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Abstract  

The lattice Boltzmann method (LBM) proposed about decades ago has been developed 

and applied to simulate various complex fluids. It has become an alternative powerful 

method for computational fluid dynamics (CFD). Although most research on the LBM 

focuses on the Navier-Stokes equations, the method has also been developed to solve 

other flow equations such as the shallow water equations. In this thesis, the lattice 

Boltzmann models for the shallow water equations and solute transport equation have 

been improved and applied to different flows and environmental problems, including 

solute transport and morphological evolution.  In this work, both the single-relaxation-

time and multiple-relaxation-time models are used for shallow water equations (named 

LABSWE and LABSWE
MRT

, respectively), and the large eddy simulation is incorporated 

into the LABSWE (named LABSWE
TM

) for turbulent flow.  

 

The capability of the LABSWE
TM 

was firstly tested by applying it to simulate free surface 

flows in rectangular basins with different length -width ratios, in which the characteristics 

of the asymmetrical flows were studied in details.  The LABSWE
MRT

 was then used to 

simulate the one- and two-dimensional shallow water flows over discontinuous beds.  The 

weighted centred scheme for force term, together with the bed height for a bed slope, was 

incorporated into the model to improve the simulation of water flows over a 

discontinuous bed. The resistance stress was also included to investigate the effect of the 

local head loss caused by flows over a step.  Thirdly, the LABSWE
MRT 

was extended to 

simulate a moving body in shallow water.  In order to deal with the moving boundaries, 

three different schemes with second-order accuracy were tested and compared for treating 

curved boundaries.  An additional momentum term was added to reflect the interaction 

between the following fluid and the solid, and a refilled method was proposed to treat the 

wetted nodes moving out from the solid nodes. Fourthly, both LABSWE and 

LABSWE
MRT

 were used to investigate solute transport in shallow water. The flows are 

solved using LABSWE and LABSWE
MRT

, and the advection-diffusion equation for 

solute transport was solved with a LBM-BGK model based on the D2Q5 lattice. Three 

cases: open channel flow with a side discharge, shallow recirculation flow and flow in a 

harbour, were simulated to verify the methods. In addition, the performance of 

LABSWE
MRT

 and LABSWE were compared, and the results showed that the LABSW
MRT

 



II  
 

has better stability and can be used for flow with high Reynolds number. Finally, the 

lattice Boltzmann method was used with the Euler-WENO scheme to simulate 

morphological evolution in shallow water. The flow fields were solved by the 

LABSWE
MRT

 with the improved scheme for the force term, and the fifth order Euler-

WENO scheme was used to solve the morphological equation to predict the 

morphological evolution caused by the bed-load transport.  
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Chapter 1: Introduction 

 

 

1.1 Research Background  

The shallow water equations have been applied widely in ocean, rivers and coasts [1-5]. 

For example, it can be used to describe the tidal flows, tsunami, hydraulic jump, and open 

channel flows. Furthermore, coupled with the solute transport equation, the shallow water 

equations can be used to predict the solute transport such as distribution of pollution 

concentration and transport of suspended sediments [6-11]. Prediction of the flows and 

related transport is important in environmental engineering. 

 

Moreover, another important application of the shallow water equations is to study the 

bed-load sediment transport, which plays a key role in the morphological evolution 

occurring in coastal areas, rivers, and estuaries, where the water flow is dominated 

horizontally and can be described by the shallow water equations [12-15]. Studies on 

morphological changes have attracted increasing interest in the fields of water resource 

exploitation and environment protection [16-18] .   

     

1.2 Traditional Method for Shallow Water Equations    

 Many different numerical methods have been developed and applied to solve shallow 

water equations in the past years. They include the finite difference methods (FDM), 

finite element methods (FEM) and finite volume methods (FVM). Each method has its 

own features.  For example, as indicated by Chen [19], compared with FEM, FDM has 

two advantages: the first one is that it is generally faster than the FEM for a similar case, 

which is more obvious for three-dimensional calculations [20]; the second one is that it 

generally does not suffer from the local mass conservation problem, which is often 

observed in a finite element model. On the other hand, The FEM adopts the unstructured 

grids which can fit complex and irregular geometries more easily than the FDM. 

Therefore, the FEM can reduce the number of grids significantly with the similar 

accuracy for flows in complicated geometries. 
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Casulli and Cheng [21] presented a semi-implicit finite difference method for two- and 

three-dimensional shallow water flows with hydrostatic pressure assumption. Casulli and 

Cattani [22] also studied the stability, accuracy and efficiency of a semi-implicit FDM 

method for the three-dimensional water flows. In recent years, the Weighted Essentially 

Non-Oscillatory scheme (WENO) has been used to solve the shallow water equations for 

solution with higher order accuracy by a finite difference method [22, 23]. For example, 

Lu and Li [23] studied a series of multilevel high order time discretization procedures for 

WENO scheme to solve the one-dimensional and two-dimensional shallow water 

equations with a source term and indicated that it performs better than the WENO scheme 

with Runge-Kutta time discretization in term of accuracy and cost. Stelling and Zijlema 

[24] developed an accurate and efficient finite difference algorithm for static free-surface 

flow with non-hydrostatics assumption and applied it to predict wave propagation.    

    

On the other hand, Sheu and Fang [25] presented the Taylor-Galerkin finite-element 

model to simulate the shallow water equations for wave propagation  in two dimensions. 

Dawson and Proft [26] coupled  the continuous and discontinuous Galerkin methods  to 

solve the two-dimensional shallow water equations. The software TELEMAC is used to 

simulate the shallow water flows, which is developed by the finite element method and 

has been used widely [27]. Since then, Comblen [28] et al. developed a  finite element 

method for solving the shallow water equations on the sphere. Liang et al. [29] used the 

least-squares finite-element method to solve the shallow-water equations. 

 

The FVM is also popular for solving the shallow water equations. The application of 

FVM to solve the shallow water equations can be divided into three categories according 

to the type of flows [30] as follows:  

 

The first kind of model is used to simulate the discontinuities supercritical flows such as 

dam-break flow [31-35]. In these models, the upwind schemes which include flux 

splitting, approximate Riemann solvers, Godunov schemes and flux limiters are adopted. 

The second kind of model is similar to the previous models except that they can also 

simulate wind waves, wave setup, and low frequency waves [36-38]. In [36] breakers  

were used to represent as abrupt discontinuities in the shallow water equations. In [37, 38], 

an upwind FVM was adopted with an approximate Riemann solver. Wei et al. [38] 

presented a model based on a Godunov-type scheme with Riemann solver to simulate 
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shock waves and solitary waves. The third model is applied to tidal flow and wind-

induced current in river and estuaries [39-43]. The SIMPLE algorithm is used to couple 

the water elevation and velocity component in these models [37].  

 

1.3 Lattice Boltzmann Method for Shallow Water Flows 

On the other hand, developed from lattice gas automata, the lattice Boltzmann method 

(LBM) has become a very successful alternative numerical method for computational 

fluid dynamics.  

 

Unlike traditional computational fluid dynamics (CFD), the LBM is a microscopic 

method. The fundamental idea behind LBM is to establish a simplified kinetic model to 

obey the corresponding macroscopic equations, i.e. N-S equations or shallow water 

equations. By Chapman-Enskog expansion, the lattice Boltzmann equation can recover 

the corresponding macroscopic equations. The LBM is based on statistical physics and 

can be regards as a kind of kinetic method.  

 

Born about twenty years ago, the LBM has been applied successfully to simulate complex 

flow, especially for flows which involve complex boundary conditions and interfaces 

between different fluids [44, 45]. For example, Zhangô research group [46-50] applied 

successfully the LBM to non-equilibrium gas dynamics and microfluid. Their study 

demonstrated the advantage of LBM in simulating multi-scale and multi-physical flows. 

The development and application of LBM during the last two decades has been well 

reviewed [44, 45]. As a relative new method of simulating the fluid, the LBM is still 

under development and it has many attractive properties. The main characteristics of the 

LBM have been summarised and reviewed by several researchers [3, 44, 45, 51, 52].  

Firstly, its algorithm is simple and efficient as only one single variable needs to be 

calculated. This distinguishes it from the conventional numerical methods like the finite 

difference and finite volume methods, which solve the nonlinear partial differential 

equations with the aid of a special treatment for either pressure or advection terms. 

Secondly, the LBM has an inherent feature for parallel computation with little extra 

coding, which is ideal and necessary to simulate a large-scale real life flow problems. 

Thirdly, it is easy to implement different boundary conditions, resulting in a very efficient 
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model for flows in complex geometries with variation in boundary such as porous media, 

which still challenge the conventional numerical method.  

 

The lattice Boltzmann method has been developed and used to solve the shallow water 

equations successfully [3, 53-60]. Salmon [53] developed a lattice Boltzmann model for 

ocean circulation. Zhou [3] derived the lattice Boltzmann method for shallow waters and 

discussed the force term representation in which a centred scheme is proposed, and 

proposed  the elastic collision scheme for irregular boundary condition. Furthermore, he 

[3] developed the lattice Boltzmann model including the turbulence. Liu et al. developed 

a second order boundary for curved boundary [56] and a multi-block scheme for LBM for 

shallow water flows [61]. Li and Huang [55] studied the advection and anisotropic 

dispersion problem  using LBM for shallow water flows. Tubbs [62] proposed a lattice 

Boltzmann method for multilayer shallow water equations by parallel computation.      

 

1.4 Lattice Gas Automata  

Lattice gas automaton (LGA) is a special kind of cellular automata. It is a simple model 

with discrete space, time, and particle velocities in which fictitious particles reside on a 

regular lattice.   

 

The first discrete model for fluid on a square lattice (HPP model) was proposed by Hardy 

et al. [63] in 1976 which is the most simple LGA model for two-dimensional flows. 

However, the N-S equations cannot be recovered from the HPP because of insufficient 

symmetry of lattice [64]. In 1986, the correct lattice gas automaton (FHP model) was 

proposed firstly by Frisch et al. [65] which can recover the N-S equations.     

 

The LGA consists of two sequential steps: streaming and collision. In streaming, each 

particle moves to the nearest node along the direction of its velocity; then, collision 

happens when particles arriving at one node and change their velocity directions 

according to the assumed rules. If  the exclusion principle: (i.e. no more than one particle 

being allowed at a given time and node with a given velocity) is adopted for memory 

efficiency and it will result in a Fermi-Dirac local equilibrium distribution [66]. The LGA 

equation is  

ὲ ὼ Ὡȟὸ ρ ὲ ὼȟὸ   ὲὼȟὸ , ‌ πȟρȟȣȟὑ,              (1.1) 
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where ὲ  is a Boolean variable that is used as an indication of the presence or absence of  

a particle, t is the time, Ὡ is the local constant particle velocity,    is the collision 

operator, and K is the number of directions of the particle velocities at each node.  

 

The physical variables, density and velocities are defined by  

” В ộὲỚ,       (1.2)                         ό В ộὲỚὩ ,              (1.3)  

in which ộὲỚ denotes the ensemble average of ὲ  in statistical physics.  

 

The LGA has two main disadvantages: the first is statistical noise like any particle 

method, and the second one is computational complexity which is serious for three-

dimensional cases. In order to overcome these disadvantages, the lattice Boltzmann 

method has been developed [51].   

 

1.5 Lattice Boltzmann Method 

1.5.1 Lattice Boltzmann Equation  

As stated before, the lattice Boltzmann method originated from the lattice gas automaton 

(LGA) to overcome its shortcoming. The main difference between LBM and LGA is to 

replace the Boolean variable with single-particle distribution functions, i.e. ộὲỚ Ὢ 

Ὢ πin LBM. Meanwhile, individual particle motion and particle-particle correlations 

in the kinetic equations are neglected. Equation (1.1) can be rewritten as the following 

lattice Boltzmann equation [67], 

Ὢ ὼ Ὡȟὸ ρ Ὢ ὼȟὸ   Ὢὼȟὸ ,     ‌ πȟρȟȣȟὓ.          (1.4) 

This procedure eliminates the statistical noise in a LGA and retains all the advantages of 

locality in the LGA which is essential for parallel computing [44]. 

 

The lattice Boltzmann method was introduced first as an independent numerical method 

by McNamara and Zanetti [67] in 1988. Higuera and Jiménez [68] made an important 

simplification for the collision operator and they linearized the collision term by assuming 

the distribution is close to its local equilibrium state. A particular simple linearized form 

for the collision operator is to use a single time relaxation towards the local equilibrium, 

which is known as Bhatngar-Gross-Krook [69] collision operator, is proposed by some 

researchers [70, 71]. This scheme makes the LBM become a very efficient method for 
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simulating fluid flows. Up to now, the lattice Boltzmann equation with the BGK collision 

operator is still the most popular lattice Boltzmann method. Over the past years, the 

lattice Boltzmann methods for fluid flows has attracted much attention and been 

improved and extended greatly [44, 45]. The development of LBM will be reviewed 

briefly in the following sections.   

 

1.5.2 Entropic Lattice Boltzmann Method  

It is found that when the LBM with BGK is applied to high Reynolds number flows, it 

will become unstable [45]. The study indicates that an multiple-relaxation-time (MRT) 

can improve it, but it cannot remove this problem and the fundamental reason of this is 

that for a given lattice, the velocity or its spatial gradient is too large which leads to the 

negative values of distribution function. As the BGK-LBM abandoned the H theorem, no 

constraint is imposed on the evolution of distribution functions to ensure their non-

negative behaviour at every grid point at all times. In order to overcome this shortcoming, 

Entropic LBM (ELBM) is proposed [72-76]. Normally, there are two kinds of ELBM and 

Keating et al. [77] reconciled them and showed some similarities. With Gauss-Hermite 

quadratures, the discrete form of the standard continuum H function can be written to   

ὌὪ В ὪÌÎ ,                                                (1.5) 

where В ύ ρ.  

In the ELBM, the collision term is determined in order to extreme H and to keep balance 

on a constant entropy surface,  

ὌὪȟȣȟὪ ὌὪȟȣȟὪ .                                         (1.6) 

To make sure that H never reduces, extreme value of the functional ‏Ὄ  is given by (Here 

‘ὶȟὸ and ‍ὶȟὸ are Lagrange multipliers) 

Ὄ‏ В‏ ὦὪ ‘Ὢ ‍ὪὩ π,                        (1.7) 

where ὦὪ ὪÌÎὪύϳ . 

Due to the requirement of the mass and momentum conservation, the Ὢ is the 

exponential form. The Lagrange multipliers can be obtained according to the first and 

second moments, ” and ”ό . As shown in references [72-74, 78-80], for the D3Q27 

model the Ὢ  can be expressed by  

Ὢ ”ύБ ς ὄ  i=1,é, 27,                       (1.8) 
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with ὄ ρ σό , and the detail including weights ύ  can be found in [45]. The 

expression for Ὢ  in the above equation is also valid for lattice models D3Q15 and 

D3Q19 [77]. Furthermore, reducing the number of discrete velocities leads to minor 

difference as indicated by Keating et al. [77]. However, Luo et al. [81] compared LBM 

with multiple-relaxation-time (MRT-LBM), LBM with two-relaxation-time (TRT-LBM), 

LBM with single-relaxation-time (SRT-LBM), ELBE for the N-S equations. In his study, 

it is indicated that ELBE seems do not improve the numerical stability of SRT-LBM, and 

both of MRT-LBM and TRT-LBM are better than ELBE and SRT-LBM in terms of 

accuracy, stability, and computational efficiency. Therefore, it needs further study on the 

performance of the ELBE. 

 

1.5.3 Two-Relaxation-Time lattice Boltzmann Method  

As an improved model on the LBGK, the two-relaxation-time lattice Boltzmann model  is 

proposed by Ginzburg et al. [82] and applied to the advection and anisotropic-dispersion 

equations, demonstrating its advantage. When the two relaxation times take the same 

values, the TRT-LBM is reduced to SRT-LBM. On the other hand, TRT-LBM can be 

connected with the MRT-LBM with relaxation times which will be described in the next 

section. 

 

1.5.4 Multiple-Relaxation-Time Lattice Boltzmann Method  

The multiple-relaxation-time lattice Boltzmann equation is developed by dôHumieres [83], 

which overcomes the disadvantage of LBM with BGK (BGK-LBM) as indicated in [84]. 

Lallemand and Luo [85] studied the stability of MRT-LBM and showed that the MRT-

LBM is much more stable than BGK-LBM because of the use of different relaxation 

times which can be tuned for optimal stability. In recent years, the MRT-LBM becomes 

increasingly popular. The MRT-LBM is briefly introduced as follows: 

 

If the D2Q9 model is adopted, the evolution equation for the MRT-LBM without external 

force term is [83, 85]  

Ὢ ● ▄ῳὸȟὸ ῳὸ Ὢὼȟὸ ╣► ╢ ά ὼȟὸ ά ὼȟὸ       (1.9) 
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where ά ╣►Ὢ, Ὢ ╣► ά and S is the relaxation matrix, S=diag (s0, s1, s2, s3, s4, s5, s6, 

s7, s8), Tr is the transform matrix defined in [85], Ὢ is the distribution function of particle. 

The equilibrium values of moments ά  is  

ά ȣ ”ȟς” σὮ Ὦ ȟ” σὮ Ὦ Ⱦ”ȟὮȟὮȟὮȟὮȟ ȟ                                                         

(1.10) 

 

Using the Chapman-Engkog procedure, the N-S equations (2.5) and (2.6) can be 

recovered with the kinematic viscosity  

’ ῳὸὩ φϳ ῳὸὩ φϳ .                           (1.11) 

The other relaxation parameters can be chosen freely in the range of 0~2 in order to 

achieve most stable LBM [85].  

 

1.5.5 Grid Refinement 

In the LBM, the Cartesian coordinate is employed which means that a regular grids have 

been used in computation. There are two challenges of using the uniform grids: the first 

one is  difficulty in providing the results with high resolution near the solid boundary; the 

other one is that it uses too much or less uniform grids in an unnecessary or necessary 

flow regions, which results in waste of calculation power or inaccurate solution [86]. One 

way to resolve the problems is to divide the computation domain into different blocks and 

use different grid sizes in each block such as that used in the conventional CFD. Although 

the rectangular lattice Boltzmann method proposed by Zhou [87, 88] and Lallemand et al. 

[89] can reduce computational effort for flows with dominant flow feature in one 

direction, the grid refinement is desirable for most cases and some progress has been 

made in recent years.  

 

The first grid refinement method for LBM is proposed by Filippova and Hanel [90] in 

1998, which is a second-order scheme. Lin and Lai [91] proposed a grid structure which 

consists of a coarse base grid and one or several fine grids. The coarse grids cover the 

whole computational domain but the fine grids are only placed at parts where local grid 

refinement is needed. The simulation is first carried out on the coarse grid level, so that 

large-scale flow features can be obtained. Later, fine grid variables are initiated. The 

information between two level grids can be exchanged on the grid interface.  
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Based on multiple nested lattices with increasing resolution, Kandhai  et al.[92] described 

a Finite-Difference Lattice Boltzmann method with BGK on nested grids. The calculation 

is carried out on each sub-lattice and interpolation is used to couple the sub-grids between 

the interfaces. On the other hand, in the method proposed by Yu et al. [86], the blocks 

with different grid sizes are not overlapped each other, and blocks are only connected 

through the interface. Liu applied the non-overlapped multi-block grid to LABSWE and 

improve its accuracy and efficiency [93]. Other progress on grid refinement can be found 

in reference [94].  

 

1.5.6 Parallel Computation 

For practical projects, a huge number of grids are needed and it requires high 

computational power. Therefore, parallel computation is desirable for all kinds of 

numerical methods. One of the most attractive features of the LBM is that it is easy to 

implement the parallel computation. In the LBM, the current value of the distribution 

function depends only on the previous conditions and the collision step is local.  

 

Parallel computation of the LBM can further be enhanced by using the CPU-based 

computing systems, which has attracted many researchersô attention [95-97]. The parallel 

computation of LBM on CPU-based architectures can be achieved on both distributed and 

shared memory systems.  For example, Desplat et al. [98] presented a parallel LBM code 

named LUDWIG, in which implementing message passing interface (MPI) is used to 

achieve full portability and good efficiency on both massively parallel processors (MPP) 

and symmetric multiprocessing (SMP) systems. 

    

Recently, the LBM has been implemented on hardware accelerated systems using 

Graphics Processing Units (GPU) and has been accelerated on a single GPU                         

[99-101] or a GPU cluster [102] with MPI. Furthermore, the LBM for the two 

dimensional Navier-Stokes equations was carried out using the Compute Unified Device 

Architecture (CUDA
TM

) interface developed by NVIDIA
R
.   

  

The parallel computation of LBM for shallow water basing on CPU and GPU was studied 

by Tubbs [103] and showed attractive performance.    
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1.5.7 Moving Boundary 

The moving body boundary is a time dependent problem involves the solid-fluid 

interaction, moving solid and moving boundary. In order to solve this problem, two kinds 

of method have been proposed: the Lagrangian methods and Eulerian methods                 

[104]. 

 

In the Lagrangian methods, a mesh is moving as the moving solid in which the solid-fluid 

interface can be captured accurately. But, the mesh regeneration is needed at every time 

step in this method, which is time consuming, which reduces the efficiency.   

 

On the other hand, the Eulerian method use a fixed mesh in which the exact location of 

interface is unknown and this results in the difficulty in improving the accuracy when the 

solid shape is irregular .          

 

For the lattice Boltzmann method, because it is local for calculation and use the fixed 

Cartesian grid, it seem that it is easy to implement the moving boundary as shown in the 

later chapter. Based on the curved boundary conditions, the moving boundary for Navier-

Stokes equations using the lattice Boltzmann method has been studied by Lallemand and 

Luo [105] and Kao and Yang [106]. Lallemand and Luo [105] extended Bouzidiôs 

method [107] and studied the moving boundary systematically. Kao and Yang [106] 

summarized various approaches for a curved boundary and proposed a new method for 

curved boundary and moving boundaries with the interpolation-free treatment.  

 

1.6 Objectives 

Although developed quickly over the past two decades, the lattice Boltzmann method is 

still a relative new method compared to the traditional CFD methods. It has some 

drawbacks and needs further improvement. Furthermore, in spite of the fact that the 

lattice Boltzmann method for the shallow water equations has demonstrated its potential 

and attractive capabilities in simulating shallow water flows, it still needs to be improved 

and tested for more flow problems. Therefore, the applications and improvement on the 

LBM for shallow water flows is the current aim. The detailed objectives of this thesis can 

be summarized as follows: 
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1. To study and apply the LBM to the shallow water equations and solute transport 

equation in environmental problems. The multiple-relaxation-time and single-relaxation-

time are adopted in the LBM for shallow water equations and the large eddy simulation is 

incorporated into the LABSWE.  

 

2. To predict the asymmetric flows in rectangular basins by LABSWE
TM

 and test the 

feasibility and accuracy of LABSWE
TM

 for free surface flows.  

 

3. To investigate the performance of LABSWE with MRT (LABSWE
MRT

) and the LBM 

with SRT collision operator (LABSWE and LABSWE
TM

). The purpose of adopting the 

MRT is to improve the stability and accuracy of the simulations.  

 

4. To improve the LBM for simulating the two-dimensional shallow water flows over 

discontinuous beds. The flows are simulated by LABSWE
MRT

 in which the weighted 

centred scheme for force term together with the bed height for a bed slope was used to 

improve simulation of flows over discontinuous bed. Furthermore, the resistance stress is 

added to include the flow head loss caused by a step.   

 

5. To extend to LABSWE
MRT 

to simulate a moving body in shallow waters. In order to 

deal with the moving boundaries, three different schemes for a curved boundary condition 

at second order accuracy are used and compared. Furthermore, certain momentum is 

added to reflect interaction between the fluid and the solid and a refill method for new 

wetted nodes moving out from solid nodes has been proposed.  

 

6. To investigate the solute transport in shallow water flows by the LBM. The flows are 

solved using LABSWE and LABSWE
MRT

, and the advection-diffusion equation is also 

solved with a BGK-LBM on a D2Q5 lattice. Three cases: open channel flow with side 

discharge, shallow recirculation flow and flow in a harbour are simulated to verify the 

described methods.   

 

7. To develop a coupled model for simulation of the morphological evolution under 

shallow water flows. The flow fields are solved by LABSWE
MRT

 with the improved 
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scheme for the force term. The fifth order Euler-WENO scheme is used to solve the 

morphological equation for the bed evolution caused by bed-load sediment transport.   

 

1.7 Outline of the Thesis 

This thesis consists of nigh chapters. 

 

The chapter 1 introduces the research background and the history of the lattice Boltzmann 

method, reviews the development and application of LBM in recent years briefly and 

outlines the objectives of this thesis. 

 

Chapter 2 briefly describes the N-S equations and the shallow water equations without 

turbulence and with turbulence by Subgrid-Scale Stress (SGS) model, in which the 

shallow water equations are derived from the N-S equations in detail.  

 

Chapter 3 presents the lattice Boltzmann method for shallow water flows, including 

LABSWE, LABSWE
TM

, and LABSWE
MRT

. With these three kinds of lattice Boltzmann 

methods, the corresponding shallow water equations are recovered. A new form of force 

term is introduced in LABAWE
MRT

 which can improve the predicted results as shown in 

chapter 6.  

 

Chapter 4 discusses the initial and boundary conditions used in the lattice Boltzmann 

method. In this chapter, the no-slip, semi-slip and slip boundary conditions are presented. 

 

Chapter 5 applies LABSWE
TM

 to study free surface flows in rectangular shallow basins 

and simulates the flow over a discontinuous bed in which water head loss caused by a 

step has been considered.  

 

Chapter 6 studies the application of the LBM for solute transport in which the advection-

diffusion equation has been coupled with the shallow water equations. Furthermore, the 

performance of LABSWE and LABSWE
MRT

 are compared in detail.  

 



13 
 

Chapter 7 uses LABSWE
MRT

 to simulate a moving body and compares the predicted 

results with corresponding experimental results, in which three different kinds of curved 

boundary conditions have been investigated in detail.  

 

Chapter 8 applies the LABSWE
MRT

 to predict morphological evolution which is 

dominated by bed-load transport. 

 

Chapter 9 summarises the conclusions and recommends future work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

Chapter 2: Governing Equations for Shallow 

Water Flows  

 

 

2.1 Introduction 

In physics and engineering, the basic laws are conservation of mass, momentum and 

energy. But for isothermal flow, the law of energy is not included. In this chapter, the 

Navier-Stokes (N-S) equations which are the governing equations for the motion of fluid 

are introduced, followed by the introduction of its simplified version, the shallow water 

equations. Furthermore, the shallow water equations are derived in detail from the N-S 

equations and it can be used to describe the flow in which the horizontal scale is much 

larger than the vertical scale. Numerical methods for turbulent flow are described, in 

which the large eddy simulation is emphasized. Last, the shallow water equations 

including SGS model are presented.  

 

2.2 The Navier-Stokes Equations 

The governing equations for general incompressible flows are the three-dimensional 

continuity and Navier-Stokes (N-S) equations that are derived from Newtonôs second law 

of motion and the mass conservation. If Cartesian coordinate is adopted, the N-S 

equations can be shown as follows: 

π                                                        (2.1) 

’ Ὢ       (2.2) 

’ Ὢ       (2.3) 

’ Ὢ      (2.4) 

in which x, y, z are the Cartesian coordinate (see Fig. 2.1); u, v, and w are the 

corresponding velocity components, respectively; Ὢ, Ὢ, and Ὢ are the body forces per 

unit mass in the corresponding direction; ’ is the kinematic viscosity; ὴ is the pressure;  ” 

is the fluid density; and t is the time. 
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The equations (2.1-2.4) can also be written in tensor form as  

π                                                            (2.5) 

Ὢ ’  ,                          (2.6)  

 

where the subscripts i and j are space direction indices; Ὢ is the body force per unit mass 

acting on fluid in the i direction; and the Einstein summation convention is used. 

 

Figure 2.1 Cartesian coordinate system.  

 

Physical interpretations can be given for all the terms in the N-S equations. The terms on 

the left-hand side of Eq. (2.6) is an inertia term in which the first and the second terms are 

called unsteady term and convective term respectively. The three terms on the right hand 

side of equation (2.6) are the body force term, the pressure term and the viscous term, 

respectively. Normally, there is no analytical solution to the N-S equations except for 

some simple situations. However, as computer power increases, it is feasible to obtain 

numerical solutions for the equations. Thus, numerical methods play an increasingly 

important role in solving flow problems in engineering.  
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2.3 The Shallow Water Equations 

The flows in rivers, estuaries, and coastal areas can be described by the shallow water 

equations because the water depth is much smaller than the horizontal scale, in which the 

assumption of the hydrostatic pressure is adopted and hence the vertical acceleration is 

ignored. Stansby and Zhou [108] shows that both 2D and 3D shallow water equations 

cannot predict the vertical velocity accurately. Furthermore, the 2D shallow water 

equation is more efficient than the 3D. Therefore, the 2D shallow water equations are 

used in this thesis. 

 

The shallow water equations are derived from depth-integrating the NavierïStokes 

equations (2.1) - (2.4) with assumption implying that the vertical velocity of the fluid is 

small with hydrostatic pressure and constant velocities over the water depth [3]. The 

shallow water equations are thus derived in the following section.  

 

The body forces for the flows can be divided into two categories: gravity and Coriolis 

acceleration because of the earthôs rotation [109]. With the Cartesian coordinate system, 

the body force can be described by 

Ὢ Ὢὺ, Ὢ Ὢό,  Ὢ Ὣ,                                (2.7) 

in which, Ὣ=9.81m/s
2
 is the gravitational acceleration; Ὢ ς‫ίὭὲ‰is the Coriolis 

parameter with ‫ χȢσ ρπ ὶὥὨȾί which is the earthôs rotation and ‰ is the earthôs 

latitude at the corresponding  site. 

 

Firstly, the continuity equation for shallow water equations is derived by integrating Eq. 

(2.1) over depth,   

᷿ Ὠᾀ π,                                  (2.8) 

which results in 

  

᷿ Ὠᾀ᷿ Ὠᾀύ ύ π                (2.9) 

 

where ύ  and ύ  are the vertical velocities at channel bottom and the free surface, 

respectively; and ᾀ is the bed elevation above a datum (see Fig. 2.2). 

http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
http://en.wikipedia.org/wiki/Hydrostatic_pressure#Hydrostatic_pressure
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Figure 2.2 Shallow water flow sketch. 

 

The Leibnitz rule can be expressed [110], 

 

᷿
ȟ
Ὠὼ ᷿ὪὼȟώὨὼ Ὢὦȟώ Ὢὥȟώ  ,               (2.10)   

 

The first and second terms on the left hand side of Eq. (2.9) can be written as 

᷿ Ὠᾀ ᷿ όὨᾀό Ὤ ᾀ ό  ,                  (2.11)  

᷿ Ὠᾀ ᷿ ὺὨᾀὺ Ὤ ᾀ ό  ,                  (2.12) 

 

Substituting Eqs. (2.11) and (2.12) into (2.9) leading to  

( ) ( )   0
b b

b b

h z h z

b b
s s b s b b b b

z z

z z
udz vdz w u h z v h z w u v

x y x y x y

+ +
è ø è øµ µµ µ µ µ

+ + - + - + - - - =é ù é ù
µ µ µ µ µ µê ú ê ú
ñ ñ    (2.13) 

The kinematic conditions at the free surface and channel bottom are, 

ύ Ὤ ᾀ ό Ὤ ᾀ ὺ Ὤ ᾀ  ,            (2.14) 

ύ ό ὺ  .                                      (2.15) 

Substituting Eqs. (2.14) and (2.15) into Eq. (2.13) results in 

π,                                    (2.16) 
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which is just the continuity equation for the shallow water equations and ό and ὺӶ are 

depth-averaged velocity components and defined as 

ό ᷿ όὨᾀ     (2.17),                           ὺӶ ᷿ ὺὨᾀ.     (2.18) 

 

Next, the momentum equation for shallow water flow will be derived. Eq. (2.2) is 

integrated over water depth and the following expression can be obtained:  

2 2 2

2 2 2

( ) ( ) ( ) 1
 

b b b

b b b

h z h z h z

c

z z z

u uu uv uw p u u u
dz f vdz dz

t x y z x x y z
n

r

+ + +
è øå õè øµ µ µ µ µ µ µ µ

+ + + = + - + + +é ùæ öé ù
µ µ µ µ µ µ µ µê ú ç ÷ê ú

ñ ñ ñ (2.19) 

 

Once again, the Leibnitz rule (2.10) is used for the first three terms on the left-hand side 

of the Eq. (2.19) leads to   

᷿ Ὠᾀ ᷿ όὨᾀό Ὤ ᾀ ό  ,                 (2.20) 

᷿ Ὠᾀ ᷿ όόὨᾀόό Ὤ ᾀ όό  ,              (2.21) 

᷿ Ὠᾀ ᷿ ὺόὨᾀὺό Ὤ ᾀ ὺό  .            (2.22) 

 

The last term on the left hand side of Eq. (2.19) can be integrated, leading to     

᷿ Ὠᾀ ύό ύό .                                      (2.23) 

 

Combining it with Eqs. (2.20) - (2.23) and rewriting the results  yields the following 

equation  

( ) ( ) ( )

( ) ( ) ( )

 

b b b b

b b b b

h z h z h z h z

z z z z

b b b
s s b s b s b b b b b

u uu uv uw
dz udz uudz vudz

t x y z t x y

z z z
u w h z u h z v h z u w u v

t x y t x y

+ + + +
è øµ µ µ µ µ µ µ
+ + + = + +é ù

µ µ µ µ µ µ µê ú

è ø å õµ µ µµ µ µ
+ - + - + - + - - - -æ öé ù

µ µ µ µ µ µê ú ç ÷

ñ ñ ñ ñ
 (2.24) 

 

Refer to the kinematic conditions (2.14) and (2.15). Combined with the Eqs. (2.17) and 

(2.18), Eq. (2.24) can be rewritten as  

᷿ Ὠᾀ ᷿ όόὨᾀ ᷿ ὺόὨᾀ       (2.25) 

 

With the second mean value theorem for integrals[111], 
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᷿ὪὼὫὼὨὼ Ὢ‒᷿ὫὼὨὼ ,                                     (2.26) 

 

The second term on the right-hand side of Eq. (2.25) can be expressed as  

᷿ όόὨᾀό᷿ όὨᾀόὬό ,                                    (2.27) 

 

And the last term on the right-hand side of Eq. (2.25) can be expressed as 

᷿ ὺόὨᾀό᷿ όὨᾀόὬὺӶ ,                                 (2.28) 

 

Assuming ό —ό and ό —ό and substituting Eqs. (2.27) and (2.28) into Eq. (2.25) 

leads to 

᷿ Ὠᾀ  ,        (2.29) 

 

where —and — are momentum correction factors and are determined by Eqs. (2.27) and 

(2.28) as  

— ᷿ όόὨᾀ,    (2.30)                       — ᷿ ὺόὨᾀ.    (2.31) 

 

Similarly, the following expression for the terms on the left hand side of equation (2.3) 

can be obtained. 

᷿ Ὠᾀ  ,       (2.32) 

 

in which, an additional momentum correction factor — is defined by 

— ᷿ ὺὺὨᾀ .                                          (2.33) 

 

The first term on the right hand side of Eq. (2.19) is integrated as 

᷿ ὪὺὨᾀὪὬὺӶ .                                          (2.34) 

 

Since the vertical acceleration can be ignored in comparison with the horizontal effect in 

shallow water flows, the momentum equation (2.6) in the z direction is reduced with 

‫ π to  

”Ὣ,                                                   (2.35) 
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which is integrated and the following expression can be obtained 

ὴ   ”Ὣᾀὅ,                                                (2.36) 

where ὅ is an integration constant. 

 

The pressure at the free surface is the atmospheric pressure ὴ, for example: ὴ ὴ at 

ᾀ Ὤ ᾀ, in above equation, ὅ can be calculated by  

 ὅ ”ὫὬ ᾀ ὴ.                                          (2.37) 

 

Substituting Eq. (2.37) into Eq. (2.36) results in 

ὴ  ”ὫὬ ᾀ ᾀ ὴ.                                    (2.38) 

 

Normally, ὴis almost constant in the corresponding area and often assumed to be zero, 

i.e. ὴ π. Because the difference in atmospheric pressure at water surface is usually 

small in most shallow water flows [112], Eq. (2.38) reads  

ὴ  ”ὫὬ ᾀ ᾀ .                                       (2.39) 

 

The Equation (2.39) is often referred to as the hydrostatic pressure approximation in 

shallow water flows and differentiating it to x gives  

”Ὣ Ὤ ᾀ .                                       (2.40) 

 

Because both of water depth h and the bed height ᾀare functions of the horizontal 

coordinates x and y only, the following expression can be obtained: 

᷿ Ὠᾀ .                                          (2.41) 

 

Combining Eq. (2.40) with Eq. (2.41) can give       

᷿ Ὠᾀ ὫὬ Ὤ ᾀ .                                  (2.42) 

The following approximations are given for the third and fourth terms on the right hand 

side of Eq. (2.19). 

᷿ ’ Ὠᾀ ’  ,                                  (2.43) 

  ᷿ ’ Ὠᾀ ’  .                                 (2.44) 
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The last term on the right hand side of Eq. (2.19) is calculated as 

᷿ ’ Ὠᾀ ’ ’ ȟ                           (2.45) 

 

Normally, the terms on the right hand side of Eq. (2.45) can be approximated with the 

surface wind shear stress and the bed shear stress in the x direction, respectively, 

’  ,                                                (2.46) 

  ’  .                                               (2.47) 

 

Therefore, Eq. (2.45) can be written as  

᷿ ’ Ὠᾀ .                                         (2.48) 

 

 Combining Eqs. (2.29), (2.34), (2.42)-(2.44), and (2.48) with Eq. (2.19) leads to  

2 2 2

1 2( ) ( )( ) ( ) ( )

2

b wx bx
c

zhu hv uhu h hu hu
g gh f hv

t x y x x x y y x

u t tq q
n n

r r

å õ µµ µµ µ µ µ
+ + =- + + - + + -æ ö

µ µ µ µ µ µ µ µ µç ÷
.   (2.49) 

                                                       

The above equation is the momentum equation for shallow water flows in the x direction. 

The momentum equation in the y direction for shallow water flows can be derived 

similarly as  

2 2 2

31
( )( )( ) ( ) ( )

2

wy byb
c

hv v zhu vhv h hv hv
g gh f hu

t x y y x x y y y

t tqq
n n

r r

å õµ µµµ µ µ µ
+ + =- + + - - + -æ ö

µ µ µ µ µ µ µ µ µç ÷
.   (2.50) 

 

Theoretically, if the velocity profiles for u and v are known, the momentum correction 

factors —, — and — can be calculated from Eqs. (2.30), (2.31) and (2.33). However, 

normally it is not easy to calculate these momentum correction factors —, — and — 

because there are no universal velocity distribution which are valid for all flows. On the 

other hand, — ρ,  — ρ and — ρ are used widely in numerical simulation for 

shallow water flows and these study shows that this assumption can give good results for 

most shallow water  flows [113-116]. 

 

Therefore, when — ρ,  — ρ and — ρ are adopted, Eqs. (2.49) and (2.50) become 
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Ὣ ’ ’ ὫὬ ὪὬὺӶ ,                                                       

(2.51) 

Ὣ ’ ’ ὫὬ ὪὬό  ,                                                                          

(2.52) 

After the overbars are dropped for convenience, the continuity equation (2.16) and the 

momentum equations (2.51) and (2.52) can be expressed in a tensor form concisely as  

π,                                                            (2.53) 

Ὣ ’ Ὂ ,                            (2.54) 

in which, the force term Ὂ is defined as  

Ὂ ὫὬ Ὁ ,                                           (2.55) 

where the Coriolis term  Ὁ can be calculated by 

Ὁ
ὪὬὺȟ      Ὥ ὼȟ
ὪὬόȟ    Ὥ ώȢ

                                                     (2.56) 

The bed shear stress †  in the i direction can be calculated by the depth-averaged 

velocities, 

† ”ὅό όό,                                                  (2.57) 

where, ὅ  is the bed friction coefficient, estimated from ὅ Ὣὅϳ , where ὅ is the 

Chezy coefficient calculated by either Manning equation (2.58), or the Colebrook-White 

equation (2.59) [117], 

ὅ Ὤ ὲ ,                                                         (2.58) 

in which,  ὲ is the Manningôs coefficient at the bed, 

ὅ σςὫÌÏÇ
Ȣ

Ȣ
,                                  (2.59) 

in which ὑ is the Nikuradse equivalent sand roughness and measured by experiments.  

 

Furthermore, the wind shear stress can be obtained by 

 † ”ὅό ό ό  ,                                           (2.60) 

in which, ” is the density of air, ό  is the component of the relative wind velocity in 

the i direction, and  ὅ  is the resistance coefficient of the water-air interface.  
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It should be pointed that the use of the second mean value theorem (2.26) implies that the 

horizontal velocities όὼȟώȟᾀȟὸ and ὺὼȟώȟᾀȟὸ do not change their directions along the 

water depth. It indicates that όὼȟώȟᾀȟὸ 0 or όὼȟώȟᾀȟὸ 0 from channel bed to free 

surface at location (x,y) and so is ὺὼȟώȟᾀȟὸ. This is the reason why a model based on 

2D shallow water equations cannot predict flow separations in vertical direction 

accurately. In this section, the shallow water equations are derived briefly from the N-S 

equations and more details can be found in [3]. 

 

2.4 The Advection-diffusion Equation 

The water depth-averaged advection-diffusion equation can be expressed as: 

Ὀ Ὓ                            (2.61) 

where the subscripts i and j are space direction indices and the Einstein summation 

convention is used, t is time,  C is the depth-averaged concentration, Ὀ is the dispersion 

coefficient in direction i, Ὓ is the depth-averaged source term, h is water depth, ό is 

velocity, ὼ stands for either x or y in direction i or j. This equation is used for isotropic 

flow.  

 

2.5 Numerical Methods for Turbulent Flow 

Most fluid flows encountered in nature and engineering applications are turbulent. 

Numerical simulation of turbulent flows is important for researchers and engineers. Even 

though turbulent flow can be observed easily, it is difficult to describe it accurately. 

However, the following features are expected to exhibit for turbulent flows according to 

[118]: 

 

(a)  They are disorganized and chaotic. 

(b) There is nonrepeatability. 

(c) They have extremely large range of length and time scales but even the smallest scales 

are still large enough to satisfy the continuum hypothesis. 

(d)  It is three dimensional, time dependent and rotational. 

(e)  It is intermittent in both space and time. 
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In general, there are three kinds of numerical methods to simulate turbulent flow: Direct 

Numerical Simulation (DNS), Large Eddy Simulation (LES) and Reynolds-Averaged 

NavierïStokes (RANS). McDonough [118] compared these three methods and 

summarized results as follows: 

 

Firstly, although the DNS requires modelling, it demands resolution at all scales. This 

leads to total arithmetic scaling at least as Re
3
 (Re is the Reynolds number), or worse. It is 

clear that it is unacceptable for engineering flows because the Re can be up to 10
4
 or 

larger in engineering flows. This requirement has beyond the power of present 

computation.   

 

For LES, the amount of required modelling is dependent on the amount of resolution, but 

it is unlikely that total arithmetic will scale worse than Re
2
. LES has been incorporated 

into CFD software for practical engineering applications. Furthermore, it has been shown 

that LES procedures generally converge to DNS as discretization step size and filter 

widths are refined. 

 

Finally, the RANS requires modelling of everything of all scales. As a consequence, total 

arithmetic is a weak function of Re at most. In which, the Ὧ ‐ model is most widely 

used. 

 

In the present study, the LES is used to describe turbulent flow. In LES, the oldest, but 

yet still used widely, the Smagorinsky model [119] is used in this thesis because of its 

simplicity and easy implementation in the lattice Boltzmann method.  

 

2.6 Subgrid-Scale Stress Model 

The governing flow equations with the LES for turbulent flows can be derived by 

including a space-filtered quantity in the continuity equation (2.5) and the momentum 

equation (2.6). The space-filtered governing equations can be expressed as 

 

π                                                          (2.62) 

Ὢ ’  ,                            (2.63) 
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in which  ό is the space-filtered velocity component in the i direction and is defined by 

ό ᾀȟώȟᾀȟὸ ḁ όὼȟώȟᾀȟὸὋὼȟώȟᾀȟὼǋȟώǋȟᾀǋὨὼǋὨώǋὨᾀǋ
ЎЎЎ

               (2.64) 

where G  is a spatial filter function. †  is the subgrid-scale stress (SGS) that reflects the 

effect of the unresolved scales with the resolved scales and determined by  

† όό όό.                                                       (2.65) 

With the Bussinesq assumption for turbulent stresses, the subgrid-scale stress can be 

expressed using an SGS eddy viscosity ’ as 

† ’ .                                                (2.66) 

Substituting Eq. (2.66) into Eq. (2.63) gives the momentum equation, 

Ὢ ’ ’ .                                (2.67) 

If the standard Smagorinsky SGS model [119] is adopted and the eddy viscosity ’ can be 

expressed by 

’ ὅὰ ὛὛ  ,                                                   (2.68) 

 

where ὰ is the characteristic length scale, ὅ is Smagorinsky constant and Ὓ is the 

magnitude of the large scale strain-rate tensor and determined by 

Ὓ  .                                               (2.69) 

The equations (2.62) and (2.67) are the modified continuity and N-S equations used as the 

LES for turbulent flows. The finer the grid size, the less the unresolved scale eddies.  

 

Similarly, the shallow water equations including the SGS model [3] can be derived as 

π                                                        (2.70) 

Ὣ ’ ’ Ὂ.                  (2.71) 

where ό is the depth-averaged space-filtered velocity component,  †  is the depth-

averaged subgrid-scale stress with eddy viscosity and is expressed by 

† ’  ,                                          (2.72) 

The eddy viscosity ’ takes the same form as Eq. (2.68), but the Ὓ  is represented by  

Ὓ  .                                             (2.73) 
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Chapter 3: Lattice Boltzmann Method 

 

 

3.1 Introduction 

Lattice Boltzmann method is a modern method evolving from the lattice gas cellular 

automata (LGCA) which was developed more than twenty years ago. It has become a 

popular method in various areas. The lattice Boltzmann method consists of two steps: 

collision and advection. It avoids the disadvantage of LGCA such as the lack of Galilean 

invariance (Galilean invariance means that the fundamental laws of physics are the same 

in all inertial frame), and statistical noise.  

3.2 Derivation of the Lattice Boltzmann Equation 

The lattice Boltzmann equation is not only evolved from the lattice gas automata, but can 

also be derived from the continuum Boltzmann equation [120, 121] as shown in  the 

following.  

 

The Boltzmann equation with BGK collision operator reads [69], 

▄ȢɳὪ Ὢ Ὢ                                       (3.1)   

in which, Ὢ Ὢ●ȟ▄ȟὸ is the single-particle distribution in continuum phase space, e is 

the particle velocity, ‗ is a relaxation time, ɳ Ὥ Ὦ  is the gradient operator and Ὢ  

is the Maxwell-Boltzmann equilibrium distribution function expressed as 

Ὢ
Ⱦ Ⱦ

Ὡὼὴ ▄ ╥                                            (3.2) 

where D is the spatial dimension, e is particle velocity and V is fluid velocity; e and V are 

normalised by σὙὝ (R is the ideal gas constant and Tc is the temperature), which leads 

to a sound speed of Ὗ ρЍσϳ  [44]. The fluid density and velocity are computed as 

follows:  

” Ὢ᷿Ὠ▄,      ”ὠ ▄᷿ὪὨ▄                                                 (3.3) 
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If the fluid velocity V is relative small compared with the sound speed, the equilibrium 

distribution function defined by Eq. (3.2) can be expanded up to the second-order 

accuracy [122] as follows: 

Ὢ
Ⱦ ȾὩὼὴ Ὡ ρ σὩȢὠ ὩȢὠ ὠȢὠ                (3.4) 

For the purpose of developing a discrete model, a limited number of particle velocities are 

adopted Ὡ(‌ ρȟȣȟὑ), and the distribution function including these velocities can be 

changed to  

Ὢ ὼȟὸ ὪὼȟὩȟὸ,  Ὢ ὼȟὸ Ὢ ὼȟὩȟὸ                             (3.5) 

which satisfies Eq. (3.1), 

ὩȢɳὪ Ὢ Ὢ                                          (3.6) 

In the limited discrete space and time, the left hand side of Eq. (3.6) is the Lagrangian 

time derivative and can be discretized as  

ὩȢɳὪ
ȟ Ў ȟ

Ў
Ὡ

Ўȟ Ў ȟ Ў

Ў
                     (3.7) 

ȟ Ў ȟ

Ў
Ὡ

Ўȟ Ў ȟ Ў

Ў
Ὢ Ὢ                  (3.8) 

in which Ὡ  can be defined by Ὡ ЎὼȾЎὸ. Combining the above equation with Eq. 

(3.6) produces the standard lattice Boltzmann equation, 

Ὢ ὼ ὩЎὸȟὸ Ўὸ Ὢ ὼȟὸ Ὢ Ὢ ,                                 (3.9) 

where † ‗ȾЎὸ. In fact, † should be a single dimensionless relaxation time.  

 

3.3 Lattice Boltzmann Equation 

The governing equation which is generally valid for fluid flows including the shallow 

water flows [3] in LBM is as follows: 

 

Ὢ ὼ ὩЎὸȟὸ Ўὸ Ὢ ὼȟὸ   Ὢὼȟὸ
Ў
ὩὊὼȟὸ,            (3.10) 

ὔ is a constant and is determined by the lattice pattern as  

ὔ В ὩὩ .                                              (3.11)  

   is the collision operator which represents the rate of change of Ὢ during collision. 

Theoretically,    is a complex matrix and is determined by the microscopic dynamics. 

An idea to linearize the collision operator is given firstly by Higuera and Jimenez [68]. 

Based on this idea,    can be expanded about its equilibrium value [123] as follows: 
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  Ὢ   Ὢ Ὢ Ὢ ὕ Ὢ Ὢ .              (3.12) 

 

The solution process of the lattice Boltzmann equation is characterized by ὪᴼὪ , 

indicating   Ὢ π. Furthermore, if the higher-order terms in Eq. (3.12) are 

neglected, a linearized collision operator can be obtained,                                                                              

  Ὢ Ὢ Ὢ .                                              (3.13) 

 

The Bhatnagar-Gross-Krook (BGK) scheme simplifies the lattice Boltzmann equation 

greatly and makes the LBM used widely in various sectors. If the local particle 

distribution is assumed to be relaxed to an equilibrium state at a single rate † [70, 71], 

‏ ,                                                          (3.14) 

in which ‏  is the Kronecker delta function, 

‏
πȟ‌ ‍ȟ
ρȟ‌ ‍Ȣ

                                                          (3.15)                                                                                                                                                                                                                                                   

Eq. (3.13) can be rearranged as  

  Ὢ ‏ Ὢ Ὢ ,                                             (3.16) 

Leading to the lattice BGK collision operator [69], 

  Ὢ Ὢ Ὢ ,                                             (3.17) 

in which † is named as the single relaxation time. Because the BGK simplifies the lattice 

Boltzmann equation extremely and increases efficiency; it is widely used in lattice 

Boltzmann model. Combing the equations (3.10) and (3.17), the following lattice 

Boltzmann equation can be obtained, 

 Ὢ ὼ ὩЎὸȟὸ Ўὸ Ὢ ὼȟὸ Ὢ Ὢ
Ў
ὩὊὼȟὸ,    (3.18) 

The above equation becomes the most popular form of the lattice Boltzmann equation 

used today. 
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3.4 Lattice Pattern 

 

Figure 3.1 9-speed square lattice (D2Q9) in the horizontal plane. 

 

Figure 3.2 7-speed square lattice (D2Q7) in the horizontal plane. 

 

As in traditional methods, a lattice pattern is needed to represent the grid points and 

discrete computational domain. Furthermore, the lattice pattern has been used to 

determine particlesô motions in the LBM, in which a microscopic model for molecular 

dynamics has been defined. Besides, the constant ὔ  in Eq. (3.10) is decided by the 

lattice pattern.                                                              

 

Generally, there are two kinds of lattice patterns: square lattice and hexagonal lattice for 

2D cases which are shown in Figs. 3.1 and 3.2, respectively. The square lattice can have 

4-speed, 5-speed, 8-speed, or 9-speed, and the hexagonal lattice can have 6-speed and 7-

speed model according to the number of particle speed at lattice node. However, not all of 

these models can recover the correct flow equations and that requires sufficient lattice 

symmetry [65]. Studies show that both of 9-speed square lattice and 7-speed hexagonal 

lattice have such property and can give satisfactory performance in numerical simulations. 

Therefore, these two kinds of lattice patterns have been used widely in the LBM. 
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However, the studies indicate that the 9-speed square lattice usually can produce more 

accurate result than that from the hexagonal lattice [124]. Furthermore, the use of the 

square lattice leads to an easy way to implement different boundary conditions [125]. 

Consequently, the 9-speed square lattice is adopted in this thesis. 

 

For the 9-speed square lattice displayed in Fig. 3.1, each particle moves one lattice unit at 

its velocity along one of the eight links indicated with 1-8 and 0 indicates the rest particle 

with zero speed. The velocity vector of particles is given by 

 

Ὡ

ừ
Ử
Ừ

Ử
ứ πȟπȟ                              ‌ πȟ

Ὡὧέί ȟίὭὲ ȟ       ‌ ρȟσȟυȟχȟ

ЍςὩὧέί ȟίὭὲ ȟ‌ ςȟτȟφȟψȢ

                             (3.19) 

 

It is not difficult  to demonstrate that D2Q9 has the following features, 

В Ὡ В ὩὩ Ὡ π,                                                   (3.20) 

В ὩὩ φὩ‏ ,                                                         (3.21) 

В ὩὩ Ὡ Ὡ τὩ ‏‏ ‏‏ ‏‏ φὩЎ ,    (3.22) 

where Ў
ρȟ    ÉÆ Ὥ Ὦ Ὧ ὰ 
πȟ              ÏÔÈÅÒ×ÉÓÅ

,  

 

Substituting the Eq. (3.19) into the Eq. (3.11) and the following equation can be obtained:  

ὔ В Ὡ Ὡ В Ὡ Ὡ φ.                            (3.23) 

 

Combining the equation (3.23) with the equation (3.18), the following equation can be 

obtained:  

Ὢ ὼ ὩЎὸȟὸ Ўὸ Ὢ ὼȟὸ Ὢ Ὢ
Ў
ὩὊὼȟὸ,      (3.24) 

The equation (3.24) is the most common form of a lattice Boltzmann model with D2Q9. 

 

3.5 Local Equilibrium Distribution Function 

Deciding a suitable local equilibrium function plays an important role in the lattice 

Boltzmann method as it decides what flow equations could be solved. In order to apply 
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the equation (3.24) to solve the 2D shallow water equations (2.53) and (2.54), a suitable 

local equilibrium function Ὢ  must be derived. 

 

According to the lattice gas automata, an equilibrium function is the Maxwell-Boltzmann 

equilibrium distribution function which is often expanded using a Taylor series in 

macroscopic velocity to its second order [44, 120]. The Navier-Stokes equations can be 

recovered by using such equilibrium function in the lattice Boltzmann equations [44]. 

However, the shallow water equations cannot be recovered with this kind of method. On 

the other hand, an alternative method is to assume that an equilibrium function can be 

expressed as a power series in macroscopic velocity [126] which has been used 

successfully in [127, 128] and show its accuracy and suitability [3], and thus it has been 

adopted here. The equilibrium function can be expressed as  

Ὢ ὃ ὄὩό ὅὩὩ όό Ὀόό.                       (3.25) 

Because the equilibrium function has the same symmetry as the lattice shown in Figure 

3.1, there are 

ὃ ὃ ὃ ὃ ὃӶ , ὃ ὃ ὃ ὃ ὃ                 (3.26) 

and the similar expressions for ὄ , ὅ , and Ὀ are used. Therefore, Eq. (3.25) can be 

rewritten as, 

Ὢ

ὃ Ὀόόȟ                                                    ‌ πȟ

ὃӶὄὩό ὅӶὩὩ όό Ὀόόȟ  ‌ ρȟσȟυȟχȟ

ὃ ὄὩό ὅὩὩ όό Ὀόόȟ   ‌ ςȟτȟφȟψȢ

                   (3.27) 

The coefficients such as ὃ , ὃӶ and ὃ can be determined by the constraints on the 

equilibrium distribution function, for example: mass and momentum conservations. For 

the shallow water equations, the constraints are the following three conditions: 

В Ὢ ὼȟὸ Ὤὼȟὸȟ                                             (3.28) 

В ὩὪ ὼȟὸ Ὤὼȟὸό ὼȟὸ) ,                                     (3.29) 

В ὩὩ Ὢ ὼȟὸ ὫὬ ὼȟὸ‏ Ὤὼȟὸό ὼȟὸό ὼȟὸ.              (3.30) 

Basing on the calculated local equilibrium function (3.25) obtained under the above 

constraints, the 2D shallow water equations (2.53) and (2.54) can be recovered by the 

lattice Boltzmann equation (3.24) (The proof is shown in section 3.7). 

 

When Eq. (3.27) is substituted into Eq. (3.28), the following equation can be obtained: 
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ὃ Ὀόό τὃӶВ ὄὩόȟȟȟ В ὅӶȟȟȟ ὩὩ όό τὈόό τὃ

В ὄὩόȟȟȟ В ὅὩὩ όόȟȟȟ τὈόό Ὤ.  (3.31) 

Combing the Eq. (3.19) and equating the coefficients of h and uiui, respectively, the 

following equations can be obtained: 

ὃ τὃӶτὃ Ὤ,                               (3.32) 

Ὀ ςὩὅӶτὩὅ τὈ τὈ π.                    (3.33) 

Similarly, substituting Eq. (3.27) into Eq. (3.29) results in  

ὃὩ ὈὩόό В ὃӶὩ ὄὩὩ ό ὅӶὩὩ Ὡ όό ὈὩόόȟȟȟ

В ὃὩ ὄὩὩ ό ὅὩὩ Ὡ όό ὈὩόόȟȟȟ Ὤό            (3.34) 

Rearranged the above equation yields  

ςὩὄ τὩὄ Ὤ.                                          (3.35) 

Inserting Eq. (3.27) to Eq. (3.30) leads to 
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0 0
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 (3.36) 

Combing Eq. (3.19), the above equation can be expressed by 

ςὃӶὩ‏ ςὅӶὩόό ςὈὩόό τὃὩ‏ ψὅὩόό τὅὩόό τὈὩόό

ὫὬ‏ Ὤόό                                                                (3.37) 

Basing on the above equation, the following four equations can be obtained, 

ςὩὃӶτὩὃ ὫὬ,                                                   (3.38) 

ψὩὅ Ὤ,                                                            (3.39) 

    ςὩὅӶ Ὤ ,                                                              (3.40) 

ςὩὈ τὩὈ τὩὅ π .                                    (3.41) 

Substituted the Equation (3.39) into the Eq. (3.40), we can get the following equation 

ὅӶ τὅ.                                                             (3.42) 

Because of the symmetry of lattice and Eq. (3.42), the following relations can be assumed, 

ὃӶ τὃ ,                                                          (3.43) 

ὄ τὄ                                                            (3.44) 

Ὀ τὈ.                                                           (3.45) 

Combing the Eqs. (3.32), (3.33), (3.35) and (3.38)-(3.45) leads to  

ὃ Ὤ  , Ὀ  ,                                   (3.46) 
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ὃӶ  , ὄ  ,   ὅӶ ,  Ὀ                         (3.47) 

ὃ  ,  ὄ  ,ὅ ,Ὀ                        (3.48) 

 Therefore, the local equilibrium function can be expressed by  

Ὢ

ừ
Ử
Ừ

Ử
ứὬ όόȟ                                                            ‌ πȟ

Ὡό ὩὩ όό όόȟ      ‌ ρȟσȟυȟχȟ

Ὡό ὩὩ όό όόȟ  ‌ ςȟτȟφȟψȢ

        (3.49) 

With this local equilibrium function, the shallow water equations (2.53) and (2.54) can be 

recovered correctly as shown in the later section. 

 

3.6 Macroscopic Properties 

The above sections have shown the lattice Boltzmann model for shallow water equations 

proposed by Zhou [129]. In order to recover the shallow water equation, the link between 

microdynamic variables and macroscopic the physical quantities (such as the water depth 

h and velocity ui) will be established in this section. The macroscopic properties of the 

lattice Boltzmann equation (3.24) has been examined by Zhou [3]. 

 

The sum of the zeroth moment of the distribution function in Eq. (3.24) is shown by 

 В Ὢ ὼ ὩЎὸȟὸ Ўὸ Ὢὼȟὸ В Ὢ Ὢ
Ў
В ὩὊ       (3.50) 

It is easy to demonstrate В ὩὊ π,  and Eq. (3.50) can be simplified as 

В Ὢ ὼ ὩЎὸȟὸ Ўὸ Ὢὼȟὸ В Ὢ Ὢ .             (3.51) 

The cumulative mass and momentum, are the corresponding summations of the 

microdynamic mass and momentum which are conserved in lattice Boltzmann method, 

should also meet the requirement of mass conservation. The continuity equation with 

microdynamic variables can be expressed by 

 В Ὢὼ ὩЎὸȟὸ ЎὸḳВ Ὢ ὼȟὸ                                    (3.52) 

Substituting the above equation into Eq. (3.51) results in  

В Ὢὼȟὸ В Ὢ ὼȟὸ                                                 (3.53) 

Combing Eq. (3.28) with the above expression, the water depth can be obtained as     

 Ὤὼȟὸ В Ὢ ὼȟὸ                                                     (3.54) 

Next, the velocity will be defined. 

Similarly, the sum of the first moment of distribution function in Eq. (3.24) is taken      
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( ) ( ) ( ) ( )2
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eq
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t
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e
a a a a a a a a a

a a at

D
+ D +D - =- - +è øê úä ä ä  (3.55)                                                        

Combing with Eq. (3.21), the above equation can be expressed  

В Ὡ Ὢ ὼ ὩЎὸȟὸ Ўὸ Ὢὼȟὸ ὊЎὸ В Ὡ Ὢ Ὢ               (3.56) 

According to the Newtonôs second law, the momentum equation with microdynamic 

variables requires   

В Ὡ Ὢ ὼ ὩЎὸȟὸ Ўὸ Ὢ ὼȟὸ ḳὊЎὸ                             (3.57) 

Substituting Eq. (3.57) into Eq. (3.56) leads to   

В ὩὪ ὼȟὸ В ὩὪ ὼȟὸ.                                         (3.58) 

Combing Eq. (3.29) with above equation, the velocity ui  can be defined as  

ό ὼȟὸ
ȟ
В ὩὪ ὼȟὸ                                             (3.59) 

It should be noted that the distribution function Ὢ relaxes to its local equilibrium function 

Ὢ  by the lattice Boltzmann equation (3.24). Besides, the decided water depth and 

velocity will make sure that both Eqs. (3.53) and (3.58) keep true and the same is true for 

Eqs. (3.52) and (3.57). Therefore, the lattice Boltzmann method is conservative and 

accurate. 

 

3.7 Recovery of the Shallow Water Equations 

For the purpose of demonstrating that the depth and velocities obtained from Eqs. (3.54) 

and (3.59) are the solution to the shallow water equations, the lattice Boltzmann equation 

(3.24) will recover the shallow water equations [3], in which the Chapman-Enskog 

expansion and Taylor expansion are used. 

 

If ȹt is assumed to be small and is equal to ‐, 

Ўὸ ‐                                                            (3.60) 

The equation (3.24) can be expressed by 

Ὢ ὼ Ὡ‐ȟὸ ‐ Ὢ ὼȟὸ Ὢ Ὢ Ὡ Ὂ                  (3.61) 

A Taylor expansion is applied to the first term on the left-hand side of Eq. (3.61) in time 

and space around point (x, t) and results in 

‐ Ὡ Ὢ ‐ Ὡ Ὢ ὕ‐ Ὢ Ὢ Ὡ Ὂ 

(3.62) 
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in which Ὢ Ὢ  and Ὢ  can be expanded around Ὢ , 

Ὢ Ὢ ‐Ὢ ‐Ὢ ὕ‐                                            (3.63) 

Inserting Eq. (3.63) into Eq. (3.62) and ignoring the high order term (higher than second 

order), the equations to order ‐ and ‐ can be obtained, respectively,  

Ὡ Ὢ Ὢ Ὡ Ὂ.                          (3.64) 

Ὡ Ὢ Ὡ Ὢ Ὢ .                (3.65) 

Substituting  Eq. (3.64) into Eq. (3.65) and rearranging lead to  

ρ Ὡ Ὢ Ὢ Ὡ Ὡ Ὂ        (3.66) 

From В σȢφτ ‐ σȢφφ) about ‌, the following equation can be derived: 

В Ὢ В Ὡ Ὢ ‐ В Ὡ Ὡ Ὂ           (3.67) 

If the force term with the first-order accuracy is applied, combining Eqs. (3.19) and (3.49) 

with above equation leads to  

π                                                         (3.68) 

which is just the continuity equation (2.53) for shallow water flow. 

 

Taking ВὩ σȢφτ ‐ σȢφφ about ‌ can result in  

В ὩὪ В ὩὩ Ὢ ‐ρ В ὩὩ Ὢ Ὂ‏

‐В Ὡ Ὡ Ὡ Ὂ     (3.69) 

Similarly, if the force term with the first-order accuracy is used,  combining it with Eqs. 

(3.19) and (3.49), the above equation can be rearranged as: 

Ὣ ɤ Ὂ ,                                 (3.70) 

in which 

Ώ ς† ρВ ὩὩ Ὢ .                                         (3.71) 

Combining Eqs. (3.64), (3.19) and (3.49) and making some algebra, the following 

expression can be obtained:  

Ώ ’ .                                         (3.72) 

Substituting Eq. (3.72) into Eq. (3.70) results in   
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Ὣ ’ Ὂ,                          (3.73) 

where the kinematic viscosity ’ is defined by 

’
Ў
ς† ρ                                                     (3.74) 

And the force term Fi by 

Ὂ ὫὬ Ὁ .                                     (3.75) 

Equation (3.73) is the momentum equation  for the shallow flows. 

 

Zhou [3] has pointed out that the lattice Boltzmann equation (3.24) is only first-order 

accurate for the recovered shallow water equations as shown above. However, it has also 

been proved that Eq. (3.24) can become the second-order accurate if a suitable force term 

is used (the process will be shown in section 3.9) [3]. 

 

3.8 Stability Conditions 

The lattice Boltzmann equation can be interpreted as a Lagrangian finite difference 

method [130]. Therefore, it is not surprising that it may suffer from numerical instability. 

Sterling and Chen [130] carried out an analysis of the stability for the lattice Boltzmann 

method using perturbations method. In general, the stability conditions are not available 

for the method. However, Zhou [3] indicated the LABSWE is stable if some basic 

requirements are met:    

 

First is the fluid resistance. It indicates that the kinematic viscosity ’ should be positive 

[130]. With Eq. (3.74), the following expression can be obtained:  

’
Ў
ς† ρ π.                                       (3.76) 

Thus, the relaxation time needs to meet:  

† .                                                          (3.77) 

 

Secondly, as indicated by Zhou [3] and Liu [93], the Courant number should be smaller 

than  unity. It implies that the magnitude of the resultant macro velocity is smaller than 

the lattice speed, 

ρ,                                                         (3.78) 
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and the wave velocity also should be smaller than the lattice speed:  

ρ,                                                         (3.79) 

Up to now, LABSWE is limited to subcritical shallow water flows, it means:  

ρ,                                                          (3.80) 

Meanwhile, the Froude number should smaller than unit 

Ὂ ρ ,                                                   (3.81) 

 

It should be noted that the first three conditions (3.77)-(3.79) can be easily satisfied by 

adjusting the relaxation time †, the lattice size Ўὼ and time step Ўὸ. It has been tested that 

the lattice Boltzmann method is stable normally, if these four stability conditions can be 

satisfied [3]. 

 

3.9 Force Terms 

3.9.1 Centred Scheme  

Practical flows always involve internal or external forces, such as a tidal flow, dam-

breaking flows, multiphase flows and multicomponent fluids. A suitable expression for 

force is critical to predict the real flows accurately. Many researchers have pursued this 

topic. Martys et al. [131] presented a force term with Hermite expansion and the scheme 

is complicated. Buick and Greated [132] proposed a composite scheme for the gravity. 

Guo et al. [133] improved the local equilibrium distribution function by including the 

force term. 

 

Zhou [125, 129] incorporated the force terms into the streaming step directly in the lattice 

Boltzmann method and obtained accurate results for many flows. After that, Zhou [3] 

improved the method with a second-order force scheme and showed satisfactory results. 

This scheme has been adopted in this thesis.  

 

For the centred scheme, the force term is determined at the mid-point between the lattice 

point and its neighbouring lattice point as 

Ὂ Ὂ ὼ ὩЎὸȟὸ Ўὸ                                (3.82) 
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In order to be easy for parallel computation, the above equation can be expressed in semi-

implicit form: 

Ὂ Ὂ ὼ ὩЎὸȟὸ,                                       (3.83) 

Next, the Chapman-Enskog procedure is applied to lattice Boltzmann equation (3.24) to 

study the accuracy of this scheme. With the centred scheme for the force term, if Ўὸ is 

assumed to be small and equal to ‐, the equation (3.24) can be written as  

( ) ( ) ( ) ( ) 2

1 1 1
, , , , ,

6 2 2

eq

i if x e t f x t f x t f x t e F x e t
e

a a a a a a a

e
e e e e

t

å õ
è ø+ + - =- - + + +æ öê ú

ç ÷
 (3.84) 

A Taylor expansion is applied to the first term on the left-hand side of the above equation 

in time and space around point (x, t) and the force term on the right-hand side, 

( ) ( ) ( )
2

2 21
, ,

2
j j

j j

f x e t f x t e f e f O
t x t x

a a a a a a ae e e e e
å õ å õµ µ µ µ

+ + = + + + + +æ ö æ öæ ö æ öµ µ µ µç ÷ ç ÷

 (3.85) 

Ὂ ὼ Ὡ‐ȟὸ ‐ Ὂὼȟὸ ‐ Ὡ Ὂὼȟὸ ὕ‐.        (3.86) 

Substituting  Eqs. (3.85) and (3.86) into Eq. (3.84) results in 

‐ Ὡ Ὢ ‐ Ὡ Ὢ Ὢ Ὢ ὩὊ

Ὡ ὩὊ ὕ‐ .                            (3.87) 

in which, Ὢ Ὢ  and expanding Ὢ to Ὢ  gives, 

Ὢ Ὢ ‐Ὢ ‐Ὢ ὕ‐ ,                                    (3.88) 

Taking the equation (3.87) to order ‐ and ‐ leads to  

Ὡ Ὢ Ὢ ὩὊ ,                     (3.89) 

Ὡ Ὢ Ὡ Ὢ Ὢ Ὡ Ὡ Ὂ  (3.90) 

Substituting Eq. (3.89) into Eq. (3.90) leads to   

ρ Ὡ Ὢ Ὢ                          (3.91) 

From (В σȢψω ‐ σȢωρ) about ‌, the following equation can be derived: 

В Ὢ В Ὡ Ὢ π.                               (3.92) 

Combining Eqs. (3.19) and (3.49) with the above equation gives the second-order 

accurate continuity equation (2.53). It can be noted that the assumption of first-order 

accuracy for the force term is not necessary as that in Equation (3.67). 
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Taking (ВὩ σȢψω ‐ σȢωρ) about ‌ results in 

В ὩὪ В ὩὩ Ὢ ‐ρ В ὩὩ Ὢ Ὂ.    (3.93) 

 

Again combining Eqs. (3.19) and (3.49), the above equation can be written as  

Ὣ Ώ Ὂ,                     (3.94)  

in which 

Ώ ς† ρВ ὩὩ Ὢ .                              (3.95) 

Combining Eqs. (3.89), (3.19) and (3.49) and making some algebra, the following 

expression can be obtained:  

Ώ ς† ρ .                         (3.96) 

Substituting Eq. (3.96) into Eq. (3.94) gives the momentum equation (2.54) at second-

order accurate. 

 

Similarly, it can be proved that the use of the second-order scheme (3.83) for the force 

term in Eq. (3.24) also results in second-order accurate macroscopic equations in space. 

However, using the basic scheme gives only first-order accurate macroscopic equations in 

time and space as shown in section 3.7. 

 

3.9.2 Improved Force Term treatment method and New Treatment of Bed 

Slope 

In the above method for the force term, it includes the calculation of the first order 

derivative related to the bed slope, which can be accurately determined by the centred 

scheme.  To improve the efficiency and remove the calculation of the derivatives, Zhou 

[134] introduced the bed level into the lattice Boltzmann equation. In this new scheme, 

the lattice Boltzmann equation (3.24) can be rewritten as 

( ) ( ) ( ) ( ) ()2 2

1
, ,

6 6

eq

b b j j

gh t
f x e t t t f x t f f z x e t z x e F

e e
a a a a a a a

t

D
+ +D - = - - + - +è øê úD D (3.97)                                       

 in which Ὤ πȢυὬ● ▄ῳὸȟὸ Ὤ●ȟὸ .  

In addition, the calculation of the force term can also be improved for more accurate 

results. The last force term in Eq. (3.24) can be defined by ЎὸὊ where Ὂ  in [3]. 
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In order to include the effect of direction on the distribution function, the force term can 

be improved by 

 Ὂ  σύ                                                        (3.98)  

in which ύ  are the weights defined as 

  ύ

τȾω                   ὥ π

ρȾωȟ      ὥ ρȟσȟυȟχ 

ρȾσφȟ       ὥ ςȟτȟφȟψ

                                                  (3.99) 

The force term in Eq. (3.24) can be calculated using Eq. (98) in which Fi  is calculated by 

the following equation 

 Ὂ
● ▄ ●

                                           (3.100) 

3.9.3 Discussion 

In section 3.9.1, the implicit form of the centred scheme (3.82) was used to show that the 

scheme is second-order accurate in space and time. Similarly, it can be proved that the 

semi-implicit form of centred scheme (3.83) is second-order accurate in space but only 

first-order accurate in time. In practice, a scheme with first-order accuracy in time can 

still provide accurate solution for most flow problems. In fact, this has been confirmed in 

the numerical computations. Therefore, Eqs. (3.83), (3.98)-(3.100) are adopted in this 

thesis. 

 

3.10 Turbulence Modelling 

3.10.1 LABSWETM  

In order to simulate flows with relatively higher Reynolds number, LABSWE is extended 

to the shallow water equations with turbulence modelling (LABSWE
TM

) which is 

proposed by Zhou [3] in this section. Comparing the turbulent shallow water equations 

(2.70) and (2.71) with the equations (2.53) and (2.54) without flow turbulence, it can be 

noted that the only difference is the viscosity term. LABSWE
TM

 includes the eddy 

viscosity term which is not present in the LABSWE. Because the kinematic viscosity ’ is 

determined only by the relaxation time via Eq. (3.74) with constant time step and space 

step, this means that a new relaxation time †  can be defined by  

† † †,                                                        (3.101) 

which yields a total viscosity ’, 

’ ’ ’,                                                         (3.102) 
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and the Equation (3.24) can be rewritten as  

Ὢ ὼ ὩЎὸȟὸ Ўὸ Ὢ ὼȟὸ Ὢ Ὢ
Ў
ὩὊ,            (3.103) 

 

which can produce the solution to the shallow water equations (2.70) and (2.71). This is 

consistent with the idea of the lattice Boltzmann model with subgrid-scale stress designed 

by Hou et al. [135]. Therefore, the flow turbulence can be predicted easily by the standard 

lattice Boltzmann equation (3.103) with the total relaxation time †. 

 

For the purpose of determining the total relaxation time †, the strain-rate tensor Sij needs 

to be calculated. As Sij defined by Eq. (2.73) involves calculation of derivatives, it is not 

suitable or efficient to use in practice. To keep consistent with the lattice gas dynamics, Sij 

is expected to be expressed in terms of the distribution function. Using the Chapman-

Enskog expansion, it can be seen that the strain-rate tensor Sij is related to the non-

equilibrium momentum flux tensor (see section 3.10.2 for detail) and Sij can be calculated 

by 

Ὓ
Ў
В ὩὩ Ὢ Ὢ .                                (3.104) 

Assuming ’ and † satisfy the relation (3.74), the following expression can be obtained:   

†
Ў

.                                                         (3.105) 

Substituting Eqs. (3.101) and (3.102) into the above equation results in  

† †
Ў

.                                                    (3.106) 

Combined with Eq. (3.74) yields  

†
Ў
’.                                                           (3.107) 

Substituting Eq. (2.68) into the above equation provides  

†
Ў
ὅὰ ὛὛ .                                               (3.108) 

Combining Eq. (3.104) with the above equation gives  

†
Ў
ὅὰ

Ў
                                               (3.109) 

in which  

  В ὩὩ Ὢ Ὢ .                                              (3.110) 

With Eq. (3.101), if ὰ Ўὼ is adopted, Eq. (3.109) can be rewritten as  

†    .                                                (3.111) 
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Solving the above equation gives:  

†
Ⱦ

,                                         (3.112) 

With Eq. (3.101), the total relaxation time † can be by  

†
Ⱦ

.                                         (3.113) 

 

3.10.2 Recovery of LABSWETM 

With a similar procedure described in section 3.7, the shallow water equations (2.70) and 

(2.71) can be recovered from the lattice Boltzmann equation (3.103) by the Chapman-

Enskog expansion.  

Assuming Ўὸ is small and is equal to ‐, 

Ўὸ ‐.                                                                (3.114) 

The equation (3.103) can be written as  

Ὢ ὼ Ὡ‐ȟὸ ‐ Ὢ ὼȟὸ Ὢ Ὢ Ὡ Ὂ.               (3.115) 

If a Taylor expansion is applied to the first term on the left-hand side of the above 

equation in time and space around point (x, t), the following equation can be obtained:  

‐ Ὡ Ὢ ‐ Ὡ Ὢ ὕ‐ Ὢ Ὢ Ὡ Ὂ 

(3.116) 

where Ὢ Ὢ , Ὢ can be expanded around Ὢ ,  

Ὢ Ὢ ‐Ὢ ‐Ὢ ὕ‐ ,                             (3.117) 

Substituting Eq. (3.117) into Eq. (3.116), we have the following expressions to order ‐ 

and  ‐,   

Ὡ Ὢ Ὢ Ὡ Ὂ.                        (3.118) 

Ὡ Ὢ Ὡ Ὢ Ὢ .            (3.119) 

Substituting Eq. (3.118) into Eq. (3.119) results in  

ρ Ὡ Ὢ Ὢ Ὡ Ὡ Ὂ .    (3.120) 

From В σȢρρψ‐ σȢρςπ about ‌, the following equation can be derived:   

В Ὢ В Ὡ Ὢ ‐ В Ὡ Ὡ Ὂ .          (3.121) 
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If the force term with the first-order accuracy is applied, combining Eqs. (3.19) and (3.49) 

with the above equation leads to the continuity equaton (2.70).  

 

Taking ВὩ σȢρρψ‐ σȢρςπ about ‌, the following equation can be obtained   

В ὩὪ В ὩὩ Ὢ ‐ρ В ὩὩ Ὢ Ὂ‏

‐В Ὡ Ὡ Ὡ Ὂ .              (3.122) 

Similarly, using the force term with the first-order accuracy and referring to Eqs. (3.19) 

and (3.49), the above equation can be written as  

Ὣ ɤ Ὂ,                     (3.123) 

in which  

Ώ ς† ρВ ὩὩ Ὢ .                             (3.124) 

Combining Eqs. (3.19), (3.49) and (3.118) with the above equation, one can get 

Ώ Ὡ ς† ρ .                        (3.125) 

Substituting Eq. (3.125) into Eq. (3.123) leads to a momentum equation, 

Ὣ ’ Ὂ,                 (3.126) 

in which, the total viscosity ’ is defined by  

’
Ў
ς† ρ.                                            (3.127) 

Combining Eqs. (3.74), (3.101), (3.102) and (3.107) with the above equation, the total 

viscosity can be expressed by   

’ ’ ’,                                                     (3.128) 

and so Eq. (3.126) is just the momentum equation (2.71). 

 

If the force term with the centred scheme described in section 3.9 is used, the shallow 

water equations with turbulence at second-order accuracy in time and space can be 

recovered.  

 

The calculation of the strain-rate tensor Sij can be derived from Eqs. (3.124) and (3.125), 

Combining the Eqs. (3.124) and (3.125) can lead to  

В ὩὩ Ὢ .                       (3.129) 
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With Eq. (3.117), the following can be obtained: 

Ὢ ὕ‐ .                                  (3.130) 

Considering Ὢ Ὢ , ‐ Ўὸ and Eq. (2.73), substituting Eq. (3.130) into Eq. (3.129) 

gives Eq. (3.104) which is used to calculate the strain-rate tensor Sij.  

 

3.11 Multiple-Relaxation Time 

Compared with the BGK scheme, the multiple-relaxation-time is less used in the lattice 

Boltzmann model for shallow water flows. In order to improve the stability of the method, 

the collision operator of multiple-relaxation-time is incorporated into the LABSWE 

(named LABSWE
MRT

) in this section. This model will be used in the latter chapter and 

show its ability. Together with the new force term introduced in section 3.9.2, the shallow 

water equations are recovered correctly in this section, which is the first derivation to 

writerôs knowledge.  

 

3.11.1 LABSWEMRT 

As described in section 1.5.4, the multiple-relaxation-time can improve the stability of 

computation. It is incorporated into the LABSWE in this thesis (named LABSWEMRT) 

and the shallow water equations will be recovered by Chapman-Enskog analysis in the 

next section. If the D2Q9 model is adopted, the lattice Boltzmann equations with the 

MRT for shallow water equations are as follows:  

Ὢ ● ▄ῳὸȟὸ ῳὸ Ὢὼȟὸ ╣► ╢ ά ὼȟὸ ά ὼȟὸ ῳὸὊ (3.131) 

where ά ╣►Ὢ, Ὢ ╣► ά and S is the relaxation matrix, S=diag (s0, s1, s2, s3, s4, s5, s6, 

s7, s8), Tr is the transform matrix defined in [85], 

╣►   

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
 ρ    ρ    ρ
τ ρ    ς
 τ ς    ρ

   ρ      ρ    ρ
ρ      ς  ρ
ς       ρ   ς

ρ ρ  ρ
ς ρ  ς
ρ   ς  ρ

  π    ρ    ρ
  π ς    ρ
   π    π    ρ

 π   ρ ρ
 π   ρ ς
 ρ      ρ π

ρ π ρ
ρ π ρ
ρ ρ ρ

   π     π    ρ
  π    ρ    π
   π     π    ρ

ς    ρ π
ρ    π   ρ
π ρ   π

ρ ς ρ
π ρ   π
ρ π ρỨ

ủ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

         (3.132) 

The relaxation parameters s7 and s8 is chosen according to fluid viscosity 

determined by Equation (1.11), and the other parameters can be chosen freely 
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during the range of 0~2 for maximum stability. In practical application, these free 

parameters are a little larger than 1 according to [85]. 

 

The equilibrium values of moments ά  is  

 
( ) ( ) ( )2 2 2 2 2 22 2

(1 9) 2 2 2 2 2 2

3 33 9
( , 4 ,4 , , , , , , )

2

eq T
h u v h u v h u vgh gh hu hu hv hv huv

m h h h
e e e e e e e e e e

»

+ + -
= - + + - - - -  (3.133) 

 

3.11.2 Recovery of the LABSWEMRT 

The Chapman-Enskog analysis is used to recover the shallow water equations from the 

proposed MRT- LBM model with improved force term. Assuming ῳὸ is small and ῳὸ ‐, 

equation (3.131) can be expressed as: 

Ὢ ● ▄‐ȟὸ ‐ Ὢὼȟὸ ╣► ╢ ά ὼȟὸ ά ὼȟὸ ‐Ὂ       (3.134) 

Take a Taylor expansion to the first term on the left hand side of the above equation in 

time and space around point (x, t) leads to 

 ‐‬ Ὡ ‬Ὢ ‬ Ὡ ‬ Ὢ ὕ‐ ╣►╢ ά ά ‐Ὂ             

(3.135)                      

According to the Chapman-Enskog  expansion, Ὢ can be written in a series of ‐ 

Ὢ Ὢ ‐Ὢ ‐Ὢ ὕ‐ ,                                (3.136) 

which can be expressed in a vector form, 

█ █ ‐█ ‐█ ὕ‐ ,                                 (3.137) 

The above equation can be easily converted into an expression in moment space by being 

multiplied with T,  

□ □ ‐□ ‐□ ὕ‐ ,                           (3.138) 

If the centered scheme[3] is used, the expression for Ὂ can be obtained 

Ὂ Ὂ ● ▄‐ȟὸ ‐ ,                                       (3.82) 

Making a Taylor expansion to the above yields 

Ὂ ● ▄‐ȟὸ ‐ Ὂ ●ȟὸ ‬ Ὡ ‬Ὂ ●ȟὸ ὕ‐ ,        (3.139) 

Combining Eqs. (3.138), (3.139) and Eq. (3.134), the equations to orders  ‐, ʀ and ‐ are 

ά ά ,                                                       (3.140) 

‬ Ὡ ‬ Ὢ ╣►╢ ά Ὂ.                              (3.141) 
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‬ Ὡ ‬Ὢ ‬ Ὡ ‬ Ὢ ╣►╢ ά ‬ Ὡ ‬Ὂ.     (3.142) 

 Eqs. (3.140-3.142) can be written with matrices and vectors, 

□ Í ,                                           (3.143) 

‬╘ ╔╣► □ ╣►╢□ ╕,                                 (3.144) 

‬╘ ╔╣►□ ╣►‬╘ ╔ ╣►□ ╣►╢□ ‬╘ ╔╕,   (3.145) 

    where ╘ is the identity matrix; ╔ is a diagonal matrix as 

╔ ὨὭὥὫὩ‬ȟὩ‬ȟὩ‬ȟὩ‬ȟὩ‬ȟὩ‬ȟὩ‬ȟὩ‬ȟὩ‬ Ƞ       (3.146) 

□ πȟὩ ȟὩ ȟπ̆ ή ̆π̆ ή ̆ὴ ̆ὴ ;        (3.147) 

□ πȟὩ ȟὩ ȟπ̆ ή ̆π̆ ή ̆ὴ ̆ὴ ;        (3.148) 

and  

╕

πȟσύ ȟσύ ȟ σύ ȟσύ ȟσύ ȟσύ ȟσύ ȟσύ .  

 (3.149) 

Substituting Eq. (3.144) into Eq.(3.145) leads to 

‬╘ ╔╣► ╘ ╢□ ╣►╢□ .                       (3.150) 

Multiplying Eqs. (3.144) and (3.150) by ╣► gives 

‬╘ ╣►╔╣►  □ ╢□ ╣►╕.                        (3.151) 

‬╘ ╣►╔╣► ╘ ╢□ ╢□ .                     (3.152) 

Writing out Eq. (3.151) for ί π, 1, 3, 5, 7, and 8 yields: 

‬Ὤ ‬ Ὤό ‬ Ὤὺ π                                                  (3.153) 

‬ τὬ ίὩ                                    (3.154) 

‬ ‬ ‬                                    (3.155) 

‬ ‬ ‬                                (3.156) 

‬ ‬ Ὤό ‬ Ὤὺ ίὴ                         (3.157) 

‬ ‬ Ὤὺ ‬ Ὤό ίὴ                                (3.158) 

Writing out Eq. (3.152) for the conserved moments, ί σ and υ results in the follow 

equations: 

‬ ρ Ὡ ρ ὴ ‬ ρ ὴ π              (3.159) 
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‬ ρ Ὡ ρ ὴ ‬ ρ ὴ π              (3.160) 

Combining the zeroth-order equations (3.155) and (3.156) with the first-order equations 

(3.159) and (3.160) respectively, we have  

‬ Ὤό ‬
ὫὬ

ς
Ὤό ‬ Ὤόὺ Ὂ ‐

Ὡ

φ
ρ
ί

ς
‬ Ὡ  

‐ ρ ‬ ὴ ‐Ὡ ρ ‬ ὴ                                     (3.161) 

‬ Ὤὺ ‬
ὫὬ

ς
Ὤὺ ‬ Ὤόὺ Ὂ ‐

Ὡ

φ
ρ
ί

ς
‬ Ὡ  

‐ ρ ‬ ὴ ‐Ὡ ρ ‬ ὴ                                 (3.162) 

 Ignoring the higher order terms, the following expressions from Eqs. (3.154), (3.157) and 

(3.158) can be obtained 

Ὡ π                                                                (3.163) 

ὴ ‬ Ὤό ‬ Ὤὺ                                        (3.164) 

ὴ ‬ Ὤὺ ‬ Ὤό                                         (3.165) 

 Substituting Eqs. (3.163)-(3.165) into Eq. (3.161) gives 

‬ Ὤό ‬
ὫὬ

ς
Ὤό ‬ Ὤόὺ Ὂ ‐

Ὡ

σ

ρ

ί

ρ

ς
‬ ‬ Ὤό ‬ Ὤὺ  

‐ ‬ ‬ Ὤὺ ‬ Ὤό                                 (3.166) 

If setting ί ί ρȾ †, in which † is the single relaxation time, and defining the 

kinematic viscosity ’ ‐ ς† ρ the equation (3.166) can be reduced to  

‬ Ὤό ‬ Ὤό ‬ Ὤόὺ Ὂ ’‬ Ὤό ‬ Ὤό            (3.167) 

 Similarly the following equation can be obtained from Eq. (3.162)  

‬ Ὤὺ ‬ Ὤὺ ‬ Ὤόὺ Ὂ ’‬ Ὤὺ ‬ Ὤὺ             (3.168) 

Eqs. (3.153) (3.167) and (3.168) are just the shallow water equations. It may be noted that 

when ίȣί ρȾ †, the lattice Boltzmann method with a single relaxation † time is 

recovered. Now, the shallow water equations are recovered from LABSWE
MRT

 with 

improved calculation for a force term and its performance will be tested in chapter 5.  
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3.12 Solute Transport Equation 

3.12.1 Lattice Boltzmann Model for Solute Transport Equation                        

Several lattice Boltzmann models for solute transport have been developed [46, 55, 136, 

137]. Ginzburg [82] developed a lattice Boltzmann model with two-relaxation-time (TRT) 

collision operator for anisotropic advection dispersion equation. Zhang et al. [46] 

presented a lattice Boltzmann model for the advection-dispersion equation with BGK 

collision on rectangular lattice, and discuss its boundary conditions [138]. In this thesis, a 

D2Q5 lattice Boltzmann model for advection-diffusion developed by Zhou [136] equation 

is adopted. The most important difference between this model and the others [46, 55, 137] 

is that the dispersion coefficient is not dependent on the relaxation time, and hence the 

relaxation time can be chosen freely for better accuracy and stability. However, in the 

other models, the dispersion coefficient is related to the relaxation time, and if the 

relaxation time calculated by the dispersion coefficient is very small, the computation will 

become unstable. Furthermore, the other models applied for solute transport by the lattice 

Boltzmann method are based on D2Q9, but the model adopted in this paper is based on 

D2Q5 (see Figure 3.3), which is simpler and saves computational effort. Another 

advantage of the model applied is that a rectangular lattice and different dispersion 

coefficients in the x and y directions can be used without modification [136] with a single 

relaxation time. The lattice Boltzmann equation based on BGK for the advection-

diffusion equation is  

Ὣ ὼ Ὡ ῳὸȟὸ ῳὸ Ὣ ὼȟὸ Ὣ ὼȟὸ Ὣ ὼȟὸ Ὓ      (3.169) 

where, Ὣ is the distribution function of particles, Ὣ  is the local equilibrium distribution 

function, Ὓ is the source term, † is single relaxation time and Ὡ  is the velocity vector 

of a particle in link ‌, as follows: 

Ὡ

ừ
Ừ

ứ
    πȟπȟ                                 ‌ π

Ὡ ὧέί ȟίὭὲ ȟ    ‌ ρȟσ 

Ὡ ὧέί ȟίὭὲ ȟ    ‌ ςȟτ

                         (3.170) 

in which, Ὡ ῳὼȾῳὸ, Ὡ ῳώȾῳὸ, ῳὼ and ῳώ are the lattice size in the x and y 

directions respectively. ῳὼ is equal to ῳώ for simplicity in this paper.  
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Figure 3.3 5-speed square (D2Q5) lattice in horizontal plane. 

 

The equilibrium distribution function is defined as 

Ὣ

ừ
Ử
Ừ

Ử
ứ ρ Ὤὅȟ           ὥ π

‗ Ὤὅȟ‌ ρ ὥὲὨ σ

‗ Ὤὅȟ‌ ς ὥὲὨ τ

                               (3.171) 

in which, ‗  is non-dimensional, and Ὀ  is dispersion coefficient in the ij 

direction. The concentration can be calculated by    

         ὅ В Ὣ Ὤϳ                                                            (3.172) 

The advection-diffusion equation (2.61) can be recovered from Eq. (3.169) by using the 

Chapman-Enskog analysis [136]. In order to simplify the process, the source term is not 

included in the following derivation.  

 

3.12.2 Recovery of the Advection-diffusion Equation 

In order to recover the advection-diffusion equation, the following constraints are 

introduced: 

В Ὣ Ὤὅ                                                           (3.173) 

В ὩὫ όὬὅ                                                      (3.174) 

 

Substituting the Equation (3.173) into Equation (3.172) results in 

В Ὣ В Ὣ                                                           (3.175) 

 

1

x

y

2

3

4

0
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The Chapman-Enskog expansion is used recover the advection-diffusion equation (2.61) 

from Equation (3.169) as follows: 

  

With the purpose of this, Ўὸ is assumed to be small and equal to ‐  

Ўὸ ‐                                                                         (3.176) 

Substituting Equation (3.176) into Equation (3.169) and ignoring the source term results 

in  

Ὣ ● ▄‐ȟὸ ‐ Ὣ ●ȟὸ Ὣ Ὣ                              (3.177) 

Applying a Taylor expansion to the left-hand side of Equation (3.177) in time and space 

around point (x, t), one can have 

‐ Ὡ Ὣ ‐ Ὡ Ὣ ὕ‐ Ὣ Ὣ           (3.178) 

Using the Chapman-Enskog expansion, Ὣcan be expressed as 

Ὣ Ὣ ‐Ὣ ‐Ὣ ὕ‐                                       (3.179) 

Taking the Equation (3.178) to order ‐, ‐, ‐  and the following equations can be 

obtained:  

Ὣ Ὣ                                                     (3.180) 

Ὡ Ὣ Ὣ                                    (3.181) 

Ὡ Ὣ Ὡ Ὣ Ὣ               (3.182) 

Substituting Equation (3.181) into Equation (3.182) leads to 

ρ Ὡ Ὣ Ὣ                                  (3.183) 

Taking [Equation (3.181) + Equation (3.183)×‐], the following equation can be obtained 

Ὡ Ὣ ‐ρ Ὡ Ὣ Ὣ ‐Ὣ     (3.184) 

Summing Equation (3.184) and rearranging it with the following equations. 

В Ὣ В Ὣ π                                         (3.185) 

В Ὣ π                                             (3.186) 

According to the conservation condition (3.175), the following equation can be given: 

В Ὣ В Ὡ Ὣ ‐ρ В Ὡ Ὣ π             (3.187) 

Substituting Equation (3.181) into Equation (3.187) gives  
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According to [46] , comparing with the first term, the last term on the right-hand side of 

Equation (3.188) is smaller, so it can be ignored and treated as a truncation error. 

Combining Equations (3.171), (3.173), (3.174) and (3.180) with Equation (3.188) leads to  

‗‐† ὩὩ                                  (3.189) 

with 

‗‐† ὩὩ Ὀ                                            (3.190) 

Then Equation (3.189) is the advection-diffusion equation (2.61) without source term. 

Considering ‐ Ўὸ in Equation (3.176), rewriting Equation (3.190) can give the 

expression of ‗ as  

‗
Ў

                                                      (3.191) 
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Chapter 4: Initial and Boundary Conditions 

 

 

 

4.1 Introduction  

In this chapter, various boundary conditions and inlet and outlet boundary conditions are 

described such as no-slip, semi-slip and slip. Study shows that the boundary condition 

play a critical role on the results of simulation and can affect the simulationôs accuracy, 

efficiency and stability [93]. Some typical work can be found in [123, 139-141]. 

Boundary conditions and initial conditions are still the fundamental problem of LBM and 

attract much attention [90, 107, 124, 142]. But this is beyond of this thesis, and we just 

briefly introduce the common boundary conditions and more detailed work can be 

referred to [106, 143, 144].   

 

4.2 Solid Boundary Condition 

4.2.1 No-slip Boundary Condition 

One of the most attractive advantages of LBM is its simple treatment of boundary 

conditions such as the bounce-back scheme. It can be implemented easily for flows in 

arbitrary complex geometries. The bounce-back and similar schemes for different 

boundary conditions, is very simple and efficient for no-slip, semi-slip and slip boundary 

conditions and is used widely for various flow problems. For example, in the bounce-

back scheme as shown in Figure 4.1, the part below AB is a wall and defined as solid; the 

part above is fluid. The unknown incoming distribution functions Ὢ, Ὢ and Ὢ from the 

solid are simply equal to Ὢ, Ὢ and Ὢ, respectively. Consequently, the specific location of 

solid points is not required and the programming is easy, making it the most efficient 

treatment for a no-slip boundary condition for flows in complex geometry [3, 44, 45, 145].  
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Figure 4.1 Layout of wall boundary and lattice nodes. 

 

4.2.2 Slip Boundary Condition 

If the boundary is smooth with little friction, the slip boundary should be used. As Figure 

4.1 shows, the unknown distribution functions Ὢ, Ὢ, and Ὢ. 

Ὢ Ὢ,     Ὢ Ὢ,      Ὢ Ὢ.                                           (4.1) 

It means that no momentum is changed in the direction normal to a wall and the velocity 

along the wall is kept.  

 

4.2.3 Semi-slip Boundary Condition 

In practical flows, a large velocity gradient exists near the boundary for turbulent flows 

due to the effect of wall friction. It cannot be described by slip or no-slip boundary 

conditions, and hence the semi-slip boundary is described to deal with this case. In order 

to construct the semi-slip boundary condition, the wall shear stress should be included. 

According to [3], the wall shear stress †  can be expressed by  

† ”ὅό όό                                                       (4.2) 

in which, ὅ is the friction factor at the wall and can be constant or determined by  

ὅ Ὣ ϳ  with ὲ is the Manningôs coefficient at the wall. By adding the wall shear 

stress to the force term, the semi-slip boundary condition is developed together with slip 

boundary. It should be noted that the distribution function is still dealt with by the slip 

boundary condition.     
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4.3 Inflow and Outflow Condition 

In order to obtain the correct results, the proper inlet and outlet boundary condition 

should be specified and it adds a constraint to flow for consistency with surrounding flow.  

As the LABSWE is only applicable to subcritical flow, the discharge and water depth are 

specified at inlet and outlet respectively normally. As Figure 4.2 shown, at inlet the 

distribution function Ὢ, Ὢ, Ὢ are unknown. If the water depth and velocity are known, 

these unknown distribution functions can be determined by the following equations as 

Zou and He [139], Zhou [3] proposed. According to mass and momentum conservation, 

with the relations (3.54) and (3.59), the following equations can be obtained: 

Ὢ Ὢ Ὢ Ὢ Ὢ Ὢ Ὢ Ὢ Ὢ Ὤ                               (4.3) 

ὩὪ Ὢ Ὢ ὩὪ Ὢ Ὢ Ὤό                                  (4.4) 

ὩὪ Ὢ Ὢ ὩὪ Ὢ Ὢ Ὤὺ                                (4.5) 

If v=0 is assumed, based on the above equations, Ὢ, Ὢ, Ὢ can be expressed as   

Ὢ Ὢ  ,                                                               (4.6) 

Ὢ Ὢ ,                                                     (4.7) 

Ὢ Ὢ .                                                     (4.8) 

Similarly, the unknown Ὢ, Ὢ, Ὢ at outflow boundary can be calculated by   

Ὢ Ὢ ,                                                               (4.9) 

Ὢ Ὢ ,                                                (4.10) 

Ὢ Ὢ ,                                                 (4.11) 

But, normally the water depth and velocity are unknown at inlet and they can be assumed 

by the zero gradient method or exploration method.  
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Figure 4.2 Inlet and outlet boundary conditions. 

 

For zero-gradient method: 

όρȟὮ όςȟὮ,                                                    (4.12)  

ὺρȟὮ ὺςȟὮ,                                                    (4.13) 

ὬρȟὮ ὬςȟὮ,                                                    (4.14) 

or exploration: 

 ὬρȟὮ ς ὬςȟὮ ὬσȟὮ,                                                (4.15) 

and assuming ὺρȟὮ π according to equations (4.3) and (4.4), one has 

 όρȟὮ
ȟ

ρὩ                                            (4.16) 

The water depth and water velocity obtained by zero-gradient method or exploration 

cannot meet the requirement of constant discharge at inlet, and a revised step is 

needed as follows: 

  

Q0 is the specified discharge and Qin is the calculated discharge. The equation (4.4) can be 

revised by adding the (Q0-Qin)/b which is a revised unit discharge.   

 ὩὪ Ὢ Ὢ ὩὪ Ὢ Ὢ Ὤό                        (4.17) 

So, Ὢ, Ὢ, Ὢ can be updated as:  
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Ὢ Ὢ  ,                                                      (4.18) 

Ὢ
ϳ

Ὢ ,                                        (4.19) 

Ὢ
ϳ

Ὢ .                                        (4.20) 

For the outlet boundary, the water depth is fixed and velocity can be calculated by  

όὒὼȟὮ ρὩ                                      (4.21) 

ὺὒὼȟὮ ὺὒὼȟὮὬὒὼȟὮȾὬ                                                 (4.22) 

So, the Ὢ, Ὢ, Ὢ at outlet can be calculated as : 

Ὢ Ὢ  ,                                                        (4.23) 

Ὢ Ὢ .                                   (4.24) 

Ὢ Ὢ ,                                   (4.25) 

If the no-slip boundary condition is used for the wall boundary, the corner point at the 

inlet needs to be treated carefully. More details are given in [93].   

 

4.4 Periodic Boundary Condition 

A periodic boundary condition may be used for some specific cases [3]. For example, if  a 

flow region consists of a tidal flow, a periodic boundary condition can be used. According 

to the flow feature, a periodic boundary condition in the x direction can be achieved by 

specifying the unknown Ὢ , Ὢ and Ὢ at inflow boundary (see Figure 4.2 ) with streaming 

to the corresponding distributions at outflow boundary, 

Ὢ ρȟὮ Ὢ ὔȟὮȟ ‌ ρȟςȟψȟ                                (4.26) 

and the unknown Ὢ, Ὢ and Ὢ at outflow to that at inflow boundary, 

Ὢ ὔȟὮ Ὢ ρȟὮ, ‌ τȟυȟφȢ                              (4.27) 

Similarly, a periodic boundary condition in the y direction can be achieved.  

 

4.5 Initial Condition 

Before computation, the initial condition for distribution function needs to be specified.  

Generally, there are two ways to specify the initial condition in the lattice Boltzmann 

method [3]. One is to specify a random value between 0 and 1 for the distribution 

function. The other is to assume a flow field with water depth and velocity firstly, then 

compute the local equilibrium distribution function Ὢ  and use it as an initial condition 
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for Ὢ. Normally, it is easier to specify a macroscopic quantity than a microscopic. So, the 

second method is better in practical computation, which is used in the present models. It 

is obvious that there is no difference between results calculated with these two initial 

conditions for a steady flow problem. 

 

4.6 Solution Procedure 

The solution procedures for the LABSWE, LABSWE
TM

 and LABSWE
MRT

 are extremely 

simple. It involves only explicit calculations and consists of the following steps:  

 

For LABSWE or LABSWE
TM 

1. Assume initial water depth and velocity, 

2. Compute Ὢ  from Eq. (3.49),  

3. Calculate the Ὢ from the lattice Boltzmann equation (3.24), or from the Equation 

(3.103) for turbulent flows together with the total relaxation time † calculated from 

Eq. (3.113).  

4. Renew the water depth h and the velocity u and v by Eqs. (3.54) and (3.59), 

5. Go back to step 2 and repeat the above procedure until a solution is obtained.  

 

For LABSWE
MRT

 

1. Assume initial water depth and velocity, 

2. Compute the equilibrium values of moments ά  from  Eq. (3.133) 

3. Calculate the Ὢ from the lattice Boltzmann equation (3.131), 

4. Renew the water depth h and the velocity u and v from Eqs. (3.54) and (3.59), 

5. Go back step 2 and repeat the above procedure until a solution is obtained.  
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Chapter 5: Applications of LABSWETM and 

LABSWEMRT for the Free Surface Flows  

 

 

5.1 The Flows in Rectangular Shallow Basins   

5.1.1 Introduction 

In order to verify the presented model LABSWE
TM

, its results are compared with 

corresponding experiments. Furthermore, the asymmetrical flows occurring in the 

rectangular basins with different ratios of length to width are simulated. The effects of the 

Froude number and bed friction on flow asymmetry and reattachment length are 

investigated. The aim is to test the feasibility and accuracy of the lattice Boltzmann 

method to study free surface flows in shallow rectangular basins. 

 

5.1.2 Background   

Shallow waters in open channels with sudden expansions are often observed in natural 

rivers and have received much attention. Additionally, the instabilities of flow in a 

symmetric expanded channel are well known [146-148]. Mullin et al. [147] examined the 

effect of variable ratios of the inlet to outlet channel widths within a 1:3 expansion 

experimentally and numerically and concluded that the length of the expanded section 

played a critical role in evaluating the effect of the ratio on flow instability, in which the 

flow is closed and limited to low Reynolds number (about 100). Graber [146] developed a 

mathematical stability criterion for subcritical flows in horizontal channels with 

rectangular expansions. Babarutsi et al. [149, 150] investigated shallow recirculation 

flows by experiments and numerical simulation. Both Babarutsi and Graberôs research 

focused on an expanded channel without contraction. The turbulent flows in shallow 

basins have also been studied for their important effects on aquaculture [151] and on 

sedimentation patterns [152, 153]. Dufresne et al. [154] investigated the symmetric and 

asymmetric flows in rectangular shallow reservoirs with different lateral expansion ratio 

and dimensionless length by numerical simulation. 
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Of particular note, Dewals et al. [148] analyzed the free surface turbulent flows in several 

shallow rectangular basins by experiments and numerical simulation using the k e-  

turbulence model and an algebraic turbulence model for high Reynolds number of 17500. 

They found that the flow pattern might become asymmetric even if the inflow and 

outflow boundary conditions and geometry of the basin were symmetric; the numerical 

simulations were found to reproduce the global experimental flow patterns.  

 

5.1.3 Boundary Conditions 

The boundary conditions include inlet, outlet and sidewalls. In the present study, semi-

slip boundary condition for sidewalls is used (as applied by Dewals et al. [148]), in which 

side wall friction coefficient Cwall=4Cb
 
and Cb

 
is bed-friction coefficient. The water depth 

is determined at inlet boundary, h(1,y)=h(2,y); and the velocity is calculated with 

u(1,y)=q(y)/h(1,y), in which the unit discharge q(y) is linear variation along the 

streamwise direction y following Dewals et al. [148]. Stochastic treatment is not adopted 

at inlet. For outlet, the water depth h0 is specified.  

 

5.1.4 Numerical Simulation  

It is known that open shallow flows in rectangular reservoirs can show a bifurcating 

behaviour under certain conditions [146, 148, 152]. This will be shown in this section. 

The same channel used by Dewals et al. [148] is adopted and shown in Figure 5.1. It 

consists of inlet channel with width b= 0.25m, expansion rectangular channel and outlet 

channel. The expansion rectangular channels with different length and width are 

considered, among which the channel with 6m long and 4m wide is studied in detail.  

 

The simulated flow vectors for different length and width have been compared with the 

experiments in Figures 5.2 and 5.3 which indicate that the simulations qualitatively agree 

with the experiments. Quantitative comparison will be discussed in the following sections. 

Meanwhile, different aspect ratios (L/B) and expansion ratios (B/b) have been studied for 

bifurcation phenomenon; here L and B are the length and width of the rectangle, 

respectively. The global moment N is used to quantify asymmetry of flow fields

0

1 L

N M dx
L
= ñ , in which 

2

2 2

2 B

B
M uydy

UB -
= ñ  where U = Q/(Bh0) and Q = 0.007m3/s, 

with the water depth h0 at the outlet channel. Figure 5.4 shows that the flow bifurcates 
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when the aspect ratio exceeds 1.25 or expansion ratio exceeds 2.5, which is consistent 

with that reported by Dewals et al. [148] although there is small difference in the global 

moment N. This demonstrates that the model can predict bifurcating behaviour of free 

surface flow in shallow rectangular basins. 

 

In order to verify the method further, the numerical results are compared with those from 

the experiments and conventional numerical method with algebraic model for flow 

turbulence. The asymmetric flow pattern in this channel has been found by Dewals et al. 

[148] in experiments. According to Dewalsô work, non-uniform specific discharge profile 

at the entrance to the inlet channel can generate the similar disturbance to flows as those 

in the experiment. The present numerical simulations confirm that such an approach can 

successfully produce asymmetric flows; hence it is used in the numerical studies. 

 

In computation, uniform grids are used and tD=0.01s. The single relaxation time is t

=0.53. The discharge is 0.007m
3
/s in all cases. For case 1, the rectangular basin is 6m 

long and 4m wide; the bed friction coefficient 
2 1 3

b bC gn h= is 0.0017 according to the 

Manning equation and inlet flow
rF u gh= is 0.1. In outlet channel, b1 is the same as 

b=0.25m.   

 

In order to obtain the grid independent prediction, four different grid spaces (ȹx = 

0.0208m, 0.025m, 0.03125m and 0.042m) have been tested and the results are displayed 

in Figure 5.5. It indicates that the calculated results fluctuates slightly as grid spacing 

decreases and the ȹx = 0.025m is small enough for present studies; therefore ȹx = 0.025m 

is adopted in all the computations. In the test, the reattachment length has been selected 

here for assessing grid independence of the results. However, the grid spacing might turn 

out not to be fine enough if other parameter like threshold geometry is chosen for the 

assessment. Furthermore, the Smagorinsky constant Cs = 0.1, 0.2 and 0.3 were tested. The 

results showed that the reattachment length is little sensitive to these values and then Cs = 

0.3 has been used in the present computation.  
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Figure 5.1  Sketch of the channel. 

 

Figure 5.2 Experimental (left) and simulated (right) flow vectors in the basin of 4m wide 

and 4m long. 

 

Figure 5.3 Experimental (left) and simulated (right) flow vectors in the basin of 4m wide 

and 6m long. 

 

Figure 5.4 Bifurcation for different aspect ratio (L/B) and expansion ratio (B/b) 
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Figure 5.5 Relative error of Lr against grid size ȹx. 

 

5.1.5 Comparisons of Results 

In this section, the computed results for case1 are compared with the experimental results. 

The asymmetric moment M is used to quantify the asymmetry of the flow fields. Figure 

5.6 displays the intensities of asymmetry obtained by the lattice Boltzmann model, the 

standard k e-  model and the algebraic model as well as the experiments by Dewals et al. 

[148]. 
exp

exp

comM M
E

M

-
D =  is used to evaluate the relative error between the predictions 

and experiments. In the figure for sections before x=1.8m, M is small and the differences 

among k e-  model, algebraic model and lattice Boltzmann model are negligible 

compared with that for the other sections; hence the relative error ED  is calculated for 

cross sections with x > 1.8m: the maximum errors are 0.51, 0.44 and 0.33 for -k e model, 

algebraic model and lattice Boltzmann model, respectively. Their average relative errors 

are 0.29, 0.16 and 0.16, respectively. Thus, the lattice Boltzmann model seems to have 

equal ability of predicting flow fields to the algebraic model. Furthermore, computed u at 

four representative cross-sections are compared with the experimental data and the 

algebraic model results. Due to the large difference between the -k e model results and 

experimental data, the results by  -k e model are not considered in the subsequent 

comparisons. From Figure 5.7 it is clear that the lattice Boltzmann model and algebraic 

model produce very similar results. Overall, the lattice Boltzmann model is found to 

predict the general flow patterns well in the rectangular basins. 
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Figure 5.6 Comparisons of intensities of asymmetry. 

 

Figure 5.7 Comparisons of streamwise velocities at x =1.5m, 2m, 3m, and 4.5m.
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5.1.6 Sensitivity Analysis  

Four different Froude numbers, Fr=0.10, 0.15, 0.28 and 0.44, for Q =0.007m3/s with 

variable water depths (h0=0.2, 0.15, 0.1, and 0.075m) and velocity at the channel inlet are 

used to assess the influence of the intensity on flow asymmetry. Figure 5.8 illustrates the 

asymmetrical moment distribution under different Froude numbers. It is apparent that the 

global flow asymmetry reduces with increase of Froude number. This is confirmed by 

Dewalsô research [148]. Furthermore, Froude number has clearly more influence on flow 

asymmetry in the range x = 1m and x = 5m compared to that outside this range. 

 

According to Chen and Jirka [155], the parameter St=Cbb/(2h) has been chosen to 

quantify the stabilizing effect of the bed-friction, where Cb is bed-friction coefficient; b is 

the inlet channel width and h is water depth. As Froude number increases, the water depth 

reduces, and then St becomes larger; hence the flow becomes less asymmetric. However, 

the above conclusion is only valid for the range Fr = 0.1 to 0.44.  Outside this range, the 

flow regime may be different. 

Figure 5.8 Asymmetrical moment distribution with different Froude numbers. 

 

 

Figure 5.9 Reattachment length for different Froude numbers. 
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Figure 5.10 Normalized streamwise velocity u/umax profiles at x = 2m.

 

Figure 5.9 displays the relation between reattachment length (Lr/DB, in which DB=(B-

b)/2 is the expansion width) and the inlet Froude number. There is no doubt that 

reattachment length will increase with Froude number; and the recirculation zone will 

also become larger. However, this conclusion is a little different from those by Dufresne 

et al [152] for two reasons: firstly, the lateral expansion ratio is different (1.25 in 

Dufresneôs paper but 7.5 in the present study), as well as the dimensionless length (20 in 

Dufresneôs paper but 3.2 in present study); secondly, in Dufresneôs research, the Froude 

number changes with discharge for a constant water depth, while the water depth varies 

and the discharge is kept constant in the present study. 

 

The normalized streamwise velocity u/umax profiles at cross-section x=2m for different 

Froude numbers are displayed in Figure 5.10. If the flow is symmetrical, the non-

dimensional distribution of u component of the cross velocity should be symmetrical 

about the y axis, and vice versa. The farther the asymmetry axis deviates from the y axis, 

the more asymmetric the flow is. It can be seen from Figure 5.10 that the effect of the 

Froude number is different on both sides of the cross-section and is stronger in the vortex 

zone on the right hand side.  
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As mentioned above, three different values of parameter St=Cbb/(2h) (bed friction 

coefficients Cb=0.00084, 0.0017, and 0.0034 with constant water depth) are tested to 

quantify the stabilizing effect of bed friction. Figure 5.11 reveals the asymmetric moment 

with different bed frictions. It indicates that the asymmetry in the flow field becomes 

weaker as the bed friction increases. When the bed friction increases, flow velocity is 

slower and then the flow pattern becomes less asymmetric. However, the reattachment 

length becomes longer as the bed friction increases as Figure 5.12 shows. In addition, the 

effect of bed friction on asymmetry seems not to be strong at least in the range of Cb 

=0.00084~0.0034 investigated. The asymmetry of flow is disadvantageous in most of 

engineering applications. Consequently, it seems reasonable that bed roughness 

adjustment offers an opportunity to reduce such disadvantage associated with the similar 

structure in hydraulic engineering. 

 

 

Figure 5.11 Asymmetrical moment distribution for different parameter St (St = 

Cbb/(2h)). 

 

 

St 

Figure 5.12 Reattachment length for different parameter St. 

 

 


































































































































