Emulsification of Silicone Oil and Eye Movements

Chan, Yau Kei, Ng, Chiu On, Knox, Paul C ORCID: 0000-0002-2578-7335, Garvey, Michael J ORCID: 0000-0001-6029-6796, Williams, Rachel L ORCID: 0000-0002-1954-0256 and Wong, David
(2011) Emulsification of Silicone Oil and Eye Movements. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 52 (13). pp. 9721-9727.

[thumbnail of chan11.pdf] Text
chan11.pdf - Published version
Access to this file is restricted: this item is under permanent embargo.

Download (1MB)
[thumbnail of Accepted manuscript] Text (Accepted manuscript)
iovs.11-8586.full.pdf - Author Accepted Manuscript

Download (251kB)


<h4>Purpose</h4>Emulsification is an inherent problem of silicone oil used in vitreoretinal surgery. It has been shown that silicone oil can be made more resistant to emulsification and easier to inject by adding high-molecular-weight components (5% or 10% 423-kDa polydimethylsiloxane [PDMS]) to normal 1000 mPa · s silicone oil. The authors hypothesize that this might also reduce the movement of oil within an eye.<h4>Methods</h4>A model eye chamber made of surface-modified poly(methyl methacrylate) was driven by a computer and a stepper motor to mimic saccadic eye movement. Seven silicone oils with different shear and extensional viscosities were tested. Two sets of eye movements were used: (amplitude 9°, angular velocity 390°/s, duration 50 ms) and (amplitude 90 °, angular velocity 360°/s, duration 300 ms). The movements were captured and analyzed by video recording.<h4>Results</h4>The angular velocity of an oil bubble relative to the eye chamber appears to form an exponential relationship with its shear viscosity. Depending on the thickness of the film of aqueous between the eye wall and the oil bubble, the shear rate was estimated to be between 6 and 14 × 10(4) s(-1). The addition of 10% of 423-kDa PDMS to 1000 mPa · s silicone oil significantly reduced the peak relative velocity compared with the base oil of 1000 mPa · s but not 5000 mPa · s.<h4>Conclusions</h4>The addition of high molecular components to a base oil increases its extensional and shear viscosity. Although the extensional viscosity affected the ease with which the oil could be injected, the results showed that it was the shear viscosity that determined the relative velocity between the oil and the wall of the vitreous cavity, and thus the propensity to emulsify.

Item Type: Article
Additional Information: ## TULIP Type: Articles/Papers (Journal) ##
Uncontrolled Keywords: Dimethylpolysiloxanes, Silicone Oils, Emulsions, Saccades, Viscosity, Models, Anatomic, Vitreoretinal Surgery, Endotamponade
Subjects: ?? RE ??
Divisions: Faculty of Health and Life Sciences
Depositing User: Symplectic Admin
Date Deposited: 05 Jan 2012 09:34
Last Modified: 16 Dec 2022 04:36
DOI: 10.1167/iovs.11-8586
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/4833