










































































































































































































































5,2 Optilll al oft IorpllOlogical Filter Design Using Particl e Swarm 
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5.3 Optimal Combined Filter Design Using Bac­

terial Swarming Algorithm 

5.3.1 Bacterial Swarming Algorithm 

BSA. is developed from BFA [80], which is one of the EAs that has received 

great attention recently. It is based on the study of the E. coli chemotaxis 

behaviour and is claimed to have a satisfactory performance in optimisation 

problems. However. BFA suffers from a major drawback which most EAs 

can not avoid: the optimisation process may be time consuming in searching 

along the randomly selected directions. In addition, BFA only describes E. coli 

chemotaxis phenomenon, which seems inadequate in modelling biological be-

haviours. 

To overcome these problems, BSA is proposed to improve the performance 

of BFA. In the chemotaxis behaviour of BSA, which fulfills the searching pro­

cess, the bacterial rotation angle is calculated by Polar-to-Cartesian coordinate 

transform and is restricted within a certain range. Moreover, the behaviour of 

quorum sensing is introduced to accelerate the convergence rate and enhance 

the diversity of the algorithm. Based on the work of [73] and [74], further 

improvellleuts of BSA are made. 

In BSA, the two important. features used to describe bacterial behaviours 

are chemotaxis and quorum sensing. Chemotaxis offers t.he basic search prill­

ciple of BSA. and quorum sensing enables BSA to escape from local opt.ima. 

III order to describe these features, two mathematical models are const.ructed 

correspolldillgl~'. During the optimisation process, they are performed orderly 

in each iteration. 

Chemotaxis 

E. coli bacteria sense simple chemicals in the environment, and are able 

to (iPcicil' whet her the llutrients at a certain location are getting better or 

worst' [81]. Bad<'l'ia swim by rotating thin, heliml filamrnts known as flagella 

-------,,----------- ~-----------------------
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driven by a reversible motor embedded in the cell wall. E. coli have 8 '" 10 

flagella placed ntllllolllly ou the cdl body [1)2]. In thc chcmotaxis behaviour, 

the motor nms either clockwise or counterclockwise with the different direction 

of protons flowing through the cytoderm. When the motors turn clockwise, the 

flagellar filamcnts work iudcpcudcutly, which leads to an crratic displacement. 

This behaviour is called tumble. When the motors turn counterclockwise, 

the filaments rotate in the SalllE' direction, thus push the bacterium steadily 

forward. This behaviour is called run. The alternation of tUlllble and run is 

presented as a biased random walk. 

The chemotaxis behaviour is modelled by a tumble-run process that con­

sists of a tumble step aud several run steps. The tumble-run process follows 

gradient searchiug priuciples, which means the bacteria's positiou is updated 

ill the run steps by the gradient information provided by the tumble step. De­

termining the rotation angle taken by a tumble action in an n-dimensional 

search space can be described as follows. Suppose the pth bacterium, at 

the kth tumble-run process (i. e. the kth iteration), has a current position 

v k 1lll " t t' -I k (k k k ) E 1lll It - 1 i bl /\1' Em.. a 1'0 a 1011 ange 'PI' = 'Pp1.'Pp2, .. ·,'Pp(n-1) m. ane a tUlll e 

length lJ~(yZ) = (dZl,d~2' ... ,d!n) E ]R't, which can be calculated from 'P~ via a 

Polar-to-Cartesian coordinate transform: 
11-1 

t (1'1 IT cos (Y~i) 
;=1 

II-I 

11" = Pl 
sin ('P~(j-1)) IT cos ('P~i) j = 2,3, .... n - 1 

i=p 

dk = 1''' sin (<P~(n-l)) . (5.3.1) 

The maximal rotation angle Omax is related to the number of the dimensions 

of the ohjective function, which can be formulated as: 

7r 
Omax = -----==0=-

round( vn+i) (5.3.2) 

where 11 is the IlUlllber of dimensions of the objective function. 

At the klh tumble-run process, the pth bacterium generates a random rota­

tion angle, which falls ill the range of [0, Omax]. Then during the run steps, the 
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bacterium keeps moving along this rotation angle direction. A step of tumble 

and run can be expressed as: 

(5.3.3) 

(5.3.4 ) 

(5.3.5) 

where .;;; and X; indicate the rotation angle and the position of the pill bac­

teriulll at the beginning of the kth iteration, respectively; ~~ is its rotation angle 

after t hl' tumble step: ;X': (1) is its positioll irlllIlediatdy after the first rUll step; 

Tl E IR is a normally distributed random number generated from N(O, 1) with 

N standing for normal distribution; T2 E IRn-l is a random sequence with 

a range of [0,1]: lmax is t.he maximal step kngth of a run: finally, :p~+l is the 

rotation angle at the beginning of the next iteration, i. e. the (k + 1) th iteration. 

Once the angle is decided by the tumble step, the bacterium will run for 

a maximum of nc steps, or until reaching a position with a worse evaluation 

value. The position of the Plh bacterium is updated at the hth (h > 1) run step 

as follows: 

,\:;(h) = X;(h - 1) + rllmaxD;(~;). (5.3.6) 

After nc steps of run process, the bacterium stops at position X;(nc). 

Quorum sensing 

A bacterium uses a batch of receptors to sense the signals coming from 

external substances. The bacterium also has an inducer, which is a molecule 

inside the bacteriulll, to start the gene expression [80]. When the inducer binds 

the receptor, it activates the transcription of certain genes, including those for 

inducer synthesis. This process, called quorum sensing, was discovered by 

Miller explaining the cell- to-cell comlllunication in [83]. 

Quorum sensing can occur within a single bacterial species as well as be­

tween disparate species. In BSA, most nutrients locate around optima, which 

correspond to better fitness values. Based on this assumption, the density of 

tll(' illdnrcr is incrc'ascd if thc fitness valuc is better. Therefore, in the single 
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bacterial species case, each bacterium is attracted by the signal randomly, and 

a bacterium's position is updated by: 

X k+1 - ~ • (X X' k) p - u13 best - p (5.3.7) 

where 6 is a coefficient describing the strength of the baeterium's attraction, 

1"3 E ~n is a normally distributed random sequence drawn from N(O, 1), X best 

indicates the position of current best global solution updated after each fUllc­

tion evaluation, and X; is the position of the pth bacterium at the kth iteration 

after the tumble-run process. 

If quorulll sensing occurs between disparate species, it may cause virulence 

between each species. which also avoids pre-mature results. In BSA, a small 

number of the bacteria are randomly selected to be repelled. The repelling 

rate is denoted by R r • If the pth bacterium turns into the repelling process, 

a randolll angle in the range of [0, 7r] is generated. The bacterium is thereby 

'moved' to a randolll position following this angle in the search space, which 

can be described as: 

(5.3.8) 

where lrang£> is the range of the search space. The pseudo code of BSA is listed 

in Table 5.5. 

5.3.2 Criteria 

The objective of optimisation is to obtain a filter that rejects noise to the 

greatest extent. and PSNR is the index to show the quality of an image. As 

stated in section 5.2.2, a larger value of PSNR indicates a higher quality. There­

fore, the optimisation is subject to the largest PSNR and the fitness function 

is selected as l/PSNR. 

To evaluate the quality of the filtered images quantitatively, three criteria 

are eIllployed in the experimental studies. The first two criteria are PSNR 

ami shape error. as stated in section 5.2.2. The third one is the speckle index, 
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Table 5.5: Pseudo Code of BSA 

Set k := 0; 

R andoml~' initialise bacteria's positions; 

WHILE (termination conditions are not met) 

FO R (each bacterium p) 

Tumble: Generate a random rotation angle by (5.3.3). Set h := 1; 

Run: 

FOR (each nm step h) 

Calculate the bacterium's position after the hth run step, 

X;Ul); if II, = 1, use (5.3.4); if II, > 1, use (5.3.6). If the 

fitness value at current position is less than the the value 

at previous position, the bacterium will move towards 

the angle until it reaches the the maximum step, 'lie; 

otherwise, the bacterium will stop at current position, 

Increase h by 1; 

END FOR 

END FOR 

Quorum Sensing: Most of the bacteria are attracted to the global optimum 

by (5.3.7); a small number of bacteria are repelled by 

(5.3.8); 

Set If := k + 1; 

END WHILE 

termed by .'3. The definition of Sis: 

s = _1_ M N !T(i,)) 

M N ~ f; IJ{i,j) 
(5.3.9) 

where a(i, j) is the standard deviation of pixel (i, j) within the neighbourhood 

of a 3 x 3 window, and J.1(i, j) is the mean value. The smaller S is, the better 
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quality the image ha.s. 

5.3.3 Optimal Combined Filter for Compound Noise Re­

moval 

Optimisation process 

In image processing, filtering is a technique for modifying or enhancing an 

image. It applies a certain algorithm to the values of the pixels of the input 

image within a neighbourhood to calculate the value of the corresponding pixel 

in the output image. Literally. the algorithm of linear filtering combines the 

inpllt vahlf's lilll'arlv. The most common linear filter is the FIR filtp,l' , whirh 

corresponds to convolution in the space domain. Denote the image and the 

cOllvolution kernel by [ and f, respectively, the definition of FIR filter is given 

as follows. 

I v: f(i,j) = L f(.s, t)· J(i - .s,j - t). (5.3.10) 

011 the other hand, r..Hvl is a nonlinear approach for image processing. The 

pixels within the neighbourhood interact with an SE, a set of the same size 

as the neighbourhood. The dilation and erosion operators of 2-dimensional 

grey-scale version can be derived from (2.1.17) and (2.1.18), respectively. The 

ddinitiOlls arc: 

J EB 9 ( i, j ) = max {l (i - s, j - t) + 9 ( s. t)} 
s,t 

I (3 9 ( i , j) = min {l (i + s. j + t) - 9 ( s, t) } 
s,t 

where [ and 9 denote the input image and the SE, respectively. 

(5.3.11) 

(5.3.12) 

Instead of secLrching for the maximal or minimal element, a more general 

strategy is used, which returns the rth largest element in the neighbourhood. 

This filt.er is referred t.o as the ranking filter [72], and is defined as: 

r 

I 2 g(i,j) = Rr{I(i - :i,j - t) + g(:i.l)} (5.3.13) 

where Hr(.l') sorts the elements of:1: and returns the 1·th largest one. For binary 

ranking filters, in which t.he SE 9 eomprises 0 and 1 only, the definit.ion is 
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altpred to be: 

r 
JED g(i,j) = R,.{I(i - s,j - t)}, if g(s,t) = 1. (5.3.14) 

Th~ comhinf'o filtf'r calculat~s th~ wf'ightf'o average of the outputs of the 

FIR filter and the ranking filter, which can be expressed by 

r 

Ie! = A' J 8 I + (1 - A) . J EEl g, O:S A :S 1. (5.3.15) 

In order to design an optimal combined filter, the following parameters 

should be considered. 

• The size of the convolution kernel, I; 

• The values of t he elements of f. and they should suffice the condition of 

L I(s, i.) = 1: 
s,t 

• The size of g; 

• The shape of g. For gray scale version, the values of the elements of 9 

call be random integers; for binary version, they can be either 0 or 1; 

• The ranking coefficient, r, which should be no more than the number of 

the elements of 9 involved in (5.3.13) or (5.3.14); 

• The weight coefficient, A, and 0 :S A :S 1. 

Simulation results and analysis 

Parameter setting. BSA is applied to optimise the parameters of the com­

bined filter depicted by (5.3.15). The problem is slightly simplified by assuming 

that the sizes of convolution kemel I and SE 9 are restrained between 2 x 2 

alld .5 x .5. Also. t he elements of I are sYlllmetric around the centre. In ad­

dition, since t he test images are 8-bit bitmaps, the SE follows the gray scale 

pattern. but the values of its elements are chosen from {-I, 0,1,2, 3} only. 

When g(8.1) = -1, the corresponding pixel of the image, I(i - s,j - t), is 

exdurkcl from tIl(' ranking filter, H, .. In all experiments, the initial population 

T. Y. Ji 



5.3 Optimal Combined Filter Design Using Bacterial Swarming Algorithmll0 

(a) Original image (b) Noisy image 

Figure 5.9: Add Gau ian white noise and salt & pepper noise to Image Pepper. 

size is select d to be 100 and the maximal iteration is 1000. In the tumble-run 

proc s, th maximal number of the run steps along an angle is 4 steps. The 

repelling rate Rr i et by t ri al. Th same t sts as described in [65] have been 

carri d out to find a uitable yalue for Rn and the result is it is set to be 0.2, 

i. e. a portion of 20 percents of the bac teria will be repelled in each iteration. 

The coefficient 6 i et in the same way and 6 = 2. 

D sign OCF. An original noise-free image shown in Fig. 5.9(a) is givell as 

a refer nee. Both Gaussian whi te noise N (O, 0.01) and salt & pepper llOise 

(0.05) are added to this image, as showu iu Fig. 5.9(b). Here, (d) deuotes 

salt & pepper nois of density d. BSA is then employed to optimise the param­

eter of the ombined fil ter , f ef, subject to the highest PSNR. To diminish the 

computation burden, only a small part of the image (36 x 36) is used for op­

timisation. The ombined fil ter optimised by BSA, whieh is referred to as the 

BSA filt r in thi se tion, is ther fore applied to ot.her noise-corrupted images 

to test its performanc . 

stat d in ction 5.3.3 6 types of parameters need to be opt imised . The 

curve of COllverg 11 process is illustrated in solid line in Fig. 5.10, which is 

an averag of 30 run . T he figur show that BSA has a fa t convergence rate. 

One of th optimi ation results is listed as fo llows. It should be noted that 

although the optimisation results vary slightly each time, the corresponding 
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BSA filters have a highly similar performance, which means BSA has a stable 

performance. This can be proved in Table 5.7. 
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(5.3.17) 

(5.3.18) 

(5.3.19) 

Figure 5.10: Comparison of the convergence process between BSA and GA. 

OCF on Image Pepper. The BSA filter whose parameters are set by 

(5.3.16),,-,(5.3.19) is therefore used to filter the noisy image of Fig. 5.9(b), 

and the result is shown in Fig. 5.11(a). For the purpose of comparison, the 

comhilwd filter is also optimised by GA. The publicly accepted GA toolbox is 
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employed and its parameters are set as follows. The population size and max­

imum iteration are set to be 100 and 1000, respectively, which are the same 

,,15 BSA. The selection function, crossover function and mutation function are 

set t.o be roulette, single point and uniform with a mutation rate of 0.01. The 

convergence process of GA, which is also the average of 30 runs, is plotted 

in Fig. 5.10 in dashed line. Apparently, BSA converges faster than GA and 

achieves a better result. One of the optimisation results obtained by GA is 

listed below. For the convenience of description, the combined filter optimised 

by GA is called GA filter in t.his section. The parameters of one of GA filters 

are set 8,..., below. 

0.0290 

0.0605 

I = 0.1087 

0.0605 

0.0290 

-1 3 

-1 1 

9 -1 2 

0 0 

0 0 

r 4 

A = 0.5006. 

0.0004 0.0290 

0.1087 0.0605 

0.2064 0.1087 

0.1087 0.0605 

0.0004 0.0290 

(5.3.20) 

(5.3.21) 

(5.3.22) 

(5.3.23) 

Csiug the GA filter to remove the noise from Fig. 5.9(b), the result is shown 

in Fig. 5.1l(b), which reveals that a certain amount of noise still remains in the 

output image. The FIR filter and median filter are involved in the simulation 

studies as well. Their performance is demonstrated in Figs. 5.11(c) and 5.11(d), 

resTwd.iwly. The cOllvolutioll kernel of the FIR filter is: 

(5.3.24) 
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(a) BSA filter (b) GA filter 

(c) FIR fi lter (d) Median filter 

Figure 5.11: Performance of the four filters on Image Pepper. 

The median fil r is 4-connected and its size is 3 x 3. 

In tuitively, the FIR filter blurs the edge details and is useless in suppressing 

the salt & pepp r noi e. On the ontrary, the median fil ter is effective in dealing 

with salt & p pper no is as w 11 as keeping the shape information, as it should 

be. However it makes th whole image brighter, which is an evidence that 

the lllccii au filler au llot remove Gaussian noise effectively. As for BSA filter , 

it removes both types of noise to a great extent meanwhile keeps more detail 

information than the other filters. 

To quantitatively analyse their performance, the three criteria mentioned 

in ection 5.3.2 ar mployed and the evaluation results are listed in Table 5.6 . 

To mak the result mor comprehensible, the percentage of improvement is 
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also demollstratt'd. From the table it can be seen that BSA filter achieves the 

best performance under all the criteria. The results for BSA filter and GA filter 

are the average results of 30 runs. To show the robustness of the algorithms, 

the variance of the results is also calculated, which is listed in Table 5.7. 

Table 5.6: Quantit.ative performance of the four filters on Image Pepper subject 
to the criteria of PS~R, shape error (es ) and speckle index (S) 

Filter PSNR es S 

B('for(' filt('r('n 17.049 10.708 0.109 

BSA filter 27.846(63.33%) 1.283(88.01%) 0.060(44.95%) 

GA filter 27.153(59.26%) 1.292(87.93%) 0.065(40.37%) 

FIR filter 24.607( 44.33%) 1.651(84.58%) 0.071(34.86%) 

~Iedian filter 27.677(62.34%) 1.566(85.37%) 0.070(35.78%) 

Table 5.7: Variance of the results 

Filter PSNR es S 

BSA filter 0.0449 2.0221 x 10-6 3.7767 X 10-5 

GA filter 0.0490 1.4302 x 10-5 5.2397 X 10-5 

OCF on Image Lena. The 30 BSA filters and GA filters are also used to filter 

other images corrupted by both Gaussian and non-Gaussian noise. An example 

is given in Fig. 5.12, where the original image of Lena, the contaminated 

image b~' Gaussian white noise N(O,O.Ol) and salt & pepper noise N(0.05), 

th(' filtering rf'slllts of nSA filt('r. GA filter. FIR filter and median filt.f'r are 

illustrated respectively. The quantitative results are listed in Table 5.8, where 

the results of BSA filter and GA filter are the average value. From the figures 

and tht' table. similar conclusion can be drawn that the BSA filter outperforms 

the at her (hree filters. 

5.4 Conclusion 

This chapter discusses OSMF for periodic noise removal and OCF for both 

Ganssian alHl IHlIl-Ganssian noisf' removal. Bot.h filt('rs are obtained from the 
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(a) Image Lena (b) Noisy image 

( c) B' fi I tel' (d) GA filter 

(e) FIR filter (1') Median filter 

Figure 5.12: dd Gau sian whit nois and salt & pepper noise to Image Lena 
alld thc pcrfol'lnau ' . of the foul' filtcl's . 
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Table 5.8: Quantitative performance of the three filters on Image Lena subject 
to the criteria of PSNR, shape error (es ) and speckle index (S) 

Filter PSNR t:s S 

Before filtered 16.524 8.501 0.096 

BSA filter 26.479(60.24%) 1.617(80.98%) 0.053( 44.79%) 

GA filter 25.901(56.75%) 1.899(77.66%) 0.094(2.08%) 

FIR filter 24.655( 49.21 %) 1.899(77.66%) 0.063(34.38%) 

I\ leciiclll filter 25.432(53.91%) 1.895(77.71%) 0.064(33.33%) 

optimisation of a generic framework. The optimisation approaches proposed 

in this chapter arc also able tu design filters for other signal/image processing 

applications. 

OSI\IF is optimised from the framework of soft morphological filter using 

PSOPC. The optimisation process has been carried out in two stages. In the 

first stage, OSI\IF only involve8 80ft dilation and 80ft erosion, while in the sec­

ond stage. the general formula is extended to include other soft operators. In 

each stage, OIlCt' the original image and the noisy image are given, the optimi­

sation process is carried out without requiring the knowledge of the frequency 

of periodic noise. However, if the noise frequency changes, the optimisation 

process should be carried out again to update the OSMF parameters. 

Simulatiull studies are carried out to remove periodic noise of various fre­

quencies. The performance of OSMF has been presented in cornparisoll with 

spectrallllcdiall filter, a frequency filter that is very powerful in the reduction of 

periodic noise. When pure periodic noise is added to the original image, OSMF 

achieves better performance than spectral median filter in the elimination of 

the noise ill high frequency conditions, although is not as good as the latter 

in km; frequency conditions. But taken the shape error and the computation 

tillle into consideratioll, OSMF outperforms spectral median filter greatly in 

both high and low frequency conditions. 

When pure sinusoidal noise is added together with Gaussian white noise, 

which is iliOn' practical, t.lw ability of spect.ral median filter to reduce noise 

decn'(l."cs dralllaticall~·. Oil the contrary, the ability of OSMF to remove the 

T. Y. Ji 



5.4 COl1clusion 117 

compound noise is not affected in this case and is much better than that of 

spectral median filter. Besides. the interference of Gaussian white noise makes 

spectral median filter introduce a significantly larger shape error to the filtered 

image, while the shape error caused by OSMF remains at a low level. In 

conclusion, the simulation results demonstrate OSMF is more effective aud less 

time-consuming in reducing both pure periodic and compound noise meanwhile 

preserving the details of the original image. 

OCF is another cffcctive optimal filter for image processing presented in 

this chapter. The filter combines both linear and morphological filtering tech­

niques so <1.':1 to relllOve Gaussian and nOll-Gaussian noise. Afterwards, the the 

parameters of the combined filter are optimised using BSA to obtain optimal 

filtering results. 

BSA is inspired by the underlying mechanisms of bacterial foraging be­

haviours - chemotaxis and quorum sensing. Chemotaxis is based on the gra­

dient searching behaviour, which ensures that the bacterium always moves to 

a better position than the previous step. Two versions of the quorum sens­

ing behaviour are introduced in BSA. When quorum sensing happens inside a 

single bacterial species, bacteria are attracted to global optimum, which accel­

erates the convergence speed. When quorum sensing happens among disparate 

species. bacteria are randomly replaced in the search space, which prevents 

bacteria from being trapped into local optima. 

Simulation studies of using BSA and GA to optimise the combined filter, 

respectively, have shown that the convergence speed of BSA is faster than GA 

and the combined filter optimised by BSA achieves a better performance than 

thc GA filtC'r, FIR filtcr and m(xli(\Il filter. Implementing these filters to other 

noise corrupted images, the same conclusion can be drawn. 
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Chapter 6 

Embedding-based Technique 

6 .1 Introduction 

This chapter introduces a novel signal processing technique that is based 

Oll the embeddillg theorem. It is believed that the features of a signal can be 

more clearly revealed if it is embedded to the phase space through a proper 

embeddillg strategy. The embedding theorem [84] [85] shows that a time series 

can be mapped to a higher dimensional space, which is the so-called phase 

space, through embedding [86]. Therefore, a sampled signal call be transformed 

to the phase space so that its features can be more clearly viewed. As the 

theoretical ba.<;is of the proposed scheme, the embedding theorem is introduced 

in section 6.2. 

The emhedding- based technique is applied to three applications: feature 

waveforlll dptpctiull of ECG sigllals, phasor measurement of power system sig­

nals alld disturbance detection. For the last applicatioIl, two schemes based on 

Gustafsoll-Kessel (GK) clustering and projection, respectively, are proposed. 

6.2 The Embedding Theorem 

The embedding theorem was originally proposed for dynamical systems 

[84][87]. III mathematics and physics, a dynamical system is usually described 
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b.y a state space, {'etch orthogonal coordinate of which represents one of the vari­

ables needed to specify the instantaneous state of the system [88][89]. Hence, 

all the possible states of the dynamical system are represented ill the state 

space and each possible state corresponds to a unique point [90]. However, in 

practice. it is usually impossible to measure all the variables of a dynamical sys­

telIl. Fortunately. Takens has proved in [84] that it can be reconstructed from 

a time series of a collection of the states using the embedding theorem. The 

following paragraphs briefly explain how to map a d-dimensional dynamical 

system to a dE-dimensional phase space, where dE ;::: 2d + 1. 

A d-c1ilIlensional dynamical system can be expressed by d first-order dif­

ferential equations. The solution of these equations, s E Rd
, is a state in 

the corresponding state space, with R denoting the Euclidean space. Func­

tion h : ~ --; R converts a collection of states s to a scalar time series, i. e. 

1: = h( s), where h is called the measure function. The 'delay' of the time series 

is denoted by a positive mnnber T. The evolution of the state s at time i is 

defined by the function Fr(Si) = Si+r' 

Therefore, the embedding <I> : Rd --; RdE, which is called the delay-coordinate 

el111wnning here, is defincd as: 

<I>(h, F, r)(s) = {h(s), h(Fr(s)), ... , h(F(dE-IlT(s))}. (6.2.1) 

For a cert ain Si. the above equation has the form of: 

(6.2.2) 

Therefore. a phase space matrix X of dimension dE and delay r can be con­

structed ill t lit' following way: 

X2 
x = 

XM XM+T 

:Cl+(dE-l)T 

X2+(dE-l)T 

(6.2.3) 
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where the colullln vect.ors ~i (i = 1, ... ,dE) form the coordinate of each eli men-

sion and the row vectors Xi (i = 1, ... ,M) represent individual points in the 

phase space. For a time series 1'= {1'j, ... ,1'i, ... ,1'N}, it can be embedded 

directly from 1R to 1RilE by (6.2.3). In this case, X is a M x dE matrix, X is a 

1 x dE vector and ;\I = N - (dE - 1) T. The M points form the dE-dimensional 

embedded signal in the phase space. Matrix X is also called the trajectory 

matrix. 

6.2.1 Determination of the Embedding Dimension 

Two parameters are required by the delay coordinate embedding: the em­

bedding dimension and the time delay. These parameters should be prop­

erly chosen so that the feature hidden in the time series can be presented 

in the pha~e space. According to [91], a suggested embedding dimension is 

dE = r2 . boxdirn(A) + 1', where A is the attractor of the dynamical system, 

boxdim( A) is the system dimension, and r x., denotes the minimum integer 

larger than or equal to r. Note that boxdim(A) may be fractional and dE must 

be int('gral. The correlation dimension [92][93] is used 8.'3 boxdirn( A) ill this 

thesis to calculate dE' 

The correlation dimension is determined from the correlation integral de-

fined as: 
1 N N 

C(1') = lim - '"' '"' 8(r - Ix - xl) ('i 1= j) 
N--oo N2 L..t L..t t J 

i=l j=1 

(6.2.4) 

where Xi and x) nre two arbitrary points, and 8(1') is the Heaviside step func-

tion: 

8(1') = 
{ 

0, 

I, 

if x ~ 0 

if :1: > 0 
(6.2.5) 

Equatioll (6.2.:1) calculates themunber of pairs (Xi,Xj) satisfying IXi-xjl < r. 

x, and x) are two arbitrary points ill the 2-dimensional phase space: Xi = 

{Xi. :.z·i~1}. Here, dE = 2 and T = 1 are selected as the initial condition for the 

calculat iOIl of t he real correlation dimension, de. Assume that for small r, C (r) 
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behaves as C(r) ex ,.dc
• de is then estimated by: 

de = lim Ig[C(r)l. 
r-+O 19[r] 

In other words, de is the slope of the curve of Ig[C(r)] against 19[r]. 

121 

(6.2.6) 

The correlatioll dimension depends on the value of T. \Vhen T is smail, 

the behaviour of the correlation dimension is dominated by the characteristics 

of noise, which has infinite dimension [94]. In practice, a string of de are 

calculated wi th various r. If ill a range of rL ~ r ~ tu, de (r) is a constant 

within SOllle tolerance, the correlation dimension is chosen as the average of 

dc(r) oyer [rL. rd [93]. Finally, the embedding dimension is dE = r2de + I'. 

6.2.2 Determination of the Delay Constant 

The delay constant should neither be too short to include unnecessary cal­

clliatioll, nor too long to miss any useful information. If T is too small, each co­

ordinate is almost the same and the trajectories of the phase space are squeezed 

along the identity line. On the other hand, if T is too large, in the presence of 

chaos and noise, the dynamics at a time instant become effectively and causally 

disconnected from the dynamics at a later time instant. Hence, even simple 

geometric objects look extremely complicated. A natural choice of T is the first. 

minimum of the autocorrelation fUllction such that each coordinate is linearly 

independent. 

According to [95], T equals to the first minimum of 19 ctE , where 

(6.2.7) 

(6.2.8) 

(6.2.9) 
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6.3 Feature Waveform Detection and Classifi­

cation of ECG Signals 

6.3.1 Parameter Setting 

ECG signals used in this section are free from impulsive noise and baseline 

wander, and are pre-processed to get rid of high frequency nobe. The filtering 

techniques are explained ill chapters 3 and 4, respectively. For such a de-noised 

test ECG signal of length 1000, the relationship between 19 rand 19 G(r) is 

plotted in Fig. 6.1. In this case, de = 0.4390. Hence, dE = 2. For the same 

test ECG signals of length 3000, the embedding dimension is dE = 3. Thus, 

the choice of dE depends 011 the length of the signal under processing. 

o~--~--~----~--~--~~--~--~--~ 

-0.1 

-0.2 

cJ -0.3 
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Igr 
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Figure 6.1: 19 G(r) against 19r for a de-noised test ECG signal when initial 
conditions are dE = 2 and T = 1. 

For the de-noised test ECG signal of length 1000, the relationship between 

19 C;h: (T) and T is given in Fig. 6.2 and the minimum of 19 GtE occurs at 

T = 15. 

065 

0.6 

-;:- 0.55 

~- 0.5 

!Z> 0.45 
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0.35 
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Figure 6.2: IgCtE(T) against T of a de-noised test ECG signal. 
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Figure 6.3 shows the emb dding of the de-noised test ECG signal when 

dE = 2 and T = 15 . The white pixels in the figure are enlarged to give a clearer 

view. A the magnitude of the test signal is digitised , the magni tude of the 

de-noised te t ignal is also regulated to integers. Thus, the phase spaee can be 

presented by an imag and the embedded signal can be presented by the white 

pixels of the image. The dense cluster corresponds to samples belonging to the 

segm nt , alld the three orbits correspond to the P waves, T waves and QRS 

complexes, respectiv ly, according to the size. For the original t st sigual, the 

emb dding param ters are dE = 2 and T = 8. The smaller value of T shows 

that the ignal contains a greater amount of redundant information, which is 

introduced by the noise, and more unnecessary calculation is included. Thanks 

to the lloise removal procedure, the r dundant calculation is avoided. 

Figur 6.3 : Embedding of a d -noised test ECG signal when dE = 2 and T = 15. 
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6.3.2 Detection of QRS Complexes 

As explained ill section 3.1.2, the QRS complexes are distinctive in all ECG 

signal due to the high magnitude of the R waves. In order to locate the QRS 

complexes with the tolerance of the baseline wander, the magnitude diffenmce 

between every T samples are calculated: 

d .. (t) = J(t) - J(t + T). (6.3.1) 

The difference signal of d, is referred to as the right-hand difference. Local 

minima of d, with an absolute magnitude value over a pre-set threshold are 

recorded as the Q points, and local maxima with a magnitude value over the 

pre-set threshold are recorded 8.'3 the R points. Similarly, the S points can be 

located from the left-hand difference of f: 

d,(t) = J(t) - j(t - T). (6.3.2) 

Figure 6.4 demonstrates the detection of the QRS complexes of a test signal. 

Figure 6.5 shows the detection result during a 3-beat ventricular tachycardia. 

The algorithm has been tested on a group of ECG signals and the detection 

results are listed in Table 6.1. The ECG signals contains only records ill the first 

five minutes. The muuber of the QRS complexes detected by the algorithm, 

i.e. the detected beats, is compared with the actual number provided by the 

databa~c. The errors mainly occur during fusion, which changes the QRS. 

Take record 208 for example. In the first five minutes, the ECG signal contains 

72 fnsions, which reduces the accuracy of the detection by 2.7%. On the 

identificatioll of the R points, an RR interval is considered as a 'cycle' of the 

signal. 

6.3.3 Detection of P Waves and T Waves 

The detectioll of P waves and T waves is based on the embedded signal 

ill the phase space. Samples belonging to the segments form a dense cluster, 

which can be extracted from the image using morphological reconstruction by 

------------- -----------------------
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Figure 6.4: (a) Location of the Q points (ill .), R points (in 0) and S points 
(in 0). (b) Right-hand difference. (c) Left-hand difference. 

dilatioll. l\Iorphological reconstruction requires two images: a mask image and 

a marker image. The algorithm of morphological reconstruction by dilation of 

a lllask illlage II frolll a marker image .12 (.1'2 ~ fd is described as follows [20]. 

• Step 1: Set k := 1. Set fJO) = 12. 

• Step 2: Dilate 12: fJk) = fJk-l) EEl g, where 9 is the pre-defined SE. 

• Step 3: Calculate the point-by-point minimum of fJk) and h: (W) (t) = 

minUyl(t). fl(t)}. 

• Step 4: If 6(k) = 6(k-l), terminate. Otherwise, set k := k + 1 then go to 

Step 2. 

For a binar~' image. the int.ersection of f~k) and fl is used in step 3. Here, the 

mask illlage is t he embedded signal, X, and the marker image is the erosion of 

--.-.------~------.---.-- ------------~--- ---.~---
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Figure 6.5: Locatioll of the Q points (in .), R points (in 0) and S points (in 0) 
duriug a 3-beat ventricular tachycardia. 

Table 6.1: Results of QRS detection 

ECG Total Detected Accuracy 

record beats beats rate 

105 417 417 100% 

109 433 432 99.77% 

200 433 433 100% 

208 518 504 97.30% 

212 463 463 100% 

217 363 354 97.52% 

221 407 407 100% 

228 350 350 100% 

x by an SE of 

as shown in Fig. 6.6(a). The SE can also be set a,.'l [0,1,0; 1, L 1; 0,1, OJ, 

[0,1; L 1], [1. 1; 1,0] or [1,0; 0, 1] to match the shape of the object. The result 

of morphological reconstruction by dilation is given in Fig. 6.6(b). Denote it 

by X b . Apparently, Xb ~ X. 

To separate a P or T wave from the segment, the distance from each objec­

tive pixel to t.he set of X b is calculated. The distance from a pixel x t.o a set. 
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Table 6.2: Measurement of the detected P waves 

EeG Width of P waves (ms) Peak value of P waves (mV) 

record Average Variance Average Variance 

105 172.83 12.40 0.21 0.0025 

109 338.95 11.62 0.29 0.0178 

200 100.75 3.09 0.42 0.0146 

208 132.62 10.21 0.14 0.0112 

212 119.50 2.18 0.24 0.0014 

217 43.94 0.43 0.15 0.0115 

221 180.38 2.10 0.94 0.0056 

228 298.67 7.74 0.22 0.0854 

A is dcfilWd as the shortest distance from x to a pixel in A: 

d(x, A) = min{11 x - ap II}, ap EA. 
p 

(6.3.3) 

From a detected Q point leftwards, a string of pixels whose distance to X b is 

larger than zero are recorded as the embedding of the P wave, as shown in Fig. 

6. 6( c). From t he detected S point rightwards, a string of pixels whose distance 

to X b is larger than zero are recorded as the embedding of the T wave, as 

shown in Fig. 6.6(d). To view it more clearly, the white pixels in Figs. 6.6(c) 

and (d) are enlarged. Therefore, samples in the time domain that comprise 

the embedded P wave and T wave are detected to form the feature waveforms 

of P wave and T wave. The result is given in Fig. 6.7. In clinic, doctors are 

interested ill the width and peak value of feature waveforms. Table 6.2 shows 

the measurement of the width and peak value of P waves of eight EeG signals, 

which are the same as the ones used in the previous table. Data of P and 

T WHVl':; call be da:;:;ified u:;ing the geometric information in the phase space, 

such (1.') cClltroiLi, barycentre, area, etc. 
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Figur 6.6: (a) The marker image. (b) Morphological r construction by dilation 
and th xtract d baselin in the time domain. (c) Extracted P wave in the 
phase domain and tim domain, r pectively. (d) Extracted T wave ill th 
phase dome in and tim domain , r spectively. 
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Figure 6.7: Id ntification of P waves (in dark grey) and T waves (in light grey). 

6.3 .4 Classificat ion of Feature Waveforms 

In thi s ction the geom tri information of the feature waveforms repre­

sellt d by the emb ddillg in the phase space is used as the criteria to classify 

them. Take the lassification of the P waves for example. The geometric infor­

mation includes the length of t he P wave in the time domain and the perimeter 

and area of the embedded P wave in the phase space. Hence, each P wave is 

coded as a 3- lement vector 1'i E V with V the set of t he v ctors and i the 

index of the P wave . Th elemell ts of the vector are llormalised to [0 , 1] for 

meaningful clustering. The clustering method is based on the distance betw en 

Vi and a clu t r entre denoted by Cj E C with C the set of the cluster centres, 

1 :::; j :::; J h index of the cluster centre, and J the number of clusters. For 

an arbitrary Vi if 

(6 .3.4) 

wiler 1/ . II d notes the Euclid an norm, 'Vi belongs to cluster Ck' The cluster 

centre are a \aptiv I generated and t heir number is not constrained to a pre­

set number as th case in [2 ] where the P waves are always classified into two 

clu ters. The rlassifi at ion procedure is de cribed as follows. 

• t P 1: et J := l. Init ialise the first cluster centre Cl := V I , Set 'i := l. 

• t P 2: alculate th di tance dj = Ilvi -Cj II for aliI :::; j :::; J. If minj{ dj } 

c:xcec:ds a prc:-defin d thrc hold , e, a new cluster centre is assign d at 
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Figure 6. : Cl ification of P waves of an ECG signal (8 = 1). ormalised 
P waves in black are classified to cluster 1 and those in red are classified to 
clu ter 2. 

CJ+l = Vi· Set J .- J + 1. Otherwise, Vi is classified to cluster Ck if 

dk = minj {dj } . 

• Step 3: Update the cluster centres by averaging the vectors belonging to 

each Cj . 

• Step 4: et i := i + 1. Go to Step 2. Terminate when all the vectors are 

clas ified. 

Figure 6. how th cl sification result of the P waves of the first five 

minut of record 106. To make it more comprehensible, the P waves are 

normali ed taking on zero value at the onset and end samples, as the strategy 

used in [2 1 and having the same length. The threshold is set at 8 = 1 

and under thi condition th P waves are classified into two clusters. As a 

compari on wh n e = o. , the P waves are classified into four clusters, as 

shown in Fig. 6.9 . The ame clustering method can also be applied to classify 

the QR ompl xe and T waves. 
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Figure 6.9: Classification of P waves of an ECG signal (() = 0.8). ormalised 
P wav s are elas ifi d into four clusters, plotted in black, red, green and blue, 
respecti el . 

6.4 Phasor Measurement of Power System Sig­

nals 

Phasor measurement measures the amplitude and phase angle of the signal 

to determine the health of the power system. If a fault occurs on transmission 

lines, the input current of a relay may contain harmonics and exponentially 

decaying DC off et. This section proposes an embedding-based scheme to 

measure the amplitude and phase angle of the fundamental component of the 

fault ignal. 

A traditional method for phasor measurement is the Fourier transform 

(FT). However the pr ence of the offset will bring fairly large errors to the 

measuremen r ult and cau e malfunction of relays . Hence, it is necessary to 

pr proc the urrent ignal to remove the DC offset and keep the fundamen­

tal fr quen compon nt only. A there is no efficient way to remove the DC 

off et using an FT-based filter, [96] presented a morphological filter to serve 

thi purpo e. 
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Paper [97] presented an algorithm using a full-cycle FT to identify the 

expOllcllt iall~' dl'('a~'ill~ DC offset.. The algorithm requires a data window with 

a lCll)!,t h of 011(' flllldalllPlltal cycle plus two samples. To reduce the computation 

tillH' of the algorit hill by half. the Imlf-cycle FT was proposed, which uses 

salllpies obtained from half a fundamental cycle [98J. The algorithms of the 

full-cycle FT and t he half-cycle FT are given in Appendix. 

6.4.1 Parameter Setting 

As statl'd ill sedioll 1.3.2, in power systems, a source current or voltage 

sigllal is dClloted by' In and expressed by (l.3.1). As a fault occurs, the fault 

sigwd is c\l'notl'd by lr and expressed by (1.3.2). The signal including a source 

part ami a fault part is delloted by I and expressed by (1.3.6). An example 

of sl1ch a si)!,llal is )!,iw'll in Fig. 6.10 in dot.ted lille. In this case, up to 15 

harmonics arc included in the signal, and a Gaussian noise of a signal-to-noise 

ratio of 15 dB is added. 

ElIlbedded to a 2-dilllellsional phase space, fault signal I forms the following 

matrix: 
I (to) fUo + r) 
1(( 1 ) 1(1.1+ T ) 

I (6.4.1) 

I (t n) 1(t" + r) 

whl'J'l' (TI = I()+II~I with to the lwginlling awl e::..l the sampling interval. l'.latrix 

I call be considered H .. <; a 2-dimensiollal signal in the phase space with the left 

COhllllll being its .r-values and the right column its corresponding y-values. 
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6.4.2 Fault Occurrence Detection 

Due to the features of circular function, the source signal, 10 , has the fol­

lowing embedding when T = T /4: 

where 

10 ' 0 (1.) ' 0 (1. + T) 

.r .lJ 

:1" 

y An C'Os(uJ(t + T) + ¢) 

Ao cos(wt + 7r /2 + <p) 

-Ao sin(wt + (jJ). 

(6.4.2) 

(6.4.3) 

(6.4.4) 

As .1'"2 + .i/ = :1~. it shows that t.he source signal forms a circle whose radius is 

04 0 alld w11o:;e celltre is at (0.0) ill the phase space. In other words, a pair of 

samples. 10 (I,,) HIld lo( I" +T), form a point. ill t.he phase space and t.he Euclidean 

norm of the point is 040 . However, when the fault occurs, the fault part forms 

sOllle other shapl' and the Euclideannorrn of the point (/(ts-T), I(ts)) suddenly 

ill<Tca.o..;es. Th('refore, a threshold can be set to check if the fault occurs. The 

E'miH'dding of the signal shown in Fig. 6.10 in dotted line is given in Fig. 6.11. 

The Euclidean lIorms of the point.s are plotted in Fig. 6.10 ill solid line, and 

the cstimat('d fault occurrence point is highlighted by a dot. In this case, it 

is simulated tha.t the fault occurs at. Is = 187 and the detect.ioll result is also 

Is = 11'.7' 

The morphological filt.er proposed in [96] is employed to remove the DC 

offset. As till' filtering tcchniqll(, is introdllc('d in rkt.ail ill 196]. it is omitted ill 

this thesis. In the following subsections, the estimation of amplitude and phase 

angle is based on signals whose DC offset is removed by the morphological filter. 

All example is gin'lI in Fig. 6.12. 
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Figure G.1O: Fault occurreuce detectioll. Dotted line: the fault signal. Solid 
liue: t he Euclidean norm. Dot: estimated fault occurrence point. 

6.4.3 Fundamental Amplitude Estimation 

For t h(' fundamental component, II (t), its embedding in the phase space 

call be expressed b~': 

J; - 11(t) = Al cos(wl + 'P) 

y = 11(t + T) = Al cos(w(t + T) + 'P) 

Al cos(wt + '? + B) 

= .'\1 cos Bcos( .. ).:!. + .;) - Al sin esin(wl + -;) 

(6.4.5) 

(6.4.6) 

where e = u..,'T = 27rT IT. From (6.4.5) and (6.4.6), the amplitude of the 

fundallH'nt al component can be calculated from: 

(6.4.7) 

where ,,11 denott's the estimation of .'1 1. Equations (6.4.5)",(6.4.7) show that 

allY two samples from the fault current are enough to estimate its amplitude. 

US\lall~' T is selected to make e a COIlllllon angle. For example, when T = T 18, 
o = ,,/-1. In this C(1 .. "e, as the signal is digitised at N = T I 6.l samples per cycle, 
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Figure 6.11: Embedding of a fault signal. Dots: embedding of the source part. 
Crosses: embedding of the fault part. 

it lIses .\'/8 salllpies to calculate :1 1 , When T = T/4, we have H = 2'TrT/T = 7'1/2 

and till' l'lllbedding of 11 becomes 

.1" ft(t) = Al cos(wt +~) 

y f 1(t + T) = -A1 sin(wt + ~). 

The ('stilllat iOB t Ill'n.fore becomes: 

(6.4.8) 

Sillc(' 

(6.4.9) 

thp ('JlllH'dded sigllnl of 11 forms a circle in the phase space, and the centre and 

the radills of the circle are the origiu of the phase space and A1, respectively. 

III practicc. d\lc to the presellce of noise aud harmonics, the estimated 

l'tlllplitll<k ('(~knl(\t('d from different pairs of samples varies slightly: 

(6.4.10) 

where /\)" dellotes the estimation of A1 calculated from .tn = fUn) and Yn = 

I (t" + T). Ass\lme t hat the onset of the fault is detected at time {s. From the 
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Figure 6.12: Dott d line: th fault urrent . Dashed line: extracted DC offset. 
Solid line: the re ult of removing th DC offset from the fault current . 

time in tant of til = ts + 6.t , the estimated amplitude is calculated usillg (6.4.7), 

wher () = w(t 11 - t) , uutil tn = Is + T - 6./ . In this manner, the estimation 

of the fault urrent ampli tude i not aff cted by the source current ampli tude, 

except the ampli tude at t ime instant {s o In order to reduce the estimation 

error au ed by noi e, th av rage of ;\In over a user-d fin ed window can be 

u ed. An exampl i giv n in Fig. 6.13. A fault signal that has its DC off et 

removed is con id r d as the input signal, as plotted in dotted line. The signal­

to-noi ratio of th fau lt ignal is 10.67 dB . Using the method d scribed above 

to estimat the amplitud of its fundamental component the result is given 

in solid lin it call be s en, the sudden increase in amplitude has been 

succes full e timat d as the faul t occurs. The vibration cau ed by the noise 

i avoided by taking t il av rag of the estimated amplitude. As a compari on , 

the e tilllation r suIt by the half- ycle FT is also included, which is hown 

in dashe I lin . Th half-cycl FT uses the samples over a half of a cycle 

to cal ulat t he amplitud . H nee, it causes a half-cycle delay to accurately 

estimat til ampli tud of the faul t signal. On the other hand , the embedding­

based III thad do not introdu e uch an rror in the stimation. 
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Figur 6.13: Estimatioll of the fundamental amplitude of the fault current. 
Dotted line: the fault CUlT nt with its DC offset removed. Solid line: estimation 
resu lt by mbcdding. Dashed line: estimation result by half-cycle FT. 

6.4 .4 Phase Estimation 

As stated previously, when T = T /4, the embedded fund amental component 

can be defined by: 

Al cos(wto + i.p) -AI sin(wto + i.p ) 

(6.4.11) 

Whell to = 0 the phas of the fundamental component can be calculated from 

the fir t point of I I: 

<p = arctan ( 11(1,2) ) . 
I I (1 , 1) 

(6.4.12) 

The phas all al 0 b cal ulated from an arbitrary point of I I using: 

. ( I l(n,2) ) 
'Pri = ar tall - I

1
(n,1) - mod(wtn' 27T') (6.4.13) 

wh r mod (wtn .27T') i the r idu of wtn divided by 27T'. This is to make sure 

that CPn fall ill th rang of [0, 27T'). Ideally, for different n, <Pn should be the 
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same. In practice, it is mar accurate to use the average of CPn over a certain 

willuo\y to 'lillliuaie the influence of allY possible noise: 

1 n2 

cP = ~ CPn· 
'/12 - Ttl + 1 ~ 

(6.4.14) 
n=nl 

The t t i al a arried out using the above method and the half-cycle FT, 

re p tivel' and th re ult ar given in Fig. 6.14. In this ca ,the signal- to­

noise ratio of th fault signal i also 10.67 dB. The actual phase is 7 .7500°, 

and th stimated results by embedding and the half-cycle FT are 79 .4820° 

and 79 .7 06°, r spectiv ly. The method proposed in this thesis is slightly 

b tt r with an e tilllat ion rror of 0.93%, while the error of the half-cycle FT 

is 1.31%. How v r as it do 1l0t need to involve samples from a whole cycle 

ill calcu latioll the proposed Illethod is more computatiollally effi cient . 
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Figure 6.14: E timation of the phase of the fault currellt . Dotted line: the fault 
curr nt with it DC off et remov d. Solid line: estimation r ult by embedding. 
Dashed lin : tilllation r ult by half-cycle FT. 

6 .. 5 ha Diffi r n Detection 

In 111 phase difference between the current signal anu the 

volt. /1;(' signal. Th(' cliffrrrl1 r can hr dr:tt:ct.crl through tht: rmbedding of th 
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two signals to the phase space with T = T /4. Define the current and voltage 

signals Ct.'> follows: 

Ie (6.4.15) 

(6.4.16) 

where Ac and Av are their amplitudes and 'Pc and 'Pv are their phases, respec­

tivel~'. 

\\'hen T = T /1. nn arbitrary point from the embedded current signal hac; the 

coordillates of (.t"1Il' Yell) = (Ae cos(:...-,t" + -Pc), - Ac sin(wt Tl + 'Pc)) and has a phase 

angle of ";CII = arctall( -Ycn!:l'cn). At the same sampling time, the point from 

th(' t'mbedded \'Oltage signal has the coordinates of (xvn, Yvn) = (Av cos(wtn + 
Y'\,), -/l\'sin(. ... :/Il + -P\')) and has a phase angle of r.PVll = arctan(-YVll/xvn). 

TIH'H,fn)'(', tlH' phas(' (liffC'rPTH'(' lwt.we011 the two signals, denoted hy 6.1{), can 

be calculated frolll 6...,:: = -Pcn - r.Pvn' Considering the interference of noise, 

it is more accurate to use the average of the phase differences over a certain 

wineiow: 

(6.4.17) 

Figm(' G.1S shows the estimation result of a test, where the input voltage 

and current signals both have a signal-to-noise ratio of 10.67 dB. The sirnu­

let u·d phase diffcl'l'W'C is 307.7440° aud the estimated phase diff'crelll'c at each 

sampling installt varies between 306.9407° and 310.1625°, as the figure shows. 

Tht' (in'rage t'stilllatioll error is 0.12%. 
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Figure 6.15: Estimation of the phase difference. 
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6.4.6 Fundanlental Frequency Shift Estimation 

In sume cases, power system signals are influenced by fundamental fre­

qU(,Il(,~' shift. which call be up t.o ±5%. A considerable error would be intro­

duced to t he result of phasor measurement if the signal is embedded according 

to its llolllillal pniod. To estilllate the actual fundamental frequellcy, a method 

is proposed R.-; folluws. The signal is first embedded with T = T /2, where T is 

the 1l00llillal period. Hellce, the embedding in the phase space is expressed by: 

.7: 

.I} 

[1(t) = Al cos(w't + i.p) 

fl(t + T) = Al cos(uJ'(t + T/2) +~) 
1fuJ' 

Al cos(w'f + y + -) 
w 

(6.4.18) 

(6.4.19) 

where :...:' dellotes the actual fundamental frequency. As the function of 

1fW' 1fW' 
F(t) = x + y = 2Al C08(-) cos(w't + i.p + -) 

2w 2w 
(6.4.20) 

fOl'llls a sillusoidal sigllal, w' can be calculated from 

w' = 2warccos(±p/2Ad/1f (6.4.21) 

when' fI is tht' amplitude of F and is calculated from 

fi = (F <.IJ g - F , . !J) /2 (6.4.22) 

where:: and e denote the operators of dilation and erosion, respectively, and 

9 is a flat strnct urill)!, element of a cycle long. An example is given in Fig. 6.26 

to sho\\' the caicuirttioll of p. III (6.4.21), if w' > uJ, -p is used; otherwise, (J is 

uSl'd. 

To determine if w' is larger or smaller than w, the following strategy is 

used. As stated ill section 6.4.4, if there is no fundamental frequency shift, the 

est illlated pha.-;l'. ;11' is a fiat function. However. if the fundamental frequency 

has a positive nniatioll, i.e. u . .:' > w, CPn increases gradually. On the other 

halld. if j < ..... '. ;11 decreases. For the fault current shown in Fig. 6.26, the 

actual fundamental frequency is f' = 51.2542 Hz. Estimating the phase when 
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tile delay coordinate is still set at T = T /4, where T is the nominal period, the 

valuc of .;:" is givcn in Fig. 6.17. As 011 is basically an increasing function, it 

is consid(,rl'd that "".' > u.,' ami -p is used ill (6.4.21). 

According to (6.·1.21), the estimation of w' also requires the value of At. 

The estimation process is the same as described in section 6.4.3, and the final 

result of Al is cetlculated as the average of Aln over a cycle. In this exam­

ple. Al = 3.0102 and Al = 3.0124. The estimated fundamental frequency is 

I' = 51.279.J. Hz ami the estimation error is 4.92 x 10- 4 . On the estimation 

of the fundamental frequency, the fault current is re-embedded according to 

the estimated actual fundamental frequency and phasor measurement can be 

carried out afterwards. As samples from at least a cycle of the fault current 

are llscd to estimate the fundamental frequency, the method causes a delay of 

at lea .. -;t a l'~'cle at t he very beginning. 
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Figure u.lU: Calculation of p. Dotted line: the fault current with its DC offset 
relllOH'(\. Solid lilll': the sigllal of F. Dashed line: dilation of F. Dash-dot 
!inc: (~n>sioll of F. 

6.5 Power System Disturbance Detection 

6.5.1 Parameter Setting 

Disturbance sigllals simulated in this section contain up to 40 harmonics 

and tht' total harmonic distortion (THD) is around 2 rv 5%. For one of such 

signals. thc relationship between Igr and IgC(r) is plotted in Fig. 6.18. Hence, 
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Figure 6.1 i: Estilllation of the phase of the fault current (J' = 51.2542) when 

T = TIl. 
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Figure 6.18: 19 ('(,.) against 19 T for a power system signal when initial condi­

tions an' (h: = 2 alld T = 1. 

thl' correlatioll dimellsion is calculated to be de = 0.7770 and the embedding 

dilllCllSioll is £IE = 3. 

For a sinusoidal signal F(t) = Asill(wt + ¢), the corresponding sampled 

signal is giwll h~' F(k) = Asin(wkb.t + ¢), if it is sampled at a sampling rate 

of .\'s = 27r/(...J~t) samples per cycle. According to the selection criterion de­

scribed in sectioll 6.2.2, the delay constant., T, of a disturbance signal should 

be 1. However, to make full use of the mathematical properties of a sinusoidal 

signal, t he delay constant can be set to T = Nsf 4. In the following subsec­

tiolls. two schemes nre proposed for the detection under the two embedding 

mild i t iOllS. respecti wly. 
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6.5.2 Disturbance Detection and Location through 

Gustafson-Kessel Clustering 

143 

In t his subsection, a disturbance signal is transformed to the phase space 

with T = 1. HClleC'. the normal part forms an ellipse and the disturbance forms 

a shape t hat deviates from the ellipse. Thus, the two parts are decoupled and 

distillguislH'd fmm each other in the phase space. Afterwards, GK cluster­

illg [99] is used to distinguish the two clusters and to detect and locate the 

<.list urballc('s accordingly. 

GK clustering 

The G K cl Ilsterill?, algorithm searches ill particular for ellipsoidal structures. 

Assume that a set of data .r = {:r'klk = 1. 2, ... , N} can be partitioned into 

(" clustns. The centres of these clusters are denoted by {'l'ilt = 1,2, ... , e}, 

resp('cti\·('l~·. For each cluster, there exists a covariance matrix Fi . Therefore, 

the following eq uat iOll 

(6.5.1) 

el('fint's a hyperellipsoid. The length of the ph axis of this hyperellipsoid is given 

h~' t 11(' ph l'igl'll\"ctiUE' of Fi , and its direction is given by the lh eigenvector. 

The partition of data set .f: into c clusters is performed by minimising the 

followillg objectivp hlllction: 

eN' 

J(X;U, V) = LZ)Uik)mll xk - vill~fi (6.5.2) 
i=l k=l 

when' {r = [/Ilk' is thl' lJartition nmt.rix that satisfies 

L Uik = 1. 1 ~ k ~ .TV (6.5.3) 
i=l 

awl 11,1.' E [0.1]: equatioll 

(6.5.4) 
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describes the distance from a point Xi to a cluster centre Vi; Tn E [1, 00] is 

the weight exponent that determines the fuzziness of the resulting clusters; 

;\Ii = c\et(F/11l)F,-1 is a positive definite symmetric matrix with n denoting 

the ciilll('IlSiOll of the data set .r. 

To perform the G K clustering algorithm, three parameters should be given 

in advancc. whirh are the number of cluster, 1 < c < N; the weight exponent, 

m, most iy TIl = :2: and the terrnillatioll tolerance, ~ > O. Randomly initialise 

the partition matrix, {:(O), meanwhile it should satisfy (6.5.3). The algorithm 

call bc s\lIIllwuisl'd as follows, where I = 1,2, ... indicates the counter of each 

iteration [99]. 

1. Compute the cluster centres 

2. Compllt(' the cluster covariance matrices 

3. Compute the distances 

.H, = det(F//
rt

) Fi-
1 

n7k'.\!' = (:fi - '1'}Il)T flfi(:r:k - u}ll) 1 Si S c, 1 S k S N; 

4. 'Gpdate the partition matrix 

1 
(' 

L (Di/,A1.! DJkMJ2/(m-Jl 
j=1 

11l1tii 11[1(1) - U(l-llil < c. 

1 S i ::; c. 1 ::; k ::; N 
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Figure 6.19: A power system signal with periodic notches. 

Take a disturbance signal with notching for example. As shown in Fig. 6.19, 

the fundamental voltage waveform is affected by periodic notches from the third 

to sixth cycle. The embedded signal is given in Fig. 6.20(a), from which it 

call be seen t hat the normal part forms an eHips in the phase space, while 

the llotches form a quasi-ellips, which deviates from the former. Obviously, 

the GK clustering algorithm is very suitable to distinguish the two waveforms. 

Applying GK clustering to the embedded signal, the result is shown in Fig. 

6.20(a), where the diamond represents the clustering centre of the normal part 

(vd and the square represents that of the disturbance (V2)' According to 

(6.5. 1), sam pl~s sufficing (x k - vd T F 11 (x k - vd = 1 corresponds to the normal 

part, while those sufficing (Xk - V2)T F;I(Xk - V2) = 1 corresponds to the 

disturbance. Figure 6.20(b) shows the samples classified to the cluster of the 

normal part. 

The time-aligned weighted average method 

After imposing analysis technique in the phase space, the next step is to 

transfer the signal back to the time domain. However, once linearly trans­

formed, the resulting trajectory matrix X no longer corresponds to a time 

delay embedding [100]. In other words, there is no unique map mapping the 

trajectory matrix back to a one-dimensional signal. 

To solve this problem, a time-aligned weighted average method is proposed 

in [100]. This method gives higher weight to the values in the centre columns 

of tlw trajectory matrix and lower weight to the values in the left-most and 

right-most col UlllllS. To describe in detail, the rows of the trajectory matrix 

are shifted to the right according to the value of T, which derives the so-

T. Y. Ji 
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Figure 6.20: (a) GK clustering of the disturbance signal of notching in the 
phase space. Diamond: the clustering centre of the normal part. Square: the 
clustering ceutre of the disturbance. (b) The samples classified to the cluster 
of the normal part. 

called aligned matrix. Then, the elements near the begiuning or end of the 

aligned matrix arc assigned with weights different from those in the middle. To 

illustrate this process, an example of a trajectory matrix X, an aligned matrix 

.lY,,\igned and a weighting matrix P are shown in (6.5.5)",(6.5.7), respectively, 

for the case of £IE = 3 and T = l. 

[ XI 
X2 X3 

XM 1 AT 
X = X2 X3 X4 XM+l 

X3 X4 Xs XM+2 

(6.5.5) 

[ XI 
X2 X3 XM 

xMJ 
'.T 

Xaligned = X2 X3 XM XM+l 

X3 XM XM+l 

(6.5.6) 

pT ~ [ 1 
0.5 0.25 0.25 

J 0.5 0.5 0.5 0.5 

0.25 0.25 0.5 

(6.5.7) 

The output time series is given by: 

dE 

.Tolltput(j) = L:XT(i,j). pT{1:,J), j = 1,2 ... . ,N. (6.5.8) 
i=l 
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As for the case cOllsidered here, since the normal part and the disturbance 

have been partitioned in the phase space, it is natural to assign zeros to the 

samples corresponding to the disturbance in matrix X of (6.2.3). It should be 

noted that a disturbance of length I in the time domain will result in (I + dE) 

disturbance points in the phase space. Assume that a disturbance occurs at 

X5. Hence, in the phase space, points X3 = [X3, X4, X5], X4 = [X4' X5, X6] and 

X5 = [X5. X6. X7] are the corresponding disturbance points. Assigning 0 to these 

three points in X, the new matrix, denoted by X n, becomes: 

(6.5.9) 

Sequentially, the aligned trajectory matrix can be given as follows. 

[ x\ 
I2 0 0 0 X6 X7 X8 ... XM 

XMJ 
'T 0 0 0 "\{"li)\llt>d = .[2 .r3 X7 X8 ... :CM XJI[+1 

X3 X4 0 0 0 X8 XM XM+I 

(6.5.10) 

In order to transform the aligned trajectory matrix of Xn back to the time 

domain, (6.5.8) is adopted, where the weighting matrix P is the same as in 

(6.5.7). Denote the result by x = {Xl, X2 .. ·., XM+2}' Obviously, the distur­

bance occurs at the positions where Xk = O. Refer these positions to the input 

signal x, the disturbance can hereby be extracted. 

For the disturbance signal with notching, the detection result is given in 

Fig. 6.21, where the disturbance-free signal, the input disturbance signal, 

and the disturbance extracted from the input signal are shown in the sub­

figures, respectively. A-.; it can be -.;een from the figure, the disturbance is 

identically recorded in the output signal; on the contrary, the disturbance-free 

part maps to O-value in the output signal. To sum up, the disturbance is 

precisely extracted from the input signal. 

Aside from notching, simulation studies are also carried out on other types 

of disturbance signals. Figure 6.22(b) illustrates a typical disturbance signal of 

an impulsive transient, and the extracted disturbance is plotted in Fig. 6.22(c). 
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Figure 6.21: Disturbance detection of notching. 

As can be seen from the figure, the transient is correctly extracted, while at 

the places where there is no disturbance, the output is O. 

A voltage swell lasting from the third to the sixth cycle in a fundamental 

sinusoidal waveform is presented in Fig. 6.23(b), while the disturbance-free 

signal is given in Fig. 6.23(a) as a reference. The detection result is shown in 

Fig. 6.23{c), from which it can be seen that the swell is exactly detected at 

the points where the voltage ascends and recovers. 

Figures 6.24(a) and (b) describe a disturbance-free signal and a disturbance 

signal of momentary interruption, respectively. The interruption begins from 

the third cycle of the signal and lasts 4 cycles. As in the previous studies, 

the extracted disturbance is plotted in Fig. 6.24(c), which illustrates that the 

proposed approach is applicable for this type of disturbance as well. 

The detect.ion scheme based on the GK clustering algorithm is more ap­

plicable to off-line power quality analysis, as it requires the presence of the 

disturbance and the clustering procedure is relatively time-consuming. In the 

following subsection, a scheme involving only three samples to detect and lo­

cate the dist uruanl"cs is presented, and the classification of the disturbances 
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Figure 6.22: Disturbance detection of an impulsive transient. 
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Figure 6.23: Disturbance detection of voltage swell. 
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Figure 6.24: Disturbance detection of momentary interruption. 

based on the detection result is also available. 

6.5.3 Disturbance Detection, Location and Classifica­

tion through Projection 

The embedding strategy 

III this subsection, the delay is set to be a quarter of its period, z. e. T = 

Ns /4. Thus, we have: 

Xk 

= A sin(wkLlt. + </J) A sin{w{k + T)Llt. + </J) Asin{w{k + 2T)Llt + </J) 1 

= A sin{wkLlt + </J) A cos(wkLlt + </J) -A sin{wkLlt + </J) 1 

= ~lk ~2k ~3k J. 
(6.5.11) 

I 2 2 - A2 2 + 2 A2 dOh' h h Apparent y, ~lk + ~2k - , ~2k ~3k = an ~lk + ~3k = , W IC sows 

that the embedded signal in the phase space is an ellipse. Using x, y and z 

to represent the coordinates of the phase space, ~I, ~2 and ~3, respectively, the 

cllli>cdded sigllal ill the ph,~e space call be ddilled by either of the following 
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eqllat ions: 

(6.5.12) 

The projection of the embedded signal to the :r:y-plane and the liz-plane is a 

circle whose radius is the amplitude of the sinusoidal signal and whose centre 

is the origin of the plane, while the projection to the xz-plane is a straight line. 

On the other hand, the disturbances will be mapped to some other shapes 

than the ellipse. This feature can be used to detect the disturbances from the 

embedded signal. An example is given in Fig. 6.25, which shows a sinusoidal 

signal F(J.:) = sin(27r·50k~t+c/» (Ns = 200) corrupted by harmonic distortion 

with the THD of 4.94% and white noise with the signal-to-noise ratio (SNR) of 

30 dB and its embedding in the phase space. The projections in the xy-plane 

and the y.:-plane have the same characteristic. Therefore, the detection is based 

on .r:y-plane and :r:.:-plane projections. The projections on these planes are 

denoted by,\" = [Xl X2 ... XMF = [}:l }:2] = [x y] and X = [Xl X2 .. , XMF = 

[}:l }:3] = [x z], respectively. 

Frequency shift 

In the proposed scheme, the delay selected as T = 1/ ( 41 ~t), where I is the 

nominal fundamental frequency. However, in practice, the fundamental fre­

quency may deviate slightly from its nominal value when the balance between 

the load and the capacity of the available generation changes. Such a frequency 

shift distorts the projections in the xz-plane from a straight line segment to 

an ellipse, as shown in Fig. 6.26. Hence, it is necessary to estimate the actual 

fundamental frequency, 1', and re-embed the signal with T = 1/ (41' ~t). The 

strategy' of estimating I' is described in section 6.4.6. 

Impulsive transients 

Figure 6.27(a) shows a test signal with an impulsive transient, which occurs 

at .T695 and X696' In this case, the actual fundamental frequency is l' = 50.5099 

Hz and the estimated one is ], = 50.5215 Hz. Hence, T = 49. Embedding the 

----- ~--- ------ "----.-.~--~ ---_._-
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Figure 6.25: A lloisy sinusoidal signal and its embedding in the phase space. 
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Figurt> 6.26: Influence of fundamental frequency shift on embedding. (a) and 
(b): l' = 50 Hz. (c) and (d): l' = 52.5 Hz. 

disturbance signal to the phase space, the result is shown in Fig. 6.27(b). From 

its projection OIl .r:y-plane, it can be seen that points belonging to the normal 

part of the signal form a circle whose radius is around 1, while points belonging 

to the disturbance is much nearer to the origin. Since the projection involves 

two samples from the input signal, points from (X646. X69S) to (X647, X696) and 

from (X695 , X744) to (X696, X745) are affected. Hence, two disturbances appear in 

the phase space. 

To view it more clearly, the Euclidean norm of each point on the xy-plane, 

denoted by F and B(k) = J:r:% + :c:Lr, is plotted in Fig. 6.27(c). E also 

determines the distance between each point and the origin of the xy-plane. For 

the points belonging to the normal part of the signal, their Euclidean norm 

should be within the range of [A(1 - ,.), A(1 + ,.)], where,. is the threshold 

introduced to tolerate the corruption of noise. For points whose E falls out of 

this range, they are detected as disturbance. The beginning and ending samples 

of the disturbance are recorded by the detection scheme. In this case, two pairs 

of disturbances are located at PI =< 695,696 > and P2 =< 744,745 >. Noting 

that one sample in the time domain affects two points in the xy-plane of the 
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phase space and P2,1 - PI,1 = T, P2,2 - PI,2 = T, the disturbance is located 

at from .7:695 to .7:696· This procedure can be performed in real time, for the 

embedding requires the current sample and a previous sample. 

The disturbance can also be detected from the projection of the embedded 

signal to the .rz-plane, where points belonging to the normal part of the signal 

satisfy function f(x, z) = x + z = O. For each point on the xz-plane, its value 

of f(~· . .:), denoted by t, is calculated and plotted in 6.27(d). Considering 

the existence of the noise, points whose t value falls out of range [-" ,] are 

detected as disturbance. In this case, points (X597, X695), (X598, X696), (X695, X793) 

and (X696.1·794), which correspond to samples {X695, X696} of the test signal, are 

detected as disturbance. The detection result is the same as the result obtained 

in the .ry-plallc. In the following studies, the final detection result is the 'union' 

of that in the xy-plane and the xz-plane. 

Oscillatory transients 

Test oscillatory transients are simulated to contain low frequency (300 rv 

900 Hz) component only, with a duration of 0.3 '" 50 ms and a magnitude 

of 0 '" -! p.t!. One of the test signals is demonstrated in Fig. 6.28{a) and its 

embedding ill Fig. 6.28(b). In this case, f' = 49.8248 Hz, JI = 49.8709 Hz and 

T = 50. The simulated oscillatory transient occurs from X626 to X968' 

The detection result in Fig. 6.28(c) shows that the disturbance causes a 

larger fluctuation in the Euclidean norm, which means much more pairs of 

beginning and ending samples whose Euclidean norm falls out of the range of 

[A (1 - 1'), A (1 + 1')] will be recorded. Denote these pairs by PI, ... , Pm. The 

detection scheme reckons that if the number of the pairs exceeds one twentieth 

of the samples involved, i. e. m > (Pm,2 - PI,I) x 5%, the disturbance is classified 

as oscillatory transients. The shortcoming of this scheme lies in that it can only 

determine the location of the transients, but cannot analyse the frequency and 

amplitudes of the transients separately. In this test, the disturbance is located 

frolll X62i to :L'966' The detection result is almost consistent with the simulated 

disturbance. On the other hand, Fig. 6.28( d) shows that points with a larger 
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Figure 6.27: Disturbance detection of an impulsive transient. 
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value of f(x, =) than the threshold locate between X526 and X1068' Hence, it is 

determined that the disturbance lasts from X626 to X968 in the test signal. 

Voltage sag 

A test signal with a voltage sag is plotted in Fig. 6.29(a). Here, l' = 48.0213 

and the amplitude of the sag is 0.8 p.u. The sag occurs and ends at the zero­

crossing point to simulate a gradual drop of voltage (at XS32 and X1665), which 

is more difficult to detect than a sudden drop. The estimated fundamental 

frequency is if = 47.9974, thus T = 52. The Euclidean norm of the points in 

the xy-plane gradually decreases from 1 p.u., as shown in Figs. 6.29(b) and 

(c), and it indicates a disturbance other than transients. The E value exceeds 

the threshold at E(845) and remains exceeding until E(1703). Hence, the sag 

is located at from .7:845 to ·7:1651' 

The location of the sag obtained from function f (x, z) is shown in Fig. 

6.29(b). Figure 6.29(d) shows that two segments from /'855 to 1,912 and from 

'1692 to '1752 exceed the threshold, which means points X755 "" XS12 and X1592 "" 

X1652 deviate from the line segment defined by f(x, z) = O. The dragging 

phenomenon is due to the delay of embedding. Hence, the location of the sag 

is determined at from £1l55 to £1652' 

Momentary interruption 

A momentary loss of voltage on a power system can be called a momentary 

interruption. An interruption with a reduced voltage of 0.1 p.u. from XS04 to 

.T1608 is plotted ill Fig. 6.30(a). The change of voltage is also simulated in a 

gradual way. In this case, l' = 49.7417 Hz, if = 49.6698 and T = 50. The 

embedding of this signal is shown in Fig. 6.30(b). The Euclidean norm of each 

point on the :/:y-plane is given in Fig. 6.30(c), and the value of I(x, z) of each 

point on the :rz-plane is given in Fig. 6.30(d). 

The detectioll result obtained by measuring the Euclidean norm of the 

points in the xy-plane is from XS21 to X1592' Due to the shape feature of the 

input signal. when the interruption occurs, there is a drop of the Euclidean 
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Figure 6.28: Disturbance detection of an oscillatory transient. 
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Figure 6.29: Disturbance detection of a voltage sag . 
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norlIl of the corresponding point on the xy-plane. However, as the embedding 

requires two samples and in this case, one sample comes from the normal 

part and the other one from the interruption, the points form a horizonal line 

on the .ry-plane and their Euclidean norm gets closer to the radius. This 

phenomenon lasts a duration of T samples. Similar situation happens when 

the signal returns to normal, when a group of T samples form a vertical line. 

Obviously, in this case, it is not accurate enough to use the Euclidean norm 

to locate the interruption. An alternative means is to calculate the distance 

bet\',;een every two neighbour pointti, which is defined as :Di =11 Xi - Xi-l II. 
For points corresponding to the normal part and the interruption, their :D is 

relatively small, while for the beginning and ending points of the interruption, 

the value of:D is much larger. The threshold is set to T'I) = 2A sin(21r INs) x 2, 

which comes from the law of sines. For this test, four points whose distance 

to its previous neighbour exceeds the threshold are recorded, namely X757 = 

(;1:757,.1"S07)' XS07 = (:I"807,:(:S57), X1561 = (X1561,:r1611) and X1611 = (:1:1611,:r1661). 

Hence, the interruption is located at from X807 to X1611 , which is more accurate 

than the result obtained earlier. 

Examining Fig. 6.30(d), it can be seen that there are two groups of succes­

sive of samples whose f(x, z) value exceeds the threshold, from LSOS to LS92 and 

from L1606 to L1695' Considering the dragging phenomenon, the interruption is 

locat.ed at from sample XSOS to sample X1606· 

Voltage swell 

A voltage swell is a short term increase of system voltage. The detection of 

voltage swell is very similar to that of voltage sag, except that when the swell 

occurs. the \'01 tage increases rather than decreases. 

Notching 

A signal with such a disturbance of notching is shown in Fig. 6.31(a). 

Four notches are simulated at :1,'831 '" x839, X981 '" X989, X1131 rv X1139 and 

XJ21:lJ ""' XJ21:l9· Its embedding (I' = 49.6620 Hz, i ' = 49.6666 Hz and T = 50) 
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Figure 6.30: Disturbance detection of a momentary interruption. 
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is given ill Fig. 6.31(b), which shows that the notches form a quasi-sinusoidal 

shape in the phase space. 

The disturbance location procedure is the same as described previously. 

Take the first notch for example. As can be seen from Fig. 6.31(c), four 

groups of F values exceeding the threshold are detected at £'(831) '" F(833), 

£(838) '" £(839), E(881) '" £(883) and E(888) '" E(889), respectively. The 

last two pairs are caused by embedding and should not be included in the 

final detection result. Hence, the disturbance is located at XS31 '" XS33 and 

X838 '" T839· The values of samples X834 '" X837 are not affected by the notches, 

so no disturbance is detected at these positions. The location result obtained 

from the signal projected to the n-plane is the same. If the notching occurs 

simultaneously with short duration variations, the threshold the Euclidean 

norm compared with is set to [A(1 -/'), A(1 + /,)], where A is the amplitude 

of the short duration variation. 

Transients at the beginning and ending of a sag 

In this scenario, three types of disturbances are simulated in one signal. 

An impulsive transient (X772 '" X774) occurs at the beginning of a sag (X775 '" 

X155d, followed by an oscillatory transient (X1552 '" X1645). The signal and 

its embedding (J' = 51.5736 Hz, ], = 51.5930 Hz, T = 48) are shown in 

Figs. 6.32(a) and (b), respectively. From the xy-plane projection and the 

E values, as shown in Fig. 6.32(c), it can be seen that E(773) rv E(774) 

exceed the threshold, and after a gradual decrease from £(790) to E(820), a 

local maximum of E(821) '" E(822) is detected before the E value reaches a 

stable value of around 0.3 p.u. As PI =< 773,774 >, P2 =< 821,822 > and 

P2,1 - Pl,l = T, P2,2 - Pl,2 = T, an impulsive disturbance can be located at 

X773 ,...., X774· The E value remains at around 0.3 p.u. from E(823) to E(1553) 

before it starts to vibrate and a group of successive Euclidean norms exceeding 

the threshold (froIll P3 =< 1590,1595 > to P14 =< 1682,1684 » are recorded. 

Heucc. a sag is located at X775 '" X1553 and an oscillatory at X1590 ,...., X1636, 

respectively. 
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Figure 6.31: Disturbance detection of periodic notching. 
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The projection 011 the xz-plane and the ~ value are shown in Figs. 6.32(b) 

and (d), respectively. A group of segments 1722 rv 1'724, /781 '" 1'870, /'1553 rv /1661, 

. ", '1739 '" il741 whose i value exceeds the threshold are recorded. With 

consideration of classification criteria described in section 6.5.3, an impulsive 

transient. a sag and an oscillatory transient are detected at :r:722 '" :1:724, :1:781 rv 

X1553 and :r1553 rv X1645· The final location is the 'union' of the two results, 

which is X722 rv X724, X775 '" X1553 and X1553 rv X1645. The detection result 

almost coincides with the simulation. 

Disturbance signals obtained from PSCAD simulations 

In this section, test signals are obtained from PSCAD simulations based 

on realistic power system circuit parameters. Figure 6.33 shows an oscillatory 

transient at the beginning of a sag and the detection of the disturbance. The 

detection procedure is the same as described in the previous section. Both E 

values and I values exceed the pre-set threshold as the disturbance occurs. 

Dist ur bances classification 

The classification is based on the detection results from xy-plane as well 

as the features of the disturbances. The detection scheme records pairs of the 

beginning and ending samples of the disturbance. A disturbance is first da....,­

sified according to its length. Disturbances of sags, interruptions and swells 

usually last longer than a half of a cycle, while other types of disturbances 

last much shorter. Therefore, if a pair of samples P =< i. j > has been de­

tected and .i - i exceeds a pre-set threshold, the disturbance is classified a.'l a 

sag/interruption/swell. The E value is used to further distinguish these three 

types of disturbances, as their amplitUde is in the range of 0.1 '" 0.9 p.u., 

o rv 0.1 p.u. and 1.1 '" 1.8 p.u., respectively. 

On the other hand, if a pair Pn takes only several samples, e.g. Pn,2 - Pn,l < 

7, the disturbance is classified as a transient or a notching. According to [33], a 

low frequency oscillatory transient usually lasts 0.3 rv 50 ms, while the duration 

of impulsive transients and notches has not been clearly defined. However, the 
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Figure 6.32: Disturbance detection of two transients and a sag. 
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Figure 6.33: Disturbance detection of a test signal simulated by PSCAD. 
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impulsive transients and notches considered in this thesis could be as short as 

2 ms. Therefore, the duration is a secondary criterion to distinguish oscillatory 

transients from impulsive transients and notches. The primary criterion is if 

there is another pair Pm that satisfies Pm,2 - Pn,2 = T and Pm,l - Pn,l = T, it 

is either all impulsive transient or a notch. Otherwise, if the number of the 

recorded pairs exceeds a pre-defined threshold, the disturbance is classified as 

transients, as described in section 6.5.3. Since notches occur continuously, if 

a group of beginning and ending pairs of short intervals over one quarter of 

a cycle are detected, they are classified as notches. If the pair detected is 

isolated, it is considered as noise. The classification process is illustrated in 

the flowchart shown in Fig. 6.34. 

Simulation results 

The test disturbance signals are simulated to contain up to 40 harmonics 

with a THO of 2 rv 5% and Gaussian noise with an SNR of 30 '" 60 dB, 

and they may also have a ±5% fundamental frequency shift. The values of 

these parameters are randomly selected with a uniform distribution. As for 

each disturbance, its location, duration and magnitude are randomly selected 

within a range with accordance to the parameters given in section 1.3.2 so that 

they are at different levels. 

In order to simulate real PQ events, each test signal may contain up to 

three disturballces. Forty signals are simulated to contain a disturbance of 

each type, respectively. Hence, 40 x 6 = 240 signals in total contain only one 

disturbance. For signals containing two or three disturbances, the arrangement 

is listed in Table 6.3. Altogether, 300 test signals are generated and 240 of them 

contain aIle disturbance, 45 contain two disturbances and 15 contain three 

disturbances. The location, duration and magnitude are randomly generated 

within the range given in Table 1.1. 

The detectioll results of the 300 tests are listed in Table 6.4, including the 

rate of correct determination of the existence of a disturbance, the average 

accuracy fJ of the location of the disturbance and the rate of correct classifi-
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Table 6.3: Arrangement of the multi-disturbances contained in a signal 

Number of Impulsive Oscillatory Voltage Momentary Voltage Periodic 

signals transients transients sags interruptions swells notches 

3 J J J 
3 J J J 
3 J J J 
3 J J J 
3 J J J 
5 J J 
5 J J 
5 J J 
5 J J 
5 J J 
5 J J 
5 J J 
5 J J 
5 J J 
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cation. As can be seen from the table, the proposed scheme is able to detect 

the occurrence of disturbances, except that in two tests when the impulsive 

transient occurs together with an oscillatory transient and a periodic notch­

ing. respectively, the impulsive transient has not been detected. The location 

results of sags, interruptions, swells and oscillatory transients are satisfactory, 

with an error of only a couple of samples in the location and an accurate result 

in classification. If more than one notch occurs in the test signal, the average 

degree of match of all the notches is recorded for statistic analysis. A relative 

low (J of impulsive transients and periodic notching is due to its short duration. 

An error of one sample may cause a significant decrease in the index of degree 

of match. In general, a mis-location of one sample may cause a 10 '" 20% fall of 

(1. The classification result indicates that the classification strategy proposed 

in section 6.5.3 is effective. 

Table 6.4: The detection results of 300 test signals 

Power Total number Accuracy Average Accuracy 

dist urbances of the rate of value of rate of 

disturbances determirlation (1: (J d8.'lsification 

Impulsive 
67 97.01% 90.50% 100% 

transients 

Oscillatory 
67 100% 88.62% 100% 

transients 

Voltage 
61 100% 90.03% 100% 

sags 

Momentary 
61 100% 94.13% 100% 

interruptions 

Voltage 
58 100% 96.39% 100% 

swells 

Periodic 
61 100% 87.93% 100% 

notches 

In section 3.3. a morphological gradient wavelet (MGW) is proposed to de-
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tect and locate the transient disturbances of power system signals. It has been 

proved that MGW outperforms Daubechies DB4 wavelet. However, compared 

with the results presented in this section, it can be seen that the scheme pro­

posed here is more accurate and reliable than MGW and requires less computa­

tion. The scheme explores an alternative to detect and locate the disturbances. 

Moreover, it involves classification, which is also important for power quality 

analysis. 

6.6 Conclusion 

The embedding-based technique is applied to various signal processing 

tasks. For ECG signal analysis, the ECG signals are transformed to the phase 

space to form a binary image, and the feature waveforms correspond to the 

objectives of the image. Hence, the identification of the feature waveforms is 

carried out through the processing of the image. Moreover, the classification 

of the P waves and T waves can be implemented using the geometry charac­

teristics of the objectives. 

For phasor measurement, the method takes advantage of the mathemati­

cal properties of a power system signal to transfer it to a 2-dimensional phase 

space through delay coordinate embedding. In this manner, the amplitude and 

phase angle of a current or voltage signal and the phase difference of current 

and voltage signals can be calculated sample by sample. The calculation in­

volves two or four samples only, unlike traditional FT -based methods that uses 

samples of half a cycle or an entire cycle. Moreover, the method can also be 

used to est.imate the actual fundamental frequency when it deviates from its 

nominal value. 

For disturbance detection, two schemes based on embedding are proposed. 

Tlw delay constant of the first scheme is selected according to the the general 

strategy proposed in [95], and the normal part of a disturbance signal forms 

an ellipse ill the phase space while the disturbance forms a shape that deviates 

from the ellipse. The GK clustering algorithm is therefore used to distinguish 
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the two shapes due to its ability to search in particular for ellipsoidal structures. 

The scheme has been applied to detect several types of power disturbances 

and the simulation results have shown its ability to localise the disturbances 

precisely. As the scheme requires the presence of the disturbance and the 

clustering procedure is relatively time-consuming, it is more applicable to off­

line power quality analysis rather than on-line monitoring. 

The scheme based on projection uses the mathematical properties of sinu­

soidal signals to determine the delay constant so that the projection of the 

normal part on the xy-plane forms a circle and the projection on the xy-plane 

forms a line segment. The scheme extracts the features from the projections 

and uses the gauges of Euclidean norm and function f(x. z) to determine the 

locatioll of the disturbance and its classification. Since the embedded signal is 

constructed using the data that are sequentially sampled within a small sam­

pling window in the time domain, the location of the disturbances is almost 

real-time and the computation time is greatly reduced compared with methods 

that process the signal within a much longer sampling window. The proposed 

scheme has been evaluated on a number of test signals, which are of six dif­

ferent types of disturbances under various conditions. The simulation results 

have shown that the proposed scheme is able to locate the occurrence of dis­

turbances and can accurately classify them, as long as the disturbances are not 

buried in the noise . 

.. . ~~.~-------.~ --------------------
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Chapter 7 

Conclusion and Future Work 

This chapter concludes the thesis, summarises the major outcome of the re­

search work presented in the thesis and indicates possible directions for further 

investigation of advanced morphological operators. 

7.1 Conclusion 

The objective of the research is to develop advanced morphological oper­

ators and to apply them to signal processing. MM is a non-linear technique 

that focuses on the shape information of a signal. This property enables MM to 

concentrate on characteristic waveforms and to replace traditional techniques 

based on integral calculation, such as the FT and the WT. 

Apart from basic morphological operators, such as dilation, erosion, opening 

and closing, the thesis also engages the schemes of soft MM, multi-resolution 

decomposition, multiscale MM and the embedding theorem in the develop­

meut of novel advanced morphological operators. Several advanced morpho­

logical operators have been developed in the research to fulfill the tasks of noise 

removal of ECG signals, feature waveform identification of ECG signals, dis­

turiJalll'l:: detection, location and classification of power system signals, phasor 

measurement of power system signals, noise removal of images. 

For the three types of noise existing in most ECG signals, three methods 

have been designed t.o remove them respectively. The multi-resolution mor-
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phological filter is used to remove the impulsive noise, the adaptive multiscale 

morphological filter is developed to reject high frequency (Gaussian) noise, and 

a fusion method hybridising EMD and MM for the normalisation of the base­

line wander. It should be noted that all the filters are able to preserve the shape 

of the feature waveforms to the greatest extent while removing the noise. 

In order to identify the feature waveforms, namely the QRS complexes, the 

P waves and the T waves, two methods have been developed respectively. The 

first one is the multi-resolution morphological filter. In this case, the feature 

waveforms are considered as 'noise' and they are extracted by rejecting them 

separately. The method utilises the geometric features of ECG signals, such as 

the R waves having a remarkably higher amplitude and the width of the QRS 

complexes being shorter, etc, to identify the three types of feature waveforms 

one by one. The second method is based on the embedded signal and treats 

it as a binary image. As the feature waveforms form separate objectives in 

the image, the identification is carried out based on the geometric information 

extracted from the image. 

The core idea of disturbance detection is feature extraction. As the occur­

rence of disturbances arouses change in the gradient, the MGW is developed 

to extract the gradient information of the signal. As the disturbances and 

the normal part of the signal have distinguished geometric characteristics, the 

disturbance signals are embedded to the phase space to have the characteris­

tics more clearly viewed. Two methods for the separation of the disturbances 

and the normal part in the phase space have been proposed, based on the GK 

clustering algorithm and the mathematical information of the projection of the 

embedded signal, respectively. 

The embedding-based method has also been used for phasor measurement. 

It is able to measure the amplitude and the phase angle of a voltage or current 

signal, as well as the phase difference between two signals. The method can 

also be IIsed to estimate t.he actual fundamental frequency, which is especially 

useful at the presence of fundamental frequency shift. Being more accurate and 

much less computational complex, the method can replace traditional methods 

----------_._-------------------
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such as the half-cycle FT. 

The thesis has also proposed a novel way to design an optimal morphological 

filter for noise removal. The scheme involves two steps. First, a morphological 

filter or a combination filter is selected according to the characteristics of the 

noi:;e. Second, the parameter:; of the morphological filter are optimised by an 

EA towards the pre-set targets, such as lowest PSNR value. Therefore, what­

ever the feature of the noise is, an optimal filter can always be constructed to 

rej('ct it, targeting the criteria defined by the u~er. The simulation results have 

demunstrated that the optimally designed filters outperform the traditional 

filters. 

A large amount of simulation studies have been carried out to test the 

performance of the proposed operators and the results have shown that they 

are competent to fulfill the tasks. Moreover, as the operators are developed 

based on a generic framework, they can be used to other applications with 

minor or ('ven no modification. 

7.2 Future Work 

The thesis aims at the development of advanced MM and to fully explore 

its potential for applications in signal processing. It has also been recognised 

that the lack of T\IM analysis in the frequency domain is another obstacle 

that baulks the development of MM. Although the mathematical background 

of MM implies that MM and frequency analysis are disrelated and hybridising 

the two techniques faces enormous difficulty, it is worthwhile to fill the gap and 

the outcome will greatly benefit the realm of signal processing. Future work 

will concentrate on investigating an effective method that combines MM and 

frequency-based techniques. It may include studying the frequency response of 

commonly used morphological operators, such as opening and closing. Based 

on the study, a generic framework will be constructed to design morphological 

filters that have specific frequency response. The morphological filters can also 

be designed to have better performance than traditional frequency filters and 
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to consider both shape and frequency information while processing a signal. 

As lllorphological wavelet fits in the framework of the WT and involves mor­

phological operation, it might perform frequency analysis if the morphological 

operation uses a series of sine-based structuring elements. The future work will 

take the following steps. 

• On the investigation of the frequency properties of basic morphological 

operators, a generic mathematical framework will be constructed to de­

sign morphological filters that have specific frequency responses. The 

morphological filters will be designed to have better performance than 

traditional frequency filters and to consider both shape and frequency 

iuformation while processing a signal. 

• Preliminary study on the morphological wavelet has shown the merits 

of infusing proper morphological operation in the decomposition and ap­

proximation procedure. The future work will investigate the influence of 

the morphological operators engaged in the morphological wavelet and 

generalise a strategy to select or design the most suitable morphological 

operators to solve a specific signal processing problem. 

• Some powerful MM-based schemes have been developed in recent litera­

ture, such as the slope transform, morphological gradient, morphological 

p~'ramid and morphological undecimated decomposition. Yet, they are 

limited to deal with certain types of signals. The behaviour of these 

schemes in the frequency domain will be studied, which will lead to the 

investigation of any underlying linkage among them. These schemes will 

afterwards be advanced to involve frequency analysis to enhance their 

accuracy and ability in feature extraction. 

• The theoretical achievement will be applied to design a new generation 

of protection relays for power systems. Tasks may include: to exactly 

distinguish and extract the faint surge of transient faults for ultra-high­

speed relays, to identify the waveforms of a fault voltage/current signal, 
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and to detect and compensate the distorted waveform caused by CT 

saturation. 

------_._- .-~.-- ---- .----
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Appendix A 

Full-cycle and Half-cycle Fourier 

Transforms 

A.I Full-cycle Fourier Transform 

The full-cycle FT is the most widely used algorithm for extraction of the 

amplitude and phase angle of a fault signal. It is immune to constant DC 

offsets and can filter integral harmonics [101][102]. Any measured periodic 

voltage signal can be expanded into its Fourier series expansion [98] as: 

00 00 

u(t) = ao + Lan cos(nwot) + L bn sin(nwot) (A.I.l) 
n=l n=l 

where ..vo = 27f fo and fo is the fundamental frequency. The coefficients ao, an 

and bn can be obtained from: 

1 l. tU
+

T 

ao = T v(t)dt 
to 

(A.I.2) 

21tO
+

T 

nn = T 11(t) cos(nwot)dt, 
tu 

n=1,2, ... ,00 (A.I.3) 

21tu
+

T 

bn = T v(t) sill(nwot)dt, 
tu 

n=1,2,oo.,00 (A.I.4) 

where T is the period of the fundamental frequency component of the signal. 

If the sampled signal is represented in a discrete form with N samples per 
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fundamental cycle, the real and imaginary parts of the phasor representing the 

sampled signal are obtained as: 

2 N-l (21fT!) 
VRe(k) = N ~I'(k - n) cos ri (A.1.5) 

V1m(k) ~ ~ ~ v(k - n) sin C~n) . (A.1.6) 

The amplitude and phase angle can be obtained using the real and imaginary 

components, respectively, as follows: 

V(k) = JV~(k) + VI~(k) (A.1.7) 

¢(k) = tan-
1 (~R:~~~) . (A.1.8) 

A.2 Half-cycle Fourier Transform 

To reduce the computation time of the algorithm by half, the half-cycle FT 

was proposed, which uses samples obtained from half a fundamental cycle. The 

half-cycle FT is described as follows. Any measured periodic voltage signal can 

be expanded into its Fourier series expansion [98] as: 

00 00 

v(t) = ao + L an cos(nwot) + L bn sin(nwot) (A.2.1) 
n=l n=l 

where wlo = 21fIo and Io is the funuamclltal frequency. The coefficients of the 

Fourier series expansion are expressed by: 

1 t o+T / 2 

ao = T /2 jto v(t)dt (A.2.2) 

2 l to
+

T
/

2 

(/.n = -/- '11(1) cos(nwoL)dt, 
T 2 to 

'/I, = 1,2, ... , 00 (A.2.3) 

2 (o+T/2 
bn = T/2 lto v(t) sin(nwot)dt, n=1,2, ... ,00 (A.2.4) 
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where T is the period of the fundamental frequency component of the signal. 

The real and imaginary parts of the phasor representing the sampled signal are 

calculated as: 
4 N/2-1 

VRe(k) = N ~ v(k - n) cos (2~n) (A.2.5) 

4 N/2-1 (21l'n) 
VIm(k) = N ~ v(k - n) sin N . (A.2.6) 

The amplitude and phase angle can be obtained using the real and imaginary 

components, respectively, as follows: 

(A.2.7) 

-1 (VIm(k)) 
¢(k) = tan VRe(k)' (A.2.8) 

The half-cycle FT is used as a reference in the simulation studies: The perfor­

mance of the method proposed in section 6.4 is compared with the half-cycle 

FT. 
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