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Abstract

The silicon detector telescope used in the September 1994 beamtest at CERN
was designed, constructed and tested in the Physics Department at the Univer-
sity of Liverpool during the first half of 1994. The telescope was read out by
using a VME electronics driver, OS-9 operating system and a triple coincidence
triggering unit. It was mounted on an apparatus capable of allowing the preci-
sion alignment of three cross planes.
The telescope was successfully commissioned (using Cosmic-Rays) to minimise
multiple scattering (whilst keeping a reasonable solid angle of acceptance) and
was used to identify dead and noisy channels in the eight telescope planes prior
to their use in the 1994 beamtest.
The Cosmic-Ray telescope will be used in the future to examine the performance
of detectors in the laboratory.

A double-metal silicon microstrip detector (data readout along strips per-
pendicular to the diode strips) using conventional MX series electronics with
double-correlated sampling was incorporated into the September 1994 beamtest.

It was anticipated that the detector (which has a readout pitch of 182um with



three intermediate diodes) would yield a resolution of roughly ﬁ%; with
very little charge loss through capacitance to the backplane. A charge loss of
20-30% was found despite the presence of interstrip enhancement features which
were implemt;nted into the design to compensate for the capacitance to the back-
plane.
However the resolution measurement of 16.7 4 0.4um was found to be consistent
with the above expectations confirming that the intermediate diodes resulted
in the desired linear charge division. The detector efficiency was measured at
95.5 + 0.3%, with a signal to noise ratio of ~ 7.

The signal to noise ratio is too low for the detector to be proposed as a

constituent of the outer layer of the DELPHI microvertex upgrade for LEP200.



Acknowledgements

[ should like to thank the University of Liverpool for giving me the opportu-
nity to subm‘it this thesis, and Dr Carroll for his supervision and help during
the design of the triple coincidence unit. Thanks also to Dr Allport and John
Richardson for their general advice on silicon detectors and beamtests.

During the commission of the Cosmic-Ray telescope I had some technical
assistance from Ashley Greenall, Mike Wormald, Phil Turner, Tony Smith and
Dr Moreton — I would like to thank them all.

I would like to acknowledge Professor Booth as the person who gave me the
opportunity to do this M.Phil.

Finally I would like to dedicate this thesis to my family, friends and mentors,

without whom it would have been impossible to submit this.



Contents

1 Introduction

2 SILICON DETECTORS
2.1+ Reverse Biast i TN JUnehion & o s nie s e 5ie 5585 s o o0 0 ois e

211 Piand N Doping of Siicop . S0 L5 o vt aaie ete e e

b2, Cartier FramBPOrt » & o100 v € S0l s 8 s i e Sl
2.1.3 Generation and Recombination . ... ..........
i SR S i T o S S SN S M S L SO
225 51acon DEletlors an. o - i wlht i B e s e e e

2.2.1 Creating a Microvertex Detector from a P-N Junction . .

2.2.2 The Detection of Particles . . . . . . v v v nse v ore oins

3 Cosmic-Ray Telescope Commission

il iReleBcope DGR ~v ' 5 5 5% 5, sk DR T el o Thsibend of RS
314 Lever Anta ConsldOrabion . .. " ./ 0% » <08 & e, son & e ls
3:1.2" MulBiplo SCatieringr. . 5 v o fe e Winkss o w e ode. @ 5ty

3.1.3  Silicon Resolution as a Function of Incident Angle . . . .

3.1.4 Count Rate vs Counter Separations . . . . ........



3.2 Driver/Readout System to Telescope . . ... ... ....... 64

3.3 Triple Coincidence Trigger « ¢ « o5 % w5 s 59 ¢ 5 5.5 %8 5 o 67
3.3.1 Performance of Scintillation Counters . . . . . . ... .. 67

332 Triple Coincidence Trigger Set Up . . . . . . oo . . . .. 71

3.4 Absorber’s Effect on Count Rate . ................ 71
3.5 Off-line Preliminary Data Analysis . . ... oo a0 ave . 2
3.5.1 Calculations using raw data from ‘pedestal run’ . . . . . 74
3.5.2 Calculations using raw data from ‘signal run’. . . . . . . 75

3.6 Offline Final Analysis and Results . . . . ... .......... 75
el e L o LG i o S e - o YR A R e e 90
4 Double Metal detector 91
4.1 Double-Metal Design and 1994 Beamtest . . . . . ... ... .. 91

4.1.1 Double-Metal Detector Design and Preliminary Investiga-

ETOD - RUP RS et o T L M | S e I v ) 93
4.1.2 Double-Metal Detector in 1994 Beamtest . . . . . . . .. 97
412 - Difhne &nalvaivof Data . & ool & oo Wi 5 e e s 98

4.2.1 Clustering of Space Points and Track Production from them 98
4.2.2 Derivation of Eta Function and Resolution . . . . .. .. 100

4.2.3 Final Alignment, Signal to Noise Ratio, Charge Loss and

PIRCIEDEN s 0 A TR ie) L e e 110
4.3 lIONCIUBIONS . B % s BT A T e e s e R e s 117
A Minimum Ionising Particle 121

B Worst Possible Resolution from Single Hit Strips 123

ii



C Count Rate vs Counter Separations 125

D The Dependence of 7 vs Hit Position Distributions with Charge

Division. 127

iii



List of Figures

1.1
1.2

1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

3.1

3.2

3.3
3.4

The DEEPBLABEECIOR o - o i % v b ad v5a e ol e ok s sthenie e a8 2

Mean Impact Parameter Error Improvement at DELPHI due to

Microvertex DIBIECEOr . s . 5 sule « fans, ois w5 o ale oo o o 3
The DELPHI Microvertex Detector . . . . .. .......... 4
Band Diagrams of Energy Level Positions . . ... ... .. .. 11
Band Diagram of Energy Level Under Biasing . .. .. ... .. 15

Current-Voltage Charactersitics of a Typical Silicon P-N Junction 24

Space Charge Distribution of P-N Junction . . . . . ... .. .. 26
BNCOBEEEI0R e 00 4 i 6 Rt s iy e ot i el Rl & 27
Energy Band Diagram of P-N Junction in Thermal Equilibrium 29

P-sided DC Coupled Silicon Detector . . . .. .......... 39
bilicon Detector Circuit Diagrant : . o i ds wvam s o v ot s o 52
Schematic View of the Cosmic-Ray Telescope ... .. ... .. 59
Diagram Representing the Small Angle Scattering of a Particle

from the First Silicon Cross Plane. . ... ............ 61
Capture-Readout Instruction Cycle . . . ... ... ....... 65
Capture-Readout TimingCycle . . .. ... ........... 68

v



3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Circuit Diagram of Microplex Chip . . . . ... ......... 68

Distribution of Mean (10s) Count Rate with V; (V; =1.8kV) .. 70
Telescope Pedestal vs Channel, Detectors 1,25 and 6 . . . . . . (i
Telescope Pedestal vs Channel, Detectors 7,8,9 . . . . .. .. .. 78
Telescope Pedestal vs Channel, Detectors 3and 4 . . . ... .. 78
Telescope Noise vs Channel, Detectors 1,25and 6 . . . . . . . . 79
Telescope Noise vs Channel, Detectors 7,89 . . . ... ... .. 80
Telescope Noise vs Channel, Detectors 3and 4 . . . . . ... .. 80
Telescope Noise Distributions, Detector 1 . . . . .. .. .. ... 81
Telescope No*-~ Distributions, Detector 2 . . . . . . .. ... .. 82
Telescope Noise Distributions, Detector 5 . . . . . ... ... .. 83
Telescope Noise Distributions, Detector 6 . . . . .. .. ... .. 84
Telescope Noise Distributions, Detector 7 . . . . . ... .. ... 85
Telescope Noise Distributions, Detector 8 . . . . .. ... .. .. 86
Telescope Noise Distributions, Detector 9 . . . . . . ... .. .. 87
Telescope Noise Distributions, Detector3 . . . . . ... ... .. 88
Telescope Noise Distributions, Detector 4 . . . . . ... ... .. 89
Cross-Section of Double-Metal Detector . . . . ... ... .... 93
Double-Metal Detector, a CAD Plan View . . ... ....... 94
Close up of Double-Metal Detector, a CAD Plan View . . . .. 95
SIHEOR, TEIEBCODE ™ =0 .\« 70U o v b o e et e e 98
%*;% va n (No'Intermediate Diodea) « & v v v oo & e a s 101
4N vs n for 25252 Events (Double-Metal) . . . . .. ....... 102
A Function Fitted to i—x va n Distiibution® i s < .. WEE L SR 103



4.8
4.9
4.10
4.11
4.12
4.13

4.14

4.15

4.16

4.17

4.18

B.1

D.1

%% Compared to that Expected from a Detector with a Linear n 104

j—?; vs 1; for 25252 Events (Double-Metal) . . .. ... .. ... 105
Track Position z' — z for 9999 events (Before f(n) Correction) . 106
Chi-Squared Probability Distribution for 17521 Events (All Tracks)107
Track Position z' — = for 9999 Events (After f(n) Correction) . 109
Signal Distribution for 15327 Events . . . .. ... .. ... .. 111
Distribution of the Noise per Channel (Common-Mode Subtracted)
trom 90 Events. o, W PO NS TN e 0 S L i e 112
Distribution of the Noise per Channel from 90 Events . . . . . . 113
Total Number of Tracks with P(x?)>0.01 . . ... ....... 114
Signal Distribution for Events with 0 < < 0.250r 0.75 < 5 <

1.0 (Samplet  AWEVEIEEY. . 50i 18 o 0 30 0 5 o me por s ol Sty 115
Signal Distribution for Events with 0.25 < n < 0.75 (Sample: All

ENenRg ) L L B R o SR S 116

Probability Distribution Function for Tracks Between —%’ and %

Having Charge Read-out on Centre Strip . . . . ... ... ... 124

Mean of n vs Position for Different Detector Types . . ... .. 128

vi



List of Tables

4.1 Parameters m Fitted Function i oo 5 i v il foails s or tore b aiis

vii



Chapter 1

Introduction

Silicon detectors [1, 2, 3] have played a very important role in experimental
high energy physics ever since the discovery of hadrons containing charm and
beauty quarks, as well as the tau lepton. For such short lifetime quarks (0.1-1.5
picoseconds) to be identified in a particle collider experiment, a detector must
lie close to the beam pipe and have a very good spatial resolution in order to
reconstruct tracks and decay vertices to a high precision. The addition of one
or more space points measured very precisely with such a detector improves the
lever arm of tracking and so reduces the error in the impact parameter.

The performance of the silicon microvertex detector in DELPHI [1, 2, 3, 4]
(see Fig. 1.1) is a good example of how such a detector can improve the impact
parameter error in track reconstruction (see Fig. 1.2). DELPHI is one of the
four experiments located in four of the eight interaction regions on the LEP ring
(at CERN, Geneva) studying the physics of ete™ collisions at 90 GeV centre
of mass energy. The microvertex detector was installed in DELPHI before the

1990 running period to provide maximum R-® resolution as close as possible



to the interaction region, particularly for the study of heavy flavour physics. It
lies between the beam pipe and inner detector and now consists of 3 concentric
cylindrical layers of 24 modules (see Fig. 1.3) each with a thickness of 300xm.

Each module consists of two pairs of daisy chained detector planes joined end
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Figure 1.1: The DELPHI detector

to end at the beam crossing point. From 1994, both the closer and outer layers



have been made up of double sided double metal detectors (measuring the R-®
and Z coordinates) whereas the inner layer is single-sided (measuring only the

R-® coordinate.)
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Figure 1.2: Mean Impact Parameter Error Improvement at DELPHI due to

Microvertex Detector

The polar angle coverage is 25 to 155, 37 to 143 and 44 to 136 degrees at radii
of 6.3, 9.0 and 10.9cm from the closest to outer layer respectively. Each module

has a readout pitch of 50um in the ® direction with one intermediate strip.



The closest layer optimizes the resolution in the Z direction by having three
compartments of strips across both pairs of the detector planes with readout
pitches of 50um, 100um and 200um from the beam crossing point outwards.
The outer layer readout pitch in the Z direction is 42um for the closest plane
to the beam crossing point and 84um for the furthest. The signal to noise ratio
for each of the R-® coordinate detectors in each layer is 17(17), 12 and 13(11)
from the outer to closest layers for R-® coordinate detectors (signal to noise
ratio of Z coordinate detectors are in parantheses.) The intrinsic resolution
(for perpendicular tracks) in the R-® coordinate is 7.6um and 9um in the Z

coordinate.
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Figure 1.3: The DELPHI Microvertex Detector

The VLSI (Very Large Scale Integrated) readout electronics chips contain 128
analog channels with serial readout and the outputs of nine chips are multiplexed
together, giving 1152 channels per readout line. The relative alignment of the

silicon modules was surveyed before installation to a precision of approximately

4



10pm.

The upgrade of the microvertex for LEP200 includes the proposal of a longer
outer layer (insertion delayed until 1996) which consists of two quads of daisy
chained double metal detector planes (Z coordinate side) joined end to end and
two quads of daisy chained single metal detector planes (R-® coordinate side)
also joined end to end and mounted back to back with the double metal detector
planes.

The readout electronics are connected to the metal bussing out lines which
are spaced 50um apart for both sides of the detector and conveniently run in
the same direction (due to them running perpendicular to the readout strips on
the double-metal planes.) The readout pitch (pitch of diode strips readout) is
50pum for the R-® coordinate side but varies across the four planes for the Z
coordinate side. The first plane is 50xm, the second 100pm and the final two
182um. The variation of readout pitch was in order to maximise resolution.

A double-metal detector was designed by R. Apsimon at the Rutherford
Appleton Laboratory and P.P Allport at Liverpool University as a prototype
for both of the two outer 182um readout pitch planes. It was designed with
three intermediate diodes to allow a resolution of roughly Tm%% instead of
the poorer resolution expected from having no intermediates at a wide readout
pitch.

Interstrip enhancement features were implemented into the design to min-
imise charge loss through capacitance to the backplane which occurs when sev-
eral intermediate strips are present.

In order to measure the signal to noise, charge loss, efficiency and resolution

of this detector in a beamtest a telescope had to be commissioned with Cosmic-
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Chapter 2

SILICON DETECTORS

Pure silicon [1] has an intrinsic carrier density n; = 1.45 x 10'°em 3. Therefore
a detector made of 1em? pure silicon with thickness 300um would have 4.5 x 10®
free carriers. This is 10* times more carriers than the expected signal of 22 500
carriers (signal for 1 minimum ionizing particle — see Appendiz A), therefore
all electron-hole pairs created from an ionizing particle would recombine and be
lost. In any case an electric field must be present across the thickness of the
silicon for charge collection to occur.

Silicon can be made to be extrinsic (doped with impurities) such that an
electric field exists across its thickness i.e. a P-N junction. This would allow
electron-hole pairs created from an ionizing particle to be collected, however
extrinsic silicon would have a smaller signal to noise ratio (due to electrons and
holes from ionized dopants being present in addition to the intrinsic carriers.)
Cooling the crystal would freeze out some of these free carriers but this is im-
practical. Another way to deplete the P-N junction of free carriers is through

reverse biassing. This is the basis of a silicon detector.



2.1 Reverse Biased P-N junction

2.1.1 P and N Doping of Silicon

L

Silicon [5] is a group four element and as such has four valence electrons. It
has a diamond lattice structure with each atom surrounded by four equidistant
nearest neighbours that lie at the corners of a tetrahedron. Each atom shares its
four valence electrons with these four nearest neighbours in covalent bonding.
The force of attraction (for each electron pair in a bond) by both nuclei holds
the two atoms together.

When N atoms come together to form a crystal their individual discrete (and
degenerate) energy levels overlap to form continuums or bands of states. As the
interatomic spacing decreases the degeneracy is lifted due to atomic interaction
and the bands merge to form one. When the silicon atoms approach 0.543nm
(equilibrium interatomic spacing at 300K and 1 atms) of each other this band
splits to form a conduction and valence band. These are separated by a band
gap (E,) of 1.12eV (at 300K and 1 atms.) The presence of this small band
gap makes silicon a semiconductor (insulators have much larger bandgaps and
conductors have conduction band partially filled or overlapping valence band.)
At low temperatures these electrons are bound in their respective tetrahedron
lattice or 'frozen in’. However at higher temperatures, thermal vibrations of the
lattice can break these bonds and release electrons for conduction (gain kinetic
energy under influence of electric field.) When this occurs an electron deficiency
in the covalent bond occurs and this can shift location from one bond to the
next. This deficiency in the valence band or hole can move under the influence

of an applied electric field in the opposite direction to the electron to which it is



analogous. The band gap is temperature dependent (%ﬁ- is negative), reaching
1.17eV at 0K for silicon.

Silicon is an intrinsic semiconductor as it contains relatively small amounts
of impurities .compared to thermally generated electrons and holes. The number
of electrons per unit volume n (Equation 2.1) in the conduction band is defined
to be the same as the number of holes per unit volume p (Equation 2.2) in the

valence band at room temperature (Equation 2.3.)

n = Ng exp [—EC#] (2.1)
p = Ny exp [— —Epk}Ev] (2:2)
p=n=n; (2.3)

n; is the intrinsic carrier density, N¢ is the effective density of states in the
valence band, Ny the effective density of states in the conduction band, Ey
the top of the valence band, F¢ the bottom of the conduction band and Eg
the Fermi level. By equating Fquation 2.1 and Equation 2.2 the Fermi level is
obtained

Ep=E; =

—Ec By + k—Tln [&] (2.4)
Ne¢

2 2

At room temperature the first term is dominant and so the Fermi level of an
intrinsic semiconductor lies very close to the middle of the bandgap.

A general condition of np = n? (the mass action law) is also satisfied for
semiconductors in thermal equilibrium. Using Equation 2.1, Equation 2.2 and

Equation 2.4 an expression for n? is derived

n? = NoNy exp [-—%] (2.5)

9



where E; = (E¢c — Ey). At a given temperature in an extrinsic semiconductor
(semiconductor doped with impurities) the increase of one type of carrier reduces
the number of the other through recombination, satisfying the mass action law.
At room temperature n; = 1.45 x 10°%m™3 for silicon and increases linearly
with temperature. Therefore the larger n; the smaller E,.

The introduction of impurities to a semiconductor introduces impurity en-
crgy levels. When silicon is doped with a group V element (such as Arsenic or
Phosphorus) the dopant atom substitutes for a silicon atom and forms covalent
bonds with four of its valence electrons. The other is donated’ to the conduction
band (thermal energy ionizes the atom to release the loosely bound electron),
this makes the silicon n-type (majority of negative charge carriers.) Thus the
dopant here is a donor. If the dopant is a group III element (such as boron)
then an electron is accepted by the dopant atom from another bond to join its
other three in covalent bonding. This leaves a hole in the valence band which
makes silicon now p-type (majority of positive charge carriers.) The dopant is
an acceptor.

As dopants in silicon the ionization energy of Phosphorus, Arsenic and Boron
is ~ 0.05¢V. As previously mentioned there is usually enough thermal energy at
room temperature to ionize all impurities (an energy of Ep required for donors
and E,4 for acceptors) in both n-type and p-type extrinsic silicon. There exists
an equal number of electrons in the conduction band of n-type silicon as donor
atoms and an equal number of holes in the valence band of p-type silicon as

acceptor atoms (see Fig. 2.1.) This condition is called complete ionization

10
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Figure 2.1: Band Diagrams of Energy Level Positions
(Equation 2.6.)

n = Np

p = Na (2.6)

where Np is the donor concentration and N, is the acceptor concentration.
The Fermi level can be obtained in terms of N¢ and Np from Equation 2.1 and

FEquation 2.6

Ep— Ep = kTln [-JYE] 2.7)
Np
similarly, from Equation 2.2 and Equation 2.6:
Br - B, = kT [&] . (2.8)
Ny

Therefore the higher the donor concentration, the closer the Fermi level is to the
bottom of the conduction band (see Fig. 2.1.) Similarly the higher the acceptor
concentration, the closer the Fermi level is to the top of the valence band. In

either case however, although the number of electrons or holes respectively is

11



greater, the mass action law still applies. The Fermi level tends to the intrinsic
value as temperature increases.
Electron and hole densities can be expressed in terms of the n; and Ep, from

Fquation 2. { and Fquation 2.2

n = Ncex [————EC 3 EF] e —EF 2 E‘]
el F ¥ 1P| T
Er — E;
= Mn;exp T] (2.9)
P = n;exp A ;TEF] (2.10)

If both donor and acceptor impurities are present simultaneously, the impurity
present in greatest concentration determines the type of conductivity. The Fermi
level always adjusts itself to preserve charge neutrality (i.e. n + Ny = p+ Np.)
Solving this equation and np = n} gives the electron and hole concentrations in

an n-type semiconductor, n, and p, respectively

1
= [ND—NA + /(Np — NaY2 + 4n? (2.11)

- e

n
Pn = n_ﬂ (212)

Similarly for the p-type material

1
ppzEI:NA—ND+\/(NA—-ND)2+4TL?] (213)

=0

(2.14)

o 8
A=k
Generally the magnitude of the net impurity concentration |Np — Ny4| is larger

than n; which has the following results (Equation 2.15):

12

Nin Np — N4, Np> Ny

12

Py Ny — Np, Ny> Np (2.15)

12



where n,, is the concentration of electrons, the majority carriers, in n-type mate-
rial and p, is the concentration of holes, the majority carriers, in p-type material.
As the temperature increases in an extrinsic material (silicon is extrinsic between
150-500K for Np = 10"*e¢m™2) it becomes intrinsic when the concentration of
intrinsic carriers reaches that of Np. This temperature depends on the impurity

concentration.

2.1.2 Carrier Transport
Carrier Drift

The carriers in both p-type and n-type silicon move rapidly in all directions
due to thermal energy. Their motion is a succession of random scatterings from
collisions with lattice atoms (thermal vibrations of lattice atoms disturb lat-
tice periodic potentials allowing energy to be transferred between carriers and
lattice) and impurity atoms (charge carrier path deflected by Coulomb force
between it and ion.) The thermal velocity of a carrier is given at thermal equi-
librium by equating its kinetic energy with its average thermal energy ( Equation
2.16):

1

3
é'mﬂv?h = -2-kT (216)

where T is the absolute temperature, k is Boltzman’s constant, vy, is the thermal
velocity, there are 3 degrees of freedom (one for each spatial dimension) and m,
is the effective mass of an electron' The random motion of the carriers over a

sufficiently long period of time results in a zero net displacement of charge. The

IThe carriers are essentially free. However the potential of the lattice nuclei is taken into

account by the use of an effective mass. There is also an effective mass for holes, m,.

13



average distance between collisions is the mean free path (/) and the average
time between collisions, the mean free time (7..)

If a small electric field ¢ is applied to a semiconductor sample then each elec-
tron will expe:rience a force —ge (holes experience g¢) and will be accelerated in a
direction opposite to the field (holes accelerated in direction of field.) Therefore
an additional drift velocity (v,) will be superimposed upon the thermal velocity
of the electrons (v, for holes.) The equating of the momentum applied to the

electron in free flight between collisions to that gained by the electron in the

same period can be rearranged to obtain v, (Equation 2.17.)

g s [ch] . (2.17)

My

The electron mobility (u,) describes how strongly the motion of an electron is

influenced by an electric field (Equation 2.18.)

pn = L (2.18)

My

A similar expression to Equation 2.17 can be derived for holes. The mobility of
the carriers is determined by the various scattering mechanisms as the mean free
time between collisions is determined by them. Lattice scattering increases at
higher temperatures as lattice vibration increases with temperature. Mobility
due to lattice scattering (ur) is proportional to T-3. At higher temperatures
carriers move faster and so remain near any impurity atoms for a shorter time
and are therefore less effectively scattered. Mobility due to impurity scattering
(ur) is proportional to %, where N7 is the total impurity concentration (prob-
ability of collision is proportional to it.) Therefore lattice scattering dominates

at high temperatures. The probability of a collision taking place in unit time is

14



the sum of collisions due to various scattering mechanisms ( Equation 2.19.)

A 1
Te Te,lattice Te,impurity
1 1 1

: aEe AT (2.19)
7 BL B

For a homogeneous n-type silicon, if a biasing voltage is applied to its right-
hand terminal (which is assumed to be ohmic, so there is a negligble voltage
drop at the left and right hand contacts) the gradient of the potential energy of
an electron will change (become < 0) (see Fig. 2.2.) Since the gradient of the
potential energy is of interest, any energy level with the same gradient as E¢ in

the band diagram can be used, for convenience E; is used.

1 A
-
n-type e
777

qVv

gk
. E,
Ei
E

Figure 2.2: Band Diagram of Energy Level Under Biasing
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The gradient and electric field are related (see Fig. 2.2):

_LdE,

e=— (2.20)

The electrostatic potential (v) is defined as its negative gradient equalling the

electric field (Equation 2.21.)

dv
=-—- (2.21)
Therefore v = —%i. The electrons in Fig. 2.2 move to the right under the

influence of the electric field. When an electron undergoes a collision, it loses
some or all of its kinetic energy to the lattice and drops to its thermal equilibrium
position. The electron then moves to the right and this process is repeated.
Conduction by holes is in a similar manner but in the opposite direction.

The transport of carriers under the influence of an electric field is the drift
current. The electron current density (J,) flowing in a sample is found by
summing the product of the charge (—¢) on each electron times the electron’s

velocity over all electrons per unit volume n (Equation 2.22.)

Jn = % =Y (—qvi) = —qnv, = qnpne (2.22)
=0

From a similar argument the hole current density is derived (Equation 2.23.)
Jp = qpvp = qppye (2.23)
The total drift current is the sum of these two currents (Equation 2.24.)
J = Jn+ Jp = (qnun + qppp)e (2.24)

The quantity in parentheses is the conductivity (o) and the resistivity (p) is

the reciprocal of this. The resistivity can usually be approximated in extrinsic

16



semiconductors because of the many orders of magnitude difference between the

two carrier densities ( Equation 2.25.)

p = ——, n—type

p = , p—type (2.25)
qPHp

Carrier Diffusion

If there is a spatial variation of carrier concentration in the semiconductor then
carriers will move from regions of high concentration to low concentration. This
current component is the diffusion current. A semiconductor at a uniform tem-
perature (average thermal energy of electrons doesn’t vary with z) with an elec-
tron density n(z) that varies only with z (increases with z) contains electrons
with mean free paths of ! (I = vy;7..) Electrons at z = —[ have equal chances
of moving left or right and in a mean free time one half of them will cross the
plane z = 0. The average rate of electron flow per unit area at z = 0 from the

left is Fy (Equation 2.26.)

_1/2n(=0)-1 _1

F En(—l') -Vt (2.26)

Te

Similarly, the average rate from z = [ crossing plane ¢z = 0 from right is F5
(Equation 2.27.)
1/2
B =200, (227)

The net rate of carrier flow from left to right is F ( Equation 2.28.)

F:ﬂ—m=%mmpn-mm (2.28)
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The densities at £ = +[ can be approximated by the first two terms of a Taylor

series expansion ( Fquation 2.29.)

dn dn

F=-vyl—=-D,— 3
vl = I (2.29)
D,, = vyl is the diffusivity. The diffusion current is therefore:
dn
W= —qF = qD,— 2.30
Jo = —qF = qDn— (2.30)

The diffusion current is the result of random thermal motion of carriers in a
concentration gradient. Substituting Fquation 2.18 and Equation 2.16into D, =
venl and using | = vy7e gives D, as a function of temperature and mobility

(Equation 2.31.)

e [%] 3 (231)

This is the Einstein relation. It relates two important parameters (diffusivity
and mobility) that characterize transport by diffusion and by drift.
When an electric field and concentration gradient is present the total current

density at any point is a sum of both components ( Equation 2.32.)

d
dy = qpﬂne+an~%, Hole current

b = qp,p€+quj—z, Electron current (2.32)

For a positive hole gradient the holes diffuse in the negative x-direction (current
flows in negative x-direction), whereas for positive electron gradient the electrons
diffuse in the negative x-direction (current flows in positive x-direction.) The
total conduction current density is given by the sum of these two equations
(Equation 2.33.)

Jeond =Ja + Jp (2.33)
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2.1.3 Generation and Recombination

For indirect-bandgap semiconductors like silicon, electrons at the bottom of the
conduction band have non-zero crystal momentum with respect to the holes at
the top of th::e valence band. Therefore a direct transition that conserves both
energy and momentum is not possible without simultaneous lattice interaction
(thermal excitations.) The dominant generation-recombination (of carriers) pro-
cess is therefore indirect transition via localized energy states in the forbidden
energy gap. These states (arising from the dopant atoms) are stepping stones
between the conduction and valence bands (transition probability depends on
energy difference between them and the intermediate states.) There are four
generation-recombination processes.

One is electron capture, when an electron in the conduction band is captured
in the intermediate state. Only one electron can occupy a given state and so
the rate of electron capture is proportional to the concentration of unoccupied
states. The concentration of unoccupied states is Ny;(1 — F') where N; is the

concentration of intermediate states and F is the Fermi distribution function for

the probability that an intermediate state is occupied. At equilibrium,

1

= 1+ e(B—Ep)/kiT (2.84)

where E; is the energy level of the intermediate state and Er is the Fermi level.
Therefore the rate of capture of electrons is,

Ry = vioanNy(1 — F) (2.35)

-

where vy,0, is a proportionality constant. The quantity o, descibes the effective-

ness of the state to capture an electron, it is a measure of how close the electron
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has to approach the state to be captured. It is of the order of 10~°¢m?. The
proportionality constant can be viewed as the volume swept out per unit time
by an electron with cross section o,. The electron is captured if the state lies
within this volume.

Another process is electron emission, the inverse of electron capture. The rate
(Equation 2.36) of this is proportional to the concentration of states occupied
by electrons i.e. NiF'.

By = e, N F (2.36)
The proportionality constant e, is the emission probability. At thermal equilib-
rium R, = R; and so an expression for emission probability is derived ( Equation

2.37)
ool veponn(l — F)
A F

The equation for electron concentration at thermal equilibrium (Equation 2.9)

(2.37)

along with,

(1 ;F) — o(E~EF)/kT (2.38)

are used in Equation 2.37 to obtain
en = Vgponn e B BT (2.39)

If the state is close to the conduction band edge then electron emission from the
intermediate state becomes more probable.

The transitions between the intermediate state and the valence band are
analogous to the two processes just described. The third process is hole capture
(intermediate state loses electron to valence band.) The rate (Equation 2.40) of

this is proportional to concentration of intermediate states occupied by electrons.
R, = vypo,pN F (2.40)
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The capture cross section of holes is o,,.
The fourth process is hole emission (intermediate state captures electron

from valence band.) The rate for this process is,

Ry = e, Ny(1 - F). (2.41)
The emission probability e, of a hole can be expressed in the same form as

Equation 2.39 by considering the thermal equilibrium condition where R. = Ry:
ep = vinopne B EO/FT (2.42)

Note that the emission probability increases as the intermediate state approaches
the valence band.

If an n-type is not in equilibrium e.g. illuminated brightly to give a generation
rate G, then in addition to the four previously mentioned processes electron-
hole pairs are also generated as a result of this generation process. In the steady
state the number of electrons entering and leaving the conduction band must be

equal. This is the principle of detailed balance, it gives:

S o G~ (= R} =0 (2.43)
dt
Similarly,
dpn
L = G — (R.— Ra) = 0. (244)

Under non-equilibrium conditions R, # Ry and R. # R4. From Equation 2.43
and Equation 2.44,
Gr=R,— Ry= R. — Ry. (2.45)

Inserting the expressions derived for R, through to R, into Equation 2.45 gives

ven0n Ne[nn (1= F) —nie BBV F) = vy0, Ny[pn F —nie BBV (1 F)] (2.46)
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This equation can be solved for the net recombination rate U after eliminating

F:

Vth0n0p Ni(pnnn — n?)

Ve -= 0p[pr + nielB=BFT] 4 g, [0, + nelBe-BI/FT)

(2.47)

Continuity Equation

In order to consider the overall effect when drift, diffusion and generation-
recombination occurs a continuity equation is required.

To derive this equation (one dimensional version) for electrons consider an
infinitesimal slice with a thickness dz and cross-sectional area A located at z.
The number of electr. ..s in the slice m.ay increase due to the net current flow into
the slice and the net carrier generation in the slice. The overall rate of electron
increase is the sum of four components: the number of electrons flowing into
the slice at z, minus the number flowing out at z + dz, plus the rate of electron
generation, minus the rate of recombination in the slice.

The first two components are the currents (diffusion and drift current) at
each side of the slice divided by the charge of an electron. The generation and
recombination rates are G,, = Gg + R, (where Gg is a generation rate due to an
external effect e.g. semiconductor illuminated) and R, = R, respectively. The

overall rate of change in the number of electrons in the slice is,

QEAdx L Ju(2)A  Ju(z +dz)A

= T + (Gn — Rn)Adz (2.48)

Expanding this expression in a Taylor series results in the basic continuity equa-

tion for electrons ( Equation 2.49.)

on _ 10,
ot ¢ Oz

i (Gn o Rn) (249)
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A similar continuity equation is derived for holes ( Equation 2.50.)

0 10% o
5= gas T (G Ry (2.50)

It can be shown [5] that the continuity equations for minority carriers are

on O ony ’n, Np — Npo
= Nplin o Ll D 51
ot PPngg et oz hDs 0%z + G Tn (251)
Opn de Opn azpn Pn — Pno
3¢ = Prbry. e + D, 5z + G, — 'r—p (2.52)

In addition to the continuity equations, Poisson’s equation (Equation 2.53) must
also be satisfied, where ¢, is the semiconductor dielectric permittivity and p; is
the space charge density given by the sum of the charge carrier densities and

the ionized impurity concentrations,q(p — n + N — Np.)

ds_p,

= (2.53)

2.1.4 P-N Junction

The most important characteristic of a P-N junction is that it rectifies i.e. only
lets current flow easily in one direction(see Fig. 2.3.) When a "reverse bias” is
applied, virtually no current flows initially i.e. the junction acts as a resistor.
A condition to be avoided in a P-N junction is junction breakdown. This is
a sudden increase in conductivity (the introduction of free carriers) and occurs
at a critical voltage, determined by the doping concentration and other device
parameters. The sudden introduction (or injection) of free carriers can be caused
by fully depleting the junction (carrier injection from crystal defects at the edge

of the semiconductor), the Tunneling Effect or Avalanche Multiplication.
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V(V)

Figure 2.3: Current-Voltage Charactersitics of a Typical Silicon P-N Junction

The tunneling effect [5] is caused by the high electric field (a high voltage)
which excites valence electrons into the conduction band. The high field requires
a high doping concentration in both regions (> 5 x 10'7em™3.)

The dominant breakdown mechanism at lower electric fields is avalanche
multiplication [5]. Here a thermally generated electron gains energy from the
electric field. If the field is sufficiently high then the electron can gain enough
kinetic energy to break the lattice bonds upon collision with an atom, so creating
an electron-hole pair. These two then acquire kinetic energy from the field and
create additional pairs. This process continues and hence is called the avalanche

process.

Depletion at Thermal Equilibrium

A P-N junction is formed when p and n-type silicon on a crystal are joined
together. The large carrier concentration gradients at the junction of the p-type

and n-type silicon crystal result in carrier diffusion across it (see Fig. 2.2.) The
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holes from the p-side diffuse to the n-side and the electrons on the n-side to the p-
side. The motion of the two carrier types is the diffusion current. This migration
leaves uncompensated negative acceptor ions (/N3 ) near the junction on the p-
side and uncompensated positive donor ions (N) near the junction on the n-
side. This region around the junction is called the depletion region and contains
virtually no free carriers (except for those generated at impurities with energy
levels close to the middle of the bandgap.) The space charge of the depletion
region (also called the space charge region) has a rectangular distribution (see
Fig. 2.4.) This initial migration of carriers results in a potential difference
across the junction, the built-in potential (Vj;.) Each conduction electron in the
crystal will experience a small force —ge from the electric field associated with
the potential difference and is accelerated (between collisions with lattice ions
and impurity atoms) in the opposite direction to the field. Similarly the holes
will experience the same force and because of their opposite charge accelerate
in the same direction as the electric field. This is the drift current. At thermal
equilibrium without any external excitations the net current (due to diffusion
and drift) for each carrier type is zero (see Fig. 2.5.) Thus, for each type of
carrier the drift current must be equal and opposite to the diffusion current

(Equation 2.54 from Equation 2.32 using Equation 2.20 and Equation 2.31.)

Jo = dpdrist + Jpdigpusion
dp
= quppe — qD,— Pdz

1 dE;
~ ap 25| kT =0 (254
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Figure 2.4: Space Charge Distribution of P-N Junction
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Substituting Equation 2.10, the expression for hole concentration and its deriva-

tive into Equation 2.5/ give the net hole current density

dEp
Jp = =0 (2.55)
or
dEg
e 2.
= 0 (2.56)
Similarly for the net current density
dEp
Jn = NRRE =0. (257)

Therefore the condition of the net electron and hole currents being zero re-
quires the Fermi level to be independent of z throughout the semiconductor (see
Fig. 2.6.) The constant Fermi level required at thermal equilibrium therefore
results in a unique space charge distribution at the junction. This distribu-
tion is given (for all donors and acceptors being ionized) by Poisson’s equation

(Equation 2.58.)

&' et Tpi g
ol AR ek g

Charge neutrality is maintained in regions far from the junction and so Equa-
tion 2.58=0 and therefore Np — NA+p—n =0.

The p-type neutral region (Np = 0 and p > n) has an electrostatic potential
with respect to the Fermi level, ¢,. By setting Np =n =0in Np—NA+p—n =
0, p = N4. From this it can be shown [5] that expressions for 1, (Equation 2.59)
and , (Equation 2.60) can be found.

kT " Na
——In

'¢'p = q g

(2.59)
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