Gracey, JA ORCID: 0000-0002-9101-2853
(2002)
Critical exponent ω at <i>O</i> (1/<i>N</i>) in <i>O</i> (<i>N</i>) x <i>O</i> (<i>m</i>) spin models.
NUCLEAR PHYSICS B, 644 (3).
pp. 433-450.
PDF
0209053v1.pdf - Unspecified Download (205kB) |
|
Postscript (Requires a viewer, such as GSview)
0209053v1.ps.ps - Unspecified Download (255kB) |
Abstract
We compute the O(1/N) correction to the stability critical exponent, ω, in the Landau-Ginzburg-Wilson model with O(N) x O(m) symmetry at the stable chiral fixed point and the stable direction at the unstable antichiral fixed point. Several constraints on the O(1/N) coefficients of the four loop perturbative β-functions are computed. © 2002 Elsevier Science B.V. All rights reserved.
Item Type: | Article |
---|---|
Additional Information: | LTH 560. arXiv Number: arXiv:hep-th/0209053v1. Available online 21 September 2002. Issue: 18 November 2002. |
Uncontrolled Keywords: | CRITICAL-BEHAVIOR, RENORMALIZATION-GROUP, TRIANGULAR LATTICE, HEISENBERG-MODEL, PHASE-TRANSITION, MONTE-CARLO, ANTIFERROMAGNETS, UNIVERSALITY, SYSTEMS, ORDER |
Subjects: | ?? QC ?? |
Divisions: | Faculty of Science and Engineering > School of Physical Sciences > Mathematical Sciences |
Depositing User: | Symplectic Admin |
Date Deposited: | 19 Aug 2008 13:41 |
Last Modified: | 14 Oct 2023 15:32 |
DOI: | 10.1016/S0550-3213(02)00818-0 |
Related URLs: | |
URI: | https://livrepository.liverpool.ac.uk/id/eprint/533 |