al., 1995). 
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Concordant activation was identified in both the bilateral PMv and SMA across two 

ALE analyses, one that considered all studies irrespective of control condition, and the other 

that only considered baselines that did not account for other haptic elements (i.e., non-haptic 

control). The PMv is predominantly linked with grasping and object manipulation hand 

movements (Davare et al., 2006, 2008, 2009; Fogassi et al., 2001; Reader & Holmes, 2018; 

Vingerhoets et al., 2013), and evaluating sensory information to inform motor action (Romo 

et al., 2004). Five studies that contributed to the bilateral PMv clusters involved active touch 

(Mueller et al., 2019; Sathian et al., 2011; Simões-Franklin et al., 2011; Wang et al., 2016; 

Yang et al., 2021). Accordingly, SMA neurons discharge before and during coordinated 

voluntary movement (Tanji, 2001; Tanji and Shima, 1996), such as button pressing. 

Therefore, PMv and SMA activation may reflect evaluation of sensory information to inform 

response behaviour during experimental paradigms. 

The current meta-analysis is impacted by the limited number of studies in the area. 

This can partly be attributed to the absence of a standardised paradigm, with 130 studies 

rejected due to stimuli/paradigm discrepancies. Therefore, the field would benefit from a 

standardised texture perception paradigm. Further, there is a vast range of tactile stimuli used 

when investigating texture perception, including gratings (Kitada et al., 2005, 2006), 3D 

printed textures (Mueller et al., 2019; Yang et al., 2021), dot patterns (Yang et al., 2021, 

2017), and textiles (Gurtubay-Antolin et al., 2018; Wang et al., 2016). These types of stimuli 

differ greatly in their tactile properties, with textiles often finer-grained and therefore more 

likely to rely on vibrational cues generated through movement rather than coarse textures, 

such as gratings, which rely on distinct spatial patterns (Moungou et al., 2016; Weber et al., 

2013). Consequently, findings are difficult to collate to investigate texture-specific 

processing. In the future, a standardised battery of textural stimuli would aid researchers to 

align and compare findings across studies, laboratories, and geographical regions. 
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Further, studies identified by systematic review are limited by modest participant 

numbers. The recommended sample size for investigating sensorimotor effects with 3T 

scanners is a minimum of 20, and preferably 27, participants (Thirion et al., 2007). The 

average number of participants recruited in the studies contributing to this meta-analysis was 

15 ± 4.63 (M ± SD) with only three studies (Mueller et al., 2019; Yang et al., 2017, 2021) 

recruiting 20 participants or more. Therefore, contributing foci are potentially under powered. 

However, a leave-one-out analysis was conducted assess the sensitivity of results 

(Supplementary material 1; Acar et al., 2018), which demonstrated that clusters in the right 

SII and left SI/IPL were stable across all thirteen studies. During leave-one-out analyses, 

additional clusters were identified in the left SII, and left DLPFC and SI/MI, which may 

indicate that bilateral SII and higher-order prefrontal regions are important for texture 

processing. However, identification of concordant activation in these areas may be dependent 

upon task design and/or stimuli utilised, hence the sensitivity to leave-one-out procedures. 

Thus, highlighting the importance of a standardised procedure in the field of texture 

processing. 

To conclude, findings revealed expected concordance in sensorimotor areas including 

higher-order structures associated with top-down mechanisms. Analysis of studies which 

included a haptic baseline to control for non-textual processing revealed concordance solely 

in contralateral SII. Furthermore, contrast analysis demonstrated that lateral SI and IPL are 

significantly more predominant when utilising a resting baseline, than in studies where 

textural aspects of discriminative touch are accounted for in the baseline. These findings 

point towards preferential processing of texture in higher-order structures, particularly the 

SII. Further research should carefully consider research design, and particularly the use of 

appropriate baseline contrasts to uncover the role of higher-order structures in texture 

processing. Overall, the present study has furthered our understanding of texture perception, 
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specifically when accounting for the influence of other haptic processes which offer unique 

insight into the neural correlates of texture-related processing. 
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Abstract 

Previous studies have shown attenuation of cortical oscillations over bilateral sensorimotor 

cortex areas during passive perception of smooth textures applied to the skin. However, 

humans typically explore surfaces using dynamic hand movements. As movements may both 

modulate texture-related cortical activity and induce movement-related cortical activation, 

data from passive texture perception cannot be extrapolated to active texture perception. In 

the present study, we used EEG to investigate cortical oscillatory changes during texture 

perception throughout active touch exploration. Three natural textured stimuli were selected: 

smooth silk, soft brushed cotton, and rough hessian. Texture samples were mounted on a 

purpose-built touch sensor which measured the load and position of the index finger, whilst 

EEG from 129 channels recorded oscillatory brain activity. The data were fused to investigate 

oscillatory changes relating to active touch. Changes in oscillatory band power (ERD/ERS) 

were investigated in alpha (8–12 Hz) and beta (16–24 Hz) frequency bands. Active texture 

exploration revealed bilateral activation patterns over sensorimotor cortical areas. Beta-band 

ERD increased over contralateral sensorimotor regions for soft and smooth textures, and over 

ipsilateral sensorimotor areas for the smoothest texture. Analysis of covariance revealed that 

individual differences in perception of softness and smoothness were related to variations in 

cortical oscillatory activity. Differences may be due to increased high frequency vibrations 

for smooth and soft textures compared to rough. For the first time, active touch was 

quantified and fused with EEG data streams, contributing to the understanding of the neural 

correlates of texture perception during active touch. 
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5.1 Introduction 

Haptic perception enables humans to explore their environment (Lederman & Klatzky, 2009). 

There are two types of stimulation used in haptic perception research: passive and active 

touch (Chapman, 1994; Lederman, 1981). Passive touch involves the application of stimuli to 

the skin, typically using robotic presentation devices such as a tactile spinning wheel (Aviles 

et al., 2010; Essick et al., 2010; McGlone et al., 2012; Weber et al., 2013), which control the 

timing and properties of the stimulation. Conversely, active touch requires voluntary 

movement to optimise contact pressure, speed, and velocity during haptic exploration, thus 

being more representative of how humans interact with surfaces during real-world 

exploration (Gibson, 1962; Wagner & Gibson, 2016). Current literature investigating the 

neural correlates of texture perception predominantly relies on passive stimulation devices 

(Ballesteros et al., 2009; Eldeeb et al., 2019; Genna et al., 2018; Moungou et al., 2016; Tang 

et al., 2020), therefore, the neural correlates of active touch have yet to be elucidated. 

LTMR of the glabrous skin contribute to texture perception (Lederman et al., 1982; 

McGlone & Reilly, 2010). Merkel cells respond to pressure, Meissner corpuscles process 

low-frequency vibrations, and Pacinian corpuscles respond to high-frequency vibrations 

(Gomez-Ramirez et al., 2016; Harvey et al., 2013; Johnson et al., 2000). The duplex theory of 

tactile texture perception (Katz, 1925) proposes that high-frequency vibrational cues encode 

tactile stimulation from fine textures, whereas spatial cues encode tactile stimulation from 

coarse textures via pressure (Blake et al., 1997; Hollins et al., 2001a; Hollins & Risner, 2000; 

Johnson & Hsiao, 1992; Yoshioka et al., 2001). The cerebral cortex appears to process low 

(5-50 Hz) and high-frequency stimuli (50-400 Hz) differently (Han et al., 2013). Low-

frequency stimuli increase activation in the contralateral SI and bilateral SII, while high-

frequency stimuli increase activation in the bilateral SII (Chung et al., 2013; Francis et al., 
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2000; Harrington & Hunter Downs, 2001). Therefore, the perception of coarse and fine 

textures likely involve different neural mechanisms. 

Roughness perception has been investigated in previous studies examining neural 

correlates of touch (Lederman & Klatzky, 2009). Coarse artificial stimuli such as gratings, 

(Ballesteros et al., 2009; Tang et al., 2020), three-dimensional (3D) printed textures (Eldeeb 

et al., 2019) and Braille dot patterns (Bauer et al., 2006) are often used to investigate the 

perception of roughness. Natural textures, such as silk and cotton, differ from coarse artificial 

textures as they are often finer grained and therefore more likely to rely on vibrational cues 

generated through movement (Moungou et al., 2016; Weber et al., 2013). Although natural 

textures typically lack large and pronounced spatial patterns, one can still perceive them as 

rough and unpleasant (Klöcker et al., 2012; Moungou et al., 2016). 

Event-related amplitude decreases and increases of band power, known as ERD and 

ERS respectively, are known to vary with task-related changes (Pfurtscheller, 1977; 

Pfurtscheller & Aranibar, 1977). Voluntary movement and somatosensory stimulation are 

associated with ERD in alpha and beta frequency bands over primary motor and 

somatosensory cortices (Chatrian et al., 1958; Cheyne et al., 2003; Gaetz & Cheyne, 2006; 

Neuper & Pfurtscheller, 2001; Pfurtscheller, 1981, 2001; Stancak et al., 2003; Stancak & 

Pfurtscheller, 1996b, 1997), followed by beta-band ERS in the motor cortex after termination 

of stimulation (Cheyne et al., 2003; Gaetz & Cheyne, 2006; Houdayer et al., 2006). Alpha- 

and beta-band ERD are interpreted as increased cortical activation (Pfurtscheller & Aranibar, 

1977; Pfurtscheller & Lopes da Silva, 1999); in contrast, ERS indicates cortical inhibition or 

idling (Berger, 1929; Legewie et al., 1969; Pfurtscheller et al., 1996b). Increased alpha-band 

ERS over occipito-parietal areas is found during self-paced voluntary hand movement and is 

thought to be the result of diverting attention from the visual system to the motor system, 
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increasing ERD in motor areas which supports hand/finger movement (Pfurtscheller et al., 

2000). Investigation of texture perception has revealed bilateral alpha- and beta-band ERD 

during passive stimulation, with greater alpha-band ERD and increased magnitude of SS-EP 

with decreased stimulus roughness (Genna et al., 2018; Moungou et al., 2016). Further, 

ERD/S during voluntary movements are related to movement parameters such as force 

(Stancak et al., 1997) and speed (Stancak & Pfurtscheller, 1996a, 1996b). Therefore, the 

ERD/S method proposed by Pfurtscheller and Aranibar (1979) is likely to show differences 

during active touch exploration of different textures which may be due to textural and active 

movement differences.  

Voluntary movement is associated with a reduction in tactile perception, known as 

tactile suppression or movement-related gating (Chapman et al., 1987; Post et al., 1994), as 

evidenced by reductions of short-latency SEP (Nakata et al., 2003, 2011; Rossini et al., 1996, 

1999). However, movements made to gain information about surface properties enhance 

tactile perception (Juravle et al., 2017), with greater amplitudes of long-latency SEP (Juravle 

et al., 2016b; Lee & White, 1974; Nakata et al., 2003, 2011; Popovich & Staines, 2015). This 

suggests that tactile suppression is context dependent, with active tactile exploration playing 

a significant role in providing information about textural properties. Thus, while the evidence 

suggests that active touch is likely to enhance, rather than supress, tactile perception, this 

remains to be fully elucidated.  

The current study investigated cortical oscillatory changes associated with texture 

perception during active exploration of natural textures. Active touch was quantified using 

novel touch sensor technology, enabling precise measurement of load and position of the 

index finger, thus allowing for computation of behavioural active touch timings. Fusion of 

computed active touch timings and EEG data streams allowed accurate investigation of 
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electrophysiological changes during active touch. Cortical oscillatory changes were 

investigated in alpha- and beta-bands during active touch exploration of three textures which 

varied in textural properties: smooth silk, soft brushed cotton, and rough hessian. We 

hypothesised that active touch exploration would elicit bilateral alpha- and beta-band ERD 

over the sensorimotor cortex. Based on evidence from passive touch studies (Genna et al., 

2018), we predicted greater alpha-band ERD for smooth compared to rough textures. 

Furthermore, we hypothesised differences in cortical oscillatory activity for each texture 

would relate to individual differences in subjective perceptions of textural properties.  
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5.2 Method 

5.2.1 Participants  

Thirty-five participants were recruited (12 males) with no history of any neurological 

condition, or aversion or allergies to any textures. Nine participants were excluded due to 

excessive muscle artefacts or incomplete data recording from the touch sensor. The final 

sample for EEG analysis included 26 participants (7 males, 4 left-handed), aged 28.03 ± 

11.06. Participants were reimbursed at a rate of £10 per hour for their time. The study was 

approved by the Research Ethics Committee of the University of Liverpool and all 

participants gave fully informed written consent at the start of the experiment in accordance 

with the Declaration of Helsinki. 

5.2.2 Procedure 

Participants were seated in a Faraday cage in front of a 19-inch LCD monitor. The study was 

carried out in a single 2-hour session. Participants were required to complete four tasks: 

initial subjective ratings of texture samples, pace training, an active touch task, and final 

subjective ratings. All tasks were presented using PsychoPy (Peirce et al., 2019). EEG and 

touch sensor data were recorded during the active touch task (see section 5.2.2.4 below). 

Elbow and wrist rests were used to stabilise and support the arm and wrist whilst maintaining 

position over the touch sensor. The height and position of the support were adjusted for each 

participant, minimising non-essential motor movements whilst allowing for active touch 

exploration using lateral finger movements. Texture exploration was performed using the 

glabrous skin of the distal phalanx of the index finger. 
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5.2.2.1 Stimuli 

The stimuli included three textures selected from a preliminary pilot study: silk, brushed 

cotton, and hessian, Figure 5.1. The stimuli selected were natural textures that encompassed 

three tactile properties: pleasant/unpleasant, smooth/rough, and soft/hard. Texture samples 

were cut into 100 mm by 40 mm strips and mounted with double-sided tape to plastic stages 

lined with easily removable PVC electrical insulation tape. Plastic stages were slotted into the 

sample chassis of the touch sensor (Figure 5.2). The texture samples were replaced for each 

participant. The stages were removably attached to the touch sensor instrument for 

presentation to the participants.

 

Figure 5.1 Hitachi TM-1000 scanning electron microscope images of the texture stimuli at 100x magnification. 
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Figure 5.2 Top view of the touch sensor system showing the amplifier housing, the flexures from which the 

strain-gauge sensors are mounted, and the sample chassis attached to the sensors. 
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5.2.2.2 Subjective ratings 

Initial and final subjective ratings were collected in response to the texture samples presented 

on stages attached to the touch sensor. Ratings were recorded using three 100-point visual 

analogue scales (VAS) to collect scores of pleasant/unpleasant, soft/hard, and smooth/rough 

for each texture, using a slide bar manipulated on-screen with a computer mouse. During 

subjective ratings, a partition to occlude vision of the sample stage was placed over the hand 

and touch sensor. Participants rated all three textures on all VAS in their own time. No touch 

sensor or EEG data were recorded at this time.  

5.2.2.3 Pace training 

The pacer task trained participants to explore the texture samples at approximately 5.5 cm/s 

to avoid large variations in finger movement speeds between participants. Participants were 

instructed to complete four sweeps of a plastic stage lined with a 100 mm by 40 mm strip of 

PVC electrical insulation tape, beginning and ending on the left side of the stage. A white dot 

was presented on a black screen, the dot moved horizontally across the screen in 1.5 s 

denoting one sweep. Participants followed the pacer dot with their index finger for as many 

repetitions as they wanted to train movement speed. The pacer dot was not shown during 

experimental trials of the active touch task. When participants felt confident with the pace, 

they completed five practice trials while the researcher visually assessed their pace and 

ability to perform the finger abduction movement. If their pace was inadequate (deemed to 

differ from 5.5 cm/s), they completed the pace training and practice trials again. During the 

active touch task, the researcher visually inspected participants’ pace via the touch sensor 

recording app. The pacer dot was used to retrain participants between blocks if pace started to 

visually differ from 5.5 cm/s. 
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5.2.2.4 Active touch task 

The active touch task consisted of three blocks which each encompassed three sub-blocks 

representing one texture. Participants experienced all three textures during each block. Blocks 

were repeated three times in a pseudo-randomised order which was counter-balanced 

between participants. Each sub-block contained 18 consecutive trials, totalling 54 trials for 

each texture over the course of the experiment. 

Each trial consisted of a baseline period (4 s), touch experience (6 s) and recovery 

period (4 s). The baseline period was indicated by a white fixation cross on the screen, during 

which participants did not touch the texture. The touch experience began when the fixation 

cross turned from white to green, during which participants completed four sweeps of the 

texture: placing their index finger down on the left side of the texture sample, sweeping to the 

right then sweeping back to the left, and repeating before removing their index finger from 

the texture. The recovery period was indicated by the fixation cross turning from green to 

white, during which the participant did not touch the texture. At the end of each sub-block, 

participants were asked to rate how pleasant/unpleasant the texture was on a 100-point VAS; 

after which, the researcher checked that participants were comfortable and changed the stage 

to present the next texture sample. 

5.2.3 Recordings 

EEG data were recorded continuously using a 129-channel Geodesics EGI System (Electrical 

Geodesics, Inc., Eugene, Oregon, USA) and a sponge-based HydroCel Sensor Net. The net 

positioning was aligned to three anatomical landmarks, two preauricular points and the 

nasion. Electrode impedances were kept below 50 kΩ. A recording band-pass filter was set at 

0.001–200 Hz with a sampling rate of 1000 Hz. Electrode Cz was used as a reference 

electrode for recording. 
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Finger load, representing downward pressure on the texture, finger position along a 

unidimensional axis across the texture sample, and time relative to the trial-onset marker 

(fixation cross) were recorded using a Hopkinson Research Touch sensor (Hopkinson 

Research, Wirral, UK), with a sampling rate of 1000 Hz.  

5.2.4 Pre-processing 

EEG pre-processing was conducted using BESA v 6.1 (MEGIS GmbH, Germany). Eye 

blinks and ECG artefacts were removed using PCA (Berg & Scherg, 1994). Data were 

filtered with a notch filter (50 Hz ± 2 Hz) and a visual inspection of data for the presence of 

any movement or muscle artefacts was performed. Trials affected by artefacts were excluded 

from subsequent analyses. EEG signals were downsampled to 256 Hz and were re-referenced 

using the common average method (Lehmann, 1984).  

Touch sensor data were cleaned and visually inspected using in-house software 

developed in Python 3 (van Rossum & Drake, 2009). Position data were smoothed across 

time points using a Gaussian kernel (σ = 20), with 20 samples representing a window of 20 

ms. Active touch timings (touch down; end of sweeps one, two and three; and lift off) were 

calculated relative to the trial-onset cue displayed on the LCD monitor. Trials were rejected 

when index finger touch down occurred one second or more after the trial-onset marker or 

less than 200 ms after the trial-onset marker. The latter step was implemented to remove trials 

where participants kept their finger on the touch sensor between trials. Furthermore, trials 

were rejected when index finger lift off occurred greater than one second after the trial-offset 

marker, or greater than two seconds before the trial-offset marker. Touch data were 

segmented into overlapping time windows to capture and extract active touch timings, with 

each time window individualised to the trial. The first time window captured touch down and 

the end of sweep one, the second captured end of sweep two, and the third captured the end 
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of sweep three and lift off. Trials were removed if participants missed a sweep. Subsequently, 

data were filtered by texture and z-scores were calculated for sweep duration and total load. 

Trials were removed when the z-score was ± 2 deviations from the normal distribution. 

After EEG and touch sensor pre-processing was complete, the average number of 

trials and standard deviation (SD) per subject for ERD analysis in each condition was: silk, 

27.57 ± 8.56; brushed cotton, 28.88 ± 8.86; hessian, 27.65 ± 7.90. The average number of 

rejected trials per condition was 25.96 ± 8.36. The number of accepted trials did not differ 

across conditions (𝑝 > .05).  

5.2.5 Analysis 

Time-locked ERD analysis was conducted using synchronised EEG and touch sensor data. 

Active touch timings, computed relative to the trial-onset visual cue on a trial-by-trial basis, 

were synchronised to EEG data. These individualised active touch timings included touch-

onset, end of sweep one, two and three, and touch-offset. EEG data epochs were calculated 

using the touch sensor triggers and average sweep length to give four time-locked touch 

epochs per trial.  

The power spectra were computed in MATLAB (The MathWorks, Inc., USA) using 

Welch’s power spectral estimate method. The power spectra were calculated from EEG data  

−4–7.5 s relative to the trial onset visual cue and were then split into touch epochs. The 

power spectra were computed in 1 s windows shifted in overlapping 0.01 s steps. Data were 

smoothed using a Hanning window. The power spectral densities were estimated in the range 

of 1–80 Hz with a frequency resolution of 1 Hz. The baseline period utilised for analysis was 

0.5–3.5 s of the four second rest period prior to each trial. Relative band power (RBP) 

changes in alpha- (8-12 Hz) and beta-band (16-24 Hz) were evaluated in each of the three 
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texture conditions using the ERD transformation (Pfurtscheller, 2001; Pfurtscheller & 

Aranibar, 1979). 

ERD% =  (
𝐴 − 𝑅

𝑅
∗ 100 ) 

In the above equation, ERD% is a measure of RBP during active touch epochs (𝐴) 

relative to rest during the baseline period (𝑅). Negative values of ERD% refer to the 

amplitude decreases of band power which signify the presence of cortical activation (ERD). 

In contrast, positive ERD% values refer to the amplitude increases of band power (ERS).  

Mean total load (g) and sweep duration (s) were computed for each sweep exploration 

and analysed using a 3×4 repeated measures analysis of variance (ANOVA), with three levels 

of texture (silk, brushed cotton, and hessian) and four levels representing sweeps one to four 

across the texture. The Greenhouse-Geisser epsilon correction was used for all ANOVA 

analyses to account for any violation of the sphericity assumption. 

Mean pleasantness, smoothness, and softness ratings for each texture were calculated 

for all 35 participants (± 2 SD). Ratings were evaluated using 2×3 repeated measures 

ANOVA with two levels of time (initial and final) and three levels of texture (silk, brushed 

cotton, and hessian). Significant interaction effects were further examined using post hoc t-

tests or Wilcoxon signed-rank tests for data that violated the Shapiro-Wilk test of normality, 

the Bonferroni correction was used to account for multiple comparisons.  

Changes in ERD/S were investigated separately for alpha- and beta-band across 128 

electrodes using 1×3 repeated measures ANOVA. Permutation analyses with 5000 repetitions, 

implemented using statcond.m in the EEGLAB library (Delorme & Makeig, 2004; Maris & 

Oostenveld, 2007), identified electrodes showing significant differences between textures (𝑝 <
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.05). Secondly, we removed electrodes which demonstrated minimal changes in power from 

baseline, as these are unlikely to be involved in event-related sensory changes between texture 

conditions. Implementation of this second step was performed by calculating grand average 

ERD/S changes for all textures in each electrode identified from the permutation analyses. One 

sample t-tests with significance thresholds of 𝑝 < .01 (uncorrected) were conducted on each 

grand average value to confirm that electrode ERD differed significantly from zero, i.e., that 

they demonstrated a significant change from baseline during sensory processing for all 

conditions. Electrodes that did not exhibit genuine changes during sensation were excluded 

from analysis of between-texture differences.  

Repeated measures analysis of covariance (ANCOVA), performed with BMDP2V 

program (Statistical Solutions Ltd, 1995), were utilised to investigate whether subjective 

ratings for each texture were related to differences in ERD/S. ANCOVA were performed 

separately for electrodes identified as demonstrating significant differences between textures 

from the ANOVA analysis, with subjective ratings of pleasantness, smoothness and softness 

implemented as covariates.  
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5.3 Results 

5.3.1 Subjective ratings 

Mean subjective ratings for each texture are shown in Figure 5.3. 2×3 ANOVA indicated 

statistically significant interactions between the effects of texture (silk, brushed cotton, and 

hessian) and time (initial and final). Interactions were identified in ANOVA investigating 

pleasantness, 𝐹(2, 2.62) = 4.57, 𝑝 = .015, 𝜂𝑝
2 = 0.15; softness, 𝐹(2, 7.27) = 7.56, 𝑝 =

.001, 𝜂𝑝
2 = 0.24; and smoothness, 𝐹(2, 7.46) = 9.80, 𝑝 < .001, 𝜂𝑝

2 = 0.26. Significant main 

effects of texture were identified for pleasantness, 𝐹(2, 371.89) = 153.63, 𝑝 < .001, 𝜂𝑝
2 =

0.86; softness, 𝐹(2, 449.57) = 152.54, 𝑝 < .001, 𝜂𝑝
2 = 0.86; and smoothness, 

𝐹(2, 795.45) = 445.43, 𝑝 < .001, 𝜂𝑝
2 = 0.95. Pairwise comparisons revealed a reduction in 

pleasantness, softness and smoothness for hessian compared to brushed cotton and silk 

(all 𝑝 < .001). Additionally, brushed cotton was revealed to be less smooth (𝑝 < .001) and 

less pleasant (𝑝 = .009) than silk. Post-hoc tests revealed that, over time, hessian was 

perceived as progressively rougher, 𝑡(33) = 4.14, 𝑝 < .001 and harder 𝑡(31) = 5.90, 𝑝 <

.001. 
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Figure 5.3 Raincloud plots (Allen et al., 2019) showing the distribution of mean subjective ratings, (A) pleasantness 

rating, (B) softness rating, and (C) smoothness rating, for textured stimuli for both initial and final hedonic ratings. 

The half violin plots depict the probability distributions of the data. The individual dots show data points from each 

participant. The boxplots indicate the median, upper and lower quartiles, as well as the interquartile range (IQR) 

between the 25th and 75th percentile, whilst the whiskers represent scores outside of the IQR. Statistically 

significant differences are denoted as * for <.05, ** for <.01 and *** for <.001.  
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5.3.2 Touch behaviour 

Mean values of total load were 44.01 ± 4.13 g (mean ± standard error) in sweep one, 50.44 ± 

5.05 g in sweep two, 49.5 ± 4.13 g in sweep three and 56.76 ± 5.96 g in sweep four. Figure 

5.4 depicts a case example of load and duration over one trial. A 3×4 repeated measures 

ANOVA, with three levels of texture and four levels of sweep, revealed a significant main 

effect of sweeps, 𝐹(1.32, 6349.97) = 21.18, 𝑝 < .001, 𝜂𝑝
2 = 0.39. Pairwise comparisons 

revealed a significant reduction in total load (g) for sweep one compared to sweeps two, 

three, and four (all 𝑝 < .001). Additionally, sweep four demonstrated significant increased 

total load (g) relative to sweep two and three (all 𝑝 < .001). 

 

Figure 5.4 Line plot depicting load (g) for one complete trial for all three textures, with markers denoting the 

sweep time. 
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Mean duration (s) for each sweep were 1.17 ± 0.02 s (mean ± standard error) in sweep 

one, 1.30 ± 0.02 s in sweep two, 1.37 ± 0.02 s in sweep three and 1.50 ± 0.03 s in sweep four. 

A 3×4 ANOVA was performed on sweep duration (3 textures × 4 sweeps). Results indicated 

a significant main effect of sweep, F (1.69, 2.65) = 48.04, p < .001, 𝜂𝑝
2 = 0.66. Pairwise 

comparisons revealed a significant increase in sweep duration (s) over the duration of the trial 

for all sweeps (all p < .001), with sweep 1 and 4 showing the largest difference (0.332) and 

sweep 2 and 3 showing the least difference (0.068). 

Differences in load and duration are possibly due to touch down and lift off, which 

have the potential to confound EEG interpretation. Therefore, sweep one and sweep four 

were excluded from the subsequent ERD analysis and EEG data were averaged over sweeps 

two and three. 

5.3.3 ERD/S 

During active touch exploration, alpha-band ERD was evident bilaterally over central 

electrodes representing sensorimotor regions (Figure 5.5A). Alpha-band ERS were prominent 

over the midline and ipsilateral occipito-parietal electrodes. Beta-band ERD was distributed 

bilaterally over central electrodes (Figure 5.5D). Electrodes manifesting statistically 

significant effects of texture, were identified for alpha- (Figure 5.5A) and beta-bands (Figure 

5.5D). The analysis, comprising permutation analyses with 5000 repetitions (𝑝 < .05) and 

one sample t-tests (uncorrected 𝑝 < .01), identified three electrodes which demonstrated a 

significant effect of texture on alpha- and beta-band oscillations.  

A statistically significant effect for texture was found for alpha-band overlying left 

central parietal regions (electrode 42, CP3 according to the 10-10 system; Luu & Ferree, 

2005) which corresponds to contralateral sensorimotor areas. The effect of texture, 
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𝐹(2, 390.05) = 4.40, 𝑝 = .017, 𝜂𝑝
2 = 0.15, was revealed to be due to hessian eliciting a 

stronger ERD than silk, as shown in Figure 5.5C.  

In beta-band, statistically significant effects of texture were found overlying left 

parietal regions (electrode 52, P3 according to the 10-10 system; Luu & Ferree, 2005) and 

right central parietal regions (electrode 87, CP2 according to the 10-10 system; Luu & Ferree, 

2005), both of which correspond to contralateral and ipsilateral sensorimotor areas, 

respectively. The effect of texture over contralateral sensorimotor region, 𝐹(2, 299.85) =

5.09, 𝑝 = .010, 𝜂𝑝
2 = 0.17, was revealed to be due to silk eliciting a significantly greater 

degree of ERD relative to hessian (𝑝 = .008) and brushed cotton (𝑝 = .005). Over 

ipsilateral sensorimotor regions the effect of texture, 𝐹(2, 265.52) = 4.05, 𝑝 = .023, 𝜂𝑝
2 =

0.14, was revealed to be due to hessian eliciting a significant reduced degree of ERD 

compared to silk (𝑝 = .019) and brushed cotton (𝑝 = .041). ERD values for electrodes 52 

and 87 are displayed in Figure 5.5C, Figure 5.5F, and Figure 5.5H, respectively. 
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Figure 5.5 Band power changes for each texture condition (silk, brushed cotton, and hessian). Grand average 

topographic maps of each frequency band of interest, alpha- (A) and beta-band (D), are shown alongside an 

overhead view of electrodes showing statistically significant changes (p < .05). Time–frequency spectrograms for 

electrode 42 (B), 52 (E), and 87 (G), are pictured below the corresponding frequency band and condition. 

Raincloud plots (Allen et al., 2019) showing grand average alpha-band ERD/S values for textures conditions for 

electrode 42 (C), 52 (F) and 87 (H), are presented under the corresponding frequency band. The half violin plots 

depict the probability distributions of the data. The individual dots show data points from each participant. The 

boxplots indicate the median, upper and lower quartiles, as well as the IQR between the 25th and 75th percentile, 

whilst the whiskers represent scores outside of the IQR. Statistically significant differences are denoted as * for 

< .05, ** for < .01 and *** for < .001. 
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5.3.3.1 Covariate analysis 

Repeated measures ANCOVA were computed in electrodes demonstrating significant 

differences in ERD/S between textures, with subjective ratings of pleasantness, smoothness, 

and softness as covariates. Results indicated that smoothness ratings significantly covaried 

with differences in alpha-band ERD observed in electrode 42 overlying contralateral 

sensorimotor areas (𝐹(1, 862.43) = 11.47, 𝑝 = .0016). After controlling for the smoothness 

ratings, the main effect of texture on alpha-band ERD was not significant (𝐹(2, 237.53) =

3.16, 𝑝 = .058). Softness ratings were identified as a significant covariant for changes in 

beta-band ERD recorded in electrode 52 over contralateral sensorimotor areas, 

𝐹(1, 384.63) = 7.35, 𝑝 = .01). Controlling for softness ratings led to an increased in 

significance for the main effect of texture 𝐹(2, 468.79) = 8.95, 𝑝 < .001). No significant 

covariates were found for electrode 87 in beta-band.   
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5.4 Discussion  

Previous literature has provided insights into the cortical processing of texture during passive 

touch (Ballesteros et al., 2009; Bauer et al., 2006; Moungou et al., 2016), however cortical 

processing during active touch is poorly understood. The present study aimed to establish 

how texture perception is processed during active touch by assessing oscillatory changes in 

alpha- and beta-bands. Active touch stimulation of the index finger produced expected 

bilateral alpha- and beta- ERD over sensorimotor regions for all textures (Figure 5.5), with 

differences across stimuli observed. Furthermore, texture-related differences in alpha- and 

beta-band ERD covaried with subjective ratings of smoothness and softness. For the first 

time, we quantified parameters of active touch exploration using a novel fusion of touch 

sensor and EEG data streams which facilitated the investigation of ERD/S during each time-

locked active touch experience. 

Ipsi- and contralateral increases in beta-band ERD over sensorimotor regions were 

observed for silk and brushed cotton, relative to hessian. Differences in the modulation of 

beta-band activity may be attributed to variations in textural properties, with silk and brushed 

cotton rated as more smooth, soft, and pleasant when compared to hessian. Covariate analysis 

found ratings of perceived softness exerted a confounding effect for ERD differences in beta-

band activity over the contralateral sensorimotor region. Controlling for the influence of 

individual differences in softness ratings between stimuli improved the sensitivity of analyses 

for changes in electrophysiological processing between textures. Suggesting beta-band ERD, 

in part, is likely modulated by differences in the micro-geometric properties of the texture 

such as softness. According to the duplex theory (Katz, 1925), vibrational cues mediate 

tactile perception of fine textures (Hollins & Risner, 2000). Therefore, the stronger beta-ERD 

in both contra- and ipsilateral central-parietal electrodes for the smoothest texture (silk) 
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compared to a coarse texture (hessian) may be related to increased high-frequency vibrations 

from tactile elements. Brushed cotton likely generated less high-frequency vibrations 

compared to silk which explains the finding of an increased beta-ERD for bushed cotton 

compared to hessian only in the contralateral central-parietal electrode. As described, 

covariate analysis suggests that modulation of beta-band ERD is likely related to the 

processing of vibrotactile cues rather than hedonic perception. Thus, our findings on texture 

modulation during active touch accord with previous studies reporting increased neural 

activation for physical properties of smooth compared to rough textures (Genna et al., 2018; 

Moungou et al., 2016).  

Interestingly, alpha-band ERD was greater in electrode 52 located over contralateral 

sensorimotor region during exploration of hessian, the roughest texture, compared to silk. 

This contradicts our hypothesis of increased ERD for fine compared to rough textures, 

although at present there is little research investigating active touch using EEG methods. 

Covariate analysis identified that subjective smoothness ratings accounted for the variation in 

alpha-band ERD, indicating that individual differences in perceived smoothness account for 

the differences seen in alpha-band ERD during texture processing. Rough textures increase 

activation of Merkel cells through pressure and skin deformation, whereas Meissner 

corpuscles and Pacinian corpuscles modulate finer textures through high-frequency vibrations 

(Blake et al., 1997; Hollins et al., 2001a; Johnson & Hsiao, 1992; Yoshioka et al., 2001). 

Hessian is more likely to activate Merkel cells than brushed cotton and silk due to the 

increased spatial period of tactile elements (Chapman et al., 2002; Connor et al., 1990; 

Connor & Johnson, 1992; Johnson & Hsiao, 1992). Alpha-band activity may be modulated 

by roughness due to activation of Merkel cells and Meissner corpuscles, similar to the 

modulation of low- and high-frequency vibrotactile stimuli by SI and SII respectively (Chung 

et al., 2013; Francis et al., 2000; Harrington & Hunter Downs, 2001). Although greater alpha-
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band ERD has recently been observed when decreasing the stimulus roughness during 

passive stimulation of the fingertip (Genna et al., 2018). Further research investigating 

texture perception during active touch is necessary to fully delineate how varying textural 

properties modulate oscillatory activity.  

ERD analysis uncovered novel differences in oscillatory processing between 

conditions. This suggests that accurate data fusion is essential for time-locking ERD/S to the 

onset/offset of touch, as well as to remove noisy or incomplete trials and confounding 

elements of the touch experience. Investigation of active touch in relation to oscillatory 

changes likely requires rich touch data at the trial level to support the high temporal 

resolution of EEG methods (Koenig et al., 2005). In future, recording of touch data will 

facilitate the investigation of different physical properties of touch and their effect on neural 

processing, such as the effect of friction (Klöcker et al., 2013). 

 Although the current study has greater ecologically validity than previous paradigms 

(Gibson, 1962), it does not fully represent natural touch experiences due to EEG laboratory 

settings and the use of hand and wrist supports and pace training for tactile exploration. 

Further, participants were exposed to the texture stimuli repeatedly over the testing period, 

which may reduce task engagement (Lelis-Torres et al., 2017) or lead to sensory 

desensitisation (Graczyk et al., 2018; Klingner et al., 2011). However, repeated trials are 

necessitated by the ERD method (Cohen, 2016). Future use of continuous trials may be a 

more naturalistic and stimulating way to circumvent these problems. Furthermore, data were 

subjected to two stages of trial rejection (25.96 ± 8.36 trials rejected per texture). As a result, 

there were insufficient trials to compute grand average ERD/S per experimental block. 

Consequently, investigating the impact of time on ERD/S was beyond the scope of this study.  
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Additionally, this study is limited by the age of the population. Movement-related 

beta-band ERD increases with age in healthy populations (Bardouille & Bailey, 2019; 

Heinrichs-Graham & Wilson, 2016; Spooner et al., 2019; Walker et al., 2020; Xifra-Porxas et 

al., 2019), and has been linked with the inhibitory neurotransmitter GABA, which has been 

found to decline with age (Gao et al., 2013; Hall et al., 2010, 2011). The present study 

included participants aged 20-65, although the mean age was 28.03 ± 11.06, therefore 

findings may not be generalisable to the aging population. Further, the final sample included 

four left-handed participants. The researcher ensured participants could comfortably perform 

the finger abduction movement with their right hand. Therefore, handedness did not impact 

task performance. 

Total load during the first and final sweep of the index finger differed significantly. 

Muscle contractions increase during flexions and extensions of the wrist (Hirt et al., 2016; 

Schieber & Thach, 1985); this additional wrist movement, present at touch onset and offset, 

may contribute to differences in total load observed during the first and last sweep. Further, 

voluntary movement is preceded by motor preparation which manifests as beta-band ERD, 

with the last sweep also likely to contain wrist movement preparation (Little et al., 2018; 

Stancak & Pfurtscheller, 1996b, 1997; Tzagarakis et al., 2015). Therefore, motor preparation 

and additional wrist movements have the potential to confound ERD/S interpretation 

(Pfurtscheller et al., 1998); consequently, the first and final sweeps were excluded from the 

ERD analysis, allowing one to assess the periods most likely to display texture processing.  

The novel fusion of EEG and touch data, allowing for the computation of accurate 

active touch timings and time-locking, was found to be crucial when analysing EEG data 

during active touch. Touch sensor technology should be implemented where feasible in 

subsequent investigations of the neural correlates of active touch. The use of targeted active 
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touch exploration highlighted differences in brain oscillatory activity due to texture 

perception. Beta-band differences in sensorimotor areas expand on previously observed ERD 

changes during passive touch, whereas alpha-band ERD showed a divergence from previous 

passive touch research. Further research to consider physical parameters of active touch can 

aid our understanding of the brains processing of tactile perception and texture, which, may 

ultimately aid our understanding of debilitating conditions such as complex regional pain 

syndrome or other neuropathic pain syndromes which are accompanied by sensorimotor 

abnormalities (Brun et al., 2019; Harris, 1999). Although, one must first understand the 

neural underpinning of active touch in healthy individuals so we can make comparisons to 

clinical conditions. 
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Abstract  

Perceptual judgements about our physical environment are informed by somatosensory 

information. In real-world exploration, this often involves dynamic hand movements to 

contact surfaces, termed active touch. The current study investigated cortical oscillatory 

changes during active exploration to inform estimation of surface properties and hedonic 

preferences of two textured stimuli: smooth silk and rough hessian. A purpose-built touch 

sensor quantified active touch, while oscillatory brain activity was recorded from 129-

channel EEG. By fusing these data streams at a single trial level, oscillatory changes within 

the brain were examined while controlling for objective touch parameters (i.e., friction). 

Time-frequency analysis was used to quantify changes in cortical oscillatory activity in alpha 

(8–12 Hz) and beta (16–24 Hz) frequency bands. Results reproduce findings from our lab, 

whereby active exploration of rough textures increased alpha-band ERD in contralateral 

sensorimotor areas. Hedonic processing of less preferred textures resulted in an increase in 

temporoparietal beta-band and frontal alpha-band ERD relative to most preferred textures, 

suggesting that higher-order brain regions are involved in the hedonic processing of texture. 

Overall, the current study provides novel insight into the neural mechanisms underlying 

texture perception during active touch and how this process is influenced by cognitive tasks.  
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6.1 Introduction 

Humans encode somatosensory input to inform perceptual judgements. Texture is an 

important surface feature and is explored via the glabrous skin on the hands and digits via 

voluntary movement to create dynamic contact with surfaces, a behaviour termed active 

touch (Gibson, 1962; Prescott et al., 2011; Turvey & Carello, 2011; Wagner & Gibson, 

2016). During tactile stimulation, subjective judgements of texture alter the BOLD signal, 

whereby greater prefrontal cortex activation was observed during tasks requiring estimation 

of surface properties, relative to conditions which included touch stimulation, but without 

estimation tasks (Kitada et al., 2005). In EEG literature, estimation tasks have been employed 

to quantify subjective judgements of surface texture (Ballesteros et al., 2009; Henderson et 

al., 2022), though ratings are typically collected separately from stimulation tasks. Therefore, 

it is unknown how subjective judgments modulate the electrophysiological correlates of 

texture processing.  

Tactile information from surface texture is transduced by low-threshold 

mechanoreceptors in the glabrous skin of the hands (Hagbarth & Vallbo, 1967; Johansson & 

Vallbo, 1979; Vallbo & Johansson, 1984; McGlone & Reilly, 2010; Abraira & Ginty, 2013). 

This information is conveyed to the primary and secondary somatosensory cortex via the 

dorsal-column medial lemniscus pathway (Klingner et al., 2016; Raju & Tadi, 2021). 

Subsequently, the information can be transmitted to higher-order regions involved in 

cognitive processing and multisensory integration (Romanski, 2012; Morrison, 2016; 

Gogolla, 2017; Uddin et al., 2017; Whitlock, 2017), where estimation of surface properties is 

more likely to occur. 

Event-related spectral perturbation (ERSP; Makeig, 1993; Makeig et al., 2004) is a 

spectral estimation method that provides insight into event-related changes in the EEG 
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spectra that are induced by the onset of stimuli (Grandchamp & Delorme, 2011). Decreases 

and increases in narrowband power are referred to as ERD and ERS, respectively 

(Pfurtscheller, 1977; Pfurtscheller & Aranibar, 1977, 1979). It is robustly shown that both 

motor and somatosensory activation are associated with ERD in alpha- (8–12 Hz) and beta-

band (16–24 Hz) frequencies, originating from the primary motor and somatosensory 

cortices, respectively (Brovelli et al., 2004; Pfurtscheller, 2001; Salmelin & Hari, 1994). 

Beta-band ERS is then observed in the motor cortex after stimulation termination (Cheyne et 

al., 2003; Gaetz & Cheyne, 2006; Houdayer et al., 2006). Investigation of texture processing 

has revealed bilateral activation across sensorimotor areas, with an increase in cortical 

activation for smoother textures during passive touch (Genna et al., 2018; Moungou et al., 

2016). On the other hand, active touch was found to elicit increased alpha-band ERD for 

rough textures and increased beta-band ERD for smooth textures (Henderson et al., 2022). 

Therefore, time-frequency analysis of induced cortical oscillations is an appropriate analysis 

method for active touch and is shown to elucidate bilateral sensorimotor cortex activation 

associated with texture processing.  

The prefrontal cortex is thought to be involved in cognitive control and executive 

processing (Menon & D’Esposito, 2021; Nejati et al., 2021), and has been identified as an 

important area during tactile discrimination tasks (Stoeckel et al., 2003; Harada et al., 2004; 

Kitada et al., 2005; Marschallek et al., 2023). The prefrontal cortex serves a well-established 

role in the processing of affective value of stimuli (Rolls & Grabenhorst, 2008), including 

tactile stimuli delivered to glabrous skin (Francis et al., 1999; Rolls et al., 2003a). 

Specifically, the DLPFC is active during somatosensory estimation and comparison tasks 

(Sathian et al., 2011; Simões-Franklin et al., 2011; Yang et al., 2017), and is thought to 

reflect the storage of tactile information in working memory to later inform goal-oriented 

motor behaviour (Barbey et al., 2013; Botvinick & An, 2009; Zhao et al., 2018a). The 
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orbitofrontal cortex (OFC) is associated with reward value and subjective pleasantness (Rolls, 

2000, 2004), suggesting that prefrontal regions may also play an important role in hedonic 

preference for tactile stimuli, including surface texture (Gallace & Spence, 2011; Rolls et al., 

2003a). Research using EEG has linked frontal alpha-band ERD to decision-making (Ramsøy 

et al., 2018; Ravaja et al., 2013) and emotional valence (Al-Nafjan et al., 2017; Poel et al., 

2012; Schmidt & Trainor, 2010; Zhao et al., 2018b). Further, beta-band oscillations are 

thought to play a role in establishing a feed-forward loop which connects somatosensory 

regions to higher-order parietal and frontal brain regions (Adhikari et al., 2014). Taken 

together, research indicates that frontal alpha- and beta-band ERD may be increased during 

somatosensory processing with estimation tasks, relative to tasks where no subjective 

estimation is required. 

Alpha-band oscillations are known to be modulated by attention (Klimesch, 2012; 

Pfurtscheller & Lopes da Silva, 1999). Cued attention during somatosensory tasks 

demonstrates decreased alpha-band power in the SI (Jones et al., 2010; van Ede et al., 2011). 

In addition, attention increases beta-band ERD prior to stimulus offset over sensorimotor 

areas (Bardouille et al., 2010; van Ede et al., 2011). Furthermore, the SII is associated with 

tactile attention (Hämäläinen et al., 2000; Hoechstetter et al., 2000; Wu et al., 2014) and 

tactile discrimination (Kitada et al., 2005; Sathian et al., 2011; Stilla & Sathian, 2008). 

Estimation tasks are more likely to increase attentional demands which may result in greater 

modulation of alpha- and beta-band ERD in sensorimotor regions in contrast to tasks with no 

estimation. 

The present study aimed to investigate cortical oscillatory changes during active touch 

exploration of rough and smooth textures during estimation and no estimation conditions. We 

hypothesised that active texture exploration would elicit bilateral alpha- and beta-band ERD 
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over sensorimotor regions. Specifically, we predicted increased beta-band ERD for smooth 

when compared to rough textures, whilst alpha-band ERD was hypothesised to increase for 

rough compared to smooth textures, following our previous research (Henderson et al., 2022). 

Further, we hypothesised that estimation tasks would result in increased sensorimotor and 

frontal ERD in alpha- and beta-band, relative to no estimation conditions. Estimation tasks 

were split into two categories: sensory and hedonic estimations. We predicted that hedonic 

estimations would result in increased ERD in frontal regions when compared to sensory and 

no estimations conditions. Additionally, this study sought to investigate the potential 

differences between estimation type and texture by examining the interaction between the 

two variables.   
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6.2 Method 

6.2.1 Participants  

Thirty-five right-handed or ambidextrous participants were recruited (11 males, aged 18–49), 

left-handed participants were excluded due to difficulty exploring the texture with their right 

hand. All participants had no history of any neurological condition, or aversion or allergies to 

any textures. Four participants were excluded due to excessive muscle artefacts or technical 

problems resulting in incomplete data recording from the touch sensor. The final sample for 

analysis included 31 participants (8 males, 2 ambidextrous), aged 28.13 ± 6.54 years. 

Participants were reimbursed at a rate of £10 per hour for their time. The study was approved 

by the Research Ethics Committee of the University of Liverpool and all participants gave 

fully informed written consent at the start of the experiment in accordance with the 

Declaration of Helsinki. 

6.2.2 Procedure 

Participants were seated in a dimly lit Faraday cage with a 19-inch LCD monitor 

approximately 1 m in front of them. The tactile exploration task and practice trials were 

presented using PsychoPy (Peirce et al., 2019). EEG and six-axis sensor data were recorded 

during the tactile perception task. An arm support was used to stabilise and support the 

forearm whilst maintaining position over the six-axis sensor.  

6.2.2.1 Stimuli 

The stimuli included two textures selected from a previous study (Henderson et al., 2022): 

hessian and silk, Figure 6.1. The stimuli measured 150 × 255 mm and were mounted using 

double-sided tape (tesa® 64621) to a paper sample mount measuring 410 × 255 mm lined 

with masking tape (tesa® Precision Mask® 4333). Samples were mounted in a portrait 
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orientation; hessian was mounted on the left and silk on the right, with 40 mm spaces on each 

side and a 30 mm space between the samples. The paper sample mount was subsequently 

attached to an A3 size (420 × 300 × 3 mm) aluminium composite panel secured to the 

Hopkinson Research six-axis sensor (Hopkinson Research, 2020). The texture samples were 

replaced for each participant.

  

  

Figure 6.1 Hitachi TM-1000 scanning electron microscope images of the texture stimuli at 100x magnification. 
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6.2.2.2 Tactile exploration task 

 Participants completed four blocks, each lasting approximately 18 minutes. At the beginning 

of the block, participants were instructed to explore one of the two textures, and at the 

halfway point, participants were instructed to explore the other texture. A short break was 

given between blocks to increase task engagement and reduce desensitisation. There were 

360 trials in total, 60 for each texture and each estimation condition (no estimation, sensory, 

and hedonic). Each block consisted of 90 trials, including all three trial types, this task design 

aimed to maximise participant engagement by ensuring continuous attention to the condition 

indicators throughout the session. Block order was counter-balanced, and the presentation 

order of trials conditions was pseudorandomised.  

During the task, participants explored textures with the distal phalanx of their right 

index finger. Each trial consisted of a baseline period (4 s), condition indicator on screen (1 s) 

and tactile exploration (4 s), followed by an estimation response period for sensory and 

hedonic trials, Figure 2. The baseline period was indicated by a white fixation cross on the 

screen, during which participants kept their finger stationary on the texture. The condition 

indicators, which were a white square, circle, or triangle, were presented to specify whether 

the trial was sensory, hedonic, or no estimation. Condition indicators were randomised 

between participants, meaning that each shape corresponded to each condition equally, 

thereby ensuring that the shape of the condition indicator did not influence the trial (Benikos 

et al., 2013).  

Participants were trained to attend to sensory (i.e., ‘focus on how the texture feels. For 

example, is the texture smooth or rough, hard or soft?’) or hedonic features (i.e., ‘focus on 

how the texture makes you feel. For example, is the texture pleasant or unpleasant, 

comfortable or uncomfortable?’) during the respective trials. Subsequently, textures were 
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rated on a visual analogue scale (VAS) corresponding to their respective trial type; for 

hedonic ratings this included rating on pleasant/unpleasant and uncomfortable/comfortable 

scales, while sensory ratings included smooth/rough and soft/hard scales. During the no 

estimation trials participants were not given any instruction to attend to any textural aspect 

and were not asked to evaluate the texture after the trial. Full task instructions and the VAS 

used are detailed in Supplementary material 3.  

During the touch exploration period, a green fixation cross appeared, indicating that 

the participant should start exploring the texture employing their preferred exploration 

behaviour, including multi-directional movements as well as optimising their speed and load 

according to their preference. Exploration stopped when the green cross was removed from 

the screen. Participants were instructed to keep their finger stationary on the texture when the 

green cross was not present (i.e., outside of the exploratory periods). Six practice trials 

following the same procedure were completed before beginning the tactile exploration task. 
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.   

Figure 6.2 An example of a hedonic or sensory estimation trial (A) and a no estimation trial (B). For both 

conditions, each trial started with a baseline period indicated by a white fixation cross for 4 s, followed by the 

condition indicator for 1 s. Next, the tactile exploration period began, indicated by a green fixation cross 

presented for 4 s. For estimation trials, participants were instructed to rate the texture on the scale (i.e., 

smooth/rough, or soft/hard for sensory trials, and pleasant/unpleasant or comfortable/uncomfortable for 

hedonic trials). In the no estimation task, participants did not perform ratings. 
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6.2.3 Recordings 

A 129-channel saline-based Geodesic sensor net (Magstim EGI, UK) was used to record 

continuous EEG data. Positioning of the net was based on three anatomical landmarks, two 

preauricular points and the nasion. A recording band-pass filter was set at 0.001–200 Hz with 

a sampling rate of 1000 Hz, and electrode impedances were kept below 50 k. Electrode Cz 

was used as a reference electrode, and was not reinstated in the electrode array, leaving 128 

recording channels. The six forces and torques acting on the texture samples due to the finger 

touch were recorded using the six-axis sensor, Figure 6.3, with a sampling rate of 1000 Hz. 

Finger position and friction force in the XY plane and finger load along the Z axis were 

calculated from the block averaged (20 Hz) forces and torques. The speed of finger 

movement was calculated by determining the distance between two positions at different time 

points. 
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Figure 6.3 Set up of the six axis sensor with the load cells connected to the junction boxes 

(A), and with the ACP fitted (B). Textures mounted the the paper sample mount and fixed 

to the ACP (C). 
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6.2.4 Pre-processing 

EEG pre-processing was conducted using BESA v 6.1 (MEGIS GmbH, Germany). Eye 

blinks and ECG artefacts were removed using PCA (Berg and Scherg 1994). Data were 

filtered using 1 Hz high-pass and 100 Hz low-pass filters, with a 50 Hz ± 2 Hz notch filter. A 

visual inspection of data for the presence of any movement or muscle artefacts was 

performed, trials affected by artefacts were excluded from subsequent analyses. 

Six-axis sensor data were cleaned and visually inspected using in-house software 

developed in Python 3 (Van Rossum & Drake, 2009). Trials were rejected where no suitable 

triggers were identified, as an error during data recording. The trial period was epoched  

−5–5 s from visual trigger onset. Trials were rejected where movement was detected in the 

baseline or visual cue period. Data were then epoched −200–4000 ms relative to the trial 

onset cue. Movement onset was identified for trials by calculating and identifying the first 

minima and maxima peaks of velocity, with the height set at half the minimum and maximum 

value, and prominence and distance set to 1. Trials were rejected when movement onset did 

not occur within 400 ms of visual cue onset. Median speed, friction and load were calculated 

from movement onset to the end of the trial period, Figure 6.4 depicts a case example of one 

trial. Z-scores were computed for each participant’s measured touch behaviour during each 

block and texture. Trials were excluded if the z-score of any measure exceeded ± 2 SD. 
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Figure 6.4 Line plots for one complete trial depict friction (A), load (B), speed (C), and X-axis position in 

orange and Y-axis position in pink (D). Dashed lines denote movement onset and the end of the epoch, which 

was the period used for the calculation of median parameters. 

After completing EEG and six-axis sensor pre-processing, the average number of 

trials for analysis in each condition was as follows: sensory hessian, 39.52 ± 8.93 (M ± SD); 

hedonic hessian, 39.19 ± 9.35; no estimation hessian, 39.52 ± 8.88; sensory silk, 37.16 ± 

8.84; hedonic silk, 39.39 ± 9.02; no estimation silk, 37.65 ± 8.70. The average number of 

accepted trials did not differ across conditions (𝑝 > 0.05). EEG pre-processing resulted in 

the rejection of  100.42 ± 47.97 trials over the entire experiment due to artefacts and noise. 

Furthermore, an additional 23.42 ± 20.48 trials were rejected as a result of the six-axis sensor 

pre-processing. 
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6.2.5 Analysis 

Event-related time-frequency analysis was conducted using synchronised EEG and touch 

sensor data. Movement onset timings, computed on a trial-by-trial basis relative to the trial-

onset visual cue, were synchronised to EEG data. EEG data were epoched −5.5–5 s relative to 

the movement onset marker. 

Data were imported into the SPM12 software package (Statistical Parametric 

Mapping, University College London, England) in MATLAB (The MathWorks, Inc., USA). 

Epochs were baseline corrected (−4 – −2 s). EEG signals were downsampled to 256 Hz and 

were re-referenced using the common average method (Lehmann, 1984). Time-frequency 

analysis was performed by convolving the EEG signal with a set of complex Morlet wavelets, 

which are complex sine wave tapered by a Gaussian. The wavelets spanned a frequency 

range from 1 to 40 Hz with 1 Hz steps and each wavelet had 5 cycles (Cohen, 2019). The 

choice in cycle number ensured an acceptable trade-off between time and frequency 

smoothing, with a slight preference for temporal precision (Tallon-Baudry & Bertrand, 1999; 

Cohen, 2019). The power spectra obtained were rescaled with a log-ratio transformation (−4 

– −2s), producing the baseline-normalised ERSP. Subsequently, the power spectra were 

cropped from 0 to 4s relative to movement onset and averaged over alpha (8–12 Hz) and beta 

frequency bands (16–24 Hz), giving narrow band ERD/S values.  

For each trial, 3D scalp-time images were generated by projecting the location of the 

128 electrodes onto a 2D plane, and then interpolating linearly between the point onto a 

standardised scalp grid sized 32 × 32 pixels (pixel size 4.25 × 5.38 mm2); the resulting 

topographies of power spectra planes are continuously stacked over each timepoint to give 

the 3D representation (X × Y × time). To address spatial and temporal variability between 

subjects and improve the conformity of images to the assumptions of random field theory, 
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images were smoothed with a Gaussian kernel of 9 × 9 × 20 mm² ms (full width at half 

maximum; Kilner et al., 2005; Worsley, 2007),  as commonly utilised in previous research 

(Cook et al., 2015, 2017). SPM uses a technique called summary statistic approach (Kiebel et 

al., 2007), where contrast images are generated in first level analyses to summarise the 

effects for each individual, subsequently, these images are utilised as data in second level 

models where the variability of the effects is assessed over the group of subjects. 

First level analysis was conducted by applying the GLM to each subject’s single-trial 

scalp-time data. The GLM design matrix, consisted of six dummy variables specifying the 

trials texture (silk or hessian) and estimation condition (sensory estimation, hedonic 

estimation, or no estimation), and 6 parametric regressors coding the summation of load and 

friction under the respective texture (silk and hessian) and estimation condition (sensory, 

hedonic, or no estimation; e.g., summation of load and friction under sensory estimations of 

hessian), this can be seen in Supplementary material 4. Regressors were mean centred to 

avoid multicollinearity issues. Three contrast images were produced to test for main effects: 

one imaged was produced to test the difference between hessian vs. silk for the main effect of 

texture, and two images were produced to test the difference between sensory vs. hedonic and 

hedonic vs. no estimation for the main effect of estimation. Two contrast images were 

produced to test the interaction effect: the difference between sensory hessian and hedonic 

silk vs. hedonic hessian and sensory silk, and the difference between hedonic hessian and no 

estimation of silk vs. no estimation of hessian and hedonic silk.  

For the second level analysis, all 31 participants’ individual contrast spectra from the 

first level were analysed using mass-univariate analysis at the group level. The main effect of 

texture was tested using a one-sampled t-test and an F-contrast of [1] with the 31 contrast 

images as input. A two-sample t-test design was employed to examine the main effect of 
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estimation and the interaction effect. The 62 contrast images (two per subject) were entered, 

and an F-contrast of [1 0; 0 1] was applied to test for these effects. An uncorrected cluster 

forming threshold of 𝑝 < .001 and a cluster size of 35 contiguous space-time voxels, as 

commonly utilised in previous research (Cook et al., 2018), were used to determine 

significant effects. Power data from significant clusters were extracted and analysed in SPSS 

v. 28 (IBM Inc., USA) to determine the direction of observed effects; a paired samples t-test 

for the main effect of texture, one-way ANOVA for the main effect of texture, and two-way 

ANOVA for the interaction effect.  

Mean subjective ratings of comfort and pleasantness (hedonic evaluations), and 

smoothness and softness (sensory evaluations) were calculated separately for each texture 

across all blocks. Subjective ratings were evaluated separately using 2 × 4 repeated measures 

ANOVA with two levels of texture (silk and hessian) and four levels of time (blocks one, 

two, three, and four). Median speed (mm/s), friction (N) and load (g) were computed for each 

tactile epoch that was used in the EEG analysis. These data were analysed using a 2 × 3 

repeated measures ANOVA with two levels of texture (hessian and silk) and three levels 

categorising the experimental condition (sensory estimation, hedonic estimation, and no 

estimation) for each touch behaviour (speed, load, and friction). Statistical outliers (±2 SD) 

were removed for all behavioural data. 

 The Greenhouse-Geisser epsilon correction was applied to all ANOVA analyses in 

cases where the data violated the assumptions of sphericity. Additionally, to account for 

multiple comparisons during post-hoc analyses, the α level was adjusted using the Bonferroni 

correction.  

Correlational analyses were performed on touch behaviour (speed, load, and friction) 

for each texture (silk and hessian) independently. Factors found to be correlated were linearly 
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combined by summation for subsequent SPM analysis to address issues of multicollinearity 

(Kalnins & Business, 2018). Further, touch behaviours showing no statistical differences 

between texture or estimation were not entered as regressors in the SPM analysis. Therefore, 

the linear combination of friction and load under each condition were used as regressors in 

the SPM model (see section 6.3.3 below). Additional correlational analyses were performed 

to examine the relationship between subjective ratings (comfort, pleasantness, softness, and 

smoothness) and touch behaviour (speed, load, and friction).  
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6.3 Results 

6.3.1 Subjective ratings 

Mean subjective ratings for each texture are shown in Figure 6.5. 2 × 4 ANOVA indicated 

statistically significant main effects of texture for ratings of comfort, 𝐹(1, 2479.56) =

317.48, 𝑝 < .001, 𝜂𝑝
2 = 0.93; pleasantness, 𝐹(1, 2469.43) = 263.49, 𝑝 < .001, 𝜂𝑝

2 = 0.91; 

smoothness, 𝐹(1, 2908.67) = 610.11, 𝑝 < .001, 𝜂𝑝
2 = 0.96; and softness, 𝐹(1, 2306.62) =

346.01, 𝑝 < .001, 𝜂𝑝
2 = 0.93. Pairwise comparisons revealed a reduction in comfort, 

pleasantness, smoothness, and softness when comparing hessian to silk (all 𝑝 < .001). 

Further, significant interactions between the effects of texture and time were identified for 

comfort, 𝐹(2.17, 3.44) = 9.12, 𝑝 < .001, 𝜂𝑝
2 = 0.27, ε = .72; pleasantness, 𝐹(2.08, 5.22) =

15.11, 𝑝 < 0.001, 𝜂𝑝
2 = 0.37, ε = .69; smoothness, 𝐹(1.90, 1.85) = 6.04, 𝑝 = .005, 𝜂𝑝

2 =

0.19, ε = .63; and softness, 𝐹(1.73, 2.94) = 7.49, 𝑝 = .002, 𝜂𝑝
2 = 0.22, ε = .58.  

The interaction between texture and time revealed that comfort, pleasantness, 

smoothness, and softness ratings differed between exploration of hessian and silk when 

comparing against each respective block (all 𝑝 < .001). Further, comfort ratings of hessian 

significantly decreased when comparing block 1 to 3 (𝑝 = .003) and 4 (𝑝 < .001). 

Pleasantness ratings for hessian decreased over time, with a significant difference between 

block 1 when compared with block 3 (𝑝 < .001) and block 4 (𝑝 < .001), and when 

comparing block 3 with block 4 (𝑝 = .007). Softness ratings of hessian were significantly 

reduced when comparing block 1 with block 3 (𝑝 = .005). By contrast, ratings of silk did not 

significantly differ across time for all ratings.  
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Figure 6.5 Bar charts showing mean subjective ratings, (A) smoothness rating, (B) softness rating, (C) 

pleasantness rating, and (D) comfort rating, for textured stimuli across experimental blocks. The individual dots 

show data points from each participant. Statistically significant differences are denoted as * for < .05, ** for 

< .01 and *** for < .001. 
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6.3.2 Touch behaviour 

Mean touch behaviour values of friction, speed and load for each texture are displayed in 

Figure 6.6. 2 × 3 repeated measures ANOVA, with two levels of texture and three levels of 

estimation, were conducted for each touch parameter. A significant main effect of texture was 

identified for friction 𝐹(1, 0.11) = 15.54, 𝑝 < .001, 𝜂𝑝2 = 0.36 and a significant main effect 

of estimation was demonstrated for load 𝐹(2, 72.55) = 6.94, 𝑝 = .002, 𝜂𝑝2 = 0.20. No 

significant differences were observed for speed. Pairwise comparisons revealed a significant 

reduction in friction (N) for silk compared to hessian (𝑝 < .001), and a significant reduction 

in load (g) for no estimation trials compared hedonic estimation conditions (𝑝 = .001).   
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Figure 6.6 Bar charts showing mean touch behaviour, (A) friction, (B) speed, and (C) load, for textured stimuli 

across estimation trial type. (D) Bar chart showing mean touch behaviour for load averaged across textures to 

display the main effect of estimation. The individual dots show data points from each participant. Statistically 

significant differences are denoted as * for p < .05, ** for < .01 and *** for < .001. 
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6.3.3 Correlational analyses 

Correlational analyses performed on touch behaviour revealed a positive correlation between 

friction and load for exploration of hessian 𝑟(29) = .86, 𝑝 < .001; and silk 𝑟(29 = .75, 𝑝 <

.001. This was expected as friction force is directly proportional to load (Amontons, 1699; 

Bogy & Chen, 2013). Therefore, friction and load were linearly combined by summation for 

inclusion in subsequent SPM analysis. Likewise, speed was not included as a covariate due to 

not differentiating between textures or rating types. Correlational analyses performed 

between subjective ratings and touch behaviour revealed no significant correlation between 

any factors. 

6.3.4 EEG  

ERD/S was investigated relative to movement onset after accounting for the influence of load 

and friction on a single-trial level. Group-level analysis revealed significant scalp-time 

clusters in alpha-band, showing one cluster for the main effect of texture, one cluster for the 

main effect of estimation, and two clusters for the interaction effect. In beta-band, five 

clusters were identified for the main effect of estimation and two clusters for the interaction 

between texture and estimation type. No significant main effect of texture was revealed in 

beta-band. The direction of observed effects was determined by subjecting power data, from 

significant clusters extracted from SPM12, to further statistical analysis in SPSS v. 28 (IBM 

Inc., USA).  
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6.3.4.1 Alpha-band 

6.3.4.1.1 Main effects 

A significant main effect of texture was identified in contralateral parietal regions, 

corresponding to left sensorimotor areas, spanning approximately 234 ms duration and 

peaking at 357 ms and 436 ms after movement onset, illustrated in Figure 6.7A. A subsequent 

paired samples t-test demonstrated significantly greater ERD for hessian (−3.36 ±

1.64 dB;  M ± SD) when compared to silk (−1.91 ± 1.58 dB), 𝑡(30) = −4.92, 𝑝 < .001. 

Over ipsilateral posterior parietal regions, as demonstrated in Figure 6.7E, a 

significant scalp-time cluster demonstrated a main effect of estimation on induced power 

peaking at 3268 ms after movement onset and lasting for approximately 191 ms in duration, 

𝐹(2, 23.13) = 10.431, 𝑝 < .001, 𝜂𝑝
2 = 0.26. Pairwise comparisons revealed a significant 

decrease in ERD for hedonic (−0.16 ± 1.58 dB) when compared with sensory (−1.87 ±

1.35 dB;  𝑝 < .001) and no estimation (−1.23 ± 1.25 dB;  𝑝 = .014). 

Overall, findings demonstrate a significant effect of texture on contralateral parietal 

regions, with greater ERD for hessian than silk during active touch. In ipsilateral posterior 

parietal regions, a significant main effect of estimation was observed, with a decrease in ERD 

for hedonic compared to sensory and no estimation.  
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Figure 6.7 Standard scalp map of the statistically significant clusters in alpha-band for the main effect of 

texture (A) and the main effect of estimation (E). Statistically significant latency periods 0–4 s relative to the 

onset of movement are displayed over the horizontal axis of the scalp (from left −6.8 cm to right 6.8 cm) for the 

main effect of texture (C) and estimation (G), and over the vertical axis of the scalp (from posterior −9.8 cm to 

anterior 7.2 cm) for the main effect of texture (B) and estimation (F). Raincloud plots (Allen et al., 2019) show 

the distribution of grand average alpha-band power values for significant clusters for the main effect of texture 

(D), and the main effect of estimation (H). The half violin plots depict the probability distributions of the data. 

The individual dots show data points from each participant. The boxplots indicate the median, upper and lower 

quartiles, as well as the IQR between the 25th and 75th percentile, whilst the whiskers represent scores outside 

of the IQR. Statistically significant differences are denoted as * for < .05, ** for < .01 and *** for < .001. 
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6.3.4.1.2 Interaction effects 

An interaction between texture and estimation produced two significant clusters, Figure 6.8A. 

The largest cluster (k=399) was located over bilateral occipital areas and encompassed 

approximately 173 ms duration, peaking at 2213 ms, 𝐹(2, 73.91) = 9.69, 𝑝 < .001, 𝜂𝑝
2 =

0.24. Exploration of hessian under hedonic estimation trials produced ERD, whilst 

exploration of silk produced slight ERS, resulting in a significant difference between the two 

conditions (𝑝 = .002;  Table 6.1). In addition, sensory estimations of silk produced ERD, 

leading to a significant difference between sensory and hedonic estimation of silk (𝑝 =

.002;Table 6.1). Sensory estimations demonstrated increased ERD for silk compared to 

hessian (𝑝 = .021;  Table 6.1). Further, greater ERD was observed for hedonic contrasted 

with sensory estimations (𝑝 = .016; Table 6.1).  

Table 6.1. Descriptive statistics for each significant cluster for the interaction effect in alpha-band 

 Sensory Hedonic No Estimation 

 Hessian Silk Hessian Silk Hessian Silk 

Cluster M SD M SD M SD M SD M SD M SD 

One −0.08 3.34 −1.86 2.25 −2.17 2.36 0.32 3.00 −0.76 3.09 −1.20 3.32 

Two −1.29 3.41 −1.16 2.01 −2.08 2.13 0.14 2.92 −0.62 2.94 −1.89 2.18 

 

Cluster two (k=216) for the interaction effect peaked at 2232 ms and spanned 

approximately 173 ms duration. The cluster was located contralaterally in the left hemisphere 

and encompassed lateral and medial frontal areas, 𝐹(2, 47.82) = 10.75, 𝑝 < .001, 𝜂𝑝
2 =

0.26. An interaction between texture and estimation was uncovered in the hedonic estimation 

condition, specifically ERD was observed for hessian and ERS for silk (𝑝 < .001;Table 6.1). 

Further ERD was increased for silk when contrasting no estimation  with hedonic estimations 

(𝑝 = .006;  Table 6.1). No estimation resulted in increased ERD for silk compared to hessian 

(𝑝 = .025;  Table 6.1). 
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In summary, a significant interaction effect of texture and estimation was identified 

for contralateral frontal and bilateral occipital regions. Notably, greater ERD was observed 

for hedonic estimations of hessian relative to hedonic estimations of silk in both clusters.   
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Figure 6.8 Standard scalp map of the statistically significant clusters in alpha-band for the interaction effect 

between texture and estimation (A). Statistically significant latency periods 0–4 s relative to the onset of 

movement are displayed over the horizontal axis of the scalp (from left −6.8 cm to right 6.8 cm) (B), and over 

the vertical axis of the scalp (from posterior −9.8 cm to anterior 7.2 cm) (C). Raincloud plots (Allen et al., 

2019) showing the distribution grand average alpha-band power values for significant clusters for the 

interaction effect in cluster 1(D), and cluster 2 (E). The half violin plots depict the probability distributions of 

the data. The individual dots show data points from each participant. The boxplots indicate the median, upper 

and lower quartiles, as well as the IQR between the 25th and 75th percentile, whilst the whiskers represent 

scores outside of the IQR. Statistically significant differences are denoted as * for p < .05, ** for < .01 and *** 

for < .001. 
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6.3.4.2 Beta-band 

6.3.4.2.1 Main effects 

Five clusters were identified as statistically significant when investigating the main effect of 

estimation. The largest cluster (k=181) spanned from contralateral frontal towards 

frontocentral areas, Figure 6.9A, peaking at 3873 ms, 3893 ms and 3912 ms after movement 

onset and encompassing approximately 157 ms duration. Subsequent one-way ANOVA 

performed on EEG power data confirmed the significant main effect of estimation and tested 

the direction of observed effects, Table 6.2. Beta-band ERD/S differences were observed 

between hedonic estimations, which elicited a marginal ERS response in this late period, and 

sensory and no estimations, which produced ERD. This led to significant differences when 

contrasting hedonic with sensory ( 𝑝 = .002; Table 6.2) and no estimation conditions 

( 𝑝 < .001; Table 6.2). Cluster two (k=69) and cluster four (k=43) were located in 

contralateral posterior parietal regions and peaked at 1275 ms and 3893 ms whilst lasting 

approximately 95 and 138 ms duration, respectively. Pairwise comparisons revealed a 

significant decrease in ERD for cluster two and four when comparing hedonic to sensory 

(cluster two: 𝑝 = .001;  cluster four: 𝑝 = .002; Table 6.2) and no estimation (both 𝑝 <

.001; Table 6.2).  

Table 6.2. ANOVA and descriptive statistics for each significant cluster for the main effect of estimation in beta-

band. 

     Sensory Hedonic No Estimation 

Cluster df F p  𝜂𝑝
2 M SD M SD M SD 

One 2, 10.98 12.67 <.001 0.30 −0.53 0.78 0.22 0.92 −0.95 0.92 

Two 2, 16.30 9.10 <.001 0.23 −1.19 1.21 −0.04 1.21 −1.38 1.17 

Three 2, 4.65 8.10 <.001 0.21 −0.59 0.78 −0.05 0.6 −0.8 0.75 

Four 2, 16.62 9.32 <.001 0.24 −1.64 1.46 −0.38 1.21 −1.66 1.1 

Five 2, 14.50 8.88 <.001 0.23 −1.7 0.93 −0.41 1.26 −1.44 1.2 
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Cluster three (k=44) was laterally adjacent to cluster two and lasted approximately 76 

ms duration, peaking at 1393 ms after movement onset. Pairwise comparisons demonstrated 

differences were due to reduced ERD for hedonic estimations when compared with sensory 

( 𝑝 = .004; Table 6.2) and no estimation (𝑝 < .001; Table 6.2) conditions. Finally, cluster 

five (k=35) was ipsilateral to cluster two and four and peaked at 3365 ms, spanning 

approximately 77 ms duration. Subsequent analysis revealed that the main effect of 

estimation was due to significantly decreased ERD for hedonic estimations relative to sensory 

(𝑝 < .001; Table 6.2) and no estimations (𝑝 = .006; Table 6.2).  

The main effect of estimation for beta-band can be summarised as eliciting a network 

of contralateral frontal and bilateral posterior parietal clusters, which all demonstrated a 

decrease in ERD for hedonic estimations relative to sensory and no estimation conditions.  



 

144 

 

  

Figure 6.9 Standard scalp map of the statistically significant clusters in beta-band for the main effect of 

estimation (A). Statistically significant latency periods 0–4 s relative to the onset of movement are displayed 

over the horizontal axis of the scalp (from left −6.8 cm to right 6.8 cm) (B), and over the vertical axis of the 

scalp (from posterior −9.8 cm to anterior 7.2 cm) (C). Raincloud plots (Allen et al., 2019) showing the 

distribution grand average beta-band power values for significant clusters for the main effect of estimation in 

cluster 1 (D), cluster 2 (E), cluster 3 (F), cluster 4 (G), and cluster 5 (H). The half violin plots depict the 

probability distributions of the data. The individual dots show data points from each participant. The boxplots 

indicate the median, upper and lower quartiles, as well as the IQR between the 25th and 75th percentile, whilst 

the whiskers represent scores outside of the IQR. Statistically significant differences are denoted as * for p < 

.05, ** for < .01 and *** for < .001. 
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6.3.4.2.2 Interaction effects 

Two significant clusters were identified for the interaction effect between texture and 

estimation, Figure 6.10A. The largest cluster (k=94) was located over temporoparietal areas 

and spread to precentral regions, 𝐹(2, 16.14) = 15.05, 𝑝 < .001, 𝜂𝑝
2 = 0.33. The cluster 

peaked at 963 ms and 982 ms and encompassed approximately 57 ms duration. Increased 

ERD was observed for hessian compared to silk when exploring under hedonic estimation 

(𝑝 < .001; Table 6.3), whilst no estimation ( 𝑝 = .005; Table 6.3) produced greater ERD for 

silk compared to hessian. In addition, ERD increased during hedonic estimation condition 

when compared to no estimations for hessian (𝑝 < .001; Table 6.3). 

Table 6.3. Descriptive statistics for each significant cluster for the interaction effect in beta-band 

 Sensory Hedonic No Estimation 

 Hessian Silk Hessian Silk Hessian Silk 

Cluster M SD M SD M SD M SD M SD M SD 

One −0.69 1.18 −0.45 0.94 −1.67 1.56 −0.33 1.19 −0.05 1.27 −0.75 1.36 

Two −0.6 1.53 −0.36 1.13 −1.41 1.77 0.2 1.66 0.01 2.12 −0.87 1.61 

 

Cluster two (k=76) for the interaction effect lasted for approximately 75 ms in 

duration and peaked at 1021 ms, the cluster was located over contralateral occipital areas, 

𝐹(2, 23.95) = 9.72, 𝑝 < .001, 𝜂𝑝
2 = 0.24. The interaction between texture and estimation 

revealed that ERD significantly increased for hedonic estimation of hessian compared to silk 

( 𝑝 < .001; Table 6.3), whilst no estimation produced greater ERD for silk relative to hessian 

(𝑝 = .043; Table 6.3). Further, ERD increased for hedonic estimations compared to no 

estimations for hessian (𝑝 = .013; Table 6.3). 
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Overall, the interaction effect between texture and estimation revealed two clusters: 

one in contralateral temporoparietal regions and one in contralateral occipital regions. 

Notably, the results showed an increase in ERD for hedonic estimations of hessian relative to 

hedonic estimations of silk. 

  

Figure 6.10 Standard scalp map of the statistically significant clusters in beta-band for the interaction effect 

between texture and estimation(A). Statistically significant latency periods 0–4 s relative to the onset of 

movement are displayed over the horizontal axis of the scalp (from left −6.8 cm to right 6.8 cm) (B), and over 

the vertical axis of the scalp (from posterior −9.8 cm to anterior 7.2 cm) (C). Raincloud plots (Allen et al., 

2019) show the distribution of grand average beta-band power values for significant clusters for the interaction 

effect in cluster 1 (D), and cluster 2 (E). The half violin plots depict the probability distributions of the data. The 

individual dots show data points from each participant. The boxplots indicate the median, upper and lower 

quartiles, as well as the IQR between the 25th and 75th percentile, whilst the whiskers represent scores outside 

of the IQR. Statistically significant differences are denoted as * for p < .05, ** for < .01 and *** for < .001.



 

147 

 

6.4 Discussion  

The purpose of this study was to examine oscillatory brain activity during active exploration 

of rough and smooth surface textures under conditions which necessitate estimation of 

sensory or hedonic characteristics compared to no estimation conditions. Active tactile 

exploration with the index finger resulted in contralateral alpha-band ERD over sensorimotor 

regions with greater ERD for rough (hessian) compared to smooth (silk) textures. 

Interestingly, hedonic estimations of hessian were associated with increased alpha-band ERD 

in frontal and occipital regions and increased beta-band ERD for temporoparietal and 

occipital regions, relative to hedonic estimations of silk. For the first time, touch behaviours 

were used as parametric regressors to investigate the effect of texture and estimation on 

neural responses while accounting for variation in touch behaviour at a single trial level.  

Alpha-band ERD was stronger in contralateral sensorimotor regions during 

exploration of rough hessian compared to smooth silk, consistent with previous findings 

(Henderson et al., 2022). Rough textures likely increase the firing rate of Merkel cells and 

Meissner corpuscles, which may produce greater alpha-band ERD (Cascio & Sathian, 2001; 

Gamzu & Ahissar, 2001; Johansson & Vallbo, 1979; Vallbo et al., 1995). Further, the cluster 

peaked within a few hundred milliseconds of movement onset, suggesting the first neural 

response to the processing of physical attributes such as roughness (Ballesteros et al., 2009; 

McComas & Cupido, 1999). Previous passive touch research reported that smoother textures 

increase cortical activation (Ballesteros et al., 2009; Genna et al., 2018; Moungou et al., 

2016), suggesting that activation in response to rough and smooth textures may differ 

depending on the mode of tactile stimulation. Future research should investigate active and 

passive modes of stimulation whilst manipulating surface roughness. 
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Sensory and no estimation conditions showed increased alpha- and beta-band ERD 

relative to hedonic estimations. Alpha-band ERD manifested as an ipsilateral posterior 

parietal cluster, an area associated with sensory integration (Hyvärinen, 1982; Mountcastle et 

al., 1975), while beta-band ERD demonstrated a network of contralateral frontal and bilateral 

posterior parietal regions. Alpha-band ERD in parietal regions enhances processing of task-

relevant sensory information (Klimesch et al., 2007; Pfurtscheller & Klimesch, 1991), while 

beta-band connects somatosensory regions to higher-order parietal and frontal regions 

(Adhikari et al., 2014). Contrary to our hypothesis, hedonic estimations generally 

demonstrated a decrease in ERD relative to sensory and no estimation conditions. Positivity 

and negativity are proposed to serve as bipolar opposites, implying that an increase in one 

dimension corresponds to a decrease in the other (Becker et al., 2019; Wundt, 1897). A fMRI 

meta-analysis suggests regions of the prefrontal and anterior cingulate cortex demonstrate 

dissimilarity in concordant activation to positive and negative affect, supporting bipolarity in 

regions of the brain (Lindquist et al., 2016). Pleasant and unpleasant stimuli may result in 

differential changes in ERD/S, which cancel out activation when averaging trials across both 

types of hedonic estimations (negative/positive). The interaction effect between texture and 

estimation type supports this hypothesis, as differences were observed between hedonic 

estimations of hessian and silk in frontal, temporoparietal and occipital regions.  

Hedonic estimations of hessian elicited significantly greater ERD than silk in 

contralateral temporoparietal beta-band. Decreases in beta-band power are associated with 

increased subjective preference for food, face, olfactory, auditory, and thermal stimuli (Bauer 

et al., 2015; Son & Chun, 2018; Tashiro et al., 2019; Yuan & Liu, 2022). In temporoparietal 

regions, beta-band power distinguishes pleasant from unpleasant tactile stimuli during 

passive stimulation of the hairy skin, where the least preferred texture elicited greater ERD 

than more preferred textures (Singh et al., 2014). Further, ERPs elicited in response to rough 
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tactile gratings were found to originate from the insular cortex (Ballesteros et al., 2009), a 

region tightly linked with the processing of hedonic preference (Morrison, 2016; Perini et al., 

2015). Increased temporoparietal beta-band ERD during hedonic ratings of hessian may be 

due to activation of higher-order somatosensory association regions, with the insula 

potentially playing a role in distinguishing the hedonic value of perceived unpleasant tactile 

stimuli. 

Activation of visual areas by tactile stimulation with textured surfaces suggests the 

role of the visual cortex in integrating visuo-haptic information to facilitate texture perception 

(Eck et al., 2013, 2016; Merabet et al., 2007; O’Callaghan et al., 2018; Sathian, 2016; Sathian 

et al., 2011; Simões-Franklin et al., 2011; Stilla & Sathian, 2008). The textured stimuli were 

visible to participants in this study, suggesting that alpha- and beta-band ERD in occipital 

areas reflects cross-modal visuo-haptic processing. Previous fMRI investigations of haptic 

texture processing demonstrate that estimation of surface roughness activates visual areas 

(Eck et al., 2013, 2016; Sathian et al., 2011; Stilla & Sathian, 2008), and visual texture 

modulates pleasantness ratings of haptically explored textures (Etzi et al., 2018). Therefore, 

increased occipital ERD during hedonic estimation of rough textures may reflect greater 

reliance on visual information than haptic information in sensory and no-estimation tasks. 

However, further investigation is necessary to confirm this hypothesis. 

Increased alpha-band ERD was observed in contralateral frontal regions, both 

medially and laterally, during hedonic estimations of hessian relative to silk. The OFC has 

previously been implicated in the processing of a range of un/pleasant stimuli, including 

scents, words, temperature, and touch stimuli (Frey et al., 2009; Grabenhorst et al., 2007; 

Kringelbach, 2005; Lewis et al., 2007; Rolls et al., 2003a, 2003b, 2008; Rolls, 2010, 2020). 

The observed frontal activation may correspond to the DLPFC, which demonstrates increased 
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activation during estimation and comparison tasks with textured stimuli (Sathian et al., 2011; 

Simões-Franklin et al., 2011; Yang et al., 2017), and may reflect storage of tactile 

information in working memory to later inform estimation tasks (Barbey et al., 2013; Zhao et 

al., 2018a). Notably, a recent investigation of texture processing during active exploration of 

surface textures with functional near-infrared spectroscopy revealed prefrontal activation 

related to hedonic preference (Marschallek et al., 2023), further demonstrating the critical 

role of the prefrontal cortex in hedonic processing and estimation of surface texture during 

active touch. 

The use of force plate technology to investigate texture perception during active touch 

increases ecological validity by allowing participants to optimise their exploratory procedure 

to gather somatosensory information. This approach also enables accurate data fusion, 

allowing for the time-locking of ERD/S to the onset of tactile exploration, and the removal of 

noisy trials with atypical touch behaviour, and the recording of touch behaviour such as load, 

friction and speed (Henderson et al., 2022). Interestingly, load increased for estimation tasks 

compared to no estimation tasks, suggesting exploratory behaviour varies by task type. 

Previous research shows that roughness estimates are modulated by exerted force, revealing a 

link between haptic exploration and perception of surface and object properties (Lederman & 

Taylor, 1972; Tanaka et al., 2014). Tactile data was also used by implementing covariates on 

a single-trial basis to account for variance in touch behaviour and understand the invariant 

effect of texture and estimation on the neural response, therefore, ERD differences seen 

between conditions cannot be ascribed to behavioural differences in active touch.  

However, the present study is limited in replicating natural tactile experiences due to 

the use of forearm support and the EEG laboratory setting. Participants were also exposed to 

the two textured stimuli repeatedly over the testing period, which could lead to sensory 
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desensitisation (Klingner et al., 2011; Graczyk et al., 2018), though, repeated trials are 

necessitated by the time-frequency method (Cohen, 2017). Nevertheless, subjective ratings 

showed that participants were not desensitised to the textured stimuli per se, but rather 

sensitised to unpleasant rough stimuli. Furthermore, each block contained all three types of 

trial, which aimed to maximise participant engagement. However, this choice of task may be 

limited by the potential influence of prior knowledge from the estimation trials on 

participants' responses during the no-estimation trials. Additionally, active touch paradigms 

inherently increase the likelihood of motor-related artefacts in EEG data. However, despite 

this limitation, studying active touch is crucial for enhancing ecological validity and gaining 

insights into the potential unique neural mechanisms associated with active touch. 

This study offers novel insights into texture perception during active touch and 

highlights the potential to improve ecological validity in future research by using force plate 

technology. In particular, the current paradigm  may be used with neuroimaging methods 

with higher spatial resolution, such as magnetoencephalography, to explore the involvement 

of region-specific processing during hedonic estimation of texture. Additionally, future 

investigation should consider increasing the number of stimuli; this could be achieved using a 

gel-based EEG system which allows for longer recording times compared to saline-based 

EEG systems. Alternatively, employing neuroimaging techniques, such as functional near-

infrared spectroscopy, that requires fewer trials for averaging could be explored (Marschallek 

et al., 2023). 

In conclusion, the study found that active exploration of textures had differential 

impacts on oscillatory brain activity, with rough textures increasing alpha-band ERD in 

contralateral sensorimotor regions. Hedonic processing of rough textures elicited increased 

temporoparietal beta-band and frontal alpha-band ERD, indicating selective activation of 
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higher-order brain regions for the processing of less preferred stimuli. Future research should 

continue to explore the neural mechanisms underlying the perception of textures during 

active touch, and their modulation by different modes of stimulation and cognitive tasks. 
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Abstract  

Texture changes occur frequently during real-world haptic explorations, but the neural 

processes that encode perceptual texture change remain relatively unknown. The present 

study examines cortical oscillatory changes during transitions between different surface 

textures during active touch. Participants explored two differing textures whilst oscillatory 

brain activity and finger position data were recorded using 129-channel EEG and a purpose-

built touch sensor. These data streams were fused to calculate epochs relative to the time 

when the moving finger crossed the textural boundary on a 3D-printed sample. Changes in 

oscillatory band power in alpha (8–12 Hz), beta (16–24 Hz) and theta (4–7 Hz) frequency 

bands were investigated. Alpha-band power reduced over bilateral sensorimotor areas during 

the transition period relative to ongoing texture processing, indicating that alpha-band activity 

is modulated by perceptual texture change during complex ongoing tactile exploration. 

Further, reduced beta-band power was observed in central sensorimotor areas when 

participants transitioned from rough to smooth relative to transitioning from smooth to rough 

textures, supporting previous research that beta-band activity is mediated by high-frequency 

vibrotactile cues. The present findings suggest that perceptual texture change is encoded in 

the brain in alpha-band oscillatory activity whilst completing continuous naturalistic 

movements across textures.   
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7.1 Introduction 

The human brain processes ongoing sensory information by comparing incoming sensory 

information to previous stimulation, which enables humans to detect changes in their 

environment (Laufer et al., 2008). As humans, we explore our haptic environment through 

active touch and the glabrous skin on our hands and digits (Gibson, 1962; Wagner & Gibson, 

2016). Active touch is integral in identifying and evaluating objects and surfaces by 

optimising contact pressure, speed, and velocity (Lederman & Klatzky, 2009). The present 

study aimed to investigate how the brain encodes continuous tactile information associated 

with changes in touch experience by assessing neural oscillations related to perceptual texture 

change.  

Processing of stimulus change in the brain has previously been investigated using 

EEG and oddball tasks (Naatanen et al., 1978), wherein participants are exposed to one 

repetitive stimulus and then presented with a novel oddball stimulus. This type of paradigm 

results in an ERP response called mismatch negativity (MMN); a correlate of auditory change 

perception that peaks around 100–300 ms following novel stimuli (Näätänen et al., 2005, 

2007). Though primarily studied in the auditory domain, MMN effects have been reported in 

other sensory modalities such as vision (Stefanics et al., 2014) and somatosensation (sMMN; 

Butler et al., 2011, 2012; Chen et al., 2014; Hu et al., 2013; Restuccia et al., 2007). Oddball 

paradigms present stimuli for fixed intervals with a period of rest prior to stimulation, thus 

revealing information about the brain processing of individual events and features. A 

drawback of this approach is that this type of stimulation is not representative of real-world 

experiences, where ongoing sensory processing occurs, and change detection is an additive 

experience rather than an isolated feature. 
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In contrast to ERP analysis, investigating neural oscillations using time-frequency 

analysis provides a more accurate representation of ongoing sensory processing in the brain, 

by offering insights into neuronal synchrony and ongoing inter-neuronal communication 

(Mathalon and Sohal, 2015; Morales and Bowers, 2022). This approach enables the 

investigation of the summation of neural oscillations and ongoing changes in the brain in 

response to external stimuli (Cohen, 2014). Alpha-band and beta-band oscillations are 

attenuated during tactile stimulation or voluntary movement (Chatrian et al., 1958; 

Pfurtscheller, 1981; Salmelin and Hari, 1994) over the primary somatosensory and motor 

cortices, respectively (Brovelli et al., 2004). Attenuation of alpha- and beta-band oscillations 

are thought to reflect increased cortical activation, whereas the presence of synchronous 

oscillations is indicative of cortical areas at rest (Pfurtscheller, 1992, 1999).  

Texture processing in the brain manifests bilaterally as attenuation of alpha-and beta-

band rhythms relative to a rest period (Genna et al., 2018; Henderson et al., 2022). Whilst 

active exploration of texture has been investigated with EEG (Henderson et al., 2022), the 

neural mechanisms that underpin the processing of texture change during naturalistic 

explorations are relatively unknown. Processing of rough and smooth textures demonstrate 

altered cortical responses, with smooth textures typically eliciting increased brain activation 

relative to rougher surfaces during passive tactile stimulation (Genna et al., 2018; Moungou 

et al., 2016). Comparatively, our recent study investigating the neural correlates of texture 

perception with active touch found increased attenuation of beta-band oscillations for smooth 

textures and increased attenuation of alpha-band oscillations for rough textures (Henderson et 

al., 2022). Taken together, the literature indicates that cortical changes which occur during 

texture processing are modulated by textural properties, such as surface roughness. Therefore, 

change detection in the brain during ongoing processing is also likely to demonstrate altered 

neural oscillatory response as an indication of encoding textural change.  
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Change detection in the brain has been previously investigated using time-frequency 

analysis of MMN ERPs, which revealed increased theta-band power across auditory 

(Fuentemilla et al., 2008; Hsiao et al., 2009; Ko et al., 2012), visual (Liang et al., 2017; 

Stothart & Kazanina, 2013), and somatosensory modalities during unattended pressure 

stimulation to the finger pad (Zhang et al., 2019). Theta-band oscillations have also been 

linked with top-down memory processes, which led to increased power in frontal midline 

regions (Klimesch, 1999; Klimesch et al., 2008). Further, ERPs in the time-domain are 

suggested to manifest as theta-band changes in the time-frequency domain (Bernat et al., 

2007; Harper et al., 2014). Therefore, theta-band power may reflect event-related changes in 

neural processing of texture change. However, it should be noted that findings from oddball 

tasks are not representative of complex environmental change, and therefore oscillatory brain 

activity may differ under active ongoing exploration.  

The present study utilised touch sensor technology to investigate cortical oscillatory 

changes in alpha-, beta- and theta-bands during active touch of two adjacent textures. A touch 

sensor was used to quantify touch behaviour in real-time and compute time markers from 

when the index finger crossed the point of texture transition. Time markers were 

subsequently integrated with EEG data to consider event-related changes in oscillatory 

activity. We hypothesised that brain oscillations would show differences related to texture 

change; specifically, there will be reductions in alpha- and beta-band power over 

sensorimotor areas related to perception of texture change. Further, we hypothesise that theta-

band power would increase as an oscillatory reflection of perceptual change mechanisms in 

frontal regions. A secondary analysis compared texture change from rough-to-smooth, 

relative to smooth-to-rough transitions. We hypothesised beta-band power would decrease 

over sensorimotor areas when transitioning from rough to smooth, whereas alpha-band power 

would decrease when transitioning from smooth to rough, demonstrating texture preference 
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for smoothness in frequency bands in line with our previous research.(Henderson et al., 

2022).   
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7.2 Method 

7.2.1 Participants  

Thirty-five participants were recruited with no history of any neurological condition, or 

aversion or allergies to any textures. Visual inspection of the data for the presence of any 

movement or muscle artefacts was conducted. Five participants were excluded due to over 

45% of trials being marked for rejection or when over 10% of channels were interpolated. 

The final sample included 30 participants (12 males, 2 left-handed), aged 28.43 ± 5.05 years 

(mean ± SD). Participants were reimbursed at a rate of £10 per hour for their time. The study 

was approved by the Research Ethics Committee of the University of Liverpool and all 

participants gave fully informed written consent at the start of the experiment in accordance 

with the Declaration of Helsinki.  

7.2.2 Procedure 

Participants were seated in a dimly lit Faraday cage with a 19-inch LCD monitor 

approximately 1 m in front of them. The tactile contrast task and practice trials were 

presented using PsychoPy (Peirce et al., 2019). Six-axis touch sensor and EEG data were 

recorded during the tactile contrast task. An elbow rest was used to stabilise and support the 

arm whilst maintaining position over the measuring plate of a six-axis touch sensor. The 

height and position of the support were adjusted for each participant.  

7.2.2.1 Stimuli 

Texture stimuli were designed using algorithms adapted from Kanafi (2022) implemented in 

MATLAB (The MathWorks, Inc., USA), which produce isotropic textures representative of 

rough surfaces found in the real-world with well-defined power spectral distribution (PSD) 

given by Equation 2: 
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Equation 2. Isotropic texture calculation. 

𝜙(|𝑞|) =

{
 
 

 
 
𝐶,

𝐶 (
|𝑞|

𝑞𝑟
)

𝑂,

−2(1 + 𝐻) 
,

 𝑖𝑓 𝑞0 ≤ |𝑞| ≤ 𝑞𝑟 .

 𝑖𝑓 𝑞𝑟 ≤ |𝑞| ≤ 𝑞1.

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

where C is a constant which determines roughness amplitude, 𝑞0 and 𝑞1 define the lower and 

upper limits of the wavenumbers q, and 𝑞𝑟 is the wavenumber above which the power 

spectral density is reduced with increasing wavenumber at a rate which is dictated by H, the 

Hurst roughness exponent. For the texture used in the study, 𝑞0 = 1200 rad/m, 𝑞1 =

3600 rad/m and 𝑞𝑟 = 2400. The corresponding range of wavelengths in the texture is from 

2.62–5.24 mm. The constant C was adjusted to achieve an RMS surface roughness of 

0.15 mm. 

Textured stimuli were manufactured as a 100 × 50 mm resin tile, produced with a 

Formlabs Form 3 Stereolithography (SLA) 3D printer, where 40 mm of the tile was smooth 

and 40 mm was rough, with a 10 mm transition period in the centre where the two textures 

merged (Figure 7.1). During naturalistic texture exploration, humans typically use lateral 

movement across interior surfaces rather than edges (Lederman & Klatzky, 1987). Therefore, 

it was important the stimuli did not include a sharp edge between the textures, as the 

perception of edge properties is more indicative of structure-related perception, such as 

shape, rather than a textural change. Thus, the transition period was implemented in the 

MATLAB algorithm to reduce the sharp edge between the two stimuli to investigate the 

neural processing of texture rather than other haptic features. The tile was mounted on the 

measuring plate of the touch sensor in a landscape position. 
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7.2.2.2 Tactile contrast task 

The tactile contrast task comprised of four blocks, each lasting approximately two minutes. 

Participants were instructed to use a unilateral movement with the distal phalanx of their right 

index finger to complete sweeps across the texture. An 18 mm circle, the average width of a 

human index fingertip (Srinivasan, 2003), was displayed on the screen to denote a finger 

sweep across a 10 cm line, in concordance with the 3D printed sample size. The dot moved 

across the plane at 2.5 cm/s; therefore, the index finger completed one sweep of the 3D 

texture in four seconds. Participants were trained to perform this movement prior to the 

experimental task by following the same visual cues whilst exploring an entirely smooth tile. 

Trials lasted four seconds and were performed back-to-back in a continuous block, meaning 

each block contained both smooth-to-rough transitions and vice-versa. Each block contained 

Figure 7.1 3D printed stimuli 100 mm × 50 mm where left is the smooth portion of the tile and right is the 

rough portion of the tile. Superior (A) and horizontal view (B). 
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30 trials (finger sweeps), totalling 120 trials over the experiment (60 trials per condition). 

Blocks were counterbalanced by starting texture (i.e., starting on smooth or rough). 

Participants kept their finger on the texture throughout the block. The researcher offered 

participants a break at the end of each block while changing the stage's orientation. 

7.2.3 Recordings 

EEG data were recorded continuously using a 129-channel sponge-based Geodesic sensor net 

(Magstim EGI, UK). The net positioning was aligned to three anatomical landmarks, two 

preauricular points and the nasion. Electrode impedances were kept below 50 kΩ. A 

recording band-pass filter was set at 0.001–200 Hz with a sampling rate of 1000 Hz. 

Electrode Cz was used as a reference electrode. The six forces and torques acting on the tile 

due to the finger touch were recorded using a Hopkinson Research six-axis sensor 

(Hopkinson Research, 2020), with a sampling rate of 1000 Hz. Finger position in the XY 

plane was calculated from the block averaged (100 Hz) forces and torques. 

7.2.4 Pre-processing 

EEG pre-processing was conducted using BESA v 6.1 (MEGIS GmbH, Germany). Eye 

blinks and electrocardiographic artefacts were removed using principal component analysis 

(Berg and Scherg, 1994), which allowed the researcher to assess the feasibility of 

components for each participant and each experimental block. Data were filtered using 0.5 

Hz high-pass and 100 Hz low-pass filters, with a notch filter (50 Hz ± 2 Hz). Data were 

visually inspected for the presence of any movement or muscle artefacts. Trials containing 

artefacts were excluded from subsequent analyses. EEG signals were downsampled to 256 

Hz and re-referenced using the common average method (Lehmann, 1984).  
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Six-axis sensor data were cleaned and visually inspected using in-house software 

developed in Python 3 (van Rossum & Drake, 2009). Data were epoched relative to the visual 

trial onset marker. Trials were rejected when 25% of samples were missed due to recording 

issues. Texture transition was calculated from position data from when the finger position 

crossed ± 5 mm on the x-axis corresponding to the centre point of the sample which 

corresponds to a timepoint within the transition period from one texture to the other. Relative 

time from the visual trigger to the texture transition was calculated. After EEG and six-axis 

sensor pre-processing were complete, the average number of trials for each condition across 

all participants was: smooth to rough, 39.57 ± 9.77; rough to smooth, 41.70 ± 7.78. The 

average number of accepted trials did not differ across conditions (𝑝 > 0.05).  

7.2.5 Analysis 

Texture transition markers were computed relative to trial onset marker times, which were 

synchronised to EEG data. Data were epoched −2–2 s relative to the transition marker. The 

power spectra were computed in MATLAB (The MathWorks, Inc., USA) using Welch’s 

power spectral estimate method. The power spectral densities were computed from 1 s 

windows shifted in overlapping 0.01 s increments to yield a power time series of 400 points. 

Data were smoothed using a Hanning window. The power spectral densities were estimated 

in the range of 1–80 Hz with a frequency resolution of 1 Hz. Z-values were computed after 

the power calculation at each time bin using the median and median absolute deviation 

(MAD) across trials and conditions (Arnal et al., 2015; Klimesch et al., 1998; Pfurtscheller, 

1999). Comparing the period texture change to an active baseline of texture processing during 

active touch allows for the isolation of the neural correlates associated with the phenomena of 

texture change detection during active touch. Therefore, the obtained z-transformed power 

values were evaluated prior to texture change (−650 – −200 ms) and during texture change 

(0–450 ms). The pre-transition period was selected as an active baseline instead of a pre-
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stimulus baseline with rest, as ongoing tactile perception provides a more naturalistic 

paradigm to investigate the complexities of sensory experience during perceptual change 

paradigms; this approach has been previously demonstrated in EEG research investigating 

auditory and visual change detection within complex scenes and environments (Boubenec et 

al., 2017; Kelly & O’Connell, 2013; O’Connell et al., 2012).  

Permutation analyses with 5000 repetitions were implemented using statcond.m from the 

EEGLAB library (Delorme & Makeig, 2004; Maris & Oostenveld, 2007). The permutation 

analysis was conducted as an exploratory data analysis across all 128 electrodes with power 

averaged over the time period and frequency band of interest. This approach helps to reduce 

the likelihood of Type 1 errors while improving the statistical power of the analysis (Maris, 

2004; Maris & Oostenveld, 2007). Identified electrodes showing significant differences 

between conditions (𝑝 < 0.05) were grouped into clusters based on spatial neighbours, and 

changes in absolute power z-scores subjected to paired samples t-test to investigate the 

direction of the effect. The results were corrected for multiple comparisons using the 

Bonferroni correction. Artefactual data were removed from identified electrodes where the z-

score exceeded 5 MAD, in line with previous recommendations on identification of statistical 

outliers (Thatcher et al., 2019). 

To assess the variability in the unilateral finger exploration, mean load (g) was computed 

for each pre-transition and transition period used in the EEG analysis. These data were then 

averaged over each participant and compared using paired samples t-test.    
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7.3 Results 

7.3.1 Load 

Mean values of total load were 30.45 ± 19.54 g (M ± SD) for the pre-transition period, and  

50.44 ± 5.05 g during the transition period.  A paired samples t-test demonstrated no 

significant difference between load in the two time periods. 

7.3.2 EEG 

Absolute power, normalised with a z-score transformation, was evaluated during pre-

transition texture processing (−650 – −200 ms) and during texture transition (0–450 ms). 

Permutation analyses with 5000 repetitions (𝑝 < 0.05) identified one contralateral electrode 

and a cluster of two ipsilateral electrodes which demonstrated statistically significant effects 

of texture change, regardless of texture change direction, when compared to pre-transition 

texture processing in alpha-band (8–12 Hz). Both were located over bilateral sensorimotor 

areas. Permutation analysis found no statistically significant electrodes for beta- (16–24 Hz) 

or theta-band (4–7 Hz) when comparing pre-transition texture processing to texture transition. 

Further, texture transition was then split by condition for comparison of oscillatory changes 

associated with smooth-to-rough transitions and vice-versa. When comparing the two 

conditions using permutation analysis, one central electrode demonstrated a statistically 

significant effect of direction of texture change during the transition period for beta-band, 

whereas no statistically significant effect was identified for alpha- or theta-band.  

Paired samples t-tests were computed for electrodes identified by permutation 

analysis. A significant decrease in alpha-band power during texture change when compared 

to ongoing texture processing was revealed for the contralateral electrode identified 

(electrode 35), 𝑡(29) = 3.57, 𝑝 = 0.001, Figure 7.2A. A cluster of two electrodes over 
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ipsilateral sensorimotor regions (110 and 103, C6 according to the 10-10 system; Luu & 

Ferree, 2005) were found to be significant, Figure 7.2C. Paired samples t-test demonstrated a 

significant decrease in alpha-band power during texture transition relative to pre-transition 

texture processing, 𝑡(29) = 3.03, 𝑝 = 0.005. 
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Figure 7.2 Time–frequency spectrograms for electrode 35 (A) and cluster one (electrodes 103 and 110) (D), 

black boxes indicate the time (pre-transition texture processing −600 – −200, and transition processing 0–450 

ms) and frequency (8–12) Hz) where significant effects were identified. The half violin plots depict the 

probability distributions of the data in electrode 35 (C) and cluster one (electrodes 103 and 110) (F). The 

individual dots show data points from each participant. The boxplots indicate the median, upper and lower 

quartiles, as well as the interquartile range (IQR) between the 25th and 75th percentile, whilst the whiskers 

represent scores outside of the IQR. Grand average topographic maps for the alpha-band are shown, with 

electrode 35 (B) and electrodes 110 and 103 (E) locations overlayed.  
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In the beta-band, a statistically significant effect was identified over central 

sensorimotor regions in electrode 55, Figure 7.3. Transitioning from rough to smooth textures 

demonstrated a significant decrease in power when compared with transitioning from smooth 

to rough, 𝑡(29) = 3.03, 𝑝 = 0.005. 



 

169 

 

 

Figure 7.3 Time–frequency spectrograms for electrode 55 for smooth to rough transition (A) and rough to 

smooth transition (B), black boxes indicate the time (0–450 ms) and frequency (16–24) Hz) where statistically 

significant effects were identified. The half violin plots depict the probability distributions of the data in 

electrode 55 (D). The individual dots show data points from each participant. The boxplots indicate the median, 

upper and lower quartiles, as well as the IQR between the 25th and 75th percentile, whilst the whiskers 

represent scores outside of the IQR. Grand average topographic maps for beta-band are shown, with electrode 

55 location overlayed (C).  
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7.4 Discussion  

The present study aimed to establish how the brain encodes texture change by assessing 

oscillatory differences in alpha-, beta- and theta-bands as the finger transitions from one 

texture to another during active touch exploration. Texture transition produced significant 

differences in alpha and beta frequency bands, whereas no statistically significant effects 

were observed in theta-band. In line with our hypothesis, alpha-band power over 

sensorimotor cortical regions decreased during texture transition when compared to pre-

transition texture processing. Further, beta-band power decreased during texture transition 

when transitioning from rough-to-smooth textures over central regions, relative to smooth-to-

rough trials, supporting previous findings from our lab (Henderson et al., 2022). Results 

indicate that perceptual texture change is observable in oscillatory brain activation patterns 

recorded by EEG under a naturalistic paradigm.  

Bilateral decreases in alpha-band power were observed for texture transition relative 

to pre-transition texture processing over sensorimotor regions. Alpha-band power is 

associated with bilateral activation following tactile stimulation (Tamè et al., 2016; Genna et 

al., 2018), wherein a decrease in power, or attenuation of oscillations, signifies an increase in 

cortical processing (Cheyne et al., 2003; Gaetz and Cheyne, 2006). The present results 

indicate that it is likely that alpha-band oscillations also reflect perceptual texture change 

mechanisms in the brain, which manifests as increased cortical activation (decrease in power) 

to encode novel or changing tactile input from mechanoreceptors. Previous research with 

active touch has suggested that alpha-band power is also associated with roughness, wherein 

rougher textures increase cortical activation (Henderson et al., 2022), whilst passive touch 

research reports increased cortical activation for smoother textures (Ballesteros et al., 2009; 

Moungou et al., 2016; Genna et al., 2018). In contrast to our hypothesis, the present study 
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demonstrated no significant effect in alpha-band when comparing rough to smooth transition 

and vice-versa. This suggests that the effects found in alpha-band for this study are 

representative of change detection, rather than roughness modulation. Therefore, it is possible 

that the role of alpha-and oscillations during change detection differs from that during 

roughness encoding in tactile stimulation, though further research is necessary to confirm this 

hypothesis. 

Beta-band power was decreased over central sensorimotor regions when comparing 

transition from rough to smooth with the opposite condition. This supports our hypothesis 

that smooth textures increase cortical activation in the beta-band and accords with previous 

studies using passive (Genna et al., 2018; Moungou et al., 2016) as well as active touch 

paradigms (Henderson et al., 2022). The duplex theory states that the perception of fine 

textures is mediated by high-frequency vibrations from tactile elements (Hollins & Risner, 

2000; Katz, 1925, 1989). Previous research suggests that beta-band activity is mediated by 

vibration intensity (Park et al., 2021), which contributes to observed difference in the EEG 

signal between rough and smooth textures (Henderson et al., 2022). Interestingly, the present 

study demonstrated that texture modulates beta-band power during transitioning between two 

textures, which, to the best of our knowledge, is the first instance demonstrating this effect.  

Increased frontal theta-band oscillations have previously been shown to coincide with 

the enhancement of the sMMN component (Zhang et al., 2019). We hypothesised that such 

components may be visible in theta-band changes in time-frequency analysis. However, in 

this naturalistic active touch paradigm, perceptual texture change did not modulate theta-band 

power per se. Therefore, identification of change detection ERP components may not be 

detectable with the current temporal resolution (100 Hz) computation of time markers. Time-

locking may need to be more precise to directly compare well known change perception 
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ERPs, such as the sMMN, in ongoing time-frequency changes. However, this is the first 

known study to investigate change perception in active touch in a naturalistic paradigm, 

offering a more ecologically valid approach than previous oddball paradigms with stationary 

participants. Therefore, it is also possible that ERP correlates of change detection seen in 

previous studies differ, or are not present, when performing ongoing explorations of texture. 

The present study used continuous tactile stimulation to investigate perceptual texture 

change in the way that we typically encounter it in our environment, as change occurring on 

top of an ongoing sensory experience (Gallace et al., 2006, 2007). Contrasting with rest 

improves the signal-to-noise ratio of post-stimulus activity (Toro et al., 1994). There was no 

rest period included in this paradigm, which incidentally reduces the signal-to-noise ratio and 

results in small effect sizes due to the comparison of brain oscillations with active baseline 

conditions. However, to understand the features of change detection, it was essential to 

compare texture change to ongoing tactile perception. Previous EEG research has 

investigated perceptual change detection using complex ongoing auditory (Boubenec et al., 

2017) and visual stimuli (Kelly & O’Connell, 2013; O’Connell et al., 2012). Therefore, 

ongoing stimulation is appropriate for perceptual change paradigms, as they allow researchers 

to understand the complexities of sensory experience during more naturalistic tasks. Though 

future paradigms may also benefit from a period of pre-stimulus rest to improve the signal-to-

noise ratio for additional analyses in tandem with an active baseline approach.  

There are limitations to the present design. As a lab-based study, and due to the trial 

requirements for time-frequency EEG analysis (Cohen, 2016), participants were exposed to 

the two textured stimuli repeatedly over the course of the experiment. Therefore, it is likely 

that changes in texture were predictable, which may have developed expectations and 

diminished stimulus novelty. Further, repeated stimulation may have led to sensory 
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desensitisation (Graczyk et al., 2018; Klingner et al., 2011) and reduced task engagement 

(Lelis-Torres et al., 2017). However, repeated trials are necessitated by the time-frequency 

method (Cohen, 2016). Future research could consider the use of one repetitive stimulus 

embedded within a more complex paradigm with various novel stimuli and various 

gradations of intensity to manipulate the degree to which the textural change was detectable 

whilst maintaining novelty, engagement and reducing desensitisation. 

In conclusion, the present study demonstrates that alpha-band activity is related to 

perceptual texture change during continuous texture exploration, whilst beta-band may be 

linked to the processing of vibrotactile cues. Therefore, this study hypotheses that alpha- and 

beta-band both play a functional role in acting as a change detection mechanism as well as 

processing surface properties of the texture, respectively (Henderson et al., 2022). However, 

the neural underpinnings of texture processing require further elucidation. Future research 

should consider using active exploration of one repetitive stimulus alongside various novel 

stimuli, which will enable researchers to maintain novelty and test the hypothesis that alpha-

band activity encodes perceptual texture change. To our knowledge, the results demonstrate 

for the first time that the encoding of textural change detection can be measured in the brain 

during ongoing active exploration of surfaces.   



 

174 

 

Chapter 8 

General Discussion  

Previously, regions of the brain associated with texture processing have been investigated 

using a wide range of paradigms and stimuli, making it challenging to draw conclusions from 

individual studies. One aim of this thesis was to identify brain areas that are consistently 

activated during texture processing by conducting an ALE meta-analysis. Additionally, 

texture-specific processing was investigated by contrasting texture processing with other 

haptic processes. Moreover, the investigation of the neural basis of texture processing in the 

brain using EEG methods has previously focused on passive stimulation paradigms, due to 

the necessity of time-locking the EEG signal to the onset of an event. As a result, the neural 

correlates of texture processing during active touch were not well understood. The EEG 

experimental chapters in this thesis aimed to uncover the temporal characteristics of texture 

processing during active touch by evaluating changes in oscillatory brain activity. 

Furthermore, texture estimation tasks are known to modulate the BOLD response, despite 

this, electrophysiological characteristics of texture processing and estimation of surface 

features had yet to be delineated. This thesis set out to investigated how tactile estimation of 

sensory and hedonic features of textures modulated oscillatory activity, aiming to uncover the 

potential involvement of higher-order brain regions. Finally, this thesis explored the brain's 

response to texture change detection. To achieve these aims, more naturalistic conditions 

were simulated by including ongoing active tactile exploration, rather than utilising classical 

methods that include structured trials with long periods of rest. 
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8.1 Summary of findings 

• The general processing of textures evoked contralateral primary somatosensory and motor 

regions, with bilateral activations in the secondary somatosensory, insula, premotor and 

supplementary motor cortices (Chapter 4). 

• Texture-specific processing was found to elicit activation in the contralateral SII, and the 

SI, MI and IPL were found to be selectively activated when contrasting general texture 

processing with texture-specific processing (Chapter 4).  

• Rougher textures, when compared to smooth and soft textures, were associated with 

increased alpha-band ERD in contralateral sensorimotor regions (Chapter 5 & Chapter 6). 

• Smooth and soft textures, when compared to rough textures, induced greater beta-band 

ERD in bilateral and central sensorimotor regions (Chapter 5 & Chapter 7, respectively). 

• Sensory and no estimations were found to increase ERD relative to hedonic estimations in 

ipsilateral parietal alpha-band and in a network of contralateral frontal and bilateral 

posterior parietal regions for beta-band (Chapter 6). 

• Hedonic estimations of rough compared to smooth textures elicited greater contralateral 

frontal alpha-band ERD, increased beta-band ERD in contralateral temporoparietal 

regions, and produced stronger occipital ERD in both alpha- and beta-band (Chapter 6).  

• Change detection of texture manifested as a reduction of alpha-band power in bilateral 

sensorimotor regions (Chapter 7).  

• Appropriate consideration of experimental design, particularly baseline or control 

comparisons, is crucial when investigating the neural correlates of texture perception and 

ongoing texture processing (Chapter 4 & Chapter 7).  



 

176 

 

8.2 Themes  

The experimental chapters (Chapter 4–7) of this thesis discussed the individual results of four 

empirical studies, and multiple reoccurring themes were identified. The neural processes 

related to texture processing were investigated using fMRI meta-analysis (Chapter 4) and 

EEG measures (Chapter 5–7). The use of ALE meta-analysis allowed for the identification of 

convergence of activation probabilities between independent research experiments. 

Concordant activation for texture processing was demonstrated in sensorimotor and premotor 

areas as well as higher-order activation in the SII and insula, while the contralateral SII 

elicited texture-specific activation when controlling for other haptic processes. Time-

frequency methods were used when employing EEG, which allowed for the investigation of 

the underlying cortical processes relating to different surface textures and tactile estimation. 

Oscillatory power was modulated by surface texture in bilateral sensorimotor areas. 

Estimation of surface texture demonstrated altered cortical excitability, which was further 

modulated when investigated across different textures. In addition, texture transition 

demonstrated that perceptual texture change is encoded in oscillatory activity.  

Chapter 5–7 utilised touch sensor technology to quantify active touch, allowing for 

the fusion of EEG and touch data. This new data-analysis pipeline was found to be crucial in 

analysing electrophysiological changes during active touch. Furthermore, Chapter 6 utilised 

touch behaviours as covariates on a single-trial basis, allowing for the investigation of the 

invariant effect of texture and estimation on the resulting neural response. The finding of 

texture-selective activation in the SII from the ALE meta-analysis led to a suggestion that 

future research should carefully consider baseline or control comparison used. Subsequently, 

the neural processing of texture change detection employed an active baseline of texture 
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exploration, allowing for the investigation of nuanced brain activity changes associated with 

texture change detection using a more naturalistic paradigm than previous research.  

8.2.1 Sensorimotor processing 

Across all experimental chapters in this thesis, texture processing was found to induce 

cortical activation across sensorimotor regions. Investigation of the spatial characteristics of 

texture processing with fMRI and ALE showed concordant activations for texture processing 

in contralateral SI and MI as well as the PMv and SMA (Chapter 4). The investigation of 

ERD/S changes associated with texture processing found ERD during active exploration of 

textures in contralateral alpha-band for one centroparietal electrode and bilateral beta-band in 

central and parietal electrodes (Chapter 5). In addition, active ongoing exploration of a 

textured tile was found to elicit a decrease in bilateral alpha-band power in contra- and 

ipsilateral central electrodes corresponding to sensorimotor regions (Chapter 7). Moreover, 

the observed decrease in alpha-band power was modulated by a change in texture, suggesting 

texture change detection may be reflected in alpha-band oscillatory activity from 

sensorimotor regions. Furthermore, touch behaviour was quantified and used as covariates in 

EEG analysis in Chapter 6. The results demonstrated contralateral ERD in sensorimotor 

regions, demonstrating the effect of texture on neural activity, even when accounting for 

corresponding changes in touch behaviour parameters such as load and friction generated. 

The effect of sensorimotor activation across all four experimental chapters suggests 

that texture processing during active touch recruits primary somatosensory and motor areas 

which are well-associated with tactile processing and motor control (Morley et al., 2007; 

Papitto et al., 2020; Raju & Tadi, 2021; Tamè & Holmes, 2016). In addition, voluntary 

movement, planning, and response behaviour are reflected through activation of the PMv and 

SMA (Davare et al., 2006, 2008, 2009; Fogassi et al., 2001; Reader & Holmes, 2018; Romo 
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et al., 2004; Tanji, 2001; Tanji & Shima, 1996; Vingerhoets et al., 2013), demonstrating 

activation of secondary motor areas during motor control in the context of texture processing. 

8.2.2 Textural properties modulate oscillatory activity 

In this thesis, Chapter 5 and Chapter 6 report the consistent pattern of increased alpha-band 

ERD for rough compared to smooth textures in contralateral sensorimotor regions. Previous 

attempts to investigate the neural correlates of texture processing via stimulation of the 

glabrous skin have depended upon passive stimulation paradigms to accurately time-lock the 

EEG signal to the onset of tactile stimuli. Passive touch research has contributed to the 

hypothesis that smoother textures elicit increased cortical activation in comparison to rough 

textures (Ballesteros et al., 2009; Genna et al., 2018; Moungou et al., 2016). Henderson et al. 

(2022) conducted the first study to quantify changes in ERD/S related to texture processing 

during active touch by utilising touch parameters recorded from touch sensor technology, 

these data were subsequently combined with the EEG signal to time-lock events (Chapter 4). 

This initial study found the contradictory finding of increased alpha-band ERD for rough 

compared to smooth textures, which was later corroborated by findings in Chapter 6. 

Findings suggest active exploration of texture elicits a differential pattern of activation in 

comparison to passive touch.  

Texture processing in the brain is an understudied area, and as a result, previous 

investigations have been limited. One issue is the lack of statistical power due to small 

sample sizes, ranging from 3–12 participants (Ballesteros et al., 2009; Eldeeb et al., 2019; 

Genna et al., 2016, 2017, 2018). Previously, for EEG analysis, it was arbitrarily 

recommended that a minimum of 20 participants should be included in the sample (Cohen, 

2016). The EEG chapters in this thesis (Chapter 5–7) have a sample size of 26–31 

participants, suggesting that the results from these investigations are more reliable and robust 
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than preceding. Furthermore, only one previous study has investigated the differences in 

processing varying textured stimuli with time-frequency analysis (Genna et al., 2018). 

Therefore, it is possible that the replicated finding presented in this thesis, of increased alpha-

band ERD during exploration of rough compared to smooth textures, may also be applicable 

across different stimulation paradigms, including passive touch. However, further research is 

necessary to confirm this. 

Previous fMRI findings suggest that the magnitude of the SI response to textured 

stimuli is greater in active touch conditions relative to passive touch (Simões-Franklin et al., 

2011), which is thought to reflect an efference copy of the motor command being sent to the 

SI (Ariani et al., 2022; Gale et al., 2021). The suppression of redundant movement-related 

feedback is believed to occur via the efference copy, which is sent to the forward model to 

predict sensory consequences. As a result, tactile stimulation that was not anticipated is 

enhanced. The large and irregular spatial patterns of rough textures may be more challenging 

to predict than smoother textures, which have a closer and more regular structure. Suggesting 

that smoother textures may be more supressed during active exploration and thus 

demonstrating increased alpha-band ERD for less anticipated rough textures. 

Although oscillatory activity in beta-band demonstrates bilateral modulation in 

sensorimotor regions for both smooth (Chapter 5 and Chapter 7) and soft textures (Chapter 

5), these results support the hypothesis that smooth textures increase cortical activation 

relative to rough textures. Therefore, differences in alpha- and beta-band activity may be the 

result of increased activation of different populations of LTMR in the glabrous skin. For 

instance, increases in beta-band ERD may be due to the higher frequency vibrations that arise 

when the fingertip scans smoother textures (Hollins & Risner, 2000; Katz, 1925, 1989), 

suggesting that beta-band may encode high-frequency vibrations (Park et al., 2021). 



 

180 

 

Conversely, alpha-band ERD may be modulated by pressure and skin deformation as well as 

low-frequency vibrations, which activate Merkel cells and Meissner corpuscles, respectively 

(Cascio & Sathian, 2001; Gamzu & Ahissar, 2001; Johansson & Vallbo, 1979; Vallbo et al., 

1995). The function of afferent fibres during active touch is understudied due to the 

methodological limitations of microneurography which requires participants to remain still 

with their muscles relaxed. To overcome this, numerical models have been developed to 

simulate the response of LTMR in the glabrous skin during different conditions (Gerling et 

al., 2014; Lesniak & Gerling, 2009; Saal et al., 2017; Wei et al., 2022). Notably, Wei et al. 

(2022) developed a model for predicting afferent tactile signals during active exploration and 

concluded that perception during active touch may rely on multiple coding mechanisms 

elicited by different classes of LTMR. Therefore, differences in alpha- and beta-band may 

reflect the different coding mechanisms in the brain.  

Importantly, the findings across experimental chapters demonstrate that texture 

properties can modulate neural response. This finding is particularly significant in Chapter 5–

7, which use touch sensor technology to accurately time-lock the EEG signal to the onset of 

exploration. Accurate time-locking is essential when investigating the response to stimuli in 

time-frequency analysis (Chatrian et al., 1958; Pfurtscheller, 1981; Pfurtscheller et al., 1993; 

Pfurtscheller & Neuper, 1992; Stancak et al., 2003; Stancak & Pfurtscheller, 1996a). 

Therefore, the additional process of computing accurate touch triggers has been shown to be 

crucial in the investigation of texture processing during active touch. 

8.2.3 Higher-order processing 

The findings from Chapter 4 and Chapter 6 of this thesis suggest the involvement of higher-

order brain structures in texture processing and hedonic preference. It has been hypothesised 

that the SII plays a role in higher-order texture processing, specifically as the region 
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responsible for discriminating roughness (Kitada et al., 2005; Sathian et al., 2011; Servos et 

al., 2001; Stilla & Sathian, 2008). The ALE meta-analysis (Chapter 4) found that the SII is 

selectively activated when contrasting texture perception with other forms of haptic 

processing (e.g., shape), thus highlighting its role in texture processing. Interestingly, this 

finding emerged from using an active haptic baseline and led to the suggestion that future 

research should carefully consider baseline or control comparisons when investigating the 

neural correlates of texture perception. This suggestion was carried forward to Chapter 7 

which used an active baseline of texture exploration to investigate oscillatory texture change 

mechanisms.  

Hedonic preference has long been associated with higher-order brain regions; 

however, it is thought that the processing of hedonic preference recruits anatomical regions of 

the prefrontal cortex, insula, and subcortical limbic structures, rather than higher-order 

texture processing regions such as the SII (Berridge & Kringelbach, 2015). Chapter 6 

supports this hypothesis, as ERD was increased for the least preferred stimuli in prefrontal 

and temporoparietal regions. Further, concordant activation was observed in the DLPFC 

during leave-one-out analysis, with contributing studies employing either estimation or 

comparison tasks (Chapter 4 Sathian et al., 2011; Simões-Franklin et al., 2011; Yang et al., 

2017). Interestingly, additional brain imaging research has identified prefrontal activation 

when discriminating speed (Bodegård et al., 2000), shape (Mueller et al., 2019; Stoeckel et 

al., 2003), haptic size (Perini et al., 2020), and dot patterns (Harada et al., 2004). Together 

this suggests that higher-order regions play a cognitive role in the evaluation and estimation 

of tactile properties, including surface texture and its hedonic value.  

Concordant activation during texture processing from bilateral insula was confirmed 

with ALE analysis, and increased temporoparietal beta-band ERD was hypothesised to 
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originate from the insula, in line with previous research (Ballesteros et al., 2009). The 

integration of sensation, emotion, and cognition is linked with activation of the insula (Craig, 

2002, 2009; Craig et al., 2000). Somatosensory and motor tasks engage the insula without the 

inclusion of cognitive or emotional evaluation (Kurth et al., 2010), although both increases in 

beta-band ERD and concordant activation were found when using estimation tasks. 

Therefore, this thesis suggests the role of the insula may be to integrate somatosensory 

information to inform higher-order cognitive decisions about textural properties or hedonic 

preference which warrants further research.  

8.3 Limitations 

Surface texture is often quantified by roughness/smoothness, hardness/softness, 

stickiness/slipperiness and warmth/cool (Lieber & Bensmaia, 2022). This thesis did not 

modulate surface temperature, thus focusing on texture processing through mechanoreceptors 

rather than thermoreceptors. The stimuli used in Chapter 5–7 are limited as they do not 

encompass the three remaining sensory continua. Instead, the stimuli focus on 

roughness/smoothness and softness/hardness, which were identified as they are argued to be 

the most salient dimensions of texture (Okamoto et al., 2013). However, in the real-world 

there is a wide range of diverse textures, most of which fall within the sensory continua 

outlined, though other distinctive surface attributes are not accounted for (e.g., fuzziness, 

bumpiness, velvetiness; Lieber & Bensmaia, 2022). EEG studies (Chapter 5–7) used two or 

three textures. This limited number of stimuli was necessary for the ERD/S method which 

requires repeated trials for each condition to obtain a good signal to noise ratio (Cohen, 

2016). Therefore, the current investigations cannot draw conclusions about all textures but 

rather make generalisations based on the properties of the textures used. 
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Findings from Chapter 5–7 are limited by the spatial resolution of EEG (Gage & 

Baars, 2018). This issue arises from cortical current traveling though organic matter with 

varying levels of conductivity, before being measured across multiple neighbouring 

electrodes on the scalp (Srinivasan et al., 1996). Thus, making it difficult to infer the location 

of neuronal activity in the cortex from EEG signals. Therefore, the limited spatial resolution 

should be considered when interpreting the findings of experimental chapters using EEG 

methods.  

The fMRI meta-analysis (Chapter 4) included 13 studies, which is less than the 

recommended 17 for a reliable ALE analysis (Eickhoff et al., 2016). Yet, recent guidance 

from Müller et al. (2018) advises that smaller sample sizes may be sufficient for conducting 

reliable meta-analyses when a strong effect is anticipated. Sensory paradigms with fMRI 

methods have shown higher reliability and stronger effects when compared with cognitive 

tasks (Bennett & Miller, 2010; de Haas, 2018; Han et al., 2022). Therefore, the 

somatosensory studies in the ALE analysis were expected to have a large effect size, 

suggesting that the results may be reliable. Although the sample size for the ALE analysis 

does not meet the recommended guideline, it does offer the most succinct coverage to reflect 

the currently available literature and provides promising recommendations for future 

research. 

The sample population recruited for the EEG experimental chapters mostly consisted 

of undergraduate and postgraduate students from the United Kingdom. Therefore, the sample 

is biased towards participants from western, educated, industrialised, rich, and democratic 

societies (Henrich et al., 2010). Furthermore, the grand average age across all three EEG 

studies was 28.21 ± 7.69. The inhibitory neurotransmitter GABA has been found to decline 

with age in healthy populations (Gao et al., 2013; Hall et al., 2010, 2011), which has been 
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linked to age-related reduction in beta-band power during movement (Bardouille & Bailey, 

2019; Heinrichs-Graham & Wilson, 2016; Spooner et al., 2019; Walker et al., 2020; Xifra-

Porxas et al., 2019). Furthermore, tactile acuity decreases with natural ageing (Brodoehl et 

al., 2013; McGlone & Walker, 2016; Stevens & Choo, 1996; Tremblay et al., 2000, 2005; 

Verrillo, 1979, 1980; Verrillo et al., 2002). Taken together, this suggests that the extent to 

which the findings from Chapter 5–7 can be generalised to other populations should be 

considered.  

8.4 Suggestions for future research  

Texture processing during active touch manifests as an increase in alpha-band ERD when 

exploring rough compared to smooth textures (Chapter 5 and Chapter 6), contradicting 

paradigms using passive touch (Ballesteros et al., 2009; Genna et al., 2018; Moungou et al., 

2016). Future research should aim to directly compare texture processing during passive and 

active touch to test the hypothesis that these different modes of stimulation result in distinct 

patterns of cortical activation. In addition, subsequent investigations should further 

manipulate surface roughness, by including a larger array of stimuli, to establish whether 

there is a linear relationship between cortical activation and textural properties.  

Compared to EEG, fMRI techniques have greater spatial resolution (Glover, 2011). 

This thesis proposes that higher-order regions show increased activation during hedonic 

estimations of hessian compared to silk (Chapter 6). In particular, deep subcortical limbic 

structures have been linked with hedonic preference (Berridge & Kringelbach, 2015). While 

EEG signals may indicate the activation of deep brain structures, as suggested by previous 

joint EEG–fMRI studies (Daly et al., 2019; Dehghani et al., 2023; Keynan et al., 2016), 

localising the exact sources of these signals remains challenging (Grech et al., 2008), leaving 

the contribution of subcortical regions in this process unclear. To address this gap, it is 
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necessary to conduct further investigations using neuroimaging methods with higher spatial 

resolution. Although the spatial resolution of fMRI is preferred for examining anatomical 

regions, the touch sensor used to quantify active touch is incompatible with the strong 

magnetic field that accompanies this research method, and the supine positioning of 

participants would make it difficult to place the touch sensor. Therefore, MEG may be a more 

suitable method for investigating texture processing during active touch with increased 

spatial resolution. Recently, a MEG pilot study of tactile processing during active touch was 

conducted to validate the use of tactile virtual reality by delivering piezoelectric simulations 

to the finger whilst scanning (Bhattacharjee et al., 2020). Data from one participant was 

presented, despite this small sample, promising results demonstrated movement-induced 

somatosensory evoked responses, suggesting that MEG may be appropriate for investigating 

texture processing during active exploration.  

Texture processing through active touch is important for discriminating textures and 

using tools for activities such as eating and writing. Individuals with sensory processing 

disorder may experience hypersensitivity, which can cause discomfort, pain, or avoidance of 

certain textures, or hyposensitivity to tactile stimuli, which manifests as a failure to register or 

respond to sensory inputs (Baranek et al., 2006; Foss-Feig et al., 2012; Lane et al., 2011). 

Furthermore, sensory processing disorder may co-occur with other conditions such as autism 

spectrum disorder, attention deficit hyperactivity disorder, and dyspraxia (Galiana-Simal et 

al., 2020). In addition, neuropathic pain syndromes, such as complex regional pain syndrome, 

can be accompanied by sensory and motor dysfunction (Harden et al., 2007, 2010). 

Specifically, complex regional pain syndrome is associated with a decrease in tactile acuity 

and changes in perception of hand shape and size due to functional reorganisation of the SI 

(di Pietro et al., 2015; Enax-Krumova et al., 2017; Lenz et al., 2011; Lewis & Schweinhardt, 

2012; Peltz et al., 2011; Pleger et al., 2004, 2005; Schwenkreis et al., 2009), potentially 
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leading to altered texture perception during active touch. The findings of texture processing 

in the brain should be considered for further research within clinical populations to aid our 

understanding of neurodevelopmental disorders and pain syndromes that are accompanied by 

sensorimotor disturbances.  

8.5 Concluding Remarks 

To conclude, this thesis employed new methods and data analysis pipelines to investigate the 

neural basis of texture processing during active touch. This thesis discovered novel cortical 

activation patterns during active touch. Exploration of rough textures led to increased alpha-

band ERD, whilst smooth textures elicited increased beta-band ERD, demonstrating altered 

cortical activation from previous passive touch paradigms which offers important new 

insight. Together, alpha- and beta-band ERD may demonstrate the brain’s response to 

different peripheral tactile coding mechanisms during active touch. The findings of this thesis 

also suggest that estimation of hedonic preference elicits higher-order processing in frontal, 

temporoparietal, and occipital regions. In addition, texture-specific processing was evidenced 

by selective activation in the SII, supporting the hypothesis that the SII is a higher-order 

tactile processing region. Interestingly, this thesis sets the groundwork for investigation of 

texture change processing in the brain by demonstrating differences in oscillatory activity, 

particularly in alpha-band power, during complex ongoing tactile exploration. It is hoped that 

future research will further elucidate the spatial and temporal characteristics of brain 

processing of texture during active touch, and eventually lead to greater understanding, or 

clinical applications for people with sensorimotor disturbances. 
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Appendices  

Supplementary material 1 

Thirteen leave-one-out analyses were conducted to assess the stability of the results. Below 

are the results from the primary analysis of texture perception > control each time excluding a 

different single study.  

Gurtubay-Antolin et al. (2018) 

Supplementary table 1. Locations of significant clusters when leaving out Gurtubay-Antolin et al. (2018). 

Cluster # Label  Volume (mm3) x y z # Experiments ALE 

1 Insula R 1760 58 -20 20 7 0.021 

Postcentral Gyrus R 
 

64 -16 22 0.021 

2 Postcentral Gyrus L 1648 -54 -20 48 8 0.023 

3 Precentral Gyrus L 1432 -48 6 24 7 0.019 

Precentral Gyrus L 
 

-58 8 28 0.014 

Precentral Gyrus L 
 

-58 2 32 0.012 

4 Insula L 1248 -36 -6 10 6 0.022 

Insula L 
 

-42 -4 2 0.014 

5 Inferior Frontal Gyrus R 984 50 8 24 4 0.025 

6 Insula R 832 40 -8 8 5 0.020 

7 Superior Frontal Gyrus R 832 4 16 48 4 0.018 

L, left hemisphere; R, right hemisphere. 
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Kim et al. (2015) 

Supplementary table 2. Locations of significant clusters when leaving out Kim et al. (2015).  

Cluster # Label  Volume (mm3) x y z # Experiments ALE 

1 Insula R 1840 58 -20 20 7 0.021 

Postcentral Gyrus R 
 

64 -16 22 0.021 

2 Precentral Gyrus L 1688 -48 6 24 7 0.019 

Precentral Gyrus L 
 

-58 8 28 0.014 

Precentral Gyrus L 
 

-58 6 14 0.013 

Precentral Gyrus L 
 

-58 2 32 0.012 

3 Inferior Parietal Lobule L 1480 -54 -22 48 7 0.022 

4 Insula L 1096 -36 -6 10 6 0.022 

Insula L 
 

-42 -4 0 0.013 

5 Inferior Frontal Gyrus R 1048 50 8 24 4 0.025 

6 Insula R 856 40 -8 8 5 0.020 

7 Superior Frontal Gyrus R 784 4 18 48 4 0.018 

8 Postcentral Gyrus L 728 -56 -20 20 4 0.017 

L, left hemisphere; R, right hemisphere. 

Kitada et al. (2005) 

Supplementary table 3. Locations of significant clusters when leaving out Kitada et al. (2005). 

Cluster # Label  Volume (mm3) x y z # Experiments ALE 

1 Precentral Gyrus L 1672 -48 6 24 7 0.019 

Precentral Gyrus L 
 

-58 8 28 0.014 

Precentral Gyrus L 
 

-58 6 14 0.013 

Precentral Gyrus L 
 

-58 2 32 0.012 

2 Postcentral Gyrus L 1488 -54 -20 50 7 0.022 

3 Postcentral Gyrus R 1376 64 -16 22 6 0.020 

Insula R 
 

54 -20 20 0.016 

4 Insula L 1328 -36 -6 10 6 0.022 

Insula L 
 

-42 -4 2 0.014 

5 Inferior Frontal Gyrus R 1032 50 8 24 4 0.025 

6 Insula R 856 40 -8 8 5 0.020 

7 Superior Frontal Gyrus R 784 4 18 48 4 0.018 

8 Middle Frontal Gyrus L 656 -42 40 12 3 0.019 

L, left hemisphere; R, right hemisphere. 
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Kitada et al. (2006) 

Supplementary table 4. Locations of significant clusters when leaving out Kitada et al. (2006). 

Cluster # Label  Volume (mm3) x y z # Experiments ALE 

1 Inferior Frontal Gyrus L 1512 -50 6 24 6 0.017 

Inferior Frontal Gyrus L 
 

-56 6 22 0.016 

Precentral Gyrus L 
 

-58 8 28 0.014 

Precentral Gyrus L 
 

-58 6 14 0.013 

Precentral Gyrus L 
 

-58 2 32 0.012 

2 Postcentral Gyrus R 1392 64 -16 22 6 0.021 

3 Postcentral Gyrus L 1328 -54 -20 48 7 0.021 

4 Insula L 1168 -36 -6 10 5 0.022 

5 Postcentral Gyrus L 768 -44 -12 58 4 0.016 

Precentral Gyrus L   -38 -20 52 0.013 

L, left hemisphere; R, right hemisphere. 

Mueller et al. (2019) 

Supplementary table 5. Locations of significant clusters when leaving out Mueller et al. (2019). 

Cluster # Label  Volume (mm3) x y z # Experiments ALE 

1 Insula R 1528 58 -20 20 5 0.021 

2 Postcentral Gyrus L 1400 -58 -22 46 7 0.019 

Postcentral Gyrus L 
 

-50 -28 56 0.010 

3 Insula L 1096 -38 -8 10 5 0.016 

Insula L 
 

-42 -4 2 0.014 

4 Precentral Gyrus L 888 -48 6 24 4 0.019 

5 Postcentral Gyrus L 832 -56 -20 20 4 0.017 

L, left hemisphere; R, right hemisphere. 
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Podrebarac et al. (2014) 

Supplementary table 6. Locations of significant clusters when leaving out Podrebarac et al. (2014). 

Cluster # Label  Volume (mm3) x y z # Experiments ALE 

1 Insula R 1760 58 -20 20 7 0.021 

Postcentral Gyrus R 
 

64 -16 22 0.021 

2 Postcentral Gyrus L 1648 -54 -20 48 8 0.023 

3 Precentral Gyrus L 1432 -48 6 24 7 0.019 

Precentral Gyrus L 
 

-58 8 28 0.014 

Precentral Gyrus L 
 

-58 2 32 0.012 

4 Insula L 1240 -36 -6 10 6 0.022 

Insula L 
 

-42 -4 2 0.014 

5 Inferior Frontal Gyrus R 984 50 8 24 4 0.025 

6 Superior Frontal Gyrus R 832 4 16 48 4 0.018 

7 Insula R 824 40 -8 8 5 0.020 

L, left hemisphere; R, right hemisphere. 

Sathian et al. (2011) 

Supplementary table 7. Locations of significant clusters when leaving out Sathian et al. (2011).  

Cluster # Label  Volume (mm3) x y z # Experiments ALE 

1 Insula R 1792 58 -20 20 7 0.021 

Postcentral Gyrus R 
 

64 -16 22 0.021 

2 Postcentral Gyrus L 1704 -54 -20 48 8 0.023 

3 Inferior Frontal Gyrus L 1056 -58 6 22 5 0.016 

Precentral Gyrus L 
 

-58 8 28 0.014 

Precentral Gyrus L 
 

-58 2 32 0.012 

4 Inferior Frontal Gyrus R 1008 50 8 24 4 0.025 

5 Superior Frontal Gyrus R 864 4 16 48 4 0.018 

6 Insula L 760 -38 -6 8 4 0.015 

Insula L 
 

-42 -4 2 0.014 

7 Postcentral Gyrus L 656 -44 -12 58 4 0.016 

Precentral Gyrus L 
 

-38 -20 52 0.013 

8 Postcentral Gyrus L 632 -56 -20 20 4 0.017 

L, left hemisphere; R, right hemisphere. 
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Simões-Franklin et al. (2011) 

Supplementary table 8. Locations of significant clusters when leaving out Simões-Franklin et al. (2011).  

Cluster # Label  Volume (mm3) x y z # Experiments ALE 

1 Postcentral Gyrus L 1560 -54 -20 48 6 0.023 

2 Precentral Gyrus L 1360 -48 6 24 6 0.019 

Precentral Gyrus L 
 

-58 6 14 0.013 

3 Insula R 1328 54 -22 20 6 0.018 

Inferior Parietal Lobule R 
 

64 -16 24 0.017 

4 Inferior Frontal Gyrus R 992 50 8 24 4 0.025 

5 Insula R 872 40 -8 8 5 0.020 

6 Insula L 864 -36 -6 10 4 0.021 

7 Postcentral Gyrus L 760 -56 -20 20 4 0.017 

8 Postcentral Gyrus L 744 -44 -12 58 4 0.016 

Precentral Gyrus L   -38 -20 52 0.013 

L, left hemisphere; R, right hemisphere. 

Stilla and Sathian (2008) 

Supplementary table 9. Locations of significant clusters when leaving out Stilla and Sathian (2008).  

Cluster # Label  Volume (mm3) x y z # Experiments ALE 

1 Insula R 1704 58 -20 20 7 0.021 

Postcentral Gyrus R 
 

64 -16 22 0.021 

2 Postcentral Gyrus L 1640 -54 -20 48 8 0.023 

3 Precentral Gyrus L 1424 -48 6 24 7 0.019 

Precentral Gyrus L 
 

-58 8 28 0.014 

Precentral Gyrus L 
 

-58 2 32 0.012 

4 Inferior Frontal Gyrus R 984 50 8 24 4 0.025 

5 Insula L 960 -38 -6 10 5 0.019 

Insula L 
 

-42 -4 2 0.014 

6 Superior Frontal Gyrus R 832 4 16 48 4 0.018 

L, left hemisphere; R, right hemisphere. 
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Tang et al. (2021) 

Supplementary table 10. Locations of significant clusters when leaving out Tang et al. (2021).  

Cluster # Label  Volume (mm3) x y z # Experiments ALE 

1 Precentral Gyrus L 1440 -48 6 24 7 0.019 

Precentral Gyrus L 
 

-58 8 28 0.014 

Precentral Gyrus L 
 

-58 2 32 0.012 

2 Insula R 1400 58 -20 20 5 0.021 

3 Insula L 1248 -36 -6 10 6 0.022 

Insula L 
 

-42 -4 2 0.014 

4 Inferior Parietal Lobule L 1224 -54 -22 48 6 0.019 

5 Inferior Frontal Gyrus R 984 50 8 24 4 0.025 

6 Insula R 840 40 -8 8 5 0.020 

7 Superior Frontal Gyrus R 840 4 16 48 4 0.018 

L, left hemisphere; R, right hemisphere. 

Wang et al. (2016) 

Supplementary table 11. Locations of significant clusters when leaving out Wang et al. (2016).  

Cluster # Label  Volume (mm3) x y z # Experiments ALE 

1 Insula R 1408 58 -20 20 6 0.021 

2 Insula L 1272 -36 -6 10 6 0.022 

Insula L 
 

-42 -4 2 0.014 

3 Postcentral Gyrus L 1248 -54 -20 48 6 0.023 

4 Precentral Gyrus L 1040 -48 6 24 5 0.019 

Precentral Gyrus L 
 

-58 8 30 0.013 

Precentral Gyrus L 
 

-58 2 32 0.012 

5 Inferior Frontal Gyrus R 968 50 8 24 4 0.025 

6 Superior Frontal Gyrus R 864 4 16 48 4 0.018 

7 Insula R 848 40 -8 8 5 0.020 

8 Postcentral Gyrus L 664 -56 -20 20 4 0.017 

L, left hemisphere; R, right hemisphere. 
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Yang et al. (2017) 

Supplementary table 12. Locations of significant clusters when leaving out Yang et al. (2017). 

Cluster # Label  Volume (mm3) x y z # Experiments ALE 

1 Postcentral Gyrus R 1440 64 -16 22 6 0.020 

2 Postcentral Gyrus L 1400 -54 -20 50 6 0.021 

3 Insula R 992 40 -8 8 5 0.020 

4 Postcentral Gyrus L 872 -44 -12 58 4 0.016 

Precentral Gyrus L 
 

-38 -20 52 0.013 

5 Inferior Frontal Gyrus R 856 48 8 26 3 0.018 

Inferior Frontal Gyrus R   62 10 22 0.011 

L, left hemisphere; R, right hemisphere. 

Yang et al. (2021) 

Supplementary table 13. Locations of significant clusters when leaving out Yang et al. (2021).  

Cluster # Label  Volume (mm3) x y z # Experiments ALE 

1 Insula R 1784 58 -20 20 7 0.021 

Postcentral Gyrus R 64 -16 22 0.021 

2 Postcentral Gyrus L 1736 -54 -20 48 8 0.023 

3 Insula L 1144 -36 -6 10 5 0.021 

Insula L 
 

-42 -4 2 0.014 

4 Superior Frontal Gyrus R 888 4 16 48 4 0.018 

5 Inferior Frontal Gyrus L 840 -58 6 22 4 0.016 

Precentral Gyrus L 
 

-58 8 30 0.013 

Precentral Gyrus L 
 

-58 2 32 0.012 

Precentral Gyrus L 
 

-46 6 26 0.011 

6 Inferior Frontal Gyrus R 696 50 8 24 3 0.019 

7 Postcentral Gyrus L 680 -56 -20 20 4 0.017 

8 Insula R 664 40 -8 8 4 0.019 

9 Postcentral Gyrus L 656 -44 -12 58 4 0.016 

Precentral Gyrus L 
 

-38 -20 52 0.013 

10 Middle Frontal Gyrus L 624 -42 40 12 3 0.019 

L, left hemisphere; R, right hemisphere. 
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Supplementary material 2 

An exploratory analysis was conducted to assess the differences between studies delivering 

tactile stimulation either through passive or active touch. Below are the results from the 

primary analysis of texture perception > control each, with the exception of Simões-Franklin 

et al. (2011) as the coordinates extracted were from activation via both active and passive 

touch combined.  

Primary analysis 

Pooled analysis 

Supplementary table 14. Locations of significant clusters for both active and passive stimulation, with the 

exception of Simões-Franklin et al. (2011).   

Cluster # Label Volume(mm3) x y z # Experiments ALE 

1 Postcentral Gyrus L 1560 -54 -20 48 6 0.023 

2 Precentral Gyrus L 1360 -48 6 24 6 0.019 

Precentral Gyrus L -58 6 14 0.013 

3 Insula R 1328 54 -22 20 6 0.018 

Inferior Parietal Lobule R 64 -16 24 0.017 

4 Inferior Frontal Gyrus R 992 50 8 24 4 0.025 

5 Insula R 872 40 -8 8 5 0.020 

6 Insula L 864 -36 -6 10 4 0.021 

7 Postcentral Gyrus L 760 -56 -20 20 4 0.017 

8 Postcentral Gyrus L 744 -44 -12 58 4 0.016 

Precentral Gyrus L -38 -20 52 0.013 

L, left hemisphere; R, right hemisphere. 
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Active touch 

Supplementary table 15. Locations of significant clusters for active stimulation. 

Cluster # Label Volume(mm3) x y z # Experiments ALE 

1 Insula L 936 -36 -6 12 4 0.017 

2 Insula R 920 40 -6 10 4 0.016 

3 Precentral Gyrus L 832 -48 6 24 4 0.015 

Precentral Gyrus L -60 6 22 0.012 

4 Postcentral Gyrus L 792 -42 -12 56 3 0.011 

Precentral Gyrus L -30 -20 62 0.011 

Precentral Gyrus L -34 -18 60 0.010 

Precentral Gyrus L -36 -18 56 0.009 

Precentral Gyrus L -36 -14 64 0.008 

L, left hemisphere; R, right hemisphere. 

Passive touch 

Supplementary table 16. Locations of significant clusters for passive stimulation. 

Cluster # Label Volume(mm3) x y z # Experiments ALE 

1 Postcentral Gyrus L 992 -58 -22 46 4 0.018 

Postcentral Gyrus L -50 -28 58 0.009 

2 Insula R 936 56 -22 20 3 0.018 

3 Postcentral Gyrus L 664 -56 -22 20 3 0.014 

L, left hemisphere; R, right hemisphere. 

Secondary analysis 

The contrast and conjunction analysis comparing the ALE maps of concordant 

activations for active and passive touch types did not reveal any significant differences 

between the two types of stimulation. 
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Supplementary material 3 

PsychoPy instructions 

During this task, you will be exploring textures with your index finger and evaluating them.  

At the start of a trial, you will see a white cross indicating you should rest with your index 

finger stationary on the texture.  

A shape will then appear, which will correspond to one of three conditions previously 

outlined.  

A green fixation cross will appear, indicating you should start exploring the texture. Think 

about the texture properties which correspond to the condition shape during your exploration.  

Stop touching the texture when the green cross disappears and keep your finger stationary.  

You will rate the texture after sensory and hedonic trials using a slide bar, use your left hand 

and the mouse to submit your rating.  

There will be four blocks, halfway through the block you will be asked to remove your finger 

from the current texture and switch to the other texture. 

Verbal instructions  

After EEG fitting 

On the screen you can see the measurements from the EEG cap. There are 129 channels, and 

each of them records the electrical activity on your scalp. EEG records any electrical 

activities, including signals from your brain, as well as other activities like muscle 

movements. For example, please perform a series of blinks. You will notice that each blink 

results in a spike in the EEG recording. Now, clench your teeth. You can observe that doing 

so creates a noisy black period in the EEG recording. This demonstrates the importance of 

remaining as still as possible during the task. During the task, it is important to focus on the 
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computer screen in front of you and try not to look around the room or move your head. 

Please try to remain as relaxed as possible, particularly in your shoulders, neck, and jaw. Do 

you need me to make any adjustments to make you more comfortable? 

You will have a short break halfway through each block and a longer break at the end of each 

block, during which you can move freely. If you need to move during the task, please try to 

limit your movement to the rating period. If you feel uncomfortable at any time, please 

inform me by either calling for me or knocking on this wall. 

Do you have any questions? 

Before tactile exploration task 

During this task, you will be exploring textures within your index finger. You will complete 

four blocks, each lasting approximately 18 minutes. In each block, you will be instructed to 

explore either texture A or texture B. Texture A refers to the texture on your left, while 

texture B refers to the texture on your right. 

Halfway through each block, you will be asked to remove your finger from the texture. It is 

important that you do not touch the force plate during this time, as it will be calibrated by the 

researcher. After the calibration, the task will prompt you to place your finger back down, 

this time on the alternative texture. 

During each trial, you will see a white cross, which indicates that you should keep your finger 

still on the texture. Following the white cross, a condition indicator will appear on the screen, 

providing instructions on what feature to attend to during the exploration period or whether 

no specific feature requires attention. 

For you, the triangle indicates a sensory trial. During these trials, you should focus on the 

sensory features of the texture. Pay attention to how the texture feels - is it soft, hard, smooth, 

or rough? 
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If you see the square, it indicates a hedonic trial. During these trials, you should focus on how 

the exploration of the texture feels. Consider whether it is pleasant, unpleasant, comfortable, 

or uncomfortable. 

Lastly, if the circle appears, it indicates a trial with no estimation. You do not need to attend 

to any specific feature. 

A green cross will subsequently appear on the screen, indicating that you should begin the 

exploration task. You are free to explore the texture with your index finger in any way you 

like. It is important to pay attention to the condition indicator and think about the outlined 

feature while performing your exploration. 

After the exploration period for sensory and hedonic trials, you will be asked to rate your 

experience on a sliding scale. Please use your left hand and the mouse to submit your rating 

without removing your right index finger from the texture. You will not be asked to make a 

rating after no estimation trials. 

During the task ensure that only your right intext finger is touching the force plate. Please do 

not rest your hand or other fingers on the texture.  

First, you will complete some practice trials to ensure you are comfortable with the trial 

setup.  

Do you have any questions?  
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VAS 

  

Supplementary figure 1 Example of a VAS for a sensory estimation trial.   
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Supplementary material 4 

The statistical design implemented in SPM12 for a single-subject GLM analysis. The design 

matrix consists of binary variables specifying the condition of the trials and covariates.  

Supplementary figure 2 The statistical design as implemented in SPM12. (A) Exemplary GLM design matrix for 

a single subject. Each column represents a model regressor; trials are listed in rows, sorted according to 

texture and estimation condition. The first six regressors represent binary variables specifying the trials' 

condition; hedonic hessian (HH), sensory hessian (SH), no estimation hessian (NH), hedonic silk (HS), sensory 

silk (SS), and no estimation silk (NS). The remaining six regressors were entered as covariates (CV). (B-F) 

Exemplary contrast weights to produce contract images to test of the effect of texture; (B) the difference of 

hessian (SH, HH and NH) vs. silk (SS, HS, and NS). To test the effect of estimation; (C) the difference of sensory 

(SH and SS) vs. hedonic (HH and HS), and (D) the difference of hedonic (HH and HS) vs no estimation (NH and 

NS). To test the interaction effect; (E) the difference of sensory hessian and hedonic silk (SH and HS) vs. 

hedonic hessian and sensory silk (HH and SS), and (F) hedonic hessian and no estimation silk (HH and NS) vs 

no estimation hessian and hedonic silk (NH and HS). 


