Exploring Carbon Electrode Parameters in Li-O_2 Cells: Li_2O_2 and Li_2CO_3 Formation

Bianca P. Sousa, Chayene G. Anchieta, Thayane M. C. Nepel, Alex R. Neale, Laurence J. Hardwick, Rubens M. Filho, Gustavo Doubek

Ensuring the stability of the electrode and electrolyte in Li-O_2 batteries and achieving a comprehensive understanding of parasitic side reaction management during cycling are key issues for the progress of this promising energy storage technology. Conseuently, Operando Raman microscopy measurements and ex situ Raman and X-ray photoelectron spectroscopy (XPS) analyses were performed for Li-O_2 systems using LiClO_4/DMSO as the electrolyte and carbon paper (CP) and carbon paper with carbon nanotubes (CPCNT) as electrodes. Using CP electrodes (either treated or untreated with O_2 plasma), the major discharge product formed was LiO_2. In contrast, for CPCNT electrodes, the formation of LiCO_3 as the main discharge product was observed at lower capacities, then significant formation of Li_2O_2 proceeded at higher discharge capacities. XPS highlighted that the surface chemistry of the CPCNT electrode comprised of fluorine and a variety of iron species, which could be linked to the promotion of Li_2CO_3 formation. Furthermore, it was observed that when LiCO_3 is the main discharge product, the active sites of functional groups on carbon surfaces that favour carbonate formation become coated/passivated. Consequently, the dominant reaction pathway then alters, leading to the growth of LiO_2 over the surface. These outcomes emphasized the important role in cycling stability of the active sites on carbon electrodes, arising from the synthesis process or possible contaminants.

Introduction

Lithium-oxygen (Li-O_2) batteries have attracted great interest due to their potential to provide a high specific energy density,^{1,2} around 5 times higher than present Li-ion technologies.^{3,4} Despite this, barriers including the understanding of reaction mechanisms and side reactions need to be clarified to achieve Li-O_2 batteries with long cycle lives and high capacities.^{5}

In an ideal aprotic Li-O_2 cell during discharge, Li^+ combines with molecular O_2 to form lithium oxides (Li_2O_2, LiO_2) which are decomposed in a reversible process upon charging.^{6,7} However, parasitic reactions can occur during these processes leading to low coulombic efficiency and rapid cell failure. The dominant side product lithium carbonate, Li_2CO_3, is an insulating species which is decomposed only at high potentials (\textgreater4.0 V).^{8,9}

Electrolyte oxidation and cathode decomposition reactions are possible sources of Li_2CO_3 in a Li-O_2 battery, both associated with cell deterioration. Carbonate-based electrolytes produce Li_2CO_3 as the primary discharge product due to their carbonyl groups being easily oxidized by superoxide species,^{10,11} but several others studied electrolytes can also promote carbonate formation under certain conditions.^{12-14} With respect to the air cathode electrodes, carbon materials are attractive candidate materials due to their characteristics, such as low cost, low weight, and high conductivity.^{15,16} Nonetheless, the highly reactive oxygen species present within discharge and charge processes can attack the carbon surface and induce the formation of carbonates and other organic species. McCloskey and colleagues attributed the carbonate formation from the reaction between Li_2O_2 and the carbon from the cathode surface.^{21} On the other hand, Xu and co-workers verified that Li_2CO_3 was formed by electrolyte decomposition rather than from the carbon electrode during discharge.^{22} This was confirmed by Thotiyil et al. who verified formation of Li_2CO_3 occurs at cell voltages above 3.5 V on the carbon cathode.^{16,23} Recently, Itkins et al. proposed another route for Li_2CO_3 formation with superoxide attack to carbon (in activated double bonds) producing epoxy groups, followed by carbonate formation.^{24} Although defects in carbon structure may favour Li_2CO_3 formation,^{16,22,24} they have also been found to improve
the battery performance. Some studies have shown the influence of defects and dopants on carbon matrix electrodes in both the discharge and charge processes. However, further experimental investigations are necessary to evaluate the air electrodes material design that favours the formation of products like Li$_2$CO$_3$, which is an important issue for Li-O$_2$ cell rechargeability.

In this work, operando and ex situ analyses were performed in different carbon cathodes in Li-O$_2$ batteries with LiClO$_4$/dimethyl sulfoxide (DMSO) electrolyte. The aim was to improve understanding of the properties of the electrode materials that lead to distinct products formation during cell discharge. Operando Raman microscopy is a powerful technique for characterising the chemical products formed, as well as probing structural changes at the electrode, during the cycling process of a cell. It was observed that the main discharge products were distinct for the different carbon cathodes. Pristine or functionalised carbon paper cathodes produced Li$_2$O$_2$, whereas cathodes with carbon nanotubes, regardless of the manufacturer or binder used in the ink, produced Li$_2$CO$_3$. XPS analysis highlights that the surface chemistry is a crucial factor that contributes to the nature of lithium product formation.

Experimental
Electrodes preparation

Different types of air electrodes were prepared in this work, with all electrodes using carbon paper (CP) (Toray Carbon Paper, TGP-H-60) as the base: pure CP (without pre-treatment), CP with a carbon nanotube (CNT) ink, and functionalized CP. The CNTs used were either sourced from Sigma-Aldrich (SA) or CNT Co. Ltd (CCL). CNT inks were prepared with (25 mg) multi-walled CNT, binder (30 μL) Nafion (Sigma-Aldrich) or (6.4 mg) polytetrafluoroethylene (PTFE) (Sigma-Aldrich), and (1.25 mL) solvent mixture containing ultrapure water and isopropanol (4:3). The suspension and zirconia balls were mixed in a conditioning mixer (ARE-250 THINKY, Intertonics) for 10 minutes and dropped onto CP surface on both sides and left to dry in a fume hood for 24 h. The mass loading of the electrodes with CNT was approximately 0.8 mg cm$^{-2}$. The CP functionalisation was prepared using an oxygen plasma treatment, according to the Lobo and co-workers methodology, with a plasma time of 2 and 4 minutes. To summarise, the electrodes and their respective abbreviations used for the experiments were: carbon paper without pre-treatment (CP); carbon paper with carbon nanotubes from Sigma Aldrich and Nafion binder (CPCNT-SA_Naf); carbon paper with carbon nanotubes from CNT Co. Ltd. and Nafion binder (CPCNT-CCL_Naf); Carbon paper with carbon nanotubes from Sigma Aldrich and PTFE binder (CPCNT-SA_PTFE). All the electrodes were dried at 100 °C in a vacuum oven for 30 minutes before being transferred to an Ar-filled glovebox (H$_2$O/O$_2$ <0.1 ppm) where they remained stored until used.

Cell assembly and electrochemical operation

All Li-O$_2$ cells were assembled in the Ar-filled glovebox. The optical cell for operando measurements consists of an ECC-Opto-Std base (EL-Cell) and a custom-made stainless-steel lid with channels for O$_2$ flow and an aperture on the top for sapphire optical window (shown in Fig. S1 in supporting information). The lid was designed and 3D printed in-house. For deep discharge tests, the cell was used also developed in-house using Swagelok-type system for gas flow in one stainless steel plate, a second stainless steel plate, both with terminals for electrical contact, and a Teflon chamber between them (see Fig. S2 in supporting information). The cells for both tests were assembled in an analogous way, with a lithium metal foil electrode disk (Sigma-Aldrich) at the bottom, glass fibre separator (HNM-GF50/A) embedded with 100 μL of electrolyte 0.1 M LiClO$_4$ (Sigma-Aldrich) in anhydrous dimethyl sulfoxide (DMSO, Sigma-Aldrich). Then the specific carbon air electrode was placed on the top. The diameter of the battery components was distinct for each cell used, with electrodes measuring 9 mm in diameter for the EL-Cell/3D printed lid cell, and 16 mm for the Swagelok-type cell. To ensure complete wetting of the carbon cathode, the cells were rested in the glovebox for at least one day before electrochemical measurements. O$_2$ gas was purged into the cells at 1.5 bar G and the system was sealed.

Electrochemical tests were conducted in a two-electrode cell configuration in galvanostatic mode with 65 μA cm$^{-2}$ of applied current density. For operando tests, a Biologic SP-150e potentiostat was used to conduct discharge/charge cycles of 10 h per half-cycle test. Electrochemical deep discharge/charge tests were conducted using an Arbin potentiostat with a cell potential cut-off limit of 2.2 V and 4.5 V.

Raman spectroscopy

Raman spectroscopic analyses (Renishaw inVia) were conducted using a He-Ne 632.8 nm laser and a 50x objective. The measurement conditions were 60 s and 3 accumulations for operando testing, and 80 s and 5 accumulations for ex situ to improve the signal-to-noise ratios in the spectra. In operando tests, the spectra were collected every 1 h until the 20 h cycle was completed. For ex situ measurements, cells were submitted to 30 min of argon flow and the disassembled inside the glovebox after discharging. The electrodes were then sealed in a stainless-steel sample holder with a glass window.

X-ray photoelectron spectroscopy

XPS measurements were recorded using an Al Kα as X-ray source (Thermo Fisher Scientific X-ray photoelectron spectrometer). The analyses were performed under ultrahigh vacuum conditions. Ag and Au standard samples were used for calibration. The pristine CP and CP functionalized electrodes were investigated in a long scan and in C 1s, O 1s, and N 1s energies region. In addition to these regions, CPCNT electrodes were also analysed in the Fe and F energy region. XPS data were treated by subtracting Shirley-type background and employing Lorentzian/Gaussian functions for bands deconvolution.
Quantification of discharge product

Li₂O₂ mass was quantified by titration using Ti(IV)OSO₄ solution (Sigma-Aldrich, ~1.9–2.1 wt%) and an UV-vis spectrometer (Agilent, Cary 60). The titration with titanium oxysulfate was a well established procedure to determine the amount of Li₂O₂. In this methodology, Li₂O₂ reacts with the H₂O of the solution forming LiOH and H₂O₂. In the presence of H₂O₂, a TiO₂ solution is formed, changing the solution from transparent to yellow/orange. A UV-Vis calibration curve was firstly determined by adding incremental mass of Li₂O₂ standard powder to the Ti(IV)OSO₄ solution and measuring absorbance at λ = 406 nm. The discharged electrodes were placed in a headspace vial and left to dry for 1 h at the glovebox after cell disassembly. After electrode drying the vial was sealed and taken from the glovebox and 4 mL of Ti(IV)OSO₄ solution was added to the vial with a syringe. The resulting solution was then transferred to a quartz cuvette and analysed by UV-Vis spectroscopy.

Results and discussion

The operational Raman technique allows tracking of the reaction process in real time. Following the Raman bands during the discharge and charge processes of the Li-O₂ battery, it was possible to identify product formation and decomposition. In the present work, detailed analyses show that carbon-based electrodes with different structure and surface chemistry can alter the reaction pathways, producing different discharge products. Carbon paper (CP) leads to the formation of Li₂O₂ as the primary discharge product, while the addition of CNTs results in the formation of Li₂CO₃ as the main discharge product. Fig. 1 and Fig. 2 show the potential profiles and operational Raman spectra, respectively, of a pure CP electrode and a carbon paper with carbon nanotube (CPCNT) electrode using dimethyl sulfoxide (DMSO)/LiClO₄ as the electrolyte. Considering Fig. 1, the discharge potential profiles do not present significant differences for the different electrodes used, nevertheless the overpotential is higher for CP. Regarding the charging process, CP exhibits a different potential profile compared to the electrodes containing CNT, which will be discussed further in this work. In Fig. 2, the Raman spectra are presented in 3D and 2D views between 700 to 1200 cm⁻¹, the primary range of interest for discharge products of Li-O₂ batteries. Electrolyte bands for DMSO (1040, 950 cm⁻¹) and LiClO₄ (935 cm⁻¹) are observed in all the spectra. In Table S1 of the Supporting Information (SI), all the bands of operando Raman spectra and their respective assignments are presented.

Raman experiments conducted in a cell with a carbon paper as the air electrode (Fig. 2a) revealed the Li₂O₂ discharge product within 2 h from the start of discharge with a characteristic band at 790 cm⁻¹ (O-O stretching) and the intensity increasing during discharge. Li₂O₂ is the main expected product for an aprotic Li-O₂ battery and the mechanism proposed by most of studies involves an initial oxygen reduction (Equation 1), followed by Li⁺ complexation (Equation 2) and lithium superoxide (LiO₂) disproportionation (Equation 3) to yield Li₂O₂.

$$\text{O}_2 + \text{e}^- \rightarrow \text{O}_2^- \quad (1)$$

$$\text{O}_2^- + \text{Li}^+ \rightarrow \text{LiO}_2 \quad (2)$$

$$2\text{LiO}_2 \rightarrow \text{Li}_2\text{O}_2 + \text{O}_2 \quad (3)$$

The Li₂O₂ band decreases during the charge process and completely disappears after 2 h. The oxygen evolution reaction (OER) mechanism that occurs upon charge, and the formation of reaction intermediates, remains an open question in the Li-O₂ batteries field. A direct two-electron oxidation of Li₂O₂ using different electrolytes, including DMSO, is proposed by
some authors based on cyclic voltammetry tests.50,53,54 Peng and co-workers also noticed a direct decomposition of Li$_{2}$O$_{2}$ to O$_{2}$ formation on OER by \textit{in situ} Raman spectroscopy and differential electrochemical mass spectrometry studies using acetonitrile as the electrolyte solvent.39 Meanwhile, routes with more than one step for OER with Li$_{2}$O$_{x}$ and/or LiO$_{2}$ as the intermediate of Li$_{2}$O$_{2}$ decomposition are also reported in the literature. A lithium deficient phase Li$_{2}$xO$_{2}$ formation and consequent O$_{2}$ release upon charging was proposed according to computational methods55 and by \textit{in situ} X-ray diffraction analysis with an electrolyte based on tetraglyme and (1 M) lithium bis{(trifluoromethyl)sulfonyl}imide.56 Using rotating ring-disk electrode and X-ray absorption near edge tests, Wang and co-workers suggested Li$_{2}$O$_{2}$ oxidation occurs first by Li$_{2}$xO$_{2}$ formation, then O$_{2}$ release for low DN solvent or Li$_{2}$O$_{2}$ production before evolving O$_{2}$ in high DN solvent.57 In addition, an initial delithiation of Li$_{2}$O$_{2}$, followed by Li$_{2}$O$_{2}$ formation then O$_{2}$ release was reported by Gallant \textit{et al.} and Lu and Shao-Horn according to the steps upon charging.57,58 Based on our results, we propose a two-electron oxidation reaction upon charging (Equation 4), without intermediate species formation.

\begin{equation}
\text{Li}_2\text{O}_2 \rightarrow O_2 + 2e^- + 2\text{Li}^+ \tag{4}
\end{equation}

Li$_{2}$O$_{2}$ is unstable at potentials above 3.5 V and the electrochemical profile of CP/DMSO battery (Fig. 1) shows that the main discharge product, Li$_{2}$O$_{2}$ is decomposed in one step charge at 4.5 V.6,39,58 This high charge overpotential for carbon paper was already noticed in literature due to the absence of a catalytic material for OER,20,59,60 and the probable large particles size of Li$_{2}$O$_{2}$ formed during the discharge process.2,61

Electrolyte stability is an important factor to create long-life Li$_{2}$O$_{2}$ batteries. Carbonates and ether-based solvents are known to decompose in Li$_{2}$O$_{2}$ cells to form products like lithium carbonates, formates, and acetates.12,14,62–64 Some studies have reported the oxidation of DMSO to dimethyl sulfone (DMSO$_{2}$), forming lithium carbonate and hydroxide,16,38,65,66 while others report satisfactory DMSO stability with some specific cathodes.11,67,68 In operando Raman of the CP/DMSO cell (Fig. 2a), no side products bands, such as lithium carbonate (Li$_{2}$CO$_{3}$ – 1090 cm$^{-1}$), dimethyl sulfone (DMSO$_{2}$ – 500, 1120 cm$^{-1}$)69 or lithium hydroxide (LiOH – 360, 630 cm$^{-1}$)7,70 were detected. The

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig2}
\caption{Operando Raman spectra of Carbon paper (CP), CP with CNT from Sigma Aldrich and Nafion (CPCNT-SA_Naf), CP with CNT from CNT Co. Ltd. and Nafion (CPCNT_CCL_Naf), and CP with CNT from Sigma Aldrich and PTFE (CPCNT-SA_PTFE) electrodes in Li-O$_{2}$ cells with 0.1 M Li[ClO$_{4}$] in DMSO electrolyte using a current density of 65 μA cm$^{-2}$.}
\end{figure}
absence of these bands indicates limited electrode and electrolyte decomposition with respect to scale detection. Moreover, the absence of LiOH and Li$_2$CO$_3$ also suggest no significant water and atmospheric air contaminants in the system.

In addition to the verified electrolyte stability, the charge overpotential is also an issue for cells since high overpotentials require more energy consumption. Thus, the introduction of active material to improve charging efficiencies is crucial for future applications. Cathodes with high surface areas like CNTs are of great interest for Li-O$_2$ batteries as they offer more reaction sites for ORR and OER and are good catalyst support materials.8,71 Operando Raman spectra with elapsed time were collected to understand the product’s evolution on CNTs and how the CNT addition alters the discharge chemistry (Fig. 2b, c & d). The use of CNT on CP electrodes (CP-CNT) drastically changes the apparent reaction mechanism. In the Raman spectra of CP-CNT electrodes, the Li$_2$O$_2$ band at 1090 cm$^{-1}$ emerges as early as 1 h into the discharge and remains present until 8 h of charging. Therein, no Li$_2$O$_2$ Raman band is detected for CP-CNT electrodes during the discharge and charge processes of operando Raman tests. Comparing the results of the CNT-based electrode with the CP electrode (Fig. 2a), Li$_2$O$_2$ on CP is earlier decomposed than Li$_2$O$_2$ on CP-CNT. The decomposition of Li$_2$O$_2$ from the measured spectra was achieved after 2 h of charging while 9 h was required for Li$_2$CO$_3$.

It is well known that oxidation of the DMSO-based electrolyte is a potential source of Li$_2$CO$_3$ due to the high charging potentials or by the attack of superoxide species in discharge.16,65,66,72 However, the data presented in Fig. 2 a-d shows that the main property responsible for the Li$_2$CO$_3$ formation in our experiments is the CNT, and the carbon source for the carbonate formation reaction can come either from the CNT itself or from the decomposition of DMSO that may be catalysed by the CNTs. This is supported since the cell with pure carbon paper (CNT-free electrode) showed no evidence of Li$_2$CO$_3$ formation and Li$_2$O$_2$ is the main discharge product.

Operando Raman microscopy measurements were also performed in cells using different carbon nanotubes and distinct binder materials (Fig. 2 b-d). Slight differences between the CNTs properties from Sigma Aldrich (CNT_SA) and from CNT Co. Ltd (CNT_CCL) can be noticed besides the manufacturer, such as carbon content, diameter, and length (Table S2 in supporting information). In addition, the XPS and Raman spectra (Fig. S3 a & b in supporting information, respectively) obtained from electrodes with the different types of CNTs show slight differences in the surface chemistry and defects. The electrode with CNT_SA presents a higher band of CF bond, a broader D Raman band and a higher I$_D$/I$_G$ ratio. The I$_D$/I$_G$ ratio is derived from the intensity ratio between the D and G band features and a larger ratio for the CNT_SA material indicates the presence of more structural defects compared to the CNT_CCL. Additionally, the binders used in the electrodes have different chemical compositions. PTFE is a fluoropolymer of tetrafluoroethylene, whereas Nafion (Naf) has a PTFE backbone and acidic sulfonic groups in its side chains. Despite these variations in CNTs and binders, the voltage profiles (Fig. 1) and associated Raman spectra obtained from Li-O$_2$ battery using CPCNT_SA_Naf (Fig. 2b), CPCNT_CCL_Naf (Fig. 2c), and CPCNT_SA_PTFE (Fig. 2d) as air electrodes showed similar responses, with Li$_2$CO$_3$ identified as the main product. Lithium peroxide or other lithium oxides are not observed on any of these CNT-based electrodes at these discharge/charge capacities. The DMSO band in Fig. 2c appears to slightly increase, which may be attributed to microscope focusing issue/drift during the testing. These findings provide strong evidence that CNT plays a crucial role steering side reactions to form Li$_2$CO$_3$.

As shown in Fig. 1, the electrochemical profile of the cell with CPCNT_SA_Naf exhibits similar behaviour to the CPCNT_CCL_Naf and CPCNT_SA_PTFE but is distinct from CP. The cells with CPCNT electrodes showed one discharge plateau at 2.7 V, and two charge plateaus at ca. 3.8 V and 4.2 V. The second plateau is assigned to Li$_2$CO$_3$ decomposition, usually at 4.0-4.6 V as reported in the literature.10,32,73 However, as the results revealed Li$_2$CO$_3$ as the main discharge product in CNT, the two-plateau behaviour upon charge must be further elucidated.

To address the reason for the first charge plateau in the battery with CPCNT electrodes, a deep investigation was carried out into the evolution of carbon bands in the Raman spectra. Fig. 3 a & b show the Raman spectra with elapsed time in the carbon region of CP and CPCNT_SA_Naf electrodes, respectively. The analogous operando Raman results of the other electrodes with CNT (CPCNT_CCL_Naf and CPCNT_SA_PTFE) are provided in Fig. S4. Carbon bands are featured at ~ 1330, 1580, 1615 cm$^{-1}$ assigned to D, G and D’ bands respectively. These bands correspond to well-known graphite bands, in which the G band appears due to the E$_g$ Raman active phonons at Brillouin zone centre. The D and D’ band are related to intervalley and intravalley, respectively, double resonance processes at the first Brillouin zone. The arising of D and D’ bands require defects for its activation.74 The ratio between the intensity of D and G bands gives information about defects in the carbonaceous structure, the higher I$_D$/I$_G$ ratio means more defects in carbon. Fig. 3 c & d and Fig. S4 c & d in supporting information show the discharge/charge voltage profile with I$_D$/I$_G$ ratio constructed by data collected from Raman bands spectra deconvolution for CP, CPCNT_SA_Naf, CPCNT_CCL_Naf, and CPCNT_SA_PTFE electrodes, respectively. The I$_D$/I$_G$ ratio of CNTs increases upon charging, indicating the evolution of defects in the electrodes. These results coupled with the previous issue of the first plateau at ~3.8 V during the charge can be attributed to side reactions in the carbon surface. Carbonaceous materials with defects at the surface and functional groups in an oxidising medium with current applied can offer the necessary precursors for side reactions in the carbon surface of CNT.34,75 The side reactions at the carbon surface are characteristic of CNTs, since no significant changes in the I$_D$/I$_G$ ratio (and no evidence in the Raman spectra) are observed in carbon bands during the discharge/charge process using the CP electrode, indicating the stability of the carbon paper electrode as the air electrode for Li-O$_2$ batteries.

Moreover, to further elucidate the first charge plateau in the electrode with CNT, a titration analysis was performed on
Fig. 3. Operando Raman spectra primary carbon bands during electrochemical discharge/charge at (a) carbon paper and (b) CP with CNT/Nafion electrodes. The corresponding voltage profiles are presented in (c) and (d), respectively, along with the derived \(I_D/I_G \) ratios. Both cells use a 0.1 M LiClO\(_4\) in DMSO electrolyte with a current density of 65 \(\mu \)A cm\(^{-2}\).

The CP and CPCNT_SA_Naf electrodes after a discharge of 650 \(\mu \)Ah cm\(^{-2}\) to evaluate the formation of Li\(_2\)O\(_2\). The TIOSO\(_4\) solution after being in contact with the discharged CPCNT_SA_Naf had no significant change in the colour, maintaining a very light yellowish colour. Conversely, the solution turned bright yellow when containing the discharged CP electrode (see Fig. S5 in supporting information). Using UV-Vis spectroscopy with the appropriate calibration, the mass of Li\(_2\)O\(_2\) in discharged CP and CPCNT_SA_Naf electrodes correspond to 82% and 2%, respectively, of the theoretical mass of Li\(_2\)O\(_2\) formed in a perfect reaction for 650 \(\mu \)Ah cm\(^{-2}\). Assuming that the charge plateau observed at 3.8 V until ca. 325 \(\mu \)Ah cm\(^{-2}\) for electrodes with CNT was a result of peroxide decomposition (as described by Equation 4), the theoretical mass expected of Li\(_2\)O\(_2\) to be consumed at this charge capacity was calculated to be 0.18 mg. As the total amount of Li\(_2\)O\(_2\) produced in discharge on the CPCNT_SA_Naf electrode was only 0.01 mg, it would correspond to 7% of the theoretical value (0.18 mg) for the 325 \(\mu \)Ah cm\(^{-2}\) charge capacity. This analysis confirms that the 3.8 V plateau in the CPCNT_SA_Naf was mainly due to the oxidation of side reaction products and not from Li\(_2\)O\(_2\).

Thus, based on the electrochemical cycling profile, the Li\(_2\)CO\(_3\) detection as discharge product in the operando Raman spectra, the quantitative titration results, and the D band behaviour during the cycling process, it is demonstrated that carbonate was the main product formed for CNT-based electrodes. Minor Li\(_2\)O\(_2\) formation follows the same explanation as indicated for the CP/DMSO (Equation 2 and 3). However, the exact mechanism for carbonate formation is not well established.

Itkins et al. proposed a pathway for Li\(_2\)CO\(_3\) formation on discharge based on X-ray photoelectron spectroscopy experiments.\(^{24}\) According to these authors, the superoxide radicals formed during discharge attacks double bonds or aromatics of carbon, activated by oxygenated groups and associated defects on carbon. The nucleophilic addition or electron transfer promoted by superoxide produces epoxy-groups formation on carbon, which are further converted to carbonate.

The Li\(_2\)CO\(_3\) may also have been produced by the exothermic reaction between lithium peroxide and carbon.\(^{8,20,76}\) Even though Li\(_2\)O\(_2\) is not observed in operando Raman of CNTs electrodes (Fig. 2 b-d), it is detected in small amounts by chemical titration analysis of discharged CPCNT_SA_Naf electrode (see Fig. S5 in SI). So, Li\(_2\)O\(_2\) must be present as small particles or thin film, below the detection limit of the Raman measurement. In addition, the small amount of Li\(_2\)O\(_2\) formed during the operando test may react rapidly with carbon to form Li\(_2\)CO\(_3\) on the surface, making it difficult for Li\(_2\)O\(_2\) to accumulate to form detectable larger particles.

According to Itkins, carbonate formation could be favoured by defects and oxygenated functional groups in carbon structure.\(^{24}\) Jiang and co-workers in a theoretical calculation for graphite indicate that specific types of defects: SV (single vacancy), DVS-8-5 (two pentagons and one octagon), and
DV555-777 (three pentagons and three heptagons) lead to Li$_2$CO$_3$ formation. In order to obtain an improved understanding of how defects can influence the Li$_2$CO$_3$ evolution, an oxygen plasma functionalisation of the pure carbon paper was conducted. The procedure successfully introduced defects onto the CP surface (denoted “CP-functionalised”) as could be verified by the significant increase in the intensity of D band (Fig. S6a in supporting information) compared with the pristine material. Also, D* and D” bands related to functional groups and amorphous carbon, respectively, appear in the CP functionalised as compared to CP. Further more, Jiang et al. determined I_D/I_D' ratios for more specific and common defects in carbon, as Stone-Wales, single and di vacancies by calculations in graphene. Here, for pristine CP, the I_D/I_D' is 0.8 (see Fig. S6 in supporting information) indicating single vacancies defect type. In contrast, CP-functionalised (Fig. S6 in supporting information) present an I_D/I_D' ratio of ~2.7, indicating DV 555-777 defect type, approximately the same D bands ratio that CPCNT_SA and CPCNT_CCL (Fig. S3b in supporting information). Thus, considering that the CP with CNTs and CP functionalised are likely to have similar types of defects, it can be concluded that the nature of defects is not the primary reason for the formation of carbonates in carbon electrodes. Instead of only defects, the chemical composition of the surface that appears to explain the preferential formation of carbonates. To investigate this further, the electrode surfaces were characterised by XPS analysis. XPS revealed the presence of fluorine and iron in the CPCNT electrode, in addition to carbon and oxygen present in both CP and CP functionalised (see Fig. 4 a). The fluorine peak appears due to the binder used in CNT ink, since Nafion and PTFE are fluoropolymers. The presence of iron in the CNT arises from the manufacturing process, where nanoparticulate iron is used as a catalyst during the CNT production. In this CNT growth process, carbon binds to iron, forming iron carbide (Fe$_3$C) as a stable intermediate. By comparing the XPS spectra of the CPCNT electrode before and after the discharge, it is possible to

![XPS survey scan spectra](#)

Fig. 4. XPS survey scan spectra of carbon paper (CP), CP functionalized, and CP with CNT (a). XPS spectra C1s (b), Fe2p (c), and F1s (d) XPS spectra for CPCNT pristine and discharged sample.
identify changes in the iron, carbon, and fluoride peaks, indicating that these species are modified with the occurrence of reactions during discharge.

Fig. 4b, c and d present the XPS spectra of CPCNT electrode in the C 1s, Fe 2p and F 1s energy, respectively, and Table S3 in supporting information their corresponding peaks assignments. C 1s spectra is deconvoluted into six peaks, which are attributed to the bonds Fe-C (284.1 eV), C-C (284.5 eV), C-O (285.3 eV), C=O (288.0 eV), CF$_2$ (291.9 eV), and CF$_3$ (293.8 eV), pointing out that carbon is directly binding with iron, oxygen and fluorine in the CPCNT electrode. Fe-C bond is also observed in Fe 2p spectra at 710.0 and 720.0 eV, confirming the presence of iron carbide in the material. In addition, XPS in Fe 2p energy contains peaks at 711.0, and 724.0 eV assigned to Fe2p$_{3/2}$ and Fe2p$_{1/2}$ of Fe$^{3+}$; and at 714.0 and 727.0 eV attributed to Fe2p$_{3/2}$ and Fe2p$_{1/2}$ of Fe$^{2+}$. The presence of Fe$^{2+}$ and Fe$^{3+}$ ions indicate the existence of iron oxides species in the CPCNT electrode. In accordance with these observations in XPS analyses, the literature reports 57Fe Mössbauer spectra of carbon nanotubes, in which Fe-C is the main species present, in addition to FeO and α-Fe species also noticed.$^{94-96}$

The percentage areas of the XPS spectra of CPCNT pristine and discharged are presented in Table S3 in supporting information. After discharge, Fe-C and F-C bonds decrease, while a Fe-F bonding arises. In addition, more discretely, Fe$^{2+}$ increase and Fe$^{3+}$ decrease. According to Jiang, the O-O bond breaking is the main requirement for carbonate formation.97 It is also well known that Fe$^{2+}$ may act as a catalyst for the oxygen reduction reaction and breaking of the O$_2$ bond. Thus, unlike the CP electrode, in CP with CNT and binder, the presence of iron and fluoride, combined with defects in the material, could contribute to the Li$_2$CO$_3$ formation process.3,82,86

In the XPS spectra, in the C 1s energy of pristine and discharged CP electrodes, no significant difference is observed in the peaks, but only a slight change in the C-C and C-O bonds, probably due to the presence of Li$_2$O$_2$ in discharged electrode (shown in Fig. S8 in SI).

It has been reported that the electrochemical potential for oxygen reduction and, consequently, the reaction products formed are directly influenced by the activity of functional groups on carbon electrodes.91,104,105 Considering this, the presence of Fe and F in the CPCNT electrodes should influence in the cell voltage and thus promote the formation of lithium carbonate during the discharge.

Cells with DMSO/Li[ClO$_4$] electrolyte and CP and CPCNT electrodes were also submitted to a full discharge test with a cut-off potential of 2.2 V to verify the products formed at larger discharge capacities, then to a full discharge/charge test (Fig. 5 a). Overall, the cell with CPCNT electrodes exhibit an electrochemical profile with a lower overpotential and delivering a higher capacity than the CP cell. The discharge potential plateau was at 2.78 V and 2.72 V for the cells based on CPCNT and CP, respectively. Regarding the charge curves, the voltage plateau was at ~ 4.43 V and 4.30 V for the cell with CPCNT and CP electrodes, respectively. The cell capacity with CPCNT electrode (2.61 mAh cm$^{-2}$) was about 2x higher than the cell with CP (1.25 mAh cm$^{-2}$). Due to the enhanced surface area and many additional sites introduced for ORR and OER, CNTs have been shown to deliver improved electrochemical performance.21,106,107

Subsequent to the discharge step, the CP and CPCNT electrodes were analysed by ex situ Raman microscopy. Fig. 5 b shows the ex situ Raman spectra of CP and CPCNT. In the deep discharged CP electrode, only the Li$_2$O$_2$ band was observed at 790 cm$^{-1}$ in addition to the DMSO, Li[ClO$_4$] and carbon features. Exclusive Li$_2$O$_2$ formation in the CP electrode discharged until 2.2 V is in accordance with the operando measurements (Fig. 2 a) with a ~2x lower capacity of one cycle. On the other hand, in the CPCNT electrode Raman spectrum, besides the Li$_2$CO$_3$ band that was consistently observed in operando measurements (Fig. 2 b), the Li$_2$O$_2$ band feature was also observed. Despite the nonappearance in the operando Raman spectra, Li$_2$O$_2$ was formed in the CPCNT cell discharged until 0.65 mAh cm$^{-2}$ in small amount as confirmed by titration analyse (Fig. S5 in supporting information). However, with 4x higher capacity than the
operando measurements, the specific defects and active sites for Li$_2$CO$_3$ formation were likely coated/passivated and the other “regular” sites afforded the formation and growth of Li$_2$O$_2$ particles. Gallant and co-workers noticed by XANES major formation of Li$_2$CO$_3$ and Li$_2$O$_2$ at lower and higher capacities, respectively, for CNT electrode also.

These operando Raman, ex situ Raman, and XPS results for CPCNT cathode with DMSO/Li[ClO$_4$] electrolyte contribute to a more detailed understanding of the influence of lithium products formation using different carbon materials for air electrodes in Li-O$_2$ cells. Upon discharge on carbon paper with CNT electrodes, there is an initial formation of Li$_2$CO$_3$ at smaller capacities (0.65 mAh cm$^{-2}$). At later stages, when fewer non-carbon sites are available, Li$_2$O$_2$ can nucleate at higher capacity (2.61 mAh cm$^{-2}$). During the charge, in addition to discharge product decomposition, side reactions at the carbon surface occur in the CNT cathode due to the oxidising environment with applied current, causing structural defects on carbon cathode. These results bring insights to the suitable choice of carbon cathode materials for use in in Li-O$_2$ batteries. While CNT has favourable characteristics of large surface area that can promote higher capacities, the structural defects and surface chemistry of CNT and binder can lead to the formation of unwanted Li$_2$CO$_3$ before the desired Li$_2$O$_2$. These outcomes further highlight the necessary requirement of redox mediators in Li-O$_2$ cells to move product formation/decomposition away from the electrode surface.

Conclusions

In this study, the impact of materials design on the air electrodes of the Li-O$_2$ battery and their roles in the formation pathways of discharge products were investigated. Raman measurements were conducted in an operando Li-O$_2$ cell using Li[ClO$_4$]/DMSO as electrolyte and carbon paper (CP) electrodes, both with and without carbon nanotubes (CNT). In the case of CP electrodes combined with CNT (CPCNT), the analysis revealed Li$_2$CO$_3$ as the main discharge product observed, regardless of the CNT supplier or the binder material used. Conversely, using a CP electrode led to Li$_2$O$_2$ formation instead of Li$_2$CO$_3$, even when the same vacancy defects as CPCNT were artificially introduced in the CP electrode. Therefore, it was demonstrated that not only functional groups played a pivotal role in determining the nature of the discharge products, but also the surface chemistry of CNTs as shown by XPS analysis. It was observed that fluorine and iron species within the CNT and electrode could contribute to the observed carbonate formation. Moreover, after a deep discharge of 45 h using the CPCNT electrode, Li$_2$O$_2$ was detected in addition to Li$_2$CO$_3$. This indicates that Li$_2$CO$_3$ is the main product formed in the early stages of discharge but is subsequently further coated by Li$_2$O$_2$, probably due to the lower number of active sites available. In conclusion, material selection for the electrode is of significant importance for Li-O$_2$ batteries due to their potential to profoundly influence the formation of the discharge product.

Author Contributions

BPS: conceptualization, methodology, investigation, formal analysis, data curation; CAG: conceptualization, formal analysis, data curation; TCMN: formal analysis, validation, data curation; ARN: formal analysis, validation, data curation; LH: supervision, validation, resources; RMF: supervision, funding acquisition; GD: conceptualization, validation, supervision, funding acquisition. BPS, CAG and TCMP: writing original draft, review and editing; ARN, LH, RMF, and GD: review and editing the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Authors would like to thank Bruno A. B. Francisco and Julia P. de O. Julio their support with electrochemical measurements. This research supported by LNNano – Brazilian Nanotechnology National Laboratory (CNPEN/MCTI) during the use of the X-ray photoemission spectroscopy open access facility. This work was supported by the São Paulo Research Foundation (FAPESP) grant 2017/11958-1, the Unicamp Development Foundation (Funcamp) grant 5333.8, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant 201106/2020-5, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES), and Shell and the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. ARN and LH acknowledge the UK Faraday Institution (EPSRC EP/S003053/1) through the Degradation Project (grant numbers FIRG001 and FIRG024).

References

55. Kang, S., Mo, Y., Ong, S. P. & Ceder, G. A facile mechanism for recharging Li2O2 in Li-O2

92. Santos, V. P. *et al.* Metal organic framework-mediated synthesis of highly active and stable

