Measurement of Υ production in pp collisions at $$ \sqrt{s} $$ = 5 TeV



Aaij, R, Abdelmotteleb, ASW, Abellan Beteta, C, Abudinén, F, Ackernley, T, Adeva, B, Adinolfi, M, Adlarson, P, Afsharnia, H, Agapopoulou, C
et al (show 1055 more authors) (2023) Measurement of Υ production in pp collisions at $$ \sqrt{s} $$ = 5 TeV. Journal of High Energy Physics, 2023 (7). 1645-.

Access the full-text of this item by clicking on the Open Access link.

Abstract

<jats:title>A<jats:sc>bstract</jats:sc> </jats:title><jats:p>The production cross-sections of Υ mesons, namely Υ(1<jats:italic>S</jats:italic>), Υ(2<jats:italic>S</jats:italic>) and Υ(3<jats:italic>S</jats:italic>), in <jats:italic>pp</jats:italic> collisions at <jats:inline-formula><jats:alternatives><jats:tex-math>$$ \sqrt{s} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math></jats:alternatives></jats:inline-formula> = 5 TeV are measured with a data sample corresponding to an integrated luminosity of 9<jats:italic>.</jats:italic>13 <jats:italic>±</jats:italic> 0<jats:italic>.</jats:italic>18 pb<jats:sup><jats:italic>−</jats:italic>1</jats:sup> collected by the LHCb detector. The Υ mesons are reconstructed in the decay mode Υ → <jats:italic>μ</jats:italic><jats:sup>+</jats:sup><jats:italic>μ</jats:italic><jats:sup><jats:italic>−</jats:italic></jats:sup>. Double differential cross-sections times branching fractions, as functions of the transverse momentum <jats:italic>p</jats:italic><jats:sub>T</jats:sub> and the rapidity <jats:italic>y</jats:italic> of the Υ mesons, are measured in the range <jats:italic>p</jats:italic><jats:sub>T</jats:sub><jats:italic>&lt;</jats:italic> 20 GeV/<jats:italic>c</jats:italic> and 2<jats:italic>.</jats:italic>0 <jats:italic>&lt; y &lt;</jats:italic> 4<jats:italic>.</jats:italic>5. The results integrated over these <jats:italic>p</jats:italic><jats:sub>T</jats:sub> and <jats:italic>y</jats:italic> ranges are<jats:disp-formula><jats:alternatives><jats:tex-math>$$ \sigma \left(\textrm{Y}(1S)\right)\times \mathcal{B}\left(\textrm{Y}(1S)\to {\mu}^{+}{\mu}^{-}\right)=2101\pm 33\pm 83\ \textrm{pb}, $$$$ \sigma \left(\textrm{Y}(2S)\right)\times \mathcal{B}\left(\textrm{Y}(2S)\to {\mu}^{+}{\mu}^{-}\right)=526\pm 20\pm 21\ \textrm{pb}, $$$$ \sigma \left(\textrm{Y}(3S)\right)\times \mathcal{B}\left(\textrm{Y}(3S)\to {\mu}^{+}{\mu}^{-}\right)=242\pm 16\pm 10\ \textrm{pb}, $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>σ</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>Υ</mml:mi> <mml:mfenced> <mml:mrow> <mml:mn>1</mml:mn> <mml:mi>S</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> </mml:mfenced> <mml:mo>×</mml:mo> <mml:mi>B</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>Υ</mml:mi> <mml:mfenced> <mml:mrow> <mml:mn>1</mml:mn> <mml:mi>S</mml:mi> </mml:mrow> </mml:mfenced> <mml:mo>→</mml:mo> <mml:msup> <mml:mi>μ</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:msup> <mml:mi>μ</mml:mi> <mml:mo>−</mml:mo> </mml:msup> </mml:mrow> </mml:mfenced> <mml:mo>=</mml:mo> <mml:mn>2101</mml:mn> <mml:mo>±</mml:mo> <mml:mn>33</mml:mn> <mml:mo>±</mml:mo> <mml:mn>83</mml:mn> <mml:mspace /> <mml:mi>pb</mml:mi> <mml:mo>,</mml:mo> </mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>σ</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>Υ</mml:mi> <mml:mfenced> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>S</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> </mml:mfenced> <mml:mo>×</mml:mo> <mml:mi>B</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>Υ</mml:mi> <mml:mfenced> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>S</mml:mi> </mml:mrow> </mml:mfenced> <mml:mo>→</mml:mo> <mml:msup> <mml:mi>μ</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:msup> <mml:mi>μ</mml:mi> <mml:mo>−</mml:mo> </mml:msup> </mml:mrow> </mml:mfenced> <mml:mo>=</mml:mo> <mml:mn>526</mml:mn> <mml:mo>±</mml:mo> <mml:mn>20</mml:mn> <mml:mo>±</mml:mo> <mml:mn>21</mml:mn> <mml:mspace /> <mml:mi>pb</mml:mi> <mml:mo>,</mml:mo> </mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>σ</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>Υ</mml:mi> <mml:mfenced> <mml:mrow> <mml:mn>3</mml:mn> <mml:mi>S</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> </mml:mfenced> <mml:mo>×</mml:mo> <mml:mi>B</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>Υ</mml:mi> <mml:mfenced> <mml:mrow> <mml:mn>3</mml:mn> <mml:mi>S</mml:mi> </mml:mrow> </mml:mfenced> <mml:mo>→</mml:mo> <mml:msup> <mml:mi>μ</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:msup> <mml:mi>μ</mml:mi> <mml:mo>−</mml:mo> </mml:msup> </mml:mrow> </mml:mfenced> <mml:mo>=</mml:mo> <mml:mn>242</mml:mn> <mml:mo>±</mml:mo> <mml:mn>16</mml:mn> <mml:mo>±</mml:mo> <mml:mn>10</mml:mn> <mml:mspace /> <mml:mi>pb</mml:mi> <mml:mo>,</mml:mo> </mml:math></jats:alternatives></jats:disp-formula></jats:p><jats:p>where the first uncertainties are statistical and the second are systematic. The ratios of cross-sections between measurements of two different Υ states and between measurements at different centre-of-mass energies are determined. The nuclear modification factor of Υ(1<jats:italic>S</jats:italic>) at <jats:inline-formula><jats:alternatives><jats:tex-math>$$ \sqrt{s} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math></jats:alternatives></jats:inline-formula> = 5 TeV is updated as well using the directly measured cross-section results from this analysis.</jats:p>

Item Type: Article
Additional Information: * Temporary entry *## TULIP Type: Articles/Papers (Journal) ## official_url: 10.1140/epjc/s10052-011-1645-y
Divisions: Faculty of Science and Engineering > School of Physical Sciences
Depositing User: Symplectic Admin
Date Deposited: 24 Jul 2023 14:34
Last Modified: 24 Jul 2023 14:34
DOI: 10.1007/jhep07(2023)069
Open Access URL: https://link.springer.com/content/pdf/10.1007/JHEP...
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3171846