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Multivariate calibration involves the estimation of the relationship between a
multivariate response vector Y and an explanatory vector X in order to be able
to predict future unknown values of X using the observed values of the asso-
ciated responses. In infrared spectroscopy the response vector is a spectrum
of absorbances at a number of frequencies of infrared light for some substance,
whilst the explanatory variable may be the amounts of certain chemicals present
in that substance. Modern instrumentation has led to spectra consisting of the
absorbances at many frequencies, so that the dimension of the response vector
may be of the order of 1000. At the same time it is often only possible to obtain
a small number of observations for estimating the relationship between Y and
X. In such circumstances, standard approaches to calibration lead to non-unique
predictors of future X. Unique predictors can only be obtained by imposing addi-
tional structure. We investigate approaches to structuring the calibration which
reflect the nature of the spectral data involved and suggest possible avenues of
further exploration.

Partial least squares regression is already widely used for calibration in in-
frared spectroscopy but from a statistical point of view it is poorly understood.
In addition it suffers from the lack of any method of providing prediction intervals
for future X. We investigate the properties of partial least squares, showing it to
be a shrinkage method. We consider obtaining prediction intervals by applying
the computationally demanding methods of bootstrapping and local linearisation
together with the much simpler approaches of crossvalidation and naive use of
‘standard’ prediction intervals from linear regression. Some recommendations, as
to which approach should be used and under what circumstances, emerge.



Acknowledgements

I would like to thank my supervisor, Professor Philip J. Brown, for his advice
and assistance over the past three years and for comments on earlier drafts of
this thesis. Valuable encouragement and assistance was also offered by CIiff
Spiegelman and Rolf Sundberg whilst visiting this university, for which I am
most grateful.

Thanks are also due to colleagues and friends for putting up with me during
my preparation of this thesis and in particular to Keith Abrams for proof-reading
earlier drafts.

Finally, I would like to thank Donald E. Knuth and Leslie Lamport for devel-
oping the TEX and BTEX systems in which this thesis was produced. Without
them this thesis would have been finished in half the time but would not have
looked so attractive.



Contents

1 Introduction

2 Theory of Calibration

2.1 Infrared SDECtTOSCODN . ¢ vio s s o 5 s o 5w ol sl s wesin @ e e s
o Yl ke TR S T S e T T i IR A P LI e L S L
9.2:1 Unbanate Ualibtabion . ;i v o6 v e o0 e i a0 0 4 el e
2298 Miltivariate CaliDEation "« @ i a6 sl tol s o b wei s = s

2.2.3 Calibration in Infrared Spectroscopy . ... ... ... ..

3 Controlled Calibration

3.1 Incorporating Structure into Covariance . ... ..........
3.1.1 Using Autocovariance Structures . . .. .. .. .0 0.
o ) o D e e B F R i e e i | LB A R
B. 1.0 EIBRICHON = & 5 tlethi 7 s v o R S e D e T
R 1 L O (TR P e (R
3.2 Incorporating Continuity into Coefficients . . . ... ... ....
B2 DPHRETURCIIONE /s & 5 o o5 (5o we & s A E S B S o
3.2.2 Regression Spline Calibration’ . . . . .. v i ws su o s
v S U - T R R R R L S T R
4 Random Calibration
4.1 Variable Selection Methods . . . & o ¢ & viv o o5 & % & 5 bro e s wle
B2 - Ridpe Regresslon o o0 v o b v.w s ahs ol a6 ae e e 0 ik v
4.3 Pruncipal Components Regression ... « « « v s« = <o sin s o &
4.4 Minimum Length Least Squares . . . .. ..............

5 Partial Least Squares
5.1 Partial Least Squares Modelling . ... . . . v v v oo v o v an
5.1.1 The Partial Least Squares Model ... ...........
5.1.2 Estimation of the PLSModel . ... .. .. .. .. ....

-~ W



Contents il
52" The TwoBlork PERMIGHEL . <. v o 7ol ki w6 i o e 58
Sl TRIOGE N OB AT i i e LAY it e £ s it 59

Sz 'Mede B, Mode B . . . i vbaldesmdene on e s 59

528 "Modle A, Mode B .. i « v ris o bod bowle s b sed i ss 60

Tl MBS R IO A, B L i el v e Sl w e T o A 60

8.3 The PLY Hegresaion Model © . o . i vo siv s s o 5 4 45 lous & 60
54 Univariate Algorithing (PEB1) & o « v vw v ciin v o v s w0 61
5.4.1 The Orthogonal Scores Algorithm . . . . .. ... ..... 62

5.4.2 The Orthogonal Loadings Algorithm . ... ... ... .. 64

543 COMPUEITONE " 1 o bis W0ACE > o 75 48 [0 6 s '8 4 s 65

5.4.4 Modifying the Orthogonal Scores Algorithm . ... .. .. 66

5.5 The Multivariate Algorithms (PLS2) . .. ............. 68
5.5.1 The Orthogonal Factor Scores Algorithm . . . . ... ... 68

5.5.2 The Orthogonal Loadings Algorithm . ... ........ 69

3 R0 il S W L T R DR R Ty 70

5.6 Motivation for Partial Least Squares . . ... ... ........ 72
5.6.1 PLS as a Latent Factor Method . . . . . ... ... ... 72

5.6.2 PLS a8 aShrinkage Method . . . . . oo« vs vl 0w 73

5.7 Invariance Properties of PLS Regression . ... .......... 75
5.8 dwo Spetial flasom L s S A L A5 L R N s v e a9E 7
.8 PESLwith ODE FREEOE & v o o 505 o 5.5 5 B o 4 9% ol 4 5 s 7

5.8.2 Intra Class Correlation between the Y Variables . . . . . . 78

e SR T e T S e L U1 e L e S ol et L A i U 80
821 "Deerpent et . S on L i o b eha s s sy 80

502, PHMBRADER . C v e o e 2l s b am b s spdls 85

6 Prediction Intervals in Partial Least Squares 92
O T T T T TR e S I S R A 93
D2 BOOTSWADDINR " . o | o bl i e v o 0 s s a6 e b e 93
6.2.1 Choosing the Number of Bootstrap Samples . . . . .. .. 95

O & T T T, O (o 8 RS P o iy i e 98
G Incal INSRDIBERION &+ % 13l v 3 5 e e e e e, i lerls e 103
L R T P e SR R S R - 112

7 Summary and Conclusions 122
A The Examples 125
ol Deterrent EXAMPIE « i 0 o o0 o S8 w54 C0E e ot e et g 126
A2 FMBIRA BiRamaien | L WGl TSR e e il e e 126

References

127



List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10

3.11

3.12

3.13

3.14
3.15

3.16

3.17

3.18

3.19

5.1
5.2

Mean infrared absorbance spectrum of 12 detergent samples
Mean infrared absorbance spectrum of 51 bread improver mixes
Some examples of bending and stretching vibrations in molecules

Sample ACF and PACF for detergent example . . . . . ... ...
Estimates of AR(12) parameters for detergent example . . . . . .
Roots of various AR processes for detergent example . . ... ..
MSPEs of exact and approximate GLS for detergent example
MSPEs of exact GLS for detergent example . ... ........
Sample ACF and PACF for FMBRA example . .. ........
Estimates of AR(10) parameters for FMBRA example . .. ...
MSPE:s of exact GLS for FMBRA example .. ..........
MSPEs of exact GLS Prediction with differencing for FMBRA
OECMTEITINE . e P R sy ML e e+ B lon sln] of oo &
Regression spline calibration coefficients for Component 1 of de-
fergent eXammple Vi o wihl e s e e el 0 e e 0d b e
Regression spline calibration coefficients for Component 2 of de-
LAIRent eXaTmnIe L N P et et W a e e ks Y e s
Regression spline calibration coefficients for Component 3 of de-
SEERAnt GXRMBIE . o B s e e Rl e w et e gl e e e
Regression spline calibration coefficients for Component 4 of de-
T et B R S i L L e
MSPEs of regression spline calibration for detergent example
Regression spline calibration coefficients for Component 1 of FM-
PR SRR 5 5 (he 3 ¥ i R Al N R v e
Regression spline calibration coefficients for Component 2 of FM-
BIRLA ECRIBDE v 5= 0 o o s a8 18 5 ot e s & Ariaihs et et s aiade s
Regression spline calibration coefficients for Component 3 of FM-
BIABREIOEIE T o i ran Lol 5 S aie i fs Sl e, e a3
Regression spline calibration coefficients for Component 4 of FM-
3L Vs el RN L3 GO, - N R e el
MSPEs of regression spline calibration for FMBRA example

Two Examples of Path Models with Latent Variables . . . . . . .
Coeflicient estimates for detergent example by PLS . . . ... ..

iii

18
20
21
23
24
25
27
29
30
35
36
37

38
40

42

43

41

45
46



List of Figures iv

5.3
5.4

5.5
5.6

5.7
5.8

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

MSPEs for detergent example using PLS1 and PLS2 regressions . 83
S-norm lengths of coefficient estimates for detergent example by

L R el Tt ) e By A S R S P ol e 84
Euclidean lengths of coefficient estimates for detergent example by
o A 1 e e P ) s RN b= - 86

MSPEs for FMBRA example using PLS1 and PLS2 regressions . 89
S-norm lengths of coefficient estimates for FMBRA example by PLS 90
Euclidean lengths of coefficient estimates for FMBRA example by

o e e S s eyt A R S £y A < f R RIS 91
95% Bootstrap prediction intervals for FMBRA example using raw
S ndiosted reniduale L d o L T e e e F i e 96
95% Bootstrap prediction intervals for detergent data using raw
and'adjvited tesidusls . . o u o i v s e s m e waa el s e s e 97
5 replicated 95% bootstrap prediction intervals for each of the 51
validation samples of the FMBRA example . .. ......... 99
5 replicated 95% bootstrap prediction intervals for each of the 51
validation samples of the FMBRA example . .. ... ... ... 100
5 replicated 95% bootstrap prediction intervals for each of the 51
validation samples of the FMBRA example .. ....... ... 101
5 replicated 95% bootstrap prediction intervals for each of the 51
validation samples of the FMBRA example . . ....... ... 102

80% prediction intervals by four approaches for component 1 as-
suming 7 factors for each of the 51 validation samples of the FM-
BRA SRAIPIE o (0l ol e b o e E ks e e am e S 113
90% prediction intervals by four approaches for component 1 as-
suming 7 factors for each of the 51 validation samples of the FM-
BRASIRIMDIE ot & cieals e v b5 el i S N g e T e 114
95% prediction intervals by four approaches for component 1 as-
suming 7 factors for each of the 51 validation samples of the M-
BRAGRRIDIE A S0 6 o vs a0 s 5 @ v wais et e, 115
99% prediction intervals by four approaches for component 1 as-
suming 7 factors for each of the 51 validation samples of the FM-

B AR ROTIRIE T o ar ¢ o Ry S SR e R e, s Pty Re R 116
80% prediction intervals by four approaches for component 1 as-
suming 5 factors for the detergent example . . . ... ... ... 117
90% prediction intervals by four approaches for component 1 as-
suming 5 factors for the detergent example . . ... ....... 118
95% prediction intervals by four approaches for component 1 as-
suming 5 factors for the detergent example . .. ... .. .. .. 119

99% prediction intervals by four approaches for component 1 as-
suming 5 factors for the detergent example . . ... ... .. .. 120



List of Tables

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8

3.9
3.10

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4

6.5

Estimates of AR(1) parameters for the detergent example . . . . .
Estimates of AR(3) parameters for the detergent example . . . . .
Estimates of AR(7) parameters for the detergent example . . . . .
MSPEs of exact GLS using Yule-Walker estimates for detergent
BRRINIIO . s T e o 5 ol <o i (k5 o e RN o] ¥ B S
Estimates of AR(1) parameters for FMBRA example . . ... ..
Estimates of AR(2) parameters for FMBRA example .. ... ..
Estimates of AR(3) parameters for FMBRA example .. ... ..
MSPEs of exact GLS using Yule-Walker estimates for FMBRA
e T L U S IR 5 ke R L S
MSPEs of regression spline calibration for detergent example

MSPEs of regression spline calibration for FMBRA example

MSPEs for detergent example using PLS1 regression . . ... ..
MSPEs for detergent example using PLS2 regression . . ... ..
MSPEs for FMBRA example using PLS1 regression . . . . . .. .
MSPEs for FMBRA example using PLS2 regression . . . . . . . .

Observed ‘hits’ for crossvalidatory prediction intervals of compo-
nert 1 ot the FEMBRA examiple . . v ¢ oo v v loms o v oo o s s
Observed ‘hits’ for crossvalidatory prediction intervals of compo-
fieit 2 of the FMBRA example. . i s viai« e i @l et o b
Observed ‘hits’ for crossvalidatory prediction intervals of compo-
nent 3 of the FMBRA example . ... ... ............
Observed ‘hits’ for crossvalidatory prediction intervals of compo-
nent 4 of the FMBRA example .. .. ...............
Observed ‘hits’ for crossvalidatory prediction intervals of compo-
nent 5 of the FMBRA example . ... ...............



Chapter 1

Introduction

The last thing one knows in constructing a work
is what to put first

— BLAISE PASCAL, pensées (5th edn. 1909)
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Analytical chemists are able to examine a sample of a chemical mixture and
determine its composition. Although they are able to do this very accurately,
the methods used are often expensive and laborious. In contrast modern spec-
trometers can produce a ‘spectrum’ of reflectances at different frequencies of light
almost immediately. One is now faced with the problem of estimating the com-
position from the spectrum by calibration methods.

The ‘resolution’ of these spectrometers, the number of frequencies at which
the light reflectance is measured, can be very large. At the same time the number
of observations available for calibration may be relatively small.

In chapter 2, after giving a brief background to infrared spectroscopy we
introduce the standard approaches to both univariate and multivariate calibration
together with the concepts of random and controlled calibration. Because of the
large number of variables compared to observations in spectral problems, the
standard approaches to both random and controlled calibration give rise to non-
unique predictors.

In controlled calibration this non-uniqueness arises due to the singularity of
the estimated error covariance in regressing spectral variables on chemical vari-
ables. In chapter 3 we consider obtaining a unique predictor by imposing an
autoregressive structure. In addition we consider taking account of the continu-
ity inherent in the spectrum by the use of regression splines.

In random calibration non-uniqueness arises due to the rank deficiency of the
design matrix in regressing chemical variables on spectral variables. After briefly
discussing a number of standard ways of overcoming such difficulties in chapter 4,
chapter 5 looks at the technique known as partial least squares which has become
popular in the non-statistical community.

Although partial least squares appears to perform well in many circumstances
a major drawback is that, so far, it has not been possible to provide prediction
intervals for the method. In chapter 6 we discuss the problem of producing pre-
diction intervals and consider approaches based on bootstrapping, crossvalidation
and local linearisation.

Throughout this thesis we use two illustrative examples. One, from the chem-
ical industry, involves the prediction of the composition of liquid detergent mix-
tures. The other, from the food industry, is a problem involving mixtures of
bread improver. Both examples are described in the appendix. All calculations
have been performed using S-plus on a Sun Sparcstation 330.



Chapter 2

Theory of Calibration

All theory, dear friend, is grey
— JOHANN WOLFGANG VON GOETHE (1749-1832)



Chapter 2. Theory of Calibration 4

1.0

Absorbance

0.0

0 200 400 600 800 1000 1200
Frequency

Figure 2.1: Mean infrared absorbance spectrum of 12 detergent samples
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Figure 2.2: Mean infrared absorbance spectrum of 51 bread improver
mixes

2.1 Infrared Spectroscopy

An introduction to the theory of infrared spectroscopy is given in Conn and Av-
ery (1960). The following is based on the more elementary introduction in Cross
and Jones (1969). Infrared spectroscopy consists of shining different frequencies
of infrared light on a substance and noting how much of that radiation is ab-
sorbed. Figure 2.1 gives the mean infrared spectrum for 12 samples of liquid
detergent mixture at 1168 different frequencies of infrared light. (For details see
appendix A). Figure 2.2 gives the mean infrared spectrum of 51 different mixtures
of four bread improvers and starch (Osborne, 1983). (For details see appendix
A). Molecules of a substance are able to absorb this radiation by moving between
different vibrational and rotational energy levels of the ground (lowest) electronic
energy state. In the very simple case of a diatomic molecule A—B the only vi-
bration that can occur is a periodic stretching along the A—B bond. Stretching
vibrations are rather like the motions of two bodies connected by a spring and
this analogy has been used to approximately predict the vibrational frequency of
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Figure 2.3: Some examples of bending and stretching vibrations in
molecules

the bond, A—B, by Hooke’s law. It is possible to consider the vibrations of indi-
vidual bonds in more complex molecules in a similar manner, however other forms
of vibration also become possible. A non-linear molecule of n atoms has 3n de-
grees of freedom which are distributed as 3 rotational, 3 translational, and 3n —6
vibrational motions, each with a characteristic fundamental band frequency, al-
though total symmetry about a bond can lead to certain absorption bands not
occurring. Cross and Jones (1969) state that spectroscopists have verified that
specific absorption bands for particular bonds or groups within a molecule occur
at, or near, the expected frequencies.
Bond vibration modes are divided into

(a) stretching where the vibration is a periodic oscillation along a bond’s axis
(b) deformation where the movement is at right angles to the bond axis.

Within each of these categories several vibrations have been defined some of which
are represented in figure 2.3 for groups of the form —AXj,. In addition to these
fundamental absorption frequencies, it is possible to have overtone absorption
bands occurring at multiples of fundamental band frequencies and combination
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bands occuring near frequencies which are the sum or difference of two funda-
mental bands. Such bands tend to be weaker than fundamental ones.

All these vibration mode absorption frequencies tend to be altered in varying
degrees by small changes in the remainder of the molecule, leading to highly
characteristic infrared spectra for organic substances.

It is clear from the above that the infrared absorption of a particular mixture
will be related to what chemicals are present in the mixture and in what amounts.
In fact in many circumstances the relationship has been found to be linear. This
relationship is characterised by the (empirical) Beer-Lambert law which relates
the absorption of incident light by a substance dispersed in a non-absorbing
medium to both concentration and sample thickness. This may be stated as
(Cross and Jones, 1969)

logyo(To(v)/1(v)) = k(v)ecd (2.1.1)
where
I(v) is the intensity of transmitted radiation at frequency v,
In(v) is the intensity of incident radiation at frequency v,
k(v) is the extinction coefficient or absorptivity at v,
c is the concentration of the substance in g/l and
d is the thickness of the sample in cm.

The left hand side of the above expression is referred to as the absorbance. It
must be stressed that although the above law has been found to work well in some
cases it is only an experimental law and there are many substances for which it
does not hold. Effects such as those due to the presence of hydrogen bonding can
lead to deviations. In the case of solids, energy losses due to scattering caused by
voids between particles and the non-uniform distribution of absorbing material
can lead to serious problems (Fearn, 1983). (Also see Cross and Jones (1969) for
other causes of departures from the Beer-Lambert law).

2.2 Calibration

The problem of calibration involves making inferences about one or more unob-
served values & of the p-vector variable z based on the observed values z of the
g-vector random response variable y. To do this the (linear) relationship between
x and y is calibrated by means of a set of n experimental observations (z;, y;).
Brown (1982) distinguishes between

(a) controlled calibration where the z; have fixed values which are pre-specified
as part of an experimental design,

(b) random calibration where both z and y are random.
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2.2.1 Univariate Calibration

Until relatively recently, attention has been focussed almost exclusively on uni-
variate calibration (see the reviews contained in Rosenblatt and Spiegelman (1981)
and Brown (1982)) whilst during the 1980s more attention has been paid to the
multivariate case (see for example Brown (1982), Martens and Naes (1984)).

If calibration is random there is no theoretical difficulty in specifying the con-
ditional distribution of z given y. If we assume that this conditional distribution
is Normal it may be estimated by regressing  on y. Brown (1982) notes that
in practice the @ usually correspond to random true values which are accurately
determined and so the distribution of z and hence z given y may not be Normal.
Aside from this, random calibration is essentially no different from the problem
of prediction in simple linear regression.

In controlled calibration we cannot specify the conditional distribution of z
given y since the z; are not random variables, having been pre-specified to take
fixed values. The ‘classical’ approach (Eisenhart, 1939) is based on regressing
y on z and inverting the fitted relationship to predict £. If we assume that the
conditional distribution of y given z is Normal then for univariate calibration this
approach leads to the maximum likelihood estimator for £.

An alternative approach suggested by Krutchkoff (1967) is to treat the cal-
ibration as if it were random and predict ¢ by means of the regression of = on
y. Hoadley (1970) shows that such an approach can be justified from a Bayesian
viewpoint if the z; are chosen so as to reflect prior beliefs about the future value

%

2.2.2 Multivariate Calibration

As with the univariate case, multivariate random calibration presents no real
difficulty being effectively the problem of prediction in multivariate regression.
Let X = (21,...,2,)T and Y = (y1,...,¥n)¥. Also let 1, denote an n-vector of
ones. For the calibration data we have the multivariate regression model

X=1,0"+YB" + E* (2.2.1)

where o* and B* are 1 x p and ¢ X p matrices of unknown regression coefficients
and E* is an n X p matrix of errors such that

E*=(q,....6)" B(§)=0; E(§¢")=T% E(gg")=0 i#l (22.2)

]

In addition we assume a similar model to (2.2.1), (2.2.2) for the prediction data
so that if Z = (21,...,2x)T and Z = (£4,...,&x)T we have

E = 1y0"+ ZB" + E (2.2.3)

where E* has the same error structure as E* in (2.2.2) and Z is an unknown
matrix. The least squares estimator of = is then

Z=1.8"+ZB" (2.2.4)
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where

B = (Y= 197 - 1.g) " (¥ - L.p)"X (2:2.5)
& = z-gB* (2.2.6)

In multivariate controlled calibration the ‘classical’ approach is to assume a
traditional regression model of the form

Y=1,0+XB+E (2.2.7)

where now « and B are 1 x ¢ and p x ¢ matrices of unknown regression coefficients
and F is an n x g matrix of errors such that

= (e1,-.-,6)7, E(&)=0; E(gef)=T; E(eef)=0 i#1 (228)
In addition we assume the analogous model for the prediction data i.e.
Z=1lya+EB+F (2.2.9)

with E’ of the same form as E in (2.2.8). The (estimated) generalised least
squares estimator of = is then given by

2= (2 - 1,&) 1187 (BI-1B7)™ (2.2.10)
with
B = ((X-13)7(X-1,8) (X - L&Y (2.2.11)
& = y—zB (2.2.12)
' = (¥ ~1,6-XBYY(Y -1.6-XB)/n (2.2.13)

Brown and Sundberg (1987) show that the above estimator is only maximum like-
lihood when ¢ = p although it will be close unless Z is very inconsistent with the
Y used for calibration. Although in the univariate case the expected mean square
error of the above estimator is known to be infinite, Lieftinck-Koeijers (1988) has
shown that it is finite for p = 1, ¢ > 4 (see also Brown and Spiegelman (1989)
for some subsequent refinements to these results).

As with univariate calibration an alternative to the above ‘classical’ method is
to treat the calibration as if it were random and proceed as in (2.2.1),(2.2.2) etc.
Brown (1982) extends Hoadley (1970) to give a Bayesian justification for such an
approach when the X used for calibration have been selected to represent prior
beliefs about =.

2.2.3 Calibration in Infrared Spectroscopy

In infrared spectroscopy we are interested in predicting the composition of a
chemical mixture from its infrared absorbance spectrum, so that in the notation
of the previous section, Y and Z represent the infrared spectra of the calibration



Chapter 2. Theory of Calibration 9

and prediction samples, X represents accurately determined amounts of different
chemicals in the calibration samples and = represents the unknown amounts of
the different chemicals in the prediction samples. With modern infrared instru-
mentation the number of absorbances, ¢, may be of the order of 1000 but the
number of calibration samples available, n, may only be of the order 10. Sund-
berg and Brown (1989) show that although the estimators (2.2.4) and (2.2.10)
obtained by assuming random and controlled calibration respectively appear to
have different requirements for uniqueness, when n < ¢ + 1 both estimators are
non-unique and occupy the same linear subspace of dimension ¢+ 1 —n. In prac-
tice then the arguments over using a random calibration estimator or a controlled
calibration estimator are irrelevant for infrared spectroscopic problems, since in
general n < ¢q. We shall however, find it useful to describe some methods as
being controlled calibration methods and some as random calibration methods
to distinguish between those based on regressing absorbances on components and
those based on regressing components on absorbances.



Chapter 3

Controlled Calibration

I claim not to have controlled events,
but confess plainly that events have controlled me.

— ABRAHAM LINCOLN, Letter to A G Hodges (1864)
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3.1 Incorporating Structure into Covariance

As has already been stated, in controlled calibration problems involving spectral

data the generalised least squares estimator obtained by conditioning on &, B
and I,

£ = (2 - 1wa)f-187 (B1-1B7)” (3.1.1)

is not unique. This is because the estimate of the covariance matrix I' given by
the residual sum of squares and products matrix is singular and so replacing '~
by any generalised inverse of I' will give a generalised least squares estimator of
=. One possible approach would be to specify a particular generalised inverse
for I such as the Moore-Penrose inverse or to augment I' by a small amount to
make it non-singular as in ridge-regression. An alternative approach is to impose
structure on the error covariance matrix I' and hence obtain an estimate for T’
which is invertible.

Clearly the simplest way of structuring I' is to assume that the errors across
frequencies are uncorrelated and have equal variances so that I' = ¢1. Under
such an assumption the estimator for = given by (3.1.1) reduces to the ordinary
least squares estimator

2= (2 -144)B" (BBT)™

This assumption is quite restrictive and a more flexible structure for I would be to
assume only that errors at different frequencies are uncorrelated so that I' is diag-

onal i.e. I' = diag(03,...,0?). Our estimate of I' would then be diag(é%,...,4;
where ’
A_;? o Z y!_‘.' maﬁ:
=1

are the diagonal elements of E,

The above approach still assumes that errors at different frequencies are un-
correlated which given the continuous nature of the absorbance variables seems a
little implausible. We shall see that the view that errors at different frequencies
are unlikely to be uncorrelated is supported by the examples of section 3.1.4. As
an alternative to allowing heteroscedasticity and assuming uncorrelated errors we
therefore propose assuming homoscedasticity but introducing serial dependence
by imposing a stationary autoregressive structure on the errors.

3.1.1 Using Autocovariance Structures

. Our calibration model is now specified as

Y = l,a+XB+E (3.1.2)
Z = lya+EB+E (3.1.3)

where E = (€1,...,6)T and E' = (€},...,€,)T and ¢;,¢},s = 1,...,n,1=1,.
are independent random vectors arising from the same autoregressive process of
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order m, i.e.

€j = O P€ij—k + Vij (3.1.4)
k=1

€ = d Pkeljk+ Vi (3.1.5)
k=1

where
E(v;) = E(y)=0
E(wwT) = EWpT) =0l
Ew,")=0 i#i, 1#10

=
=
=
=
p—
I

This implies that
Blejeir) = 0™y-pn i=Leny, G=Leo,@i’=1...,q

so that E(e;el ) = o?W where (¥);; = 1);_;| depends only on ® = (¢y,...,0m).

3.1.2 Estimation

If one assumes Normality then the log-likelihood based only on the calibration
set 1s

L(o%,a, B, ®/(Y, X)) = L log(2r) — L log(0?) — 7 log(| ¥])

1
—@S(‘I),o:, B)  (3.1.6)
where S(®,a, B) = Tr (Y — 1na = XB)U~(Y — l,a — XB)T) is the weighted
sum of squared residuals. Clearly the MLEs of o, B and o? (based on the cali-
bration data only) are & = §— 2B, B = (XTX)"'XTY and 6% = S(®, & B)/nq.
To obtain the MLE for ®, we shall find it easier to work with the ‘concentrated’

log-likelihood of ® and o obtained by substituting the maximum likelihood es-
timators for B and a to give

e n n n
L(o%,®/(Y,X),& B) = —Zllog(2r) — = log(o”) — = log(|¥])
1 CTh
—%S((D,Q’,B)

Let us denote the residual matrix (Y —1,&— X B) by R = (r;) and let R; denote
the ith row of R. We can now write S(®, &, B) as

B [R:wR]|

i=1
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so that
L(0*,®/(Y,X),& B) = —Zllog(2n) - Tllog(o”) — 7 log(1¥])
1 & -1 pT
=t [R:w'R|.

=1

Box and Jenkins (1976) show that |¥| = |V,,| where V;, is the m x m matrix
such that

Vm = (l,b’,_s|); ‘!!)k = G_QCOV(fgj,fi‘j.f.k) (317)
In addition they show

q m 2
R,-‘I’_IR? = TE(O}V,.,:I'T"'(Q) -+ z (T‘,-j - Z Qﬁk?‘;‘j_k) (318)
j=m+1 k=1

where 7; 0) = (i1, ... ,Tim)T and that this sum of squares can also be expressed
as a quadratic form in ®, = (1, ¢y,...,6,)7 ie

RY'RT = 9TpWg, (3.1.9)
where the symmetric matrix D) is given by
D) -Di} -DY .. -Dinu

po-| —0% Dé‘z’ Dy ... Détim

D('+1 1 Dm+1 2 Dv{?:]-ll-l,3 A& Dm+1 m+1
whose general elements D},? are defined by
Di? = D}};’ = rilit + Tik+1Tig41 + - oo + TigH1-iTig+1-k- (3.1.10)

If welet Dy = 3, D;:,], so that D = ¥; D, equations (3.1.8) and (3.1.9)
allow us to give two equivalent formulations of the log-likelihood as either

L(e*,®/(Y,X),&B) = —“—qlog(%)—%log(az)-fglog(]v,;‘n

¥4
202 2o Vi i

=1

Qizi ze: ( —iéwe.j_k) (3.1.11)
=1

i=1 j=m+1
or
L(o%,®/(Y,X),& B) = —Zllog(2r) — =l log(o?) + 5 log(|V;:")
——-1—¢>3"D<1>u (3.1.12)

202
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Differentiating (3.1.12) with respect to ¢, implies

oL  9{3log(IV;;'I)}
0dr i

In general the form of |V,;!| is complicated and (3.1.13) is therefore non-linear
in ¢. Hence, maximum likelihood estimation involves the solution of non-linear
equations.

Box and Jenkins consider three ways of approximating the MLE of ® which
give rise to linear systems of equations. These can be easily modified to take
account of the replications of the AR process as described below.

1
+ e} [Dl,k+1 — @1 Daj4y —on0 — ¢mDm+1.k+1] (3.1.13)

Method 1. Exact Least Squares Estimates

Consider equation (3.1.12). The term |V,,| does not depend on ¢ but the term
®TD®, increases with increasing g. For spectroscopic data ¢ is quite large and
so we might expect the likelihood to be dominated by the weighted residual sum
of squares. We would therefore expect the estimate of ® obtained by minimising
®TD®, to be very close to the MLE of ®. Differentiating ®7 D®, with respect
to ® and equating to zero implies

Dy, = D22¢}1 +Dza<}§2 + ... +Dimna ‘E’m

D = D +D + ... +D3mi10m

: 31 i 3201 . 3302 g 3m+19 (3.1.14)
Dsry = Dm+1.2‘£’1 +Dm+1,3€52 e R +Dm+1.m+1q3m

which may be written as d = D,,® so that & = D;;'d.

Method 2. Approximate Maximum Likelihood Estimates

By consideration of the expectation of the derivative of the log-likelihood with
respect to ¢, Box and Jenkins derive an approximate MLE for ®. We shall use
the same approach to obtain an approximate MLE for the multiple replicates
situation.

Since E(OL/0¢y) = 0 we have,

d{21] -t
{2 og(|Vn I)} +o0~2? [E(Dyg41) — 1 E(Dapg1) — - oo — ¢mE(Dpg141)] = 0.

di
(3.1.15)
If we let H = (hy) be the ‘hat’ matrix so that HY = 1,& + X B then R =
(I — H)E where E is the matrix of errors given in (3.1.2). One can easily show
that E(T;jf‘gk) =z (1 g o hg;)E(é,‘jé;k) = (1 == hii)az‘;b[j—kh so that

E(Djs1pn) = 3 (1=ha)(g—3j — k))jj-n

S o= ke (3.1.16)
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Substituting in (3.1.15) and using the result that ¢x — ¢19pr_1 — dathp_2 — ... —
GmPk—m = 0, for all k > 0 implies

913 log(|V,2'1) P |
{3 - } @ 22D [y — (k4 Dutecss = - = (k + )]

(3.1.17)
Since we do not know ty_j| in the above we replace it with an estimate of the
form D;yy41/((n —p —1)(¢ — k — 7)) which after substitutions yields

oL . ¢ [Dl.k+1 4 Da g1 _¢m_lm*.l_]. (3.1.18)

by orle=k. "Tg=k=1 g—k—-—m

This implies a set of simultaneous linear equations for ® similar in form to (3.1.14)
but with Dy, replaced by

D?k = qD;k/(q + = f)

Method 3. Yule-Walker Estimates

As a third possibility Box and Jenkins argue that if ¢ is large an approximate
MLE solution may be obtained by solving the Yule-Walker equations

¢ = Co@%x +C1§52 e e +C-m—1‘%m
¢ = ¢ + 4+ ... +Cm-20m
T N o (3.1.19)
Cn = Cm—nq’;l +Cm—2‘2’2 T +CO$m
where
n q—k
i=1 223=1 TigTij+k
C =
ng

is an estimate of the autocovariance v
Finally, as an alternative to the methods of Box and Jenkins, we consider
using the following approximate least squares estimator of ®.

Method 4. Approximate Least Squares Estimates

Consider the weighted sum of squares residual S(®, &, B). From (3.1.11) we can
write this as

n n q m 2
oy s, [ 5 ( o ¢) ] .
i=1 i=1 |j=m+1 k=1

If m is small compared to ¢ and ¢ is large, an approximate least squares estimate
for ® and hence an approximate MLE may be found by solving the following
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system of equations

2
LT ng,j—l?"i,j—z cer DTij-1Tijm ¥ it i1
2 Tii=aTij-1 T2 cve D Pii-aTiiom o — > it -2
VRN T I I, e S 3 L TiTij-m
(3.1.20)

For sufficiently large values of ¢, all of the above estimation methods should
give similar estimates for ®. However if the AR process is non-stationary or very
nearly non-stationary the different methods may give different results. We shall
investigate this further in section 3.1.4.

In the above we have assumed that we know the order of the AR process. In
practice this will not be so and it will be necessary to choose m in some way. In
the analysis of time series the use of the sample autocorrelation function (ACF)
and the sample partial autocorrelation function (PACF) has been suggested as a
means of detecting the order of the AR process. We suggest using the following
modified versions of the ACF and PACF which take account of the replication of
the process. We can estimate the kth lag autocorrelation by ¢x/co where ¢ is an
estimate of the kth lag autocovariance given by

= Z E TiiTij+k-

nqg =] ge=1

To estimate the kth lag partial autocorrelation we take the least squares esti-
mate of the kth autoregressive parameter obtained by fitting an autoregressive
structure of order k.

3.1.3 Prediction

Having obtained an estimate for ® it is straightforward to derive I'. However
since I' is ¢ X ¢ and for spectroscopic calibration problems ¢ may be of order
1000, direct use of the generalised least squares estimator (3.1.1) with its need
for I'-! for the estimator of E is computationally difficult. We shall therefore
derive an alternative formulation which will be simpler to use.

Consider the generalised least squares estimator of =. This is obtained by
minimising

Tr ((Z - 1wa — EB)IY(Z - 18 — EB)T)

where &, B and I are now regarded as fixed and = is the parameter of interest.
Letting Z(g), &(0) and B(g) be the submatrices formed by the first m columns of

Z, & and B respectively, from (3.1.11) it follows that one can re-write the above
as

Tr ((Z(0) — 1wéo) — EB(0) Vi (Z(0) — Lwéio) — EBo))")
+Tt ((Z — 1wé — EB)PPT(Z — 1va — EB)T)
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where P is the ¢ by ¢ — m matrix

g, Wt g
_qsm—l : s :
; SERNCE 0
=P e e Py
1 AT e
0 e 8 :
: —¢1
\ 0 A,

Letting Z* = ZP, & = &P and B* = BP we have that the generalised least
squares estimator of = is obtained by minimising

Ty ((Z{g) - 1nra‘(g) — Eé(g))VJI(Z(O) — lyréyo) — EB(O])T)
+Tr (2 — 1w&" — EB)(Z* - 1w&" — EB*)T)

which is achieved by setting

2 = ((Z - Lwé@)V; By + (2° - 106" B*T) (B Vi By + B°BT) ™
(3.1.21)
Whilst the above can be used to obtain the exact generalised least squares
estimator of Z, if m is small and |V, | is not too close to zero, a good approximation
to = will be given by

(2° - 1wa") BT (B°B7)” (3.1.22)

The above development of calibration with serially correlated errors requires
the assumption of constant variance across frequencies. This may not be so. An
extension to the above which allows for heteroscedasticity would be to assume
that €; = oju;; and that each of the random vectors u; = (wi,...,ui;)? arise
from the same autoregressive process of order m. We do not develop this here
however.

In the next section we illustrate the use of the methods outlined above on the
detergent and FMBRA data.

3.1.4 Examples
Detergent Data

Figure 3.1 gives the ACF up to lag 100 and the PACF up to lag 20 for the
detergent data. It is clear that there is an extremely high serial dependency
between the errors at different frequencies. Visual examination of the PACF
for the detergent example suggests choosing an AR process of order 11 might
be appropriate for this case. Since it is the predictive efficacy of assuming a



Chapter 3. Controlled Calibration 18

1.0
1.0

0.6

0 20 40 60 80 100 0 5 449 Jb 20

Sample Autocorrelation
05 06 07 08 0.9
Sample Partial Autocorrelation

Lag Lag

Figure 3.1: Sample ACF and PACF for detergent example

particular AR process that is of interest we have applied the methods to the
data assuming orders up to and including 12. Examination of the estimates
obtained using the four different estimation methods shows that the least squares,
approximate maximum likelihood and approximate least squares all give very
similar estimates whilst estimation using the Yule-Walker equations gives rise to
estimates which are somewhat different. We illustrate this point by giving the
estimates for the four methods for AR processes of order 1, 3 and 7 in tables 3.1
to 3.3 and the estimates for an order 12 process in figure 3.2.

Figure 3.3 shows the roots of the characteristic polynomials for AR processes
of order 1, 3, 7 and 12 estimated by method 4. If the roots lie on or inside the
unit circle marked on each figure the estimated AR process is non-stationary. It
is clear that for all models there is at least one root which is quite close to the
unit circle so that all the AR processes are nearly non-stationary. The figure also
suggests that as the number of AR parameters is increased the process becomes
closer to being non-stationary. The roots for the other three methods behave in
a largely similar manner and so are not given here.

Figure 3.4 gives the mean squared prediction errors for each of the components
using approximate and exact generalised least squares estimation based on the
AR parameters obtained by method 4. The two methods are broadly similar
except for components 1 and 5 where the exact method leads to better predictions
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Table 3.1: Estimates of AR(1) parameters for the detergent example

Method | Lag
1

1 0.954

2 0.953

3 0.947

4 0.952

Table 3.2: Estimates of AR(3) parameters for the detergent example

Method Lag
1 2 3
1 1.272 | -0.638 | 0.327
2 1.271 | -0.636 | 0.326
3 1.211 | -0.541 | 0.284
1 1.270 | -0.636 | 0.326

Table 3.3: Estimates of AR(7) parameters for the detergent example

Method Lag

1 2 3 1 5 6 7
1.289 | -0.775 | 0.484 | -0.395 [ 0.564 | -0.553 | 0.369
1.288 | -0.773 | 0.483 | -0.393 [ 0.562 | -0.551 | 0.366
1.207 | -0.622 | 0.352 | -0.270 | 0.435 | -0.416 | 0.288
1.287 | -0.772 | 0.481 | -0.392 | 0.562 | -0.551 | 0.366

e 0 B
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(Solid line: Methods 1,2, and 4; Dashed line: Method 3)

Figure 3.2: Estimates of AR(12) parameters for detergent example
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Figure 3.3: Roots of various AR processes for detergent example
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Table 3.4: MSPEs of exact GLS using Yule-Walker estimates for deter-
gent example
Order of Component

AR process ] 2 3 4 5
0.0378 | 0.0836 | 0.0227 [ 0.01070 | 0.0343
0.1095 | 0.0754 | 0.0432 | 0.01465 | 0.0913
0.1041 | 0.1032 | 0.0666 | 0.01246 | 0.0710
0.1000 | 0.0822 | 0.0440 | 0.01202 | 0.0896
0.1013 | 0.0698 | 0.0376 | 0.01141 | 0.0931
0.1047 | 0.0463 | 0.0287 | 0.00925 | 0.0917
0.1081 | 0.0517 | 0.0310 | 0.01026 | 0.0945
0.0869 | 0.0256 | 0.0206 | 0.00585 | 0.0719
0.0941 | 0.0301 | 0.0223 | 0.00702 | 0.0823
0.0811 | 0.0204 | 0.0189 | 0.00502 | 0.0663
0.0871 | 0.0227 | 0.0199 | 0.00585 | 0.0713
0.0866 | 0.0232 | 0.0197 | 0.00579 | 0.0729
0.0778 | 0.0207 | 0.0194 | 0.00497 | 0.0636

OO -1 O N = W io— O

L
—_— 0 WO

—
=]

than the approximate least squares method. The relationship between the two
prediction methods is the same for the other estimation methods and so no figures
are given for these. If we now consider direct comparison of the performance
of each of the estimation methods for a given prediction method we find that
least squares, approximate least squares and approximate maximum likelihood
estimation all have the same predictive ability. However, predictions based on
the Yule-Walker parameter estimates seem to be better. To illustrate this, figure
3.5 gives the crossvalidated MSPEs for each of the four estimation methods using
the exact generalised least squares estimator.

The results for exact generalised least squares predictions using Yule-Walker
parameter estimates are also given in table 3.4.

FMBRA Data

Figure 3.6 gives the sample ACF and PACF for the FMBRA data. As for the
detergent data there is a high serial dependency between errors at different fre-
quencies. In particular the PACF at lag 1 is extremely close to 1 which we shall
see leads to problems in estimation. There also appears to be a marked period-
icity in the PACF. Clearly choosing an appropriate order for the AR process is
much harder for this example. We therefore consider all AR processes of order
up to 10.

Tables 3.5-3.7 give the AR parameter estimates under the different methods
for AR processes of order up to 3 using the original data whilst figure 3.7 gives
the AR(10) parameter estimates.

In general methods 1, 2 and 4 all give similar estimates for the AR parameters
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Figure 3.4: MSPEs of exact and approximate GLS for detergent exam-

ple
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Figure 3.5: MSPEs of exact GLS for detergent example







































































































































































































































































































































