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Figure 5.8: Comparison of the performance between OSMF and spectral me-
dian filter in the presence of compound noise on Image Bridge.
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5.3 Optimal Combined Filter Design Using Bac-

terial Swarming Algorithm

5.3.1 Bacterial Swarming Algorithm

BSA is developed from BFA [80], which is one of the EAs that has received
great attention recently. It is based on the study of the E. coli chemotaxis
behaviour and is claimed to have a satisfactory performance in optimisation
problems. However. BFA suffers from a major drawback which most EAs
can not avoid: the optimisation process may be time consuming in searching
along the randomly selected directions. In addition, BFA only describes E. coli
chemotaxis phenomenon, which seems inadequate in modelling biological be-
haviours.

To overcome these problemns, BSA is proposed to improve the performance
of BFA. In the chemotaxis behaviour of BSA, which fulfills the searching pro-
cess, the bacterial rotation angle is calculated by Polar-to-Cartesian coordinate
transform and is restricted within a certain range. Moreover, the behaviour of
quoruin sensing is introduced to accelerate the convergence rate and enhance
the diversity of the algorithin. Based on the work of [73] and [74], further
improvements of BSA are made.

In BSA, the two unportant features used to describe bacterial behaviours
are chemotaxis and quorum sensing. Chemotaxis offers the basic search prin-
ciple of BSA, and quorumn sensing enables BSA to escape from local optima.
In order to describe these features, two mathematical models are constructed
correspondingly. During the optimisation process, they are performed orderly

in each iteration.

Chemotaxis

E.coli bacteria sense simple chemicals in the environment, and are able
to decide whether the nutrients at a certain location are getting better or

worse [81]. Bacteria swim by rotating thin, helical filaments known as flagella
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driven by a reversible motor embedded in the cell wall. E.coli have 8 ~ 10
flagella placed randomly on the cell body [82]. In the chemotaxis behaviour,
the motor runs either clockwise or counterclockwise with the different direction
of protons flowing through the cytoderm. When the motors turn clockwise, the
flagellar filaments work independently, which leads to an crratic displacement.
This behaviour is called tummble. When the motors turn counterclockwise,
the filaments rotate in the same direction, thus push the bacterium steadily
forward. This behaviour is called run. The alternation of tumble and run is
presented as a biased random walk.

The chemotaxis behaviour is modelled by a tumble-run process that con-
sists of a tumble step and several run steps. The tumble-run process follows
gradient searching principles, which means the bacteria’s position is updated
in the run steps by the gradient information provided by the tumble step. De-
termining the rotation angle taken by a tumble action in an n-dimensional
scarch space can be described as follows. Suppose the p'" bacterium, at
the A" tumnble-run process (i.e. the k'® iteration), has a current position
Xk € R". a rotation angle oh = (b1 @ Phneyy) € R*™ and a tumble
length DX(2%) = (d},, db,, .., df,) € R*, which can be calculated from ¢ via a

Polar-to-Cartesian coordinate transform:

n-1
dy, = Hcos ()
i=1
n—1
dy, = sin(pgoy) [Jeos (vp) J=2.3,n—1
i=p
dﬁn = sin (Sog(n—-l)) (531)

The maximal rotation angle 6., is related to the number of the dimensions

of the objective function, which can be formulated as:

T
Bma.x = .
round(v/n + 1) (5.3.2)

where n is the number of dimensions of the objective function.

At the A" tumble-run process, the p'' bacterium generates a random rota-

tion angle. which falls in the range of [0, 6,,]. Then during the run steps, the
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bacteriun keeps moving along this rotation angle direction. A step of tumble

and run can be expressed as:

Zh = iyt r20max/2 (5.3.3)
X5 = X} + rilnax D5 () (5.3.4)
k A
phtl = gk (5.3.5)

where 5 and X} indicate the rotation angle and the position of the p' bac-
terium at the beginning of the Ay, iteration, respectively; p,’j is its rotation angle
after the tuible step: Y,’;(l) is its position inuncdiately after the first run step;
r; € R is a normally distributed random number generated from A(0,1) with
N standing for normal distribution; ro € R"-! is a random sequence with
a range of [0,1]; lmax is the maximal step length of a run; finally, ™! is the
rotation angle at the beginning of the next iteration, i.e. the (k+1)' iteration.

Once the angle is decided by the tumble step, the bacterium will run for
a maximum of n. steps, or until reaching a position with a worse evaluation
value. The position of the py, bacterium is updated at the Ay, (h > 1) run step

as follows:

X5(h) = XE(h = 1) + r1lmax Dy (). (5.3.6)

After n. steps of run process, the bacteriuin stops at position X,’; (ne).

Quorum sensing

A bacterium uses a batch of receptors to sense the signals coming from
external substances. The bacteriuimn also has an inducer, which is a molecule
inside the bacterium, to start the gene expression [80]. When the inducer binds
the receptor, it activates the transcription of certain genes, including those for
inducer synthesis. This process, called quorum sensing, was discovered by
Miller explaining the cell-to-cell communication in [83].

Quorum sensing can occur within a single bacterial species as well as be-
tween disparate species. In BSA, most nutrients locate around optima, which
correspond to better fitness values. Based on this assumption, the density of

the inducer is increased if the fitness value is better. Thercfore, in the single
: rcfore,
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bacterial species case, each bacterium is attracted by the signal randomly, and

a bacterium’s position is updated by:
k+1 _ 5. >
Xp - 673(Xbest - X:) (5.3.7)

where 0 is a coefficient describing the strength of the bacterium’s attraction,
ry € R” is a normally distributed random sequence drawn from N(0,1), Xpes
indicates the position of current best global solution updated after each func-
tion evaluation, and X & is the position of the p'? bacterium at the k" iteration
after the tumble-run process.

If quorum sensing occurs between disparate species, it may cause virulence
between each species. which also avoids pre-mature results. In BSA, a small
number of the bacteria are randomly selected to be repelled. The repelling
rate is denoted by R,. If the p*! bacterium turns into the repelling process,
a random angle in the range of [0, 7] is generated. The bacterium is thereby
‘moved’ to a random position following this angle in the search space, which

can be described as:
X:+1 = X;,JC + r3[rang‘eD£(9§z + 7y 7T/2) (538)

where Lange 15 the range of the search space. The pseudo code of BSA is listed

in Table 5.5.

5.3.2 Criteria

The objective of optimisation is to obtain a filter that rejects noise to the
greatest extent. and PSNR is the index to show the quality of an image. As
stated in section 5.2.2, a larger value of PSNR indicates a higher quality. There-
fore, the optimisation is subject to the largest PSNR and the fitness function
is selected as 1/PSNR.

To evaluate the quality of the filtered images quantitatively, three criteria
are employed in the experimental studies. The first two criteria are PSNR

and shape error. as stated in section 5.2.2. The third one is the speckle index
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Table 5.5: Pseudo Code of BSA

Set k := 0;

Randomly initialise bacteria’s positions;

WHILE (termination conditions are not met)

FOR (each bacterium p)
Tumble: Generate a random rotation angle by (5.3.3). Set h := 1;
Run:
FOR (cach run step h)
Calculate the bacterium’s position after the hyy, run step,
XE(h);if b= 1, use (5.3.4); if h > 1, use (5.3.6). If the
fitness value at current position is less than the the value
at previous position, the bacterium will move towards
the angle until it reaches the the maximum step, n;
otherwise, the bacterium will stop at current position.
Increase h by 1;
END FOR
END FOR
Quorum Sensing: Most of the bacteria are attracted to the global optimum
by (5.3.7); a small number of bacteria are repelled by
(5.3.8);
Set k:=k+1;
END WHILE

termed by S. The definition of S is:

L e alind)
S = WZZ =5 (5.3.9)

=1 j=1 pi,

where (i, j) is the standard deviation of pixel (i, j) within the neighbourhood

of a 3 x 3 window, and u(i. j) is the mean value. The smaller S is, the better

T.Y Ji



5.3 Optimal Combined Filter Design Using Bacterial Swarming Algorithmil 08

quality the image has.

5.3.3 Optimal Combined Filter for Compound Noise Re-

moval
Optimisation process

In image processing, filtering is a technique for modifying or enhancing an
image. It applies a certain algorithm to the values of the pixels of the input
image within a neighbourhood to calculate the value of the corresponding pixel
in the output image. Literally. the algorithm of linear filtering combines the
input values lincarly. The most common lincar filter is the FIR filter, which
corresponds to convolution in the space domain. Denote the image and the
convolution kernel by I and f, respectively, the definition of FIR filter is given

as follows.

I f(iy)) = Zf(.s,t) A —s,j—1t). (5.3.10)

On the other hand, MM is a nonlinear approach for image processing. The
pixels within the neighbourhood interact with an SE, a set of the same size
as the neighbourhood. The dilation and erosion operators of 2-dimensional
grey-scale version can be derived from (2.1.17) and (2.1.18), respectively. The

definitions are:
IDg(ij) = nia}x{l(i—s,j —t)+ g(s.t)} (5.3.11)
ITegli,g) = nslitn{l(i +s.74+t)—g(s,t)} (5.3.12)
where T and g denote the input image and the SE, respectively.
Instead of searching for the maximal or minimal element, a more general
strategy is used, which returns the P largest element in the neighbourhood.
This filter is referred to as the ranking filter [72], and is defined as:

15 glij) = RAI(i—s,j— )+ g(s.1)} (5.3.13)

where R, (x) sorts the elements of 2 and returns the " largest one. For binary

ranking filters, in which the SE ¢ comprises 0 and 1 only, the definition is
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altered to be:
IF'ég(i,jg)=RAI(i —s,j—1)}, if g(s,t) = 1. (5.3.14)

The combined filter calculates the weighted average of the outputs of the
FIR filter and the ranking filter, which can be expressed by

Ju=ATO[+(1-A) 1&g 0<A<1. (5.3.15)

In order to design an optimal combined filter, the following parameters

should be considered.
e The size of the convolution kernel, f;

o The values of the elements of f, and they should suffice the condition of

S f(st) =1
s,t
e The size of g;

e The shape of g. For gray scale version, the values of the elements of g

can be random integers; for binary version, they can be either 0 or 1;

e The ranking coefficient, r, which should be no more than the number of
the elements of g involved in (5.3.13) or (5.3.14);

e The weight coefficient, A, and 0 < A < 1.

Simulation results and analysis

Parameter setting. BSA is applied to optimise the parameters of the com-
bined filter depicted by (3.3.15). The problem is slightly simplified by assuming
that the sizes of convolution kernel f and SE g are restrained between 2 x 2
and 5 x 5. Also, the elements of [ are symmetric around the centre. In ad-
dition, since the test images are 8-bit bitmaps, the SE follows the gray scale
pattern. but the values of its elements are chosen from {-1,0,1,2,3} only.
When g(s.t) = —1, the corresponding pixel of the image, f(i — 5,5 — t), is

excluded from the ranking filter, R,.. In all experiments, the initial population
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(a) Original image (b) Noisy image

Figure 5.9: Add Gaussian white noise and salt & pepper noise to Image Pepper.

size is selected to be 100 and the maximal iteration is 1000. In the tumble-run
process, the maximal number of the run steps along an angle is 4 steps. The
repelling rate R, is set by trial. The same tests as described in [65] have been
carried out to find a suitable value for R,, and the result is it is set to be 0.2,
i.e. a portion of 20 percents of the bacteria will be repelled in each iteration.
The coefficient ¢ is set in the same way and ¢ = 2.

Design OCF. An original noise-free image shown in Fig. 5.9(a) is given as
a reference. Both Gaussian white noise N'(0,0.01) and salt & pepper noise
N(0.05) are added to this image, as shown in Fig. 5.9(b). Here, N(d) denotes
salt & pepper noise of density d. BSA is then employed to optimise the param-
eters of the combined filter, fe;, subject to the highest PSNR. To diminish the
computation burden, only a small part of the image (36 x 36) is used for op-
timisation. The combined filter optimised by BSA, which is referred to as the
BSA filter in this section, is therefore applied to other noise-corrupted images
to test its performance.

As stated in section 5.3.3, 6 types of parameters need to be optimised. The
curve of convergence process is illustrated in solid line in Fig. 5.10, which is
an average of 30 runs. The figure shows that BSA has a fast convergence rate.
One of the optimisation results is listed as follows. It should be noted that

although the optimisation results vary slightly each time, the corresponding
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BSA filters have a highly similar performance, which means BSA has a stable

performance. This can be proved in Table 5.7.

[ 0.0411 0.0318 0.0634 0.0318 |
0.0318 0.0682 0.0554 0.0682
J = | 00634 00554 0.0424 0.0554 (5.3.16)
0.0318 0.0682 0.0554 0.0682
0.0411 0.0318 0.0634 0.0318
[2 2 0
g =120 (5.3.17)
121
r =5 (5.3.18)
A = 0.2659. (5.3.19)
0.0423 '—__GA
0.0422 ———BSA|]
0.0421 N
0.042
%0.0419\
20.0418
l-L00417 \\
o.o41w\ﬁ~~~“\_““‘—_‘_ ______ 4
0.04151 —_—_j
0'04140 260 460 680 860 1000
Iteration

Figure 5.10: Comparison of the convergence process between BSA and GA.

OCF on Image Pepper. The BSA filter whose parameters are set by
(5.3.16)~(5.3.19) is therefore used to filter the noisy image of Fig. 5.9(b),
and the result is shown in Fig. 5.11(a). For the purpose of comparison, the

combined filter is also optimised by GA. The publicly accepted GA toolbox is

T.Y Ji



5.3 Optimal Combined Filter Design Using Bacterial Swarming Algorithnil12

employed and its parameters are set as follows. The population size and max-
imum iteration are set to be 100 and 1000, respectively, which are the same
as BSA. The selection function, crossover function and mutation function are
set to be roulette, single point and uniform with a mutation rate of 0.01. The
convergence process of GA, which is also the average of 30 runs, is plotted
in Fig. 5.10 in dashed line. Apparently, BSA converges faster than GA and
achieves a better result. One of the optimisation results obtained by GA is
listed below. For the convenience of description, the combined filter optimised
by GA is called GA filter in this section. The parameters of one of GA filters

are set as below.

[ 0.0200 0.0004 0.0290
0.0605 0.1087 0.0605
J = | 01087 02064 0.1087 (5.3.20)
0.0605 0.1087 0.0605
0.0200 0.0004 0.0290

-1 3
-1 1
g = | -1 2 (5.3.21)
0 0
0 0
ro= 4 ] (5.3.22)
A = 0.5006. (5.3.23)

Using the GA filter to remove the noise from Fig. 5.9(b), the result is shown
in Fig. 5.11(b), which reveals that a certain amount of noise still remains in the
output image. The FIR filter and median filter are involved in the simulation
studies as well. Their performance is demonstrated in Figs. 5.11(c) and 5.11(d),

respectively. The convolution kernel of the FIR filter is:

1

Jrir = 9 (5.3.24)

—_ = =

1
1
1

[ G —
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(b) GA filter

(c) FIR filter (d) Median filter

Figure 5.11: Performance of the four filters on Image Pepper.

The median filter is 4-connected and its size is 3 x 3.

Intuitively, the FIR filter blurs the edge details and is useless in suppressing
the salt & pepper noise. On the contrary, the median filter is effective in dealing
with salt & pepper noise as well as keeping the shape information, as it should
be. However, it makes the whole image brighter, which is an evidence that
the median filter can not remove Gaussian noise effectively. As for BSA filter,
it removes both types of noise to a great extent meanwhile keeps more detail
information than the other filters.

To quantitatively analyse their performance, the three criteria mentioned
in section 5.3.2 are employed and the evaluation results are listed in Table 5.6.

To make the results more comprehensible, the percentage of improvement is
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also demonstrated. From the table it can be seen that BSA filter achieves the
best performance under all the criteria. The results for BSA filter and GA filter
are the average results of 30 runs. To show the robustness of the algorithms,

the variance of the results is also calculated, which is listed in Table 5.7.

Table 5.6: Quantitative performance of the four filters on Image Pepper subject
to the criteria of PSNR, shape error (es) and speckle index (5)

Filter PSNR €s S
Before filtered 17.049 10.708 0.109
BSA filter 27.846(63.33%) | 1.283(88.01%) | 0.060(44.95%)
GA filter 27.153(59.26%) | 1.292(87.93%) | 0.065(40.37%)
FIR filter 24.607(44.33%) | 1.651(84.58%) | 0.071(34.86%)
Median filter | 27.677(62.314%) | 1.566(85.37%) | 0.070(35.78%)

Table 5.7: Variance of the results
Filter PSNR es S
BSA filter | 0.0449 | 2.0221 x 107% | 3.7767 x 1075
GA filter | 0.0490 | 1.4302 x 107° | 5.2397 x 1075

OCF on Image Lena. The 30 BSA filters and GA filters are also used to filter
other immages corrupted by both Gaussian and non-Gaussian noise. An example
is given in Fig. 5.12, where the original image of Lena, the contaminated
image by Gaussian white noise N(0,0.01) and salt & pepper noise N(0.05),
the filtering results of BSA filter, GA filter, FIR filter and median filter are
illustrated respectively. The quantitative results are listed in Table 5.8, where
the results of BSA filter and GA filter are the average value. From the figures
and the table, similar conclusion can be drawn that the BSA filter outperforms

the other three filters.

5.4 Conclusion

This chapter discusses OSMF for periodic noise removal and OCF for both

Ganssian and non-Gaussian noise removal. Both filters are obtained from the
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(e) FIR filter (f) Median filter

Figure 5.12: Add Gaussian white noise and salt & pepper noise to Image Lena
and the performance of the four filters.
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Table 5.8: Quantitative performance of the three filters on Image Lena subject
to the criteria of PSNR, shape error (es) and speckle index (S)

Filter PSNR €s S
Before filtered 16.524 8.501 0.096
BSA filter | 26.479(60.24%) | 1.617(80.98%) | 0.053(44.79%)
GA filter 25.901(56.75%) | 1.899(77.66%) | 0.094(2.08%)
FIR filter 24.655(49.21%) | 1.899(77.66%) | 0.063(34.38%)
Median filter | 25.432(53.91%) | 1.895(77.71%) | 0.064(33.33%)

optimisation of a generic framework. The optimisation approaches proposed
in this chapter arc also able to design filters for other signal/image processing
applications.

OSMF is optimised from the framework of soft morphological filter using
PSOPC. The optimisation process has been carried out in two stages. In the
first stage, OSMF only involves soft dilation and soft erosion, while in the sec-
ond stage. the general formula is extended to include other soft operators. In
each stage. once the original image and the noisy image are given, the optimi-
sation process is carried out without requiring the knowledge of the frequency
of periodic noise. However, if the noise frequency changes, the optimisation
process should be carried out again to update the OSMF parameters.

Simulation studies are carried out to remove periodic noise of various fre-
quencies. The performmance of OSMF has been presented in comparison with
spectral median filter, a frequency filter that is very powerful in the reduction of
periodic noise. When pure periodic noise is added to the original image, OSMF
achieves better performance than spectral median filter in the elimination of
the noise in high frequency conditions, although is not as good as the latter
in low frequency conditions. But taken the shape error and the computation
time into consideration, OSMF outperforms spectral median filter greatly in
both high and low frequency conditions.

When pure sinusoidal noise is added together with Gaussian white noise,
which is more practical, the ability of spectral median filter to reduce noise

decreases dramatically. On the contrary, the ability of OSMF to remove the
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compound noise is not affected in this case and is much better than that of
spectral median filter. Besides, the interference of Gaussian white noise makes
spectral median filter introduce a significantly larger shape error to the filtered
image, while the shape error caused by OSMF remains at a low level. In
conclusion, the simulation results demonstrate OSMF is more cffective and less
time-consuming in reducing both pure periodic and compound noise meanwhile
preserving the details of the original image.

OCF is another cffective optimal filter for image processing presented in
this chapter. The filter combines both linear and morphological filtering tech-
niques 5o as to remove Gaussian and non-Gaussian noise. Afterwards, the the
parameters of the combined filter are optimised using BSA to obtain optimal
filtering results.

BSA is inspired by the underlying mechanisms of bacterial foraging be-
haviours — chemotaxis and quorum sensing. Chemotaxis is based on the gra-
dient searching behaviour, which ensures that the bacterium always moves to
a better position than the previous step. Two versions of the quorum sens-
ing behaviour are introduced in BSA. When quorum sensing happens inside a
single bacterial species, bacteria are attracted to global optimum, which accel-
erates the convergence speed. When quorum sensing happens among disparate
species, bacteria are randomly replaced in the search space, which prevents
bacteria fromn being trapped into local optima.

Simulation studies of using BSA and GA to optimise the combined filter,
respectively, have shown that the convergence speed of BSA is faster than GA
and the combined filter optimised by BSA achieves a better performance than
the GA filter, FIR filter and median filter. Implementing these filters to other

noise corrupted images, the same conclusion can be drawn.
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Chapter 6

Embedding-based Technique

6.1 Introduction

This chapter introduces a novel signal processing technique that is based
on the embedding theorem. It is believed that the features of a signal can be
more clearly revealed if it is embedded to the phase space through a proper
embedding strategy. The embedding theorem [84](85] shows that a time series
can be mapped to a higher dimensional space, which is the so-called phase
space, through embedding [86]. Therefore, a sampled signal can be transforied
to the phase space so that its features can be more clearly viewed. As the
theoretical basis of the proposed scheme, the embedding theorem is introduced
in section 6.2.

The embedding-based technique is applied to three applications: feature
waveform detection of ECG signals, phasor measurement of power system sig-
nals and disturbance detection. For the last application, two schemes based on

Gustafson-Kessel (GK) clustering and projection, respectively, are proposed.

6.2 The Embedding Theorem

The embedding theorem was originally proposed for dynamical systems

[84](87]. In mathematics and physics, a dynamical system is usually described
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by a state space, each orthogonal coordinate of which represents one of the vari-
ables needed to specify the instantaneous state of the system [88][89]. Hence,
all the possible states of the dynamical system are represented in the state
space and each possible state corresponds to a unique point [90]. However, in
practice. it is usually impossible to measure all the variables of a dynamical sys-
temn. Fortunately. Takens has proved in {84] that it can be reconstructed from
a time series of a collection of the states using the embedding theorem. The
following paragraphs briefly explain how to map a d-dimensional dynamical
system to a dg-dimensional phase space, where dg > 2d + 1.

A d-dimensional dynamical system can be expressed by d first-order dif-
ferential equations. The solution of these equations, s € R? is a state in
the corresponding state space, with R denoting the Euclidean space. Func-
tion h : R4 — R converts a collection of states s to a scalar time series, i.e.
2 = h(s), where h is called the measure function. The ‘delay’ of the time series
is denoted by a positive number 7. The evolution of the state s at time i is
defined by the function Fr(s;) = s;¢,.

Therefore, the embedding ® : ®¢ — R4, which is called the delay-coordinate

embedding here, is defined as:
B(h, F.7)(s) = {h(). h(Fr(8)- - h(Fgenr (). (621)
For a certain s;. the above equation has the form of:
d(h Fo7m)(si) = {h(si), h(Sitr), -+, M(Sis(ap-1)r)}
= {z, Titr,. .-, $i+(dE—1)r} = X;. (6.2.2)

Therefore. a phase space matrix X of dimension dg and delay 7 can be con-

structed in the following way:

i 1 - 7
X £ Litr = Ll4(dp-1)7
Y = X2 _ | T2 T Tode-)r
(6.2.3)
L Xar j L Trr TM+r ‘Tl\l—f-(dg—l)-r
=& k2o Iag ]
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where the column vectors r; (i = 1,...,dg) form the coordinate of each dimen-
sion and the row vectors x; (+ = 1,..., M) represent individual points in the
phase space. For a time series o = {z1,...,@i,...,zn}, it can be embedded
directly from R to R by (6.2.3). In this case, X is a M x dg matrix, x is a
1 x dg vector and M = N — (dg — 1)7. The M points form the dg-dimensional
embedded signal in the phase space. Matrix X is also called the trajectory

matrix.

6.2.1 Determination of the Embedding Dimension

Two parameters are required by the delay coordinate embedding: the em-
bedding dimension and the time delay. These parameters should be prop-
erlv chosen so that the feature hidden in the time series can be presented
in the phase space. According to [91], a suggested embedding dimension is
dg = 72 - boxdim(A) + 17, where A is the attractor of the dynamical system,
boxdim(.A4) is the system dimension, and "z denotes the minimum integer
larger than or equal to x. Note that boxdim(A) may be fractional and dg must
be integral. The correlation dimension [92][93] is used as boxdim(A) in this
thesis to calculate dg.

The correlation dimension is determined from the correlation integral de-

fined as:

1 N N
C(r) = lim -—QZZQ(T—pq—ij (i # j) (6.2.4)

N—ooo
i=1 j=1

where x; and x; are two arbitrary points, and 6(z) is the Heaviside step func-

0, ifr<0
f(x) = -
{ 1, ifxz>0 (6.2.5)

tion:

Equation (6.2.4) calculates the number of pairs (x;, x;) satisfying |x; — x;| < 7.
x, and x; are two arbitrary points in the 2-dimensional phase space: x; =
{ai. 1i-1}. Here, dg = 2 and 7 =1 are selected as the initial condition for the

calculation of the real correlation dinension, d.. Assume that for small », C(r)
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behaves as C(r) o r%. d. is then estimated by:

— iy EC ()]
do = lim = o (6.2.6)

In other words, d. is the slope of the curve of 1g[C(r)] against lg[r].

The correlation dimension depends on the value of ». When r is small,
the behaviour of the correlation dimension is dominated by the characteristics
of noise, which has infinite dimension [94]. In practice, a string of d. are
calculated with various ». If in a range of rp < r < 1y, dc(r) is a constant
within some tolerance, the correlation dimension is chosen as the average of

de(r) over [r.rc] (93] Finally, the embedding dimension is dg = "2d. + 17

6.2.2 Determination of the Delay Constant

The delay constant should neither be too short to include unnecessary cal-
culation, nor too long to miss any useful information. If 7 is too small, each co-
ordinate is almost the same and the trajectories of the phase space are squeezed
along the identity line. On the other hand, if 7 is too large, in the presence of
chaos and noise, the dynamics at a time instant become effectively and causally
disconnected from the dynamics at a later time instant. Hence, even simple
geometric objects look extremely complicated. A natural choice of 7 is the first
minimum of the autocorrelation function such that each coordinate is linearly
independent.

According to {95], T equals to the first minimum of Ig CfE, where

cE = liny Cée (6.2.7)
o T
G = |5 L (Rl (6.2.8)
i=1
1 [}
P(xi(1)) = 720@« ~ 1x:(7) = x;(7)]) (6.2.9)
J=1
i = l—(({E-——l)T
xi(1) = {zi,zigr, ... ,-Ti+(d,,_1)7}.
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6.3 Feature Waveform Detection and Classifi-

cation of ECG Signals

6.3.1 Parameter Setting

ECG signals used in this section are free from impulsive noise and baseline
wander, and are pre-processed to get rid of high frequency noise. The filtering
techniques are explained in chapters 3 and 4, respectively. For such a de-noised
test ECG signal of length 1000, the relationship between lgr and lg C(r) is
plotted in Fig. 6.1. In this case, d. = 0.4390. Hence, dg = 2. For the same
test ECG signals of length 3000, the embedding dimension is dg = 3. Thus,

the choice of dg depends on the length of the signal under processing.

Ig C(r)
(=]
w

L s L N s ' L
08 1 1.2 14 16 18 2 2.2
Igr

Figure 6.1: lg C(r) against Igr for a de-noised test ECG signal when initial
conditions are dg = 2 and 7 = 1.

For the de-noised test ECG signal of length 1000, the relationship between
lg C'8(7) and 7 is given in Fig. 6.2 and the minimum of lg CE oceurs at

T =15.

0651

Figure 6.2: g CfE(T) against 7 of a de-noised test ECG signal.

T.Y Ji



6.3 Feature Waveform Detection and Classification of ECG Signals 123

Figure 6.3 shows the embedding of the de-noised test ECG signal when
dg = 2 and 7 = 15. The white pixels in the figure are enlarged to give a clearer
view. As the magnitude of the test signal is digitised, the magnitude of the
de-noised test signal is also regulated to integers. Thus, the phase space can be
presented by an image and the embedded signal can be presented by the white
pixels of the image. The dense cluster corresponds to samples belonging to the
segments, and the three orbits correspond to the P waves, T waves and QRS
complexes, respectively, according to the size. For the original test signal, the
embedding parameters are dg = 2 and 7 = 8. The smaller value of 7 shows
that the signal contains a greater amount of redundant information, which is
introduced by the noise, and more unnecessary calculation is included. Thanks

to the noise removal procedure, the redundant calculation is avoided.

Figure 6.3: Embedding of a de-noised test ECG signal when dg = 2 and 7 = 15.
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6.3.2 Detection of QRS Complexes

As explained in section 3.1.2, the QRS complexes are distinctive in an ECG
signal due to the high magnitude of the R waves. In order to locate the QRS
complexes with the tolerance of the baseline wander, the magnitude difference

between every T samnples are calculated:

d(t) = f(t) = f(t +7). (6.3.1)

The difference signal of dy is referred to as the right-hand difference. Local
minima of d; with an absolute magnitude value over a pre-set threshold are
recorded as the QQ points, and local maxima with a magnitude value over the
pre-set threshold are recorded as the R points. Similarly, the S points can be

located from the left-hand difference of f:

d(t) = f(t) - f(t = 7). (6.3.2)

Figure 6.4 demonstrates the detection of the QRS complexes of a test signal.
Figure 6.5 shows the detection result during a 3-beat ventricular tachycardia.
The algorithm has been tested on a group of ECG signals and the detection
results are listed in Table 6.1. The ECG signals contains only records in the first
five minutes. The number of the QRS complexes detected by the algorithm,
i.e. the detected beats, is compared with the actual number provided by the
database. The errors mainly occur during fusion, which changes the QRS.
Take record 208 for example. In the first five minutes, the ECG signal contains
72 fusions, which reduces the accuracy of the detection by 2.7%. On the
identification of the R points, an RR interval is considered as a ‘cycle’ of the

signal.

6.3.3 Detection of P Waves and T Waves

The detection of P waves and T waves is based on the embedded signal
in the phase space. Samples belonging to the seginents form a dense cluster,

which can be extracted from the image using morphological reconstruction by
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Figure 6.4: (a) Location of the Q points (in ), R points (in o) and S points
(in o). (b) Right-hand difference. (c) Left-hand difference.

dilation. Morphological reconstruction requires two images: a mask image and
a marker image. The algorithin of morphological reconstruction by dilation of

a mask image [; from a marker image f, (f2 < f1) is described as follows [20].
o Step 1: Set k:=1. Set f*) = f,.
e Step 2: Dilate fo fz(k) = fg(k—l) ® g, where g is the pre-defined SE.

e Step 3: Calculate the point-by-point minimum of f2(k) and fi: dW(¢) =
min{ £V (1). f1(1)}-

o Step 4: If 0 = §%*-1| terminate. Otherwise, set k := k + 1 then go to
Step 2.

For a binary image. the intersection of fz(k) and f) is used in step 3. Here, the

mask image is the embedded signal, X, and the marker image is the erosion of
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Figure 6.5: Location of the Q points (in ), R points (in o) and S points (in o)
during a 3-beat ventricular tachycardia.

Table 6.1: Results of QRS detection

ECG | Total | Detected | Accuracy
record | beats | beats rate
1056 417 417 100%
109 433 432 99.77%
200 433 433 100%
208 518 504 97.30%
212 463 463 100%
217 363 354 97.52%
221 407 407 100%
228 350 350 100%
X by an SE of
1 10
g=1{111
011

as shown in Fig. 6.6(a). The SE can also be set as [0,1,0;1,1,1;0,1,0],
[0,1;1.1], [1.1;1,0] or [1,0;0, 1] to match the shape of the object. The result
of morphological reconstruction by dilation is given in Fig. 6.6(b). Denote it
by Xp. Apparently, Xy C X.

To separate a P or T wave from the segment, the distance from each objec-

tive pixel to the set of Xy is calculated. The distance from a pixel x to a set
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Table 6.2: Measurement of the detected P waves

ECG | Width of P waves (ms) | Peak value of P waves (mV)
record | Average Variance Average Variance

105 172.83 12.40 0.21 0.0025

109 338.95 11.62 0.29 0.0178

200 100.75 3.09 0.42 0.0146

208 132.62 10.21 0.14 0.0112

212 119.50 2.18 0.24 0.0014

217 43.94 0.43 0.15 0.0115

221 180.38 2.10 0.94 0.0056

228 298.67 7.74 0.22 0.0854

A is defined as the shortest distance from x to a pixel in A:
d(x, A) = mgn{ll x —a, ||}, a, € A (6.3.3)

From a detected Q point leftwards, a string of pixels whose distance to X, is
Jarger than zero are recorded as the embedding of the P wave, as shown in Fig,
6.6(c). From the detected S point rightwards, a string of pixels whose distance
to X, is larger than zero are recorded as the embedding of the T wave, as
shown in Fig. 6.6(d). To view it more clearly, the white pixels in Figs. 6.6(c)
and (d) are enlarged. Therefore, samples in the time domain that comprise
the embedded P wave and T wave are detected to form the feature waveforms
of P wave and T wave. The result is given in Fig. 6.7. In clinic, doctors are
interested in the width and peak value of feature waveforms. Table 6.2 shows
the measurement of the width and peak value of P waves of eight ECG signals,
which are the same as the ones used in the previous table. Data of P and
T waves can be classified using the geometric information in the phase space,

such as centroid, barycentre, area, etc.
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Figure 6.6: (a) The marker image. (b) Morphological reconstruction by dilation
and the extracted baseline in the time domain. (c) Extracted P wave in the
phase domain and time domain, respectively. (d) Extracted T wave in the
phase domain and time domain, respectively.
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Figure 6.7: Identification of P waves (in dark grey) and T waves (in light grey).

6.3.4 Classification of Feature Waveforms

In this section, the geometric information of the feature waveforms repre-
sented by the embedding in the phase space is used as the criteria to classify
them. Take the classification of the P waves for example. The geometric infor-
mation includes the length of the P wave in the time domain and the perimeter
and area of the embedded P wave in the phase space. Hence, each P wave is
coded as a 3-element vector v; € V with V the set of the vectors and 7 the
index of the P waves. The elements of the vector are normalised to [0, 1] for
meaningful clustering. The clustering method is based on the distance between
v; and a cluster centre, denoted by ¢; € C with C' the set of the cluster centres,
1 < j < J the index of the cluster centre, and J the number of clusters. For

an arbitrary v;, if
lvi — el = lxsr;ig]{llv,- —¢ll}, 1<k<J (6.3.4)

where || - || denotes the Euclidean norm, v; belongs to cluster ¢,. The cluster
centres are adaptively generated and their number is not constrained to a pre-
set number, as the case in 28] where the P waves are always classified into two

clusters. The classification procedure is described as follows.
e Step 1: Set J := 1. Initialise the first cluster centre ¢; := v;. Set i := 1.

o Step 2: Calculate the distance d; = ||v;—c;|| forall 1 < j < J. If min;{d;}

exceeds a pre-defined threshold, 6, a new cluster centre is assigned at
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Figure 6.8: Classification of P waves of an ECG signal (6 = 1). Normalised
P waves in black are classified to cluster 1 and those in red are classified to
cluster 2.

cre1 = vi. Set J := J 4+ 1. Otherwise, v; is classified to cluster ¢ if
dr = minj{dj}.

e Step 3: Update the cluster centres by averaging the vectors belonging to

each c;.

e Step 4: Set 7 :=14+ 1. Go to Step 2. Terminate when all the vectors are
classified.

Figure 6.8 shows the classification result of the P waves of the first five
minutes of record 106. To make it more comprehensible, the P waves are
normalised taking on zero value at the onset and end samples, as the strategy
used in (28], and having the same length. The threshold is set at 8§ = 1
and under this condition, the P waves are classified into two clusters. As a
comparison, when § = 0.8, the P waves are classified into four clusters, as

shown in Fig. 6.9. The same clustering method can also be applied to classify
the QRS complexes and T waves.
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Figure 6.9: Classification of P waves of an ECG signal (6 = 0.8). Normalised
P waves are classified into four clusters, plotted in black, red, green and blue,
respectively.

6.4 Phasor Measurement of Power System Sig-

nals

Phasor measurement measures the amplitude and phase angle of the signal
to determine the health of the power system. If a fault occurs on transmission
lines, the input current of a relay may contain harmonics and exponentially
decaying DC offset. This section proposes an embedding-based scheme to
measure the amplitude and phase angle of the fundamental component of the
fault signal.

A traditional method for phasor measurement is the Fourier transform
(FT). However, the presence of the offset will bring fairly large errors to the
measurement result and cause malfunction of relays. Hence, it is necessary to
preprocess the current signal to remove the DC offset and keep the fundamen-
tal frequency component only. As there is no efficient way to remove the DC

offset using an FT-based filter, [96] presented a morphological filter to serve
this purpose.

LY
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Paper [97] presented an algorithm using a full-cycle FT to identify the
exponentially decaving DC offset. The algorithm requires a data window with
a length of one fundamental cycle plus two samples. To reduce the computation
time of the algorithm by half, the half-cycle FT was proposed, which uses
samples obtained from half a fundamental cycle [98]. The algorithins of the

full-cvele FT and the half-cycle FT are given in Appendix.

6.4.1 Parameter Setting

As stated in section 1.3.2, in power systems, a source current or voltage
signal is denoted by Iy and expressed by (1.3.1). As a fault occurs, the fault
signal is denoted by Iy and expressed by (1.3.2). The signal including a source
part and a fault part is denoted by / and expressed by (1.3.6). An example
of such a signal is given in Fig. 6.10 in dotted line. In this case, up to 15
harmonics are included in the signal, and a Gaussian noise of a signal-to-noise
ratio of 15 dB is added.

Embedded to a 2-dimensional phase space, fault signal I forms the following

matrix:

r =

I(tg) I(to+ 1)
I(ty) I(ty+7)
I = : : (6.4.1)
) I, +7)

L ’ ’ .
where £, = tg+ 1 with £ the beginning and At the sampling interval. Matrix
I can be considered as a 2-dimensional signal in the phase space with the left

column being its r-values and the right column its corresponding y-values.
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6.4.2 Fault Occurrence Detection

Due to the features of circular function, the source signal, I, has the fol-

lowing embedding when = T/4:

L = [ I{(t) I(t+7) ]

o S (6.4.2)
where
v = Ajcos(wt + @) (6.4.3)
y = Agcos(w(t+7)+¢)
= Aycos(wt +7/2+ @) (6.4.4)

= —Agsin(wt + ¢).

R

As 2 + y? = A3, it shows that the source signal forms a circle whose radius is
Ag and whose centre is at (0,0) in the phase space. In other words, a pair of
samples. To(1,,) and ly(/,,+7), form a point in the phase space and the Euclidean
norm of the point is 4y. However, when the fault occurs, the fault part forms
some other shape and the Euclidean norm of the point (I(t,—7), I(¢,)) suddenly
increases. Therefore, a threshold can be set to check if the fault occurs. The
embedding of the signal shown in Fig. 6.10 in dotted line is given in Fig. 6.11.
The Euclidean norins of the points are plotted in Fig. 6.10 in solid line, and
the estimated fault occurrence point is highlighted by a dot. In this case, it
is simulated that the fault occurs at /; = (g7 and the detection result is also
[y = tar.

The morphological filter proposed in {96} is employed to remove the DC
offset. As the filtering technique is introduced in detail in [96], it is omitted in
this thesis. In the following subsections, the estimation of amplitude and phase
angle is based on signals whose DC offset is removed by the morphological filter.

An example is given in Fig. 6.12.
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Figure 6.10: Fault occurrence detection. Dotted line: the fault signal. Solid
line: the Euclidean norm. Dot: estimmated fault occurrence point.

6.4.3 Fundamental Amplitude Estimation

For the fundamental component, [;(t), its embedding in the phase space

can be expressed by:

r = Ii(t) = Ay cos(wl + ¢) (6.4.5)
y = L(t+7)= A cos(w(t+7)+ )
= Ajcos(wt + o+ 6) (6.4.6)

= AjcosBcos(wt+ ) — Ay sinfsin(wt + )

where ¢ = wr = 277/T. From (6.4.5) and (6.4.6), the amplitude of the

fundamental component can be calculated from:

A = \/(x2 — 2cosfxy + y?)/sin? 6 (6.4.7)

where A, denotes the estimation of A;. Equations (6.4.5)~(6.4.7) show that
any two samples from the fault current are enough to estimate its amplitude.
Usually 7 is sclected to make 6 a common angle. For example, when 7 = T/8,
0 = = /1. In this case, as the signal is digitised at N = T/ Al samples per cycle,
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Figure 6.11: Embedding of a fault signal. Dots: embedding of the source part.
Crosses: embedding of the fault part.

it uses /8 samples to calculate A;. When 7 = T/4, we have 6 = 277/T = /2
and the embedding of 1 becomes
x = L(t)= A cos(wt+ )

y = NL(t+7)=—Asin(wt+ ).

The estimation therefore becomes:

A =22+ ¢ (6.4.8)

Since
(A cos(wt + @) + (= A; sin{wt + ¢))? = A? (6.4.9)
the embedded signal of Iy forms a circle in the phase space, and the centre and
the radius of the circle are the origin of the phase space and Aj;, respectively.
In practice, due to the presence of noise and harmonics, the estimated

amplitude calenlated from different pairs of samples varies slightly:

Atn = VT2 + 12 = VI2(t,) + I2(tn + 1) (6.4.10)

where -y, denotes the estimation of A, calculated from &, = I(t,) and y, =

I(t, + 7). Assume that the onset of the fault is detected at time {;. From the
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Figure 6.12: Dotted line: the fault current. Dashed line: extracted DC offset.
Solid line: the result of removing the DC offset from the fault current.

time instant of t,, = £+ At, the estimated amplitude is calculated using (6.4.7),
where 0 = w(t, — f:,.), until ¢, = {5 + 7 — Al. In this manner, the estimation
of the fault current amplitude is not affected by the source current amplitude,
except the amplitude at time instant {s. In order to reduce the estimation
error caused by noise, the average of Aln over a user-defined window can be
used. An example is given in Fig. 6.13. A fault signal that has its DC offset
removed is considered as the input signal, as plotted in dotted line. The signal-
to-noise ratio of the fault signal is 10.67 dB. Using the method described above
to estimate the amplitude of its fundamental component, the result is given
in solid line. As it can be seen, the sudden increase in amplitude has been
successfully estimated as the fault occurs. The vibration caused by the noise
is avoided by taking the average of the estimated amplitude. As a comparison,
the estimation result by the half-cycle FT is also included, which is shown
in dashed line. The half-cycle FT uses the samples over a half of a cycle
to calculate the amplitude. Hence, it causes a half-cycle delay to accurately
estimate the amplitude of the fault signal. On the other hand, the embedding-

based method does not introduce such an error in the estimation.
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Figure 6.13: Estimation of the fundamental amplitude of the fault current.
Dotted line: the fault current with its DC offset removed. Solid line: estimation
result by embedding. Dashed line: estimation result by half-cycle FT.

6.4.4 Phase Estimation

As stated previously, when 7 = T'/4, the embedded fundamental component
can be defined by:

[ Ajcos(wtp + ) —Apsin(wlty + ) ]

I,

Il

(6.4.11)
Ay cos(wtn + ) —A;sin(wi, + @)

L - : -
When t, = 0, the phase of the fundamental component can be calculated from

the first point of I;:

" I,(1,2)
= arctan { ————= | . 4.
& ( L(11) (64.12)
The phase can also be calculated from an arbitrary point of I; using:
bn = arctan (_Il(n,Q) H(wt,,, 2 6.4
Pn = arcte LD, "~ mod(wt,. 27) (6.4.13)

where mod(wt,, 27) is the residue of wt,, divided by 27. This is to make sure

that ¢, falls in the range of [0,2x). Ideally, for different n, ¢, should be the
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same. In practice, it is more accurate to use the average of ¢, over a certain
window to eliminate the influence of any possible noise:

na

A 1 .
e O (6.4.14)

n=n,

The test is also carried out using the above method and the half-cycle FT,
respectively, and the results are given in Fig. 6.14. In this case, the signal-to-
noise ratio of the fault signal is also 10.67 dB. The actual phase is 78.7500°,
and the estimated results by embedding and the half-cycle FT are 79.4820°
and 79.7806°, respectively. The method proposed in this thesis is slightly
better with an estimation error of 0.93%, while the error of the half-cycle FT
is 1.31%. However, as it does not need to involve samples from a whole cycle

in calculation, the proposed method is more computationally efficient.
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Figure 6.14: Estimation of the phase of the fault current. Dotted line: the fault
current with its DC offset removed. Solid line: estimation result by embedding.
Dashed line: estimation result by half-cycle FT.

6.4.5 Phase Difference Detection

In some cases, there is a phase difference between the current signal and the

voltage signal. The difference can be detected through the embedding of the
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two signals to the phase space with 7 = T'/4. Define the current and voltage

signals as follows:

fe = Accos(wt+ ) (6.4.15)
fv = Aycos(wt + ) (6.4.16)

where A. and A, are their amplitudes and . and ¢, are their phases, respec-
tively.

When 7 = T/-4. an arbitrary point from the embedded current signal has the
coordinates of (ren. Yeu) = (Ac cos(wit, +gc), — Ac sin(wt, +¢c)) and has a phase
angle of J¢, = arctan(—yc,/:ren). At the same sampling time, the point from
the embedded voltage signal has the coordinates of (zvn, Yvn) = (Ay cos(wt, +
o). —Agsin{wt, + @) and has a phase angle of ¢y, = arctan(—yy,/zvn).
Therefore, the phase difference between the two signals, denoted by Ay, can
be calculated from Ayp = e — Pvn- Cousidering the interference of noise,

it is more accurate to use the average of the phase differences over a certain

window: .
R 1 n
Ap= — 5 A
’ ng —mny +1 n;l(%" Bun)- (6.4.17)

Figure 6.15 shows the estimation result of a test, where the input voltage
and current signals both have a signal-to-noise ratio of 10.67 dB. The simu-
lated phase difference is 307.7440° and the cestimated phase difference at cach
sampling instant varies between 306.9407° and 310.1625°, as the figure shows.

The average estimation error is 0.12%.
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Figure 6.15: Estimation of the phase difference.
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6.4.6 Fundamental Frequency Shift Estimation

In some cases, power system signals are influenced by fundamental fre-
quency shift. which can be up to +5%. A considerable error would be intro-
duced to the result of phasor measurement if the signal is embedded according
to its nominal period. To estimate the actual fundamental frequency, a method
is proposed as follows. The signal is first embedded with 7 = T/2, where T is

the nominal period. Hence, the embedding in the phase space is expressed by:

r = L(t) = A cos(W't + @) (6.4.18)
y = Lht+71)= A cos(W(t+T/2)+ )

!

= Ajcos(Wt+o+ %) (6.4.19)

where " denotes the actual fundamental frequency. As the function of
/ !

Fit)=x+y=2A cos(lw—)cos(w't +eo+ ) (6.4.20)
2w 2w

forms a sinusoidal signal, w’ can be calculated from
W' = 2warccos(xp/2A;)/m (6.4.21)

where p is the amplitude of F and is calculated from
p=(Fdg-1F. g)/2 (6.4.22)

where = and © denote the operators of dilation and erosion, respectively, and
g is a flat structuring element of a cycle long. An example is given in Fig. 6.26
to show the calculation of p. In (6.4.21), if ' > w, —p is used; otherwise, p is
used.

To determine if o' is larger or smaller than w, the following strategy is
used. As stated in section 6.4.4, if there is no fundamental frequency shift, the
estimated phase, . is a flat function. However. if the fundamental frequency
has a positive variation, i.e. «' > w, ¢, increases gradually. On the other

hand. if W < w. 2. decreases. For the fault current shown in Fig. 6.26, the

actual fundamental frequency is f' = 51.2542 Hz. Estimating the phase when
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the delay coordinate is still set at 7 = T'/4, where T is the nominal period, the
value of /5, is given in Fig. 6.17. As $, is basically an increasing function, it
is considered that & > w and —p is used in (6.4.21).

According to (6..1.21), the estimation of w' also requires the value of A;.
The estimation process is the same as described in section 6.4.3, and the final
result of A, is calculated as the average of Aln over a cycle. In this exam-
ple. 4, = 3.0102 and /il = 3.0124. The estimated fundamental frequency is
j" = 51.2794 Hz and the estimation error is 4.92 x 1074. On the estimation
of the fundamental frequency, the fault current is re-embedded according to
the estimated actual fundamental frequency and phasor measurement can be
carried out afterwards. As samples from at least a cycle of the fault current
are used to estimate the fundamental frequency, the method causes a delay of

at least a cycle at the very beginning.

4
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Figure 6.16: Calculation of p. Dotted line: the fault current with its DC offset
removed. Solid line: the signal of F. Dashed line: dilation of F. Dash-dot
line: erosion of .

6.5 Power System Disturbance Detection

6.5.1 Parameter Setting

Disturbance signals simulated in this section contain up to 40 harmonics
and the total harmonic distortion (THD) is around 2 ~ 5%. For one of such

signals. the relationship between lg r and 1g C'(r) is plotted in Fig. 6.18. Hence,
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Figure 6.17: Estimation of the phase of the fault current (f' = 51.2542) when
r="T/1
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Figure 6.18: 1g ('(r) against Igr for a power system signal when initial condi-
tions are dp = 2 and 7 = 1.

the correlation dimension is calculated to be d. = 0.7770 and the embedding
dimension is dg = 3.

For a sinusoidal signal F(t) = Asin(wt + ¢), the corresponding sampled
signal is given by F(k) = Asin(wkAt + ¢), if it is sampled at a sampling rate
of N, = 2r/(wAt) samples per cycle. According to the selection criterion de-
seribed in section 6.2.2, the delay constant, 7, of a disturbance signal should
be 1. However, to make full use of the mathematical properties of a sinusoidal
signal, the delay coustant can be set to 7 = N;/4. In the following subsec-
tions. two schemes are proposed for the detection under the two embedding

conditions. respectively.
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6.5.2 Disturbance Detection and Location through

Gustafson-Kessel Clustering

In this subsection, a disturbance signal is transformed to the phase space
with 7 = 1. Hence. the normal part forms an ellipse and the disturbance forms
a shape that deviates from the ellipse. Thus, the two parts are decoupled and
distinguished from each other in the phase space. Afterwards, GK cluster-
ing [99] is used to distinguish the two clusters and to detect and locate the

disturbances accordingly.

GK clustering

The GK clustering algorithm searches in particular for ellipsoidal structures.
Assumne that a set of data @ = {zx|k = 1.2,..., N} can be partitioned into
¢ clusters. The centres of these clusters are denoted by {wv;}i = 1,2....,¢},
respectively. For cach cluster, there exists a covariance matrix F;. Therefore,

the following equation
(.l: - nl.)'l‘[ﬂ l(_, — "‘i) =1 (6.5.1)

defines a hyperellipsoid. The length of the J' axis of this hyperellipsoid is given
by the j eigenvalue of Fi, and its direction is given by the g eigenvector.

The partition of data set . into ¢ clusters is performed by minimising the
following objective function:

c

N -
JXGUV) =30 (ui) "l = uillhy, (6.5.2)

=1 k=1

where {7 = [u; is the partition matrix that satisfics

D uk=1L1<k<N (6.5.3)
i=1
and e € {0. 1]: equation
Dicy, = llow = aillfy, = (o = ) TM (g = 07) (6.5.4)
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describes the distance from a point x; to a cluster centre v;; m € [1,00] is
the weight exponent that determines the fuzziness of the resulting clusters;
M, = det(FN™)F™" is a positive definite symmetric matrix with n denoting
the dimension of the data set .

To perform the GK clustering algorithm, three parameters should be given
in advance. which are the number of cluster, 1 < ¢ < N; the weight exponent,
m. mostly m = 2: and the termination tolerance, £ > 0. Randomly initialise
the partition matrix. {7®, meanwhile it should satisfy (6.5.3). The algorithm

can be summarised as follows, where { = 1,2, ... indicates the counter of each

iteration [99].

1. Compute the cluster centres

2. Compute the cluster covariance matrices

S o)~ T

F, = , 1 <i<g;

Z (1 1) m

3. Compute the distances

YA det(F/") R

!
D, = (=) Mo — o) 1<i<e, 1<k <N

1. Update the partition matrix
" _ 1 :
Up = 7% 1<i<e 1<k<N
> (Dikar,/ Dk, )2/ m=1)

J=1

-~

until |UO = UED) <.
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Figure 6.19: A power system signal with periodic notches.

Take a disturbance signal with notching for example. Asshown in Fig. 6.19,
the fundamental voltage waveform is affected by periodic notches from the third
to sixth cycle. The embedded signal is given in Fig. 6.20(a), from which it
can be seen that the normal part forms an ellips in the phase space, while
the notches form a quasi-ellips, which deviates from the former. Obviously,
the GK clustering algorithm is very suitable to distinguish the two waveforms.
Applying GK clustering to the embedded signal, the result is shown in Fig.
6.20(a), where the diamond represents the clustering centre of the normal part
(v;) and the square represents that of the disturbance (vz). According to
(6.5.1), samples sufficing (i — v1)TF (2, —v,) = 1 corresponds to the normal
part, while those sufficing (zx — v2)TF; '(zx — v2) = 1 corresponds to the
disturbance. Figure 6.20(b) shows the samples classified to the cluster of the

normal part.

The time-aligned weighted average method

After imposing analysis technique in the phase space, the next step is to
transfer the signal back to the time domain. However, once linearly trans-
formed, the resulting trajectory matrix X no longer corresponds to a time
delay embedding [100]. In other words, there is no unique map mapping the
trajectory matrix back to a one-dimensional signal.

To solve this problem, a time-aligned weighted average method is proposed
in {100]. This method gives higher weight to the values in the centre columns
of the trajectory matrix and lower weight to the values in the left-most and
right-most columns. To describe in detail, the rows of the trajectory matrix

are shifted to the right according to the value of 7, which derives the so-
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Figure 6.20: (a) GK clustering of the disturbance signal of notching in the
phase space. Diamond: the clustering centre of the normal part. Square: the
clustering centre of the disturbance. (b) The samples classified to the cluster

of the normal part.

called aligned matrix. Then, the elements near the beginning or end of the

aligned matrix are assigned with weights different from those in the middle. To

illustrate this process, an example of a trajectory matrix X, an aligned matrix

Xaiignea and a weighting matrix P are shown in (6.5.5)~(6.5.7), respectively,

for the case of dg = 3 and 7 = 1.

T
X aligned

PT

~

T
X' =1z,

n T2

T2

1 05
0.5

L2 I3
T3 T4

Iy ITs

T3
T3

Z3
0.25

0.5
0.25

The output time series is given by:

dg
~Toutput(j) = ZXT("’]) ' PT(i,j), 7= 1,2 Cey N.
=1

IM
IM+1

TrM42

Trm
ITM TM+1

TM TM+1 TM42
0.25

05 0.5
025 05 1

(6.5.5)

(6.5.6)

(6.5.7)

(6.5.8)
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As for the case considered here, since the normal part and the disturbance
have been partitioned in the phase space, it is natural to assign zeros to the
samples corresponding to the disturbance in matrix X of (6.2.3). It should be
noted that a disturbance of length [ in the time domain will result in (I + dg)
disturbance points in the phase space. Assume that a disturbance occurs at
zs. Hence, in the phase space, points X3 = (r3, 4, 7s], X4 = [24, 25, z¢] and
X5 = [zs. T6, T7] are the corresponding disturbance points. Assigning 0 to these

three points in X, the new matrix, denoted by X.,, becomes:

y w2 0 0 0 26 -+ M
'\A,l"lr = zo z3 0 0 0 7 -+ zTpyir . (659)
x3 4 0 0 0 g -+ Tmy2

Sequentially, the aligned trajectory matrix can be given as follows.

ry o 0 0 0 g 7 38 -+ IMm
v T — . . . o )
’\/aligned = Lo X3 0 0 0 Ly &g -+ M Tpars
z3 24 0 0 0 T - TM Tpmiyl TMi2

(6.5.10)

In order to transform the aligned trajectory matrix of X, back to the time
domain, (6.5.8) is adopted, where the weighting matrix P is the same as in
(6.5.7). Denote the result by & = {2;,23....,%m42}. Obviously, the distur-
bance occurs at the positions where 2, = 0. Refer these positions to the input
signal z, the disturbance can hereby be extracted.

For the disturbance signal with notching, the detection result is given in
Fig. 6.21, where the disturbance-free signal, the input disturbance signal,
and the disturbance extracted from the input signal are shown in the sub-
figures, respectively. As it can be seen from the figure, the disturbance is
identically recorded in the output signal; on the contrary, the disturbance-free
part maps to O-value in the output signal. To sum up, the disturbance is
precisely extracted from the input signal.

Aside from notching, simulation studies are also carried out on other types
of disturbance signals. Figure 6.22(b) illustrates a typical disturbance signal of

an impulsive transient, and the extracted disturbance is plotted in Fig. 6.22(c).
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Figure 6.21: Disturbance detection of notching.

As can be seen from the figure, the transient is correctly extracted, while at
the places where there is no disturbance, the output is 0.

A voltage swell lasting from the third to the sixth cycle in a fundamental
sinusoidal waveform is presented in Fig. 6.23(b), while the disturbance-free
signal is given in Fig. 6.23(a) as a reference. The detection result is shown in
Fig. 6.23(c), from which it can be seen that the swell is exactly detected at
the points where the voltage ascends and recovers.

Figures 6.24(a) and (b) describe a disturbance-free signal and a disturbance
signal of momentary interruption, respectively. The interruption begins from
the third cycle of the signal and lasts 4 cycles. As in the previous studies,
the extracted disturbance is plotted in Fig. 6.24(c), which illustrates that the
proposed approach is applicable for this type of disturbance as well.

The detection scheme based on the GK clustering algorithm is more ap-
plicable to off-line power quality analysis, as it requires the presence of the
disturbance and the clustering procedure is relatively time-consuming. In the
following subsection, a scheme involving only three samples to detect and lo-

cate the disturbances is presented, and the classification of the disturbances
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Figure 6.22: Disturbance detection of an impulsive transient.
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Figure 6.23: Disturbance detection of voltage swell.
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Figure 6.24: Disturbance detection of momentary interruption.

based on the detection result is also available.

6.5.3 Disturbance Detection, Location and Classifica-

tion through Projection
The embedding strategy

In this subsection, the delay is set to be a quarter of its period, i.e. 7 =

N,/4. Thus, we have:

= [ Asin(wkAt+¢) Asin(w(k+7)AL+¢) Asin(w(k+27)At+¢) |
= [ Asin(wkAt +¢) A cos(wkAt + ¢) —Asin(wkAt + @) ]
= | L1k Yok 3k ].

| (6.5.11)

Apparently, ¥3, + 13 = 4% 13 + 1% = A% and ry + rx = O, which shows
that the embedded signal in the phase space is an ellipse. Using r, y and z
to represent the coordinates of the phase space, 11, r; and 3, respectively, the

enibedded signal in the phase space can be defined by cither of the following
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equations:

z+2=0 T+2z2=0 (6.5.12)
4 y? = A? Y2 +22=A o

The projection of the embedded signal to the wy-plane and the yz-plane is a
circle whose radius is the amplitude of the sinusoidal signal and whose centre
is the origin of the plane, while the projection to the zz-plane is a straight line.

On the other hand, the disturbances will be mapped to some other shapes
than the ellipse. This feature can be used to detect the disturbances from the
embedded signal. An example is given in Fig. 6.25, which shows a sinusoidal
signal F(k) = sin(2m-50kAt+¢) (Ns = 200) corrupted by harmonic distortion
with the THD of 4.94% and white noise with the signal-to-noise ratio (SNR) of
30 dB and its embedding in the phase space. The projections in the zy-plane
and the yz-plane have the same characteristic. Therefore, the detection is based
on ry-plane and «xz-plane projections. The projections on these planes are
denoted by X = [Ri %o ... ku]T =[] =[zyland X =% %, ... xy|T =

[£1 k3] = [z =], respectively.

Frequency shift

In the proposed scheme, the delay selected as 7 = 1/(4fAt), where f is the
nominal fundamental frequency. However, in practice, the fundamental fre-
quency may deviate slightly from its nominal value when the balance between
the load and the capacity of the available generation changes. Such a frequency
shift distorts the projections in the zz-plane from a straight line segment to
an ellipse, as shown in Fig. 6.26. Hence, it is necessary to estimate the actual
fundamental frequency, [/, and re-embed the signal with 7 = 1/(4f'At). The

strategy of estimating f’ is described in section 6.4.6.

Impulsive transients

Figure 6.27(a) shows a test signal with an impulsive transient, which occurs
at Teos and zege. In this case, the actual fundamental frequency is f’ = 50.5099

Hz and the estimated one is f* = 50.5215 Hz. Hence, 7 = 49. Embedding the

T.Y Ji



6.5 Power System Disturbance Detection 152

2 r T . r
% . \/\/\/
-2 2 s s " L
0 100 200 300 400 500 600
Sample

(a) A noisy sinusoidal signal

1
1
0.5
N 0 \\ > 0
-1 -0.5
1
0 0 -1
y =1 -1 -1 -05 0 05 1
X
1 1
05 05
~ 0 N 0
-0.5 -0.5
-1 -1
-1 05 0 05 1 -4 05 0 05 1
y X

(b) The embedded signal in the phase space (dg = 3) and its projection on zy-, yz-

and rz-plane. respectively

Figure 6.25: A noisy sinusoidal signal and its embedding in the phase space.
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Figure 6.26: Influence of fundamental frequency shift on embedding. (a) and

(b): f' =50 Hz. (c) and (d): f'= 525 Hz.

disturbance signal to the phase space, the result is shown in Fig. 6.27(b). From
its projection on .ry-plane, it can be seen that points belonging to the normal
part of the signal forin a circle whose radius is around 1, while points belonging
to the disturbance is much nearer to the origin. Since the projection involves
two samples from the input signal, points from (Zess. Ze9s) t0 (Zea7, Teos) and
from (Zegs, T744) tO (Tegs, T745) are affected. Hence, two disturbances appear in
the phase space.

To view it more clearly, the Euclidean norm of each point on the zy-plane,
denoted by F and FE(k) = y/xf +«%_,, is plotted in Fig. 6.27(c). F also
determines the distance between each point and the origin of the zy-plane. For
the points belonging to the normal part of the signal, their Euclidean norm
should be within the range of [A(1 — v), A(1 + v)], where « is the threshold
introduced to tolerate the corruption of noise. For points whose E falls out of
this range, they are detected as disturbance. The beginning and ending samples
of the disturbance are recorded by the detection scheme. In this case, two pairs
of disturbances are located at p; =< 695,696 > and p, =< 744, 745 >. Noting

that one sample in the time domain affects two points in the zy-plane of the
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phase space and pa1 — P11 = 7, p22 — p12 = 7, the disturbance is located
at from Tees to Tegs. This procedure can be performed in real time, for the
embedding requires the current sample and a previous sample.

The disturbance can also be detected from the projection of the embedded
signal to the .rz-plane, where points belonging to the normal part of the signal
satisfy function f(z,z) =« + z = 0. For each point on the zz-plane, its value
of f(xr.z), denoted by ¢, is calculated and plotted in 6.27(d). Considering
the existence of the noise, points whose ¢ value falls out of range [—+, ] are
detected as disturbance. In this case, points (zse7, Tegs), (508, Teos), (T695, T793)
and (zg96. 2794), Which correspond to samples {zgos, Tegs} Of the test signal, are
detected as disturbance. The detection result is the same as the result obtained
in the Ty-planc. In the following studies, the final detection result is the ‘union’

of that in the ry-plane and the zz-plane.

Oscillatory transients

Test oscillatory transients are simulated to contain low frequency (300 ~
900 Hz) component only, with a duration of 0.3 ~ 50 ms and a magnitude
of 0 ~ 4 p.u. One of the test signals is demonstrated in Fig. 6.28(a) and its
embedding in Fig. 6.28(b). In this case, f’ = 49.8248 Hz, J7 = 49.8709 Hz and
+ = 50. The simulated oscillatory transient occurs from zge6 to Togs.

The detection result in Fig. 6.28(c) shows that the disturbance causes a
larger fluctuation in the Euclidean norm, which means much more pairs of
beginning and ending samples whose Euclidean norm falls out of the range of
[A(1 = 7), A(1 + 7)] will be recorded. Denote these pairs by pi,...,pm. The
detection scheme reckons that if the number of the pairs exceeds one twentieth
of the samples involved, i.e. m > (pm2—p1,1) X 5%, the disturbance is classified
as oscillatory transients. The shortcoming of this scheme lies in that it can only
determine the location of the transients, but cannot analyse the frequency and
amplitudes of the transients separately. In this test, the disturbance is located
from Tgyr to Tess. Lhe detection result is alost consistent with the simulated

disturbance. On the other hand, Fig. 6.28(d) shows that points with a larger
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(a) A noisy power system signal with the disturbance of an impulsive transient
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Figure 6.27: Disturbance detection of an impulsive transient.
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value of f(z,z) than the threshold locate between Xs06 and Xjp6s. Hence, it is

determined that the disturbance lasts from zg26 to zges in the test signal.

Voltage sag

A test signal with a voltage sag is plotted in Fig. 6.29(a). Here, f’ = 48.0213
and the amplitude of the sag is 0.8 p.u. The sag occurs and ends at the zero-
crossing point to simulate a gradual drop of voltage (at zgs2 and z,465), which
is more difficult to detect than a sudden drop. The estimated fundamental
frequency is J = 47.9974, thus 7 = 52. The Euclidean norm of the points in
the zy-plane gradually decreases from 1 p.u., as shown in Figs. 6.29(b) and
(c), and it indicates a disturbance other than transients. The £ value exceeds
the threshold at F(845) and remains exceeding until £(1703). Hence, the sag
is located at from mTg45 to Tye5:.

The location of the sag obtained from function f(z,z) is shown in Fig.
6.29(b). Figure 6.29(d) shows that two segments from ig55 to 191 and from
11692 tO L1752 exceed the threshold, which means points X755 ~ Xg12 and X590 ~
%652 deviate from the line segment defined by f(z,z) = 0. The dragging
phenomenon is due to the delay of embedding. Hence, the location of the sag

is determined at from wgss to ryg50.

Momentary interruption

A momentary loss of voltage on a power system can be called a momentary
interruption. An interruption with a reduced voltage of 0.1 p.u. from zgy4 to
Tye0s 15 plotted in Fig. 6.30(a). The change of voltage is also simulated in a
gradual way. In this case, f' = 49.7417 Hz, f' = 49.6698 and 7 = 50. The
embedding of this signal is shown in Fig. 6.30(b). The Euclidean norm of each
point on the xy-plane is given in Fig. 6.30(c), and the value of [(z, z) of each
point on the rz-plane is given in Fig. 6.30(d).

The detection result obtained by measuring the FEuclidean norm of the
points in the xy-plane is from zgy; to z1503. Due to the shape feature of the

input signal. when the interruption occurs, there is a drop of the Euclidean
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Figure 6.28: Disturbance detection of an oscillatory transient.
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Figure 6.29: Disturbance detection of a voltage sag.
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norin of the corresponding point on the zy-plane. However, as the embedding
requires two samples and in this case, one sample comes from the normal
part and the other one from the interruption, the points form a horizonal line
on the ry-plane and their Euclidean norm gets closer to the radius. This
phenomenon lasts a duration of 7 samples. Similar situation happens when
the signal returns to normal, when a group of 7 samples form a vertical line.
Obviously, in this case, it is not accurate enough to use the Euclidean norm
to locate the interruption. An alternative means is to calculate the distance
between every two neighbour points, which is defined as ©; =|| X; — %X;—1 ||
For points corresponding to the normal part and the interruption, their D is
relatively small, while for the beginning and ending points of the interruption,
the value of D is much larger. The threshold is set to Tp = 2Asin(27/N;) X 2,
which comes from the law of sines. For this test, four points whose distance
to its previous neighbour exceeds the threshold are recorded, namely X757 =
(-”:7577-"807)~ %gor = (807, Tgs7), X1s61 = (11561, Tien) and Xygp = (1611, T1661)-
Hence, the interruption is located at from zgy7 to 21611, which is more accurate
than the result obtained earlier.

Examining Fig. 6.30(d), it can be seen that there are two groups of succes-
sive of samples whose f(z, z) value exceeds the threshold, from ¢g0g t0 tgg2 and
from tig06 tO t1695- Considering the dragging phenomenon, the interruption is

located at from sample zggg to sample z16p6.

Voltage swell

A voltage swell is a short term increase of system voltage. The detection of
voltage swell is very similar to that of voltage sag, except that when the swell

occurs, the voltage increases rather than decreases.

Notching

A signal with such a disturbance of notching is shown in Fig. 6.31(a).
Four notches are simulated at g3, ~ zg3g, 293y ~ Tosg, 1131 ~ L1139 and
Tos1 ~ Tise. Its embedding (f' = 49.6620 Hz, f’ = 49.6666 Hz and 7 = 50)
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(a) A noisy power system signal with the disturbance of a momentary interruption
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Figure 6.30: Disturbance detection of a momentary interruption.
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is given in Fig. 6.31(b), which shows that the notches form a quasi-sinusoidal
shape in the phase space.

The disturbance location procedure is the same as described previously.
Take the first notch for example. As can be seen from Fig. 6.31{c), four
groups of F values exceeding the threshold are detected at £(831) ~ F£(833),
E(838) ~ E(839), E(881) ~ E(883) and E(888) ~ E(889), respectively. The
last two pairs are caused by embedding and should not be included in the
final detection result. Hence, the disturbance is located at xg3; ~ zg33 and
Txss ~ Tazg. Lhe values of samples zg34 ~ 337 are not affected by the notches,
so no disturbance is detected at these positions. The location result obtained
from the signal projected to the xz-plane is the same. If the notching occurs
simultaneously with short duration variations, the threshold the Euclidean
norm compared with is set to [A(1 — ), A(1 +v)], where A is the amplitude

of the short duration variation.

Transients at the beginning and ending of a sag

In this scenario, three types of disturbances are simulated in one signal.
An impulsive transient (z772 ~ x774) occurs at the beginning of a sag (z775 ~
Z1551), followed by an oscillatory transient (1552 ~ #1645). The signal and
its embedding (f' = 51.5736 Hz, f’ = 51.5930 Hz, 7 = 48) are shown in
Figs. 6.32(a) and (b), respectively. From the zy-plane projection and the
E values, as shown in Fig. 6.32(c), it can be seen that E(773) ~ E(774)
exceed the threshold, and after a gradual decrease from F(790) to E(820), a
local maximum of F(821) ~ F(822) is detected before the E value reaches a
stable value of around 0.3 p.u. As p; =< 773,774 >, py =< 821,822 > and
pa1 — P11 = T, P22 — P12 = T, an impulsive disturbance can be located at
T773 ~ T74. The E value remains at around 0.3 p.u. from E(823) to E(1553)
before it starts to vibrate and a group of successive Euclidean norms exceeding
the threshold (from p3 =< 1590, 1595 > to p;4 =< 1682, 1684 >) are recorded.
Hence, a sag is located at z775 ~ z1553 and an oscillatory at Tisen ~ 1636,

respectively.

T. Y Ji



6.5 Power System Disturbance Detection 162
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(a) A noisy power system signal with the disturbance of periodic notching
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Figure 6.31: Disturbance detection of periodic notching.
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The projection on the xz-plane and the ¢« value are shown in Figs. 6.32(b)
and (d), respectively. A group of segments 1730 ~ t724, 1781 ~ t870, L1553 ~ (1661,
-+, 11139 ~ L1741 whose ¢ value exceeds the threshold are recorded. With
consideration of classification criteria described in section 6.5.3, an impulsive
transient. a sag and an oscillatory transient are detected at wzgo ~ @704, 2781 ~
T1ss3 and Tyss3 ~ Zieas. Lhe final location is the ‘union’ of the two results,
which is X700 ~ Z724, T775 ~ ZT1553 and z1553 ~ Ti1ea5. The detection result

almost coincides with the simulation.

Disturbance signals obtained from PSCAD simulations

In this section, test signals are obtained from PSCAD simulations based
on realistic power system circuit parameters. Figure 6.33 shows an oscillatory
transient at the beginning of a sag and the detection of the disturbance. The
detection procedure is the same as described in the previous section. Both F

values and ¢ values exceed the pre-set threshold as the disturbance occurs.

Disturbances classification

The classification is based on the detection results from zy-plane as well
as the features of the disturbances. The detection scheme records pairs of the
beginming and ending samples of the disturbance. A disturbance is first clas-
sified according to its length. Disturbances of sags, interruptions and swells
usually last longer than a half of a cycle, while other types of disturbances
last much shorter. Therefore, if a pair of samples p =< 1.7 > has been de-
tected and j — 7 exceeds a pre-set threshold, the disturbance is classificd as a
sag/interruption/swell. The E value is used to further distinguish these three
types of disturbances, as their amplitude is in the range of 0.1 ~ 0.9 p.u.,
0~ 0.1 p.u. and 1.1 ~ 1.8 p.u., respectively.

On the other hand, if a pair p, takes only several samples, €.9. pn2—pa1 <
7, the disturbance is classified as a transient or a notching. According to [33], a
low frequency oscillatory transient usually lasts 0.3 ~ 50 ms, while the duration

of impulsive transients and notches has not been clearly defined. However, the
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(a) A noisy power system signal with the disturbances of two transients and a sag

1 1
05 0.5
> 0 Mo
-05 ~0.5
- -1
-1 0 1 -1 0 1
X X

2 T T T T T T
1
§ I/ \\ . ..I I/ \\
50 v, N ST oML LU l\ I 1
E v V!
-1 ~ s B
2L L : . ) o L
600 800 1000 1200 1400 1600 1800
Sample

(c) Distance between each point and the zy-plane origin

2rr T T T \ T T
1F ~ - o

7 N RN

\ - - - - f
g\ O/ \ \L._7/ \/[ = A—\:‘ :
E ‘ // v/

<t N ‘ ]

b L . . s _ L
600 800 1000 1200 1400 1600 1800

Sample

(d) Value of f(z,z) of each point on the zz-plane

Figure 6.32: Disturbance detection of two transients and a sag.
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Figure 6.33: Disturbance detection of a test signal simulated by PSCAD.
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impulsive transients and notches considered in this thesis could be as short as
2 ms. Therefore, the duration is a secondary criterion to distinguish oscillatory
transients from impulsive transients and notches. The primary criterion is if
there is another pair p,, that satisfies p, 0 — pn2 = 7 and pp1 — pn1 = 7, it
is either an impulsive transient or a notch. Otherwise, if the number of the
recorded pairs exceeds a pre-defined threshold, the disturbance is classified as
transients, as described in section 6.5.3. Since notches occur continuously, if
a group of beginning and ending pairs of short intervals over one quarter of
a cycle are detected, they are classified as notches. If the pair detected is
isolated, it is considered as noise. The classification process is illustrated in

the flowchart shown in Fig. 6.34.

Simulation results

The test disturbance signals are simulated to contain up to 40 harmonics
with a THD of 2 ~ 5% and Gaussian noise with an SNR of 30 ~ 60 dB,
and they may also have a +5% fundamental frequency shift. The values of
these parameters are randomly selected with a uniform distribution. As for
each disturbance, its location, duration and magnitude are randomly selected
within a range with accordance to the parameters given in section 1.3.2 so that
they are at different levels.

In order to simulate real PQ events, each test signal may contain up to
three disturbances. Forty signals are simulated to contain a disturbance of
each type, respectively. Hence, 40 x 6 = 240 signals in total contain only one
disturbance. For signals containing two or three disturbances, the arrangement
is listed in Table 6.3. Altogether, 300 test signals are generated and 240 of them
contain one disturbance, 45 contain two disturbances and 15 contain three
disturbances. The location, duration and magnitude are randomly generated
within the range given in Table 1.1.

The detection results of the 300 tests are listed in Table 6.4, including the
rate of correct determination of the existence of a disturbance, the average

accuracy & of the location of the disturbance and the rate of correct classifi-
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Figure 6.34: The process of disturbances classification.
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Table 6.3: Arrangement of the multi-disturbances contained in a signal

Number of | Impulsive | Oscillatory | Voltage | Momentary | Voltage | Periodic
signals transients | transients sags | interruptions | swells | notches
3 v v v
3 v v v
3 A v v
3 v v v
3 v v v
5 v v
5 v A
5 v v
5 v v
5 A v
5 v v
5 A v
5 v v
5 A A
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cation. As can be seen from the table, the proposed scheme is able to detect
the occurrence of disturbances, except thap in two tests when the impulsive
transient occurs together with an oscillatory transient and a periodic notch-
ing. respectively, the impulsive transient has not been detected. The location
results of sags, interruptions, swells and oscillatory transients are satisfactory,
with an error of only a couple of samples in the location and an accurate result
in classification. If more than one notch occurs in the test signal, the average
degree of match of all the notches is recorded for statistic analysis. A relative
low & of impulsive transients and periodic notching is due to its short duration.
An error of one sample may cause a significant decrease in the index of degree
of match. In general, a mis-location of one sample may cause a 10 ~ 20% fall of
. The classification result indicates that the classification strategy proposed

in section 6.5.3 is effective.

Table 6.4: The detection results of 300 test signals

Power Total number Accuracy Average | Accuracy
disturbances of the rate of value of rate of
disturbances | determination g0 classification
Impulsive
HpUisty 67 97.01% 90.50% 100%
transients
Oscillator
scrfiatory 67 100% 88.62% 100%
transients
Voltag
OHAge 61 100% 90.03% 100%
sags
Momentar
omentaty 61 100% 94.13% 100%
interruptions
Voltage
& 58 100% 96.39% 100%
swells
Periodic
61 100% 87.93% 100%
notches

In section 3.3, a morphological gradient wavelet (MGW) is proposed to de-
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tect and locate the transient disturbances of power system signals. It has been
proved that MGW outperforms Daubechies DB4 wavelet. However, compared
with the results presented in this section, it can be seen that the scheme pro-
posed here is more accurate and reliable than MGW and requires less computa-
tion. The scheme explores an alternative to detect and locate the disturbances.
Moreover, it involves classification, which is also important for power quality

analysis.

6.6 Conclusion

The embedding-based technique is applied to various signal processing
tasks. For ECG signal analysis, the ECG signals are transformed to the phase
space to form a binary image, and the feature waveforms correspond to the
objectives of the image. Hence, the identification of the feature waveforms is
carried out through the processing of the image. Moreover, the classification
of the P waves and T waves can be implemented using the geometry charac-
teristics of the objectives.

For phasor measurement, the method takes advantage of the mathemati-
cal properties of a power system signal to transfer it to a 2-dimensional phase
space through delay coordinate embedding. In this manner, the amplitude and
phase angle of a current or voltage signal and the phase difference of current
and voltage signals can be calculated sample by sample. The calculation in-
volves two or four samples only, unlike traditional FT-based methods that uses
samples of half a cycle or an entire cycle. Moreover, the method can also be
used to estimate the actual fundamental frequency when it deviates from its
nominal value.

For disturbance detection, two schemes based on embedding are proposed.
The delay constant of the first scheme is selected according to the the general
strategy proposed in [95], and the normal part of a disturbance signal forms
an ellipse in the phase space while the disturbance forms a shape that deviates

from the ellipse. The GK clustering algorithm is therefore used to distinguish
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the two shapes due to its ability to search in particular for ellipsoidal structures.
The scheme has been applied to detect several types of power disturbances
and the simulation results have shown its ability to localise the disturbances
precisely. As the scheme requires the presence of the disturbance and the
clustering procedure is relatively time-consuming, it is more applicable to off-
line power quality analysis rather than on-line monitoring.

The scheme based on projection uses the mathematical properties of sinu-
soidal signals to determine the delay constant so that the projection of the
normal part on the zy-plane forms a circle and the projection on the xy-plane
forms a line segment. The scheme extracts the features from the projections
and uses the gauges of Euclidean norm and function f(z.z) to determine the
location of the disturbance and its classification. Since the embedded signal is
constructed using the data that are sequentially sampled within a small sam-
pling window in the time domain, the location of the disturbances is almost
real-time and the computation time is greatly reduced compared with methods
that process the signal within a much longer sampling window. The proposed
scheme has been evaluated on a number of test signals, which are of six dif-
ferent types of disturbances under various conditions. The simulation results
have shown that the proposed scheme is able to locate the occurrence of dis-
turbances and can accurately classify them, as long as the disturbances are not

buried in the noise.
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Chapter 7
Conclusion and Future Work

This chapter concludes the thesis, summarises the major outcome of the re-
search work presented in the thesis and indicates possible directions for further

investigation of advanced morphological operators.

7.1 Conclusion

The objective of the research is to develop advanced morphological oper-
ators and to apply them to signal processing. MM is a non-linear technique
that focuses on the shape information of a signal. This property enables MM to
concentrate on characteristic waveforms and to replace traditional techniques
based on integral calculation, such as the FT and the WT.

Apart from basic morphological operators, such as dilation, erosion, opening
and closing, the thesis also engages the schemes of soft MM, multi-resolution
decomposition, multiscale MM and the embedding theorem in the develop-
ment of novel advanced morphological operators. Several advanced morpho-
logical operators have been developed in the research to fulfill the tasks of noise
removal of ECG signals, feature waveform identification of ECG signals, dis-
turbance detection, location and classification of power system signals, phasor
measurement of power system signals, noise removal of images.

For the three types of noise existing in most ECG signals, three methods

have been designed to remove them respectively. The multi-resolution mor-
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phological filter is used to remove the impulsive noise, the adaptive multiscale
morphological filter is developed to reject high frequency (Gaussian) noise, and
a fusion method hybridising EMD and MM for the normalisation of the base-
line wander. It should be noted that all the filters are able to preserve the shape
of the feature waveforms to the greatest extent while removing the noise.

In order to identify the feature waveforms, namely the QRS complexes, the
P waves and the T waves, two methods have been developed respectively. The
first one is the multi-resolution morphological filter. In this case, the feature
waveforms are considered as ‘noise’ and they are extracted by rejecting them
separately. The method utilises the geometric features of ECG signals, such as
the R waves having a remarkably higher amplitude and the width of the QRS
complexes being shorter, etc, to identify the three types of feature waveforms
one by one. The second method is based on the embedded signal and treats
it as a binary image. As the feature waveforms form separate objectives in
the image, the identification is carried out based on the geometric information
extracted from the image.

The core idea of disturbance detection is feature extraction. As the occur-
rence of disturbances arouses change in the gradient, the MGW is developed
to extract the gradient information of the signal. As the disturbances and
the normal part of the signal have distinguished geometric characteristics, the
disturbance signals are embedded to the phase space to have the characteris-
tics more clearly viewed. Two methods for the separation of the disturbances
and the normal part in the phase space have been proposed, based on the GK
clustering algorithm and the mathematical information of the projection of the
embedded signal, respectively.

The embedding-based method has also been used for phasor measurement.
It is able to measure the amplitude and the phase angle of a voltage or current
signal, as well as the phase difference between two signals. The method can
also be used to estimate the actual fundamental frequency, which is especially
useful at the presence of fundamental frequency shift. Being more accurate and

much less computational complex, the method can replace traditional methods
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such as the half-cycle FT.

The thesis has also proposed a novel way to design an optimal morphological
filter for noise removal. The scheme involves two steps. First, a morphological
filter or a combination filter is selected according to the characteristics of the
noisc. Sccond, the parameters of the morphological filter are optimised by an
EA towards the pre-set targets, such as lowest PSNR value. Therefore, what-
ever the feature of the noise is, an optimal filter can always be constructed to
reject it, targeting the criteria defined by the user. The simulation results have
demonstrated that the optimally designed filters outperformm the traditional
filters.

A large amount of simulation studies have been carried out to test the
performance of the proposed operators and the results have shown that they
are competent to fulfill the tasks. Moreover, as the operators are developed
based on a generic framework, they can be used to other applications with

minor or even no modification.

7.2 Future Work

The thesis aims at the development of advanced MM and to fully explore
its potential for applications in signal processing. It has also been recognised
that the lack of MM analysis in the frequency domain is another obstacle
that baulks the development of MM. Although the mathematical background
of MM implies that MM and frequency analysis are disrelated and hybridising
the two techniques faces enormous difficulty, it is worthwhile to fill the gap and
the outcome will greatly benefit the realm of signal processing. Future work
will concentrate on investigating an effective method that combines MM and
frequency-based techniques. It may include studying the frequency response of
commonly used morphological operators, such as opening and closing. Based
on the study, a generic framework will be constructed to design morphological
filters that have specific frequency response. The morphological filters can also

be designed to have better performance than traditional frequency filters and
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to consider both shape and frequency information while processing a signal.
As morphological wavelet fits in the framework of the WT and involves mor-
phological operation, it might perform frequency analysis if the morphological
operation uses a series of sine-based structuring elements. The future work will

take the following steps.

¢ Oun the investigation of the frequency properties of basic morphological
operators, a generic mathematical framework will be constructed to de-
sign morphological filters that have specific frequency responses. The
morphological filters will be designed to have better performance than
traditional frequency filters and to consider both shape and frequency

information while processing a signal.

o Preliminary study on the morphological wavelet has shown the merits
of infusing proper morphological operation in the decomposition and ap-
proximation procedure. The future work will investigate the influence of
the morphological operators engaged in the morphological wavelet and
generalise a strategy to select or design the most suitable morphological

operators to solve a specific signal processing problem.

o Some powerful MM-based schemes have been developed in recent litera-
ture, such as the slope transform, morphological gradient, morphological
pvramid and morphological undecimated decomposition. Yet, they are
limited to deal with certain types of signals. The behaviour of these
schemes in the frequency domain will be studied, which will lead to the
investigation of any underlying linkage among them. These schemes will
afterwards be advanced to involve frequency analysis to enhance their

accuracy and ability in feature extraction.

e The theoretical achievement will be applied to design a new generation
of protection relays for power systems. Tasks may include: to exactly
distinguish and extract the faint surge of transient faults for ultra-high-

speed relays, to identify the waveforms of a fault voltage/current signal,
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and to detect and compensate the distorted waveform caused by CT

saturation.
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Appendix A

Full-cycle and Half-cycle Fourier

Transforms

A.1 Full-cycle Fourier Transform

The full-cycle FT is the most widely used algorithm for extraction of the
amplitude and phase angle of a fault signal. It is immune to constant DC
offsets and can filter integral harmonics [101]{102]. Any measured periodic

voltage signal can be expanded into its Fourier series expansion [98] as:

v(t) =ap+ Z an cos(nwpt) + Z by, sin(nwpt) (A1.1)

n=1 n=1

where wy = 27 fo and fp is the fundamental frequency. The coefficients ag, a,

and b, can be obtained from:

l to+T
ag = — v(t)dt
T/to (t) (A.1.2)
2 to+T
ap = 7;/: v(t) cos(nwot)dt, n=1,2,...,00 (A.1.3)
2 to+7T
b, = 7,/t v(t) sin(nwet)dt, n=1,2,..., 00 (A.14)
0

where T is the period of the fundamental frequency component of the signal.

If the sampled signal is represented in a discrete form with N samples per
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fundamental cycle, the real and imaginary parts of the phasor representing the

sampled signal are obtained as:

2 = 2mn
VRe =7 ; v Ii — 'n Cos (T) (A].S)
s 2mn

The amplitude and phase a.ngle can be obtained using the real and imaginary

components, respectively, as follows:

= JVA.(R) + VR(K) (A.17)
o(k) = tan~" (%‘ﬂ%) . (A.1.8)

A.2 Half-cycle Fourier Transform

To reduce the computation time of the algorithm by half, the half-cycle FT
was proposed, which uses samples obtained from half a fundamental cycle. The
half-cvcle FT is described as follows. Any measured periodic voltage signal can

be expanded into its Fourier series expansion [98] as:

v(t) = Z n COS(nuwot) +Zb sin(nwot) (A.2.1)

n=1
where wy = 27 fp and fo is the fundamental frequency. The coefficients of the

Fourier series expausion are expressed by:

1 to+T/2
Qg = T/a/t ’U(t)dt (A22)
0
2 tu+T/2
an = 7‘ﬁ/l o(t) cos(nwpt)dl, n=1,2,...,00 (A.2.3)
0
2 to+T/2
b, = T_/i/t v(t) sin(nwot)dt, n=12,...,00 (A.24)
0
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where T is the period of the fundamental frequency component of the signal.
The real and imaginary parts of the phasor representing the sampled signal are

calculated as:

N/2-1
Vre(k) = % Z v(k — n) cos (2—]7{/2) (A.2.5)
4 " 2rn
Vim(k) = = v(k ~ n)si —) . A2.6
)=y 3 ol =msin (%5 (A26)

The amplitude and phase angle can be obtained using the real and imaginary

components, respectively, as follows:

V(k) = \/v,gg(é) + V2 (k) (A.2.7)
#(k) = tan™! <“;:‘—E:;) . (A.2.8)

The half-cycle FT is used as a reference in the simulation studies: The perfor-
mance of the method proposed in section 6.4 is compared with the half-cycle

FT.
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