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In supersymmetric gauge theories which contain gauge singlet fields (such as the

MSSM with the addition of right-handed neutrinos) there is the possibility of a linear

term in the superpotential W , so that we have (for a renormalisable theory)

W (φ) = aiφi + 1
2
µijφiφj + 1

6
Y ijkφiφjφk. (1)

In the component formalism the ai term leads to a term in the scalar potential which is

linear in the auxiliary field F . In some of our previous work on the renormalisation group

functions of softly-broken supersymmetric theories[1]–[4], we have excluded singlets and

hence such terms; so our purpose here is to extend the formalism to incorporate them.

The renormalisation issues raised by a linear F -term are similar to those associated

with a Fayet-Iliopoulos (FI) linearD-term, which is possible when the gauge group contains

an abelian factor. In previous papers[5]–[7] we computed the β-function for the coefficient

ξ of this term, and showed that upon eliminating D using its equation of motion, βξ is

associated with additional terms in the β-function for the soft masses. We also showed

the existence of a solution to the renormalisation group (RG) equations for ξ, related

to the exact anomaly mediated supersymmetry breaking (AMSB) solutions for the soft

breaking parameters[8][9], but which in this case could only be constructed order by order

in perturbation theory. In the present paper we shall perform the analogous analysis for

the linear F -term. In this case the β-function for ai is associated, after elimination (or, as

we shall see, redefinition) of F , with additional terms in the β-functions for the quadratic

and linear soft scalar couplings. Therefore the treatment of a linear F -term involves both

generalising our previous analysis of the quadratic soft term and a discussion of the linear

soft term.

The analysis will be simpler than theD-term case, since (by superspace power counting

in the spurion formalism) ai can only receive logarithmically divergent corrections, whereas

the individual diagrams contributing to βξ are quadratically divergent, and so although this

quadratic divergence cancels when the graphs are summed, the evaluation of an individual

contribution to βξ in the spurion formalism is non-trivial. By contrast, in the linear F case

the full power of the spurion formalism may be brought to bear, leading to exact results

for the relevant β functions1 and corresponding exact AMSB solutions. For pedagogical

reasons, however, we will begin in the component formalism.

1 This analysis was to an extent anticipated in Ref. [10].
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The scalar potential of our component Lagrangian is

V = Vsusy + Vsoft, (2)

where

Vsusy = −F iFi − F i ∂W
∗

∂φi
− Fi

∂W

∂φi

− 1
2
(Da)2 − gDaφ∗Raφ, (3)

and

Vsoft =
(

ciφi + 1
2b

ijφiφj + 1
6h

ijkφiφjφk − κi
jF

jφi + c.c.
)

+ (m2)i
jφiφ

j , (4)

where as usual φi = (φi)
∗, and the supermultiplet (φ, F, ψ) transforms according to the

representation Ra. We have included the standard soft-breaking terms together with the

additional terms involving c and κ required for multiplicative renormalisability. Notice

that although we have a F ∗φ term in Eq. (4), we do not add a Fφ one because the latter

would lead (in general) to quadratically divergent tadpoles; for the same reason there is

no φ∗φ2 term.

It is a simple matter to show that if we define

F i = Fi + κj
iφj + ai (5)

then we obtain

V = −F iF i − F i ∂W
∗

∂φi
− F i

∂W

∂φi

− 1
2(Da)2 − gDaφ∗Raφ

+
(

ciφi + 1
2b

ijφiφj + 1
6h

ijkφiφjφk + c.c.
)

+ (m2)i
jφiφ

j ,

(6)

where

W (φ) = 1
2µ

ijφiφj + 1
6Y

ijkφiφjφk, (7)

and

(

m2
)i

j =
(

m2
)i

j +
(

κκ†
)i

j , (8a)

hijk = hijk + Y l(jkκi)
l, (8b)

bij = bij + Y ijlal + µl(iκj)
l, (8c)

ci = ci + µilal + κi
la

l, (8d)

with

Y l(jkκi)
l = Y ljkκi

l + Y ilkκj
l + Y ijlκk

l
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and

µl(iκj)
l = µliκj

l + µljκi
l.

The relations Eqs. (8a− d) are renormalisation group invariant, because Eq. (2) has all the

interactions necessary for multiplicative renormalisability. Although κ and a are necessary

for this RG invariance, it is clear that they are not independent couplings, since they do

not appear in the reduced potential, Eq. (6). We have only examined the scalar sector

above, but note that we can simply replace W by W in the fermion sector, since this

depends on the second derivatives of W with respect to φ. The equivalence of a theory

with a superpotential like W to one with a superpotential like W might seem puzzling,

since in a theory with no soft terms, linear terms are a sine qua non for F -type spontaneous

supersymmetry breaking[11]. The resolution lies, of course, in the Y ijlal and µilal terms

in Eq. (8c, d) respectively, which are generated by the redefinition of F .

We now essentially present the above analysis again, but using the spurion formalism,

which, allied with the non-renormalisation theorem, will enable us to derive a series of

exact relations among the β-functions.

In the spurion context, the Lagrangian corresponding to Eqs. (3), (4) is given by

L = Lsusy + Lsoft + LGF + LFP, (9)

where

Lsusy =

∫

d4θΦj
(

e2gV
)

i
jΦi +

[
∫

d2θ
(

W (Φ) + 1
4
WαWα

)

+ c.c.

]

, (10)

and

Lsoft = −

[
∫

d2θθ2
(

ciΦi + 1
2b

ijΦiΦj + 1
6h

ijkΦiΦjΦk + 1
2MWαWα

)

+ c.c.

]

+

∫

d4θ
[

−(m2)k
jθ

2θ2Φj
(

e2gV
)

i
kΦi + Φj

(

θ2κk
j + θ2κ†kj

) (

e2gV
)

i
kΦi

]

,

(11)

where V is the vector superfield, Wα the corresponding field strength and M is the gaugino

mass. LGF and LFP are the gauge-fixing and ghost Lagrangians whose exact form will not

be important to us. Now by making the redefinition

Φi = Φ′
i − θ2(κj

iΦ
′
j + ai), (12)

(which corresponds precisely to Eq. (5)) we find that the Lagrangian adopts the form

L′ = L′
susy + L′

soft + LGF + LFP, (13)

4



where

L′
susy =

∫

d4θΦ′j
(

e2gV
)

i
jΦ

′
i +

[
∫

d2θ
(

W (Φ′) + 1
4W

αWα

)

+ c.c.

]

, (14)

and

L′
soft = −

[
∫

d2θθ2
(

ciΦ′
i + 1

2b
ijΦ′

iΦ
′
j + 1

6h
ijkΦ′

iΦ
′
jΦ

′
k + 1

2MWαWα

)

+ c.c.

]

−

∫

d4θ(m2)k
jθ

2θ2Φ′j
(

e2gV
)

i
kΦ′

i,

(15)

where h, b, c and m2 are exactly as defined in Eq. (8), and W as defined in Eq. (7). Once

again, note that a and κ no longer appear explicitly. We shall refer to L in Eq. (9) as the

unreduced Lagrangian, and L′ in Eq. (13) as the reduced Lagrangian; it is the latter that

one would use in practical applications.

We may now obtain a set of consistency conditions by requiring L and L′ in Eqs. (9),

(13) to be equivalent as functions of the renormalised couplings (i.e. equal for all renor-

malisation scales µ). We use β, β to represent a β-function calculated in the reduced,

unreduced formalisms respectively. Moreover, for each β function we separate out the part

β̂ corresponding to 1PI graphs. For example, we write

βa
i (a, b, · · ·) = γm

iam + β̂a
i , (16)

where β̂a = β̂a(Y, Y ∗, g, b, µ,M, h∗) is determined by 1PI tadpole graphs. Writing

µ
d

dµ
Φ′

i = −γ′jiΦ
′
j = −γj

iΦ
′
j − 2θ2γ

j
1iΦ

′
j + θ2σi, (17)

it follows from RG invariance of Eq. (12) that

γi
1j = −1

2
β̂i

κj − κi
kγ

k
j , (18)

and

σi = β̂a
i + 2γm

iam. (19)

Eqs. (18) and (19) give γi
1j and σi in terms of the unreduced parameters; we shall shortly

give prescriptions for calculating them directly in terms of reduced parameters.

From the non-renormalisation theorem we have

β
ijk
Y = Y l(jkγi)

l, (20)
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with a similar expression for βµ. However, as foreshadowed in Eq. (16), in the presence of

soft terms the non-renormalisation theorem does not protect βa from 1PI contributions,

and β̂a is non-zero. We do, however, have

β
ijk
h = hl(jkγi)

l, (21)

with a similar result for βb; but again β̂c is non-zero. To derive the soft β-functions in the

reduced formalism, we impose

µ
d

dµ
(Lsusy + Lsoft) = µ

d

dµ

(

L′
susy + L′

soft

)

. (22)

Then using the results for the unreduced β-functions such as Eqs. (20), (21), inserting

Eq. (17) and using Eqs. (18) and (19), we obtain

β
ijk

h
= hl(jkγi)

l − 2Y l(jkγ1
i)

l, (23a)

β
ij

b
= bl(iγj)

l − 2µl(iγ1
j)

l + Y ijlσl, (23b)

together with consistency conditions relating reduced and unreduced quantities (analogous

to Eqs. (18) and (19))

β̂i
c = β̂i

c − 2al (γ1)
i
l + β̂l

aκ
i
l + µilσl, (24)

and
(

β̂m2

)

i
j =

(

β̂m2

)

i
j − 2

(

κγ
†
1

)

i
j − 2

(

γ1κ
†
)

i
j − 2

(

κγκ†
)

i
j . (25)

Eqs. (23)–(25) may also be obtained (perhaps more simply) by operating with µ d
dµ

on

the RG-invariant relations Eqs. (8). Eqs. (23) were given in Refs. [1][12], but excluding

singlet fields. Results in the presence of singlet fields were given up to the two-loop level

in [10][13][14].

We now consider the explicit forms of γ1, βm2 , σ and β̂c. From Eq. (17), we see that

γ1 and σ are obtained from θ2-dependent contributions to the two-point function and the

one-point function respectively, calculated from L′. We also see from Eq. (15), on rewriting

∫

d2θθ2ciΦi =

∫

d4θθ2θ2ciΦi, (26)

that βm2 and βc are obtained from the θ2θ2-dependent contributions to the two-point

function and the one-point function respectively, again calculated from L′. We are led
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to the following prescription: consider superspace diagrams contributing to the two-point

function in the supersymmetric theory, with superpotential W . These diagrams are only

logarithmically divergent, and so for the purposes of the D-algebra the θ2, θ2 associated

with the spurion may be taken as constants. In each such diagram we can simply replace

Y ijk by Y ijk − hijkθ2, µij by µij − bijθ2, and gauge couplings g2 by by g2(1 + Mθ2 +

M∗θ2 +MM∗θ2θ2)[10]. We also replace each factor δk
l in an internal chiral propagator

by δk
l + (m2)k

lθ
2θ2. This procedure may be implemented using differential operators; for

instance, we obtain for γ1 and βm2

(γ1)
i
j = Oγi

j , (27a)
(

βm2

)i
j = ∆γi

j , (27b)

where

O = Mg2 ∂

∂g2
− hlmn ∂

∂Y lmn
− blm

∂

∂µlm
, (28a)

∆ = 2OO∗ + 2MM∗g2 ∂

∂g2
+

[

Ỹ lmn ∂

∂Y lmn
+ µ̃lm ∂

∂µlm
+ c.c.

]

+X
∂

∂g
, (28b)

with

Ỹ ijk = (m2)(ilY
jk)l and µ̃ij = (m2)(ilµ

j)l. (29)

Eq. (27a) was given in Refs. [1],[12]; note however the inclusion of the derivatives with

respect to µ, which give zero acting on γ but will be important presently. The full under-

standing of Eq. (27b), in particular the necessity for, and form of, the term involving X

in Eq. (28b), was developed in Refs. [1], [3] and also Refs. [12], [15] (see also Ref. [16]). In

particular, it was shown in Ref. [3] that a form for X derived for a particular RG trajectory

in Ref. [17] was in fact valid in general. (Note that the X term, hitherto written separately,

has now been included in the definition of ∆.)

For σ and β̂c we should consider superspace tadpole diagrams. By chirality, such

diagrams can be obtained by taking a graph contributing to the two-point function with

an external leg attached to a Y or Y ∗, and replacing this Y or Y ∗ by a µ or µ∗ respectively.

After making the substitutions described above, σ and β̂c are derived from the θ2 terms

and θ2θ2 terms respectively in these tadpole diagrams. This process may be accomplished

using the operators O and ∆ defined above. We obtain

σi = −2O (Zi) , (30)
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where

Zi = YimnK
mn

pqµ
pq, (31)

with Kmn
pq defined by the condition

YimnK
mn

pqY
pqjaj = γj

iaj . (32)

We also have

β̂i
c = ∆Zi + µilσl − (m2)i

kZ
k. (33)

These results hold in the reduced case; however, the calculations of β̂a and β̂c in the

unreduced case are closely related, corresponding to θ2 terms and θ2θ2 terms respectively

in tadpole diagrams derived from L rather than L′. The difference is that there are now

contributions from insertions of κ on internal propagators, which correspond to substituting

for h, b, c, m2 in terms of h, b, c, m2 in accordance with Eq. (8). However, making

these substitutions in Eqs. (30), (33) overcounts by including contributions (from a, and

from insertions of κ on external legs) which would correspond to one-particle reducible

diagrams. This leads precisely to the consistency conditions Eqs. (19), (24). Similar

reasoning applies when considering the relation between γ1 and β̂κ. In this case the

substitution of h, . . . in terms of h, . . . does not yield all the κ contributions to β̂i
κj , which

also contains a contribution κi
k[Y kmnKmn

pqYpqj − γk
j ], with K as in Eq. (32). However,

the substitution overcounts by including −κi
kY

kmnKmn
pqYpqj which would correspond

to one particle reducible diagrams and must be removed. Combining these contributions

leads to Eq. (18).

The results Eqs. (30) and (33) mean that our knowledge of σ and β̂c is limited only

by our knowledge of γ. Thus all the β-functions that depend on soft-breaking parameters

are determined by the underlying supersymmetric theory, except for the one associated

with a FI-term. We have verified Eq. (30) by an explicit calculation of F -tadpole diagrams

through three loops, using the Feynman gauge component formalism and supersymmetric

dimensional regularisation.

We may now obtain exact solutions of the RG equation for ai and ci (in the unreduced

case), or equivalently exact solutions to the RG equations for bij and ci (in the reduced

case). It is already well-known[8][9] that the following set of equations provide an exact

8



solution (the AMSB solution) to the renormalisation group equations for M,h, b and m2 in

the case where there are no singlet fields and the gauge group contains no abelian factors:

M = M0
βg

g
, (34a)

hijk = −M0β
ijk
Y , (34b)

bij = −M0β
ij
µ , (34c)

(m2)i
j = 1

2
|M0|

2µ
dγi

j

dµ
. (34d)

In fact these solutions are realised if the only source of supersymmetry breaking is the

conformal anomaly, when M0 is the gravitino mass[8]. However, Eq. (34d) acquires extra

terms[5] if the gauge group contains abelian factors via non-zero FI terms, and (as we shall

show) Eq. (34c) acquires extra terms if there are singlet fields in the theory.

In the unreduced case, the solutions corresponding to Eq. (34) are

M = M0
βg

g
, (35a)

hijk = 0, (35b)

bij = 0, (35c)

(m2)i
j = |M0|

2

[

1
2µ
dγi

j

dµ
− (γ2)i

j

]

, (35d)

κi
j = −M0γ

i
j . (35e)

RG invariance of Eqs. (35b, c) follows trivially from Eq. (21) and the corresponding equation

for βb; RG invariance of Eq. (35e) follows from Eq. (18), using the fact that that on the

AMSB trajectory,

γi
1j = 1

2M0µ
d

dµ
γi

j , (36)

a relation established in Ref. [9]. Finally, the RG-invariance of Eq. (35d) then follows from

that of Eq. (34d) using Eqs. (8a), (35e).

We now claim that solutions to the RG equations for ai, c
i corresponding to Eqs. (35)

are

ai = −M0Zi, (37a)

ci = 1
2
|M0|

2

[

µ
d

dµ
Zi − (γZ)i

]

, (37b)

9



with Z as defined in Eq. (31). It is straightforward to show that this works; let us begin

with Eq. (37a). Eq. (30) now becomes simply

σi =
2

M0
Oai, (38)

where, on applying Eqs. (8) and (35) in Eq. (28a), we find

O = 1
2
M0

(

βg

∂

∂g
+ 2Q

)

− Y klmam

∂

∂µkl
, (39)

with

Q =
∑

klm

βklm
Y

∂

∂Y klm
+

∑

kl

βkl
µ

∂

∂µkl
. (40)

On the other hand,

µ
d

dµ
= βg

∂

∂g
+ R, (41)

where

R = Q + Q∗. (42)

Now in Ref. [9] it was shown that for a tensor X i
j we have

(QX)i
j − (Q∗X)i

j = γi
kX

k
j −X i

kγ
k

j , (43)

and in particular that

Qγ = Q∗γ. (44)

Eq. (44), in fact, is the result one needs to establish Eq. (36). The generalisation of Eq. (43)

to a tensor with an arbitrary number of indices is obvious; but for our purposes all we

need is the result

(QZ)i − (Q∗Z)i = −γj
iZj . (45)

Armed with this equation and

Y klmam

∂

∂µkl
ai = −M0γ

k
iak, (46)

(which follows easily from Eqs. (37a), (31), (32)), we can show (using Eq. (19), (38)–(46))

that

β̂a
i = µ

d

dµ
ai − γm

iam, (47)
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reproducing Eq. (16), and thereby proving the RG invariance of Eq. (37a). We now turn to

Eq. (37b). To prove RG invariance of this solution, we require two identities, generalising

similar results proved in Ref. [9]. The first (which follows by repeated application of

Eq. (45)) is

R2Zi =
(

4βklm
Y βY

pqr

∂2

∂Y klm∂Ypqr

+ 4βklm
Y βµ

pq

∂2

∂Y klm∂µpq

+ 4βkl
µ β

Y
pqr

∂2

∂µkl∂Ypqr

+ 4βkl
µ β

µ
pq

∂2

∂µkl∂µpq

+ (Rγ)(knY
lm)n ∂

∂Y klm
+ (Rγ)n

(kYlm)n
∂

∂Yklm

+ (Rγ)(knµ
l)n ∂

∂µkl
+ (Rγ)n

(kµl)n
∂

∂µkl

)

Zi + (γ2Z)i.

(48)

The second identity is that if Eqs. (34) are imposed, then

|M0|
2µ
dβg

dµ
= 3

β2
g |M0|

2

g
+ 2X. (49)

(Note that this identity is true for a range of regularisation schemes which includes standard

dimensional reduction[3].) Using these identities in conjunction with Eqs. (41), (28b), (39),

(37a) and (46), it follows that when Eqs. (34) are imposed, we have

∆Zi = 1
2
|M0|

2

[

(

µ
d

dµ

)2

Zi − (γ2Z)i + 2µ
dγi

k

dµ
Zk

]

. (50)

Using Eqs. (24), (47), (37a), (50), (34d), (35d), (33), we find

βi
c = 1

2 |M0|
2

[

(

µ
d

dµ

)2

Zi − µ
d

dµ
(γZ)i

]

, (51)

which shows that Eq. (37b) is RG-invariant.

With the aid of Eqs. (35) and (37) it is now straightforward to write down the AMSB

results in the reduced case, by substituting in Eq. (8). One can also check that the resulting

expressions are indeed RG invariant. For convenience we first assemble the complete results

for the soft β-functions in the reduced formalism:

βM = 2O

[

βg

g

]

,

β
ijk

h
= hl(jkγi)

l − 2Y l(jkγ1
i)

l,

β
ij

b
= bl(iγj)

l − 2µl(iγ1
j)

l + Y ijlσl,

βi
c = cjγi

j + ∆Zi + µilσl − (m2)i
kZ

k,
(

βm2

)

i
j = ∆γi

j ,

(52)
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where σ, Zi are defined in Eqs. (30), (31), and then we give the full AMSB solutions:

M = M0
βg

g
,

hijk = −M0β
ijk
Y ,

bij = −M0β
ij
µ −M0Y

ijkZk,

ci = 1
2 |M0|

2

[

µ
d

dµ
Zi + (γZ)i

]

−M0µ
ilZl,

(m2)i
j = 1

2 |M0|
2µ
dγi

j

dµ
.

(53)

For a U1 theory with a FI term, the AMSB solution for m2 in the D-eliminated case

becomes[5]

(m2)i
j = 1

2
|M0|

2µ
dγi

j

dµ
+ gξRG(Y)i

j , (54)

where ξRG is the RG solution for ξ, and Y is the hypercharge matrix for the U1 factor,

with gauge coupling g. The proof relies on the consistency condition Eq. (2.25) of Ref. [5],

which plays a similar rôle to that of Eq. (19).

In conclusion: we have extended our previous exact results for the soft β-functions

and the AMSB solution to allow for the presence of gauge singlet matter fields. In the

usual formulation of the NMSSM (see for example [18]) it is easy to see that we would

have, in fact, σ = Z = 0; for a non-zero ci we obviously need a chiral superfield which

is a “universal” singlet (i.e. invariant under both gauge and global transformations).

In the standard gravity-mediated supersymmetry-breaking scenario, one may expect on

rather general grounds that ci will suffer gravity-induced quadratic divergences[19] leading

to contributions ci ∼ O(MPM
2
sparticle), and consequent destabilisation of the hierarchy.

However there are frameworks where the gravitational tadpole has a magnitude that is

phenomenologically acceptable (or even desirable) [20]. We hope, therefore, that our results

may prove of use in the analysis of non-minimal versions of the MSSM.
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