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Abstract

The lattice Boltzmann methodBM) proposed aboutlecades agbas been developed
and applied tesimulate various complex fluidslt hasbecomean alternativepoweiful
method forcomputational fluid dynamicsCED). Although most researcbn the LBM
focuses on the NavieiStokesequations, themethod hasalso been develogd to solve
other flow equationsuch asthe shallow water egtions In this thesis the lattice
Boltzmann modeldor the shallow water equatisrand solute transport equatidrave
been improved and appligd different flows andenvironmental problemsncluding
solute transport and morphological evolutiom this work, th thesinglerelaxation
time and multiple-relaxationtime models are usetbr shallow water equatie(named
LABSWE andLABSWE"RT, respedvely), and the large eddy simulation is incorporated
into the LABSWE(named LABSWEM) for turbulert flow.

The capability othe LABSWE ™ wasfirstly tested by applying it teimulatefree surface
flows in rectangular basingith differentlength-width ratos, in which the characteristics
of the asymmetrich flows were studied in detail The LABSWEYRT wasthenused to
simulatethe one andtwo-dimensional shallow watdiows over discontinuous bed3he
weighted centred scheme for force tetagether with the bed height for a bed slopas
incorporated ito the model toimprove the simulation of water flows over a
discontinuous bedrhe resistance stresssalsoincludedto investigatethe effect of the
local head loss caused lipws overa step. Thirdly, the LABSWE"R" was extendedo
simulate a moving body in shallowater. In order to deal with the moving boleries,
three different schemegith secondorder accuracy were tested and compéoetreating
curved boundaes. An additionalmomentumterm was added to reflecthe interaction
between thédollowing fluid and the solidand a refiled methodwas proposed ttreat the
wetted nades moving out fromthe solid nodes Fourthly, both LABSWE and
LABSWEMRT were usedto investigatesolute transport in shallow wateFhe flows are
solved using LABSWE and LABSWE', and the adveion-diffusion equationfor
solute transpornvas solved with a LBMBGK model basedan the D2Q5 lattice. Three
cases: open channel flow widhside discharge, shallow recirculation flow and flow in a
harbour were simulated to verify themethods. In addition, the performance of
LABSWE"RT andLABSWE werecomparedandthe resultshowedthatthe LABSWYRT



has better stability and can be used for flow with HrRgynolds numberFinally, the
lattice Boltzmann methodwvas used with the EulerWENO schemeto simulate
morphological evolution in shallow wateThe flow fields were solved by the
LABSWEMRT with the improved scheme for the force teramdthe fifth order Euler
WENO schemewas used to solvethe morphological equation to predict the

morphological evolution caused by the Hedd transport.
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Chapter ilIntroduction

1.1 Research Background

The shallow water equations have been applied widely in ocean, rivers and [de&kts
For example, it can be used to describe the tidal flows, tsuhgdraulicjump, and open
channefflows. Furthermore, coupled with the solute transportagign, the shallow water
equations can be used to predict tlodute transport such adistribution of pollution
concentration and transport of suspended sedinjéfit§]. Prediction of the flows and

related transport is important in environmemragjineering

Moreover,another important applicationf the shallow water equations is to study the
bedload sediment transpartwhich plays a key role in the morphological evolution
occurring in coastal areas, rivers, and estuaries, where the water flow is dominated
horizontaly and can be describday the shallow water equatiof&2-15]. Studies on
morphological changes have attracted increasing interest in the fields of water resource

exploitation and environment protectifit6-18] .

1.2 Traditional Method for Ballow Water Ejuations

Many different numerical methodsdve been developed and appliedstive shallow
water equatios in the past yearsThey includethe finite differencemethods (FDM)
finite elementmethods (FEM)and finite volumemethods (FVM) Each method has its
own features.For example, as indicated I8&hen[19], compared with FEMFDM has
two advamages: he firg one is thatt is generally faster than the FEM for a simitase,
which is more obvious fothreedimensionalcalculatiors [20]; the secondneis that it
generally does nosuffer from the local mass conservation problewhich is often
observed irafinite element modelOn the other hand, The FEM adopts the wastred
grids which can fit complex and irregular geometriresre easily than the BM.
Therebre the FEM can reduce thaumber of grids significantly with thesimilar

accuracyor flows in complicated geometries



Casulli and Chen@21] presented aemtimplicit finite difference method fotwo- and
threedimensonal shallow water flows witiydrostatic pressurassumptionCasulli and
Cattani[22] alsostudied the stability, accuracy and efficiency of a senplicit FDM
method for the thredimensional water flowdn recent yearsthe Weighted Essentially
Non-Oscillatory schem@WENO) has been used to sole shallow water equatiafor
solution with higher ordeaccuracyby a finite difference methodi22, 23]. For example,
Lu and Li[23] studied a series of multilevel high order time discretization procedures for
WENO scheme to solve the omkmersional and twedimensional shallow water
eqguations witha source term and indicated thatgerforms better than the WENO scheme
with RungeKutta time discretization in term @ccuracy and cos§telling and Zijlema
[24] developedcan accurate and efficient finite difference algorithm for static$ieéace
flow with nonhydrostatics assumptiand applied it tgredictwave propagation.

On the other handSheu and Fang25] presented the Taylggalerkin finiteelement
model to simulate the shallow water equations for wave propagatibmno dimensions.
Dawson and Proff26] coupled the continuous and discontious Galerkin methods to
solvethe twadimensional shallow water equatiod$e software TELEMAds used to
simulae the shallow water flowsyhich is developed by the finite element method and
has beerused widely[27]. Since thenComblen[28] et al. developed a finite element
method for solving the shallow watequations orthe spherelLiang et al [29] usal the

leastsquares finiteelement method to solve thieadlow-water equations

The FVM is also popular for solving the shallow water equatidihe application of
FVM to solve the shallow water equatiocan bedivided into threecategoriesaccording

to the type of flovg [30] as follows

Thefirst kind of modelis usedto simulatethe discontinuitiesupercritical flowssuch as
dambreak flow [31-35]. In these mode|sthe upwind schemeswvhich include flux
splitting, approximate Riemann solvers, @odv schemes and flux limiters amopted
The second kind of modés similar to the previous modeksxcept thathey can also
simulate wind waves, wave setugnd low frequency wave86-38]. In [36] breakers
wereused to represeas abrupt discontinuities in tisballow water equationin [37, 38|,
an upwind FW was adoptedwith an approximate Riemanrolger. Wei et al.[3§]

preserneéd a modelbased on a Godundype scheme with Riemann solvier simulate
2



shock waves and solitary waveBhe third model is applied ttdal flow and wind
induced current in river anelstuaried39-43]. The SIMPLE algorithmis used to couple

the water elevation and velocity componenthese modelg37].

1.3 LatticeBoltzmannMethodfor Shallow Water lows

On the other handjeveloped from lattice gas automathe lattice Boltzmann method
(LBM) has become a very successélternativenumerical method for computational

fluid dynamics.

Unlike traditional computational fluid dynamics (CFQe LBM is a microscopic
method. The fundamental idea h&thiLBM is to establista simplified kinetic model to
obey the corresponding macroscopic equations, i-& @&buations or shallow water
equatiors. By ChapmanEnskogexpansion the lattice Boltzmann equation cagcover
the correspondingnacroscopicequations The LBM is based on statistical physics and

can be regards askand of kineticmethod.

Born aboutwenty years agadhe LBM has beeapplied siccessfully tasimulatecomplex

flow, especiallyfor flows which involve complex boundary conditions and interface
between differenfluids [44, 45]. For example, Zharlg r e s e a {46-30] apgplied u p
successfully the LBM tanonequilibrium gas dynamics and microfluid. Their study
demonstrated the advantage of LBM in simulating redéle and mukphysical flows.

The development and applicatioof LBM during the last two decades has been well
reviewed[44, 45]. As arelative new method of simulating tHkid, the LBM is still
under development antilhas many attractivproperties Themain characteristicsf the

LBM have beensummarsed and reviewed by several researchigs44, 45, 51, 52].
Firstly, its algorithm is simple and efficient as only one singheiable needs to be
calculated This distinguishes it fronthe conventional numerical methods like the finite
difference and finite volume methods, which solve the nonlinear partial differential
equations with the aid of a special treatment for either pressure or advection terms.
Secondly, the LBM has an inherent f@& for parallel computation with little extra
coding, which is ideal and necessary to simulate ascgke real life flow problems.

Thirdly, it is easy to implement different boundary condsjaesulting in a very efficient



model for flows in complexgyeometries with variation in boundary such as porous media,

which still challengehe conventional numericahethod

The lattice Boltzmann method has betsveloped andised to solve the shallowater
equations successfull, 53-60]. Salmon[53] developeda lattice Boltzmann model for
ocean circulationZhou[3] derivedthe lattice Boltzmann method for shallow watand
discussed the force term representation in Wwhaccentred scheme is proposedad
proposed the elastic collisiorscheme for irregulaboundarycondition. Furthermorehe
[3] developedhe lattice Baizmann model including the turbulendsu et al. developed
a second order boundary for curved boundiaé} and a multiblock scheme for LBM for
shallow water flows[61]. Li and Huang[55 studied theadvection and anisotropic
dispersionproblem using LBM for shallow water flow3ubbs [62] proposed a léte

Boltzmann method for multiyer shallow water equatioby parallel computatian

1.4 Lattice Gas Aitomata

Lattice gas automaton (LGA) &special kind of cellular automaté.is a simple model
with discrete space, time, and particle velocities in which fictitious particles reside on a

regular lattice.

The first discrete model for fluid on a square lattice (HPP madesproposed by Hrdy
et al. [63] in 1976 which isthe most simpleLGA model for two-dimensional flows
However,the N-S equations cannot be recovered frilta HPP because of insufficient
symmetryof lattice [64]. In 1986, the correct lattice gasitomaton (FHP modelyas

proposed firstly by Frisch et 465] which can recouetheN-S equations.

The LGA consists of two sequential stegtreaming and collision. In streaming, each
particle moves to the nearest node along the direction of its velocity; then, collision
happens when particles arriving ahe node and change their velocity directions
according tahe assumedules.If the exclusion principte(i.e. no more than one particle
being allowed at a given time and node with a given velocitgdgptedfor memory
efficiency andt will resultin a FermiDirac local equilibrium distributiofi66]. The LGA
equation is

€ w Qb p & oD ¢ ofo ,|  TipB M, (1.1)



where¢ is a Boolean variable that is used as an indication of the preseabsence of
a particle, t is the time,Q is the local constant particle velocity, is the collision

operator, and is the number of directions of the particle velociaégach node

The physical variables, density and velocities are defined by
"B @& g (12 6 -B & @, (1.3)

in which@& Odenotes the ensemble averagé ofn statistical physics.

The LGA has two main disadvantagethe first is statistical noise like any particle
method, and the second one isomputationalcomplexity which is serious for three
dimensional case In order to overcome these disadvantages, the lattice Boltzmann
method has been develodéd].

1.5 Lattice Boltzmann Mthod

1.5.1 Lattice BoltzmannEquation

As stated beforehe lattice Boltzmann methatiginatedfrom thelattice gas automaton
(LGA) to overcome itshortcoming The main difference between LBM and LGA is to
replace the Boolean variable witingleparticle distribution functionsi.e.& O "Q
"Q T1in LBM. Meanwhile individual particle motion and partiefgarticle correlations
in the kinetic equationare neglected Equation(1.1) can beewritten asthe following
lattice Boltzmann equatid7],

Mo QM p "Qaud Qofd , | mipB D . (1.4)
This procedure eliminates the statistinalse in a LGA and retaird| the advantages of

locality inthe LGA which is essential for parallel computifidyd].

The lattice Boltzman method was introducddst as an independent numerical method
by McNamara and Zanetf67] in 1988. Higuera and Jiénez[68 madean important
simplification forthecollision operator anchey linearized the collision terlyy assuming
the distributionis close tats local equilibrium stateA particular simple linearizetbrm

for the collision operatois to usea single time relaxation towards the local equilibrium,
which isknown asBhatngarGrossKrook [69] collision operataris proposed by some

researcher§70, 71]. This schememakes the LBMbecome a very efficient method for
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simulating fluid flows.Up to now the lattice Boltzmann equation with the BGK collision
operatoris still the mostpopularlattice Boltzmann methodOver the past years, the
lattice Boltzmann methadfor fluid flows has attracted much attention and been
improved and extended greaf]¢4, 45]. The development of LBM will be reviewed

briefly in the following sections

1.5.2 Entropic Lattice Boltzmann Method
It is found that when the BM with BGK is applied tohigh Reynolds number flosy it

will become unstabl¢45]. The studyindicates tha&an multiple-relaxationtime (MRT)

can improve it but it camot remove this blemand thefundamental reason dfis is

that for a given latticethe velocity or its spatial gradient is too large which leads to the
negative values of distribution functiofs the BGK-LBM abandoned thél theaem, no
constraintis imposed on the evolution of distribution functions to ensure their non
negative kBhaviour at every grid point atl times In order toovercomethis shortcoming,
Entropic LBM (ELBM) is proposed72-76]. Normadly, thereare two kinds of ELBM and
Keating et al[77] reconciled them and showed some similariti®th GaussHermite

guadratures, the discrete form of the standardinuumH function can be writteto
oQ B 4 i—, (1.5)

whereB 0 p.
In the ELBM, the collision term is determined order toextrene H and tokeepbalance
on a constant entropy surface,
OB RQ  O"OB RQ . (1.6)

To make surehatH neverreducesextreme valuef the functiondl "O is given by(Here
“ 1P andf i are Lagrange multiplie)s

10 1B O Q1M m (1.7)
whered Q@ "4 TQ0
Due to the requirement of the mass and momentum conservationQ tie the
exponential formThe Lagrange multipliersan be obtained according tioe first and
second moment$ and” 6 . As shown in referencelsr2-74, 78-80], for the D3Q27

modelthe™Q can be expressed by

M "0Bb ¢ 6 — i=1,6é, 27, (L8



with 6 p 006 , andthe detail includingweights can be found ir[45]. The
expression fofQ in the above equigon is also valid for latticenodels D3Q15 and
D3Q19 [77]. Furthermore, reducinghe number of discrete velocities leads to minor
differenceas indicated by Keating et 4lf7]. However, Luo et al[81] compared.BM
with multiple-relaxationtime (MRT-LBM), LBM with two-relaxationtime (TRT-LBM),
LBM with singlerelaxationtime (SRT-LBM), ELBE forthe N-S equationsin his study,

it is indicated that ELBE seems dotimprove the numerical staliif of SRT-LBM, and
both of MRT-LBM and TRT-LBM are better than ELBE an8RT-LBM in terms of
accuray, stability, and computational efficiencyherefore, itneed further study on the

performance ofhe ELBE.

1.5.3 Two-RelaxationTime lattice Boltzmanmethod

As an improved model on thd8GK, the tworelaxationtime lattice Boltzmanmmodel is
proposed byGinzburg et al[82] andapplied to tle advection andnisotropiedispersion
eguations demonstratingts advantageWhen the tworelaxation timestake the same
values the TRFLBM is reduced toSRT-LBM. On the other hand[RT-LBM can be
connected with the MRLBM with relaxation timesvhich will be described in the next

section

1.5.4 Multiple-RelaxationTime LatticeBoltzmannMethod

The multiplerelaxationtime lattice Boltzmann equation is developed ldfidmiereq83],
which overcomes the disadvagéaof LBM with BGK (BGK-LBM) as indicatedn [84].
Lallemand and Lu¢85] studied the stability oMRT-LBM and showedthat the MRT-
LBM is much more stable than BGKBM because of the use of different relaxation
times which can be tuned for optimal stabililty.recent years, the MRIBM become
increasinglypopular.The MRT-LBM is briefly introducedas follows

If the D2Q9 model is adaed, e evolution equation fahe MRT-LBM without external
force termis [83, 85

Ne gl wo Qv 4y 4 & ao a o (19



whereda  9,;Q°Q 4|, & andSis the relaxation matrix$=diag(so, S S % S S S
S7, $), T is the transform matrixefinedin [85], "Qis the distribution function of particle

Theequilibrium values of moments is

R V. T A Ve

¢ 4 "h¢ o QF oQ QFRCh OHOh Oh—h—
(1.10

Using the Chapmaiiengkog procedure, th&-S equations(2.5) and (26) can be

recovered witthe kinematic viscosity
e - -jp 0w® - -jo 117

The other relaxation parameters candbese freely in the rangeof 0~2in order to
achieve most stable LBI85].

1.5.5 Grid Refinement

In the LBM, the Cartesiaroordinatels employed which means that a regular grids have
been used in computation. There are two challenges of tlengiform grids: the first
oneis difficulty in providing the results with high resolution near the solid boundary; the
otheroneis that it uses too muchor lessuniform grids in an unnecessany necessary
flow regions, which results in waste @dlcuation poweror inaccurate solutiof86]. One
way toresolve the problenis to divide thecomputatioo domain into different blockand

use different grid sizes in each block such as that usbe iconventionaCFD. Although
therectangulatattice Boltzmann methoproposeddy Zhou[87, 88] andLallemand et al.

[89] can reduce computational effort for flows with dominant flow feature in one
direction, the grid refinements desirable formost casesand ®me progress hadveen

made in recent years.

The firstgrid refinement methodor LBM is proposed byFilippova andHanel[90] in
1998 which is a secondrder schemelin and Lai[91] proposed arid structure which
consists of a coarse base gaidd one or several fine gridShe coarseyrids cover the
whole computationatlomain butthe fine gridsare only placed at parts where local grid
refinement is neededhe simulation is first carried out on the coarse grid level, so that
largescale flow features can lbmbtained Later, fine grid variables are initiate@he

information between two level grids can be exchanged on the grid interface.



Based on multipleested lattices with increasing resolutigandhai et al[92] described
a Finite-Difference LatticeBoltzmann method with BGIKn nested gridsThe calculation
is carried oubn each sulbattice and interpolatiors used taouple the sugridsbetween
the interfacesOn the other hand, in the method proposed by Yu €¢86], the blocks

with different grid size are not overlappedach other, and blockseaonly connected

through the interfaceliu applied the noroverlapped multblock grid to LABSWE and

improveits accuracy and efficiend@3]. Other progress ogrid refinementan be found

in referencg94).

1.5.6 Parallel @mputation

For practical projects, a huge number of grids are needed and uiresechigh
computational powerTherefore, parallel computation is desirable for all kinds of
numerical methods. One of the most attractive featurésedfBM is that it is easy to
implement the parallel computation. the LBM, the current value of the distribution

function depends only on the previous conditionstaedollision steps local.

Parallel computatiorof the LBM can further be enhanced by using tG@U-based
computingsystemswhichhas attractedhanyreseat h e r s 6 [2597. &@he paratieh
computatiorof LBM on CPUbased architecturesin beachieved on both distributed and
shared memory systemg.or examplePesplat et al[98] presentedh parallel LBM code
named LUDWIG in which implementing message passing interface (M®Iusedto
achieve full portability and good efficiency on both massively parallel processors (MPP)

and symmetd multiprocessing (SMP) systems

Recently, the LBM has beemmplementedon hardware acceleratesiystems using
Graphics Processing Units (GPWnd has been accelerated on a single GPU
[99-10]] or a GPU cluster [102 with MPI. Furthermore the LBM for the two
dimensionaNavierStokes equations weacarried ouusing the Computé&nified Device
Architecture (CUDAM) interface developed by NVIDIA

The parallel computation of LBM for shallow watgsingon CPUand GPUwasstudied
by Tubbg 103 and showedttractive performance

9



1.5.7 Moving Boundary

The moving body bounds® is a time dependent probleinvolves the soliefluid
interaction moving solid ananoving boundaryln order to solve this problem, two kisd
of method have been proposed: thegrangian methods and Euleriamethods

[104.

In the Lagrangian methods,mesh is moving as the moving solid in which the sibliidi
interface can beaptured accutaly. But, the mesh regeneratimneeded at every time

step in this rethod, which is time consuming, whictduces the effiency.

On the other handhe Eulerian method use a fixed mesh in which the draation of
interface is unknen and thisresults inthe difficulty inimproving the accuracy when the

solid shape is irregular .

For the lattice Boltzmann method, because itlecal for calculation and se the fixed

Cartesian gridit seem that it is easy to implement the moving boundary as shown in the

later chapter Based on the curved boundary condition#)e moving boundary for Navier

Stokes equations usirge lattice Boltzmann method has been studied by Lallemand and

Luo [105 and Kao and Yang[10§. Lallemand and Ludl105 ext endeds Bouzi di
method[107] and studed the moving boundary systematically. Kao and Y&hg6

summarized various approaches #ocurved boundary and proposadew methodor

curved boundary and moving boundaries with the interpolditeatreatment.

1.6 Objectives

Although developedyuickly overthe past two decadgethe lattice Boltzmann method is
still a relative new method compared tbe traditional CFD methodst has sore
drawbacks and needs further improvemdrirthermore, n spite of the fact thathe
lattice Boltzmann method for thehallow water equatiahas demonstrated its potential
and attractive capabilities in simulating shallow water flowstilit needsto be improed
andtested for more flow problem3herefore, the applicatisrand improvement othe
LBM for shallow water flows is the curreatm. The detailedbjectives of this thesican

be summarized as follows

10



1. To study and apply theBM to the shallow water equatisrarnd solute transport
eqguationin environmental problems. The multiplelaxationtime and singlegelaxation
time are adopted in the LBM for shallow water equatimmd the large eddy simulation is
incorporated into the LABSWE.

2. To predict theasymmetricflows in rectangular basins by LABSWE and test the

feasibility and accuracy afABSWE™ for free surface flows

3. To investigatehe performance dfABSWE with MRT (LABSWEMR") and theLBM
with SRT collision operato(LABSWE and LABSWEM). The purpose of adopting the
MRT is to improve the stability and accuracytioé simulatiors.

4. To improvethe LBM for simulating the twalimensional shallow water flows over
discontinuous bedsThe flows are simulated by LABSWET in which the weighted
centred scheme for force term together with the bed height for a bedvwsspsed to
improve simulation bflows over discontinuous be&urthermore, the resistance stress is

added to include the flow head loss caused by a step.

5. To extendto LABSWER" to simulate a moving body in shallow waters. In order to
deal with the moving boundaries, three differecttemedor a curved boundary condition
at second order accuragye used and compareBurthermore certain momentum is
added to reflect interaction between theid and the solid and a refithethod for new

wetted nodes moving out from solid nodes has been proposed.

6. To investigate the solute transport in shallow water flowshiey BM. The flows are
solved using LABSWEand LABSWE'R", and the advectiediffusion equation is also
solved with aBGK-LBM on a D2Q5 lattice. Three cases: open channel flow with side
discharge, shallow recirculation flow and flow in a harbour are simutateerify the

described methods.

7. To develop a coupled model for simulation thie morphological evolutiomunder

shallow water flows. The flow fields are solved by LABSW/E with the improved

11



scheme for the force term. The fifth order EAIENO scheme is used to solve the

morphological egation for the bed evolution caused by #eald sediment transport

1.7 Outline oftheThesis

This thesis consists oigh chapters.

The chapter 1 introducéise research backgrouaadthe history of thelattice Boltzmann
methal, reviews the developmenand applicatiorof LBM in recent years briefly and

outlinesthe objectives of this thesis.

Chapter 2 briefly describes the-$lequations anthe shallow water equationaithout
turbulence and with turbulence tyubgridScale StressSGS mode| in which the

shallow water equations are derived fritaN-S equations in detalil.

Chapter 3 presestthe lattice Boltzmann method fahallow waterflows, including
LABSWE, LABSWE™, and LABSWE'RT. With these three kinds of lattice Boltzmann
methodsthe correspondinghallow water equatiorare recoveredA new form offorce
term is introduced il ABAWE“RT which can improve the predicted results as shown in
chapter 6.

Chapter 4discusses thénitial and boundary conditiog used inthe lattice Boltzmann

method.In this chapter, the nslip, semislip and slip boundary conditions are presented.

Chapter 5 applies LABSWF to study free surface flows in rectangular shallow basins
and simulates the flow ovea discontinuousedin which water head loss caused hy
step has been considered.

Chapter6 studies the application dfie LBM for solute transporin which theadvection
diffusion equation has been coupbleih the shallow water equations. Furthermadhe,
performance of LABSWE andABSWEYR™ are compareih detail

12



Chapter7 uses IABSWE'RT to simulatea moving body and compares the predicted
results with corresponding experimental results, in which three different kinds of curved

boundary conditioshave beemvestigated in detail.

Chapter 8applies the LABSWE“RT to predict morphological evolutionwhich is
dominated by betbadtransport.

Chapter9 summarises the conclus®and recommersfuture work.
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Chapter 2: Governing Equatiom for Shallow

Water Hows

2.1 Introduction

In physics and engineering, the basic laws are conservation of mass, momentum and
energy.But for isothermalflow, the law of energy is not included. In this chapter, the
NavierStokes (NS) equations which are the governing equations for the motion of fluid
are introduced, folloed by the introduction of its simplified versipthe shallow water
equatiors. Furthermore, the shallow water equations are derived in detail from-ge N
equationsand it can be used tdescribe the flow in which the horizontal scale is much
larger than the vertical scale.ulerical methodsof turbulent flow are described i

which the large eddy simulation is emphasized. Last, the shallow water equations

including S5S model are presented

2.2 The NavierStokesEquations

The governing equations for general incompressible flows arehtieedimensional
continuity and NavierStokes(N-S) equations thaére derivedromNe wt onds second |
of motion and the mass conservation. If Cartesian coordinate is adopted,-She N

eqguations can be shown as follow

— — — T 2.1)
— - — — —— 0 (22
— L — — —  —— 0 (23)
— C— — —  —— Q24

in which x, y, z are the Cartesian coordinate (see Fig. 2ul)y, and w are the
corresponding velocity componentespectively’Q "Q, andQare the body forces per
unit mass in the correspondidgection;’ is the kinematic viscosity] is the pressure?

is the fluid density; antis the time
14



The equations (2-2.4) canalsobe written in tensor form as

— T (2.5)

— — 0 —— — (2.6)

where the subscriptsandj are space direction indicéQis the body force per unit mass

acting on fluid inthei direction; and the Einstein summation convention is used.

4,

Figure 2.1Cartesian coordinate system.

Physical interpretations can be given for all the terms in H&edquationsTheterms on

the lefthand side of Eq. (2.6) is an inertia termwihich the first and the second terms are
called unsteady term and convective tegspectively The three termen the right hand

side of equation (2.6) are the body force term, the pressure term and the viscous term
respectively. Normallythere isno analytical solutiorto the NS equationexcept for
some simple situations. However, @amputer power increases is feasible to obia
numerical solutions for thequations. Thysnumerical methods plagn increasingly

important role in solving flovproblems in engineering.
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2.3TheShallow Water uations

The flows in rivers, estuaries, and coastal areas can be described by the shallow water
equations because the water depth is much smaller than the horizontal scale, in which the
assumption of théaydrostatic pressure is adopted and hetigevertical acceleration is
ignored. Stasby and Zhou[108 shows that both 2D and 3D shallomater equations

cannot predic the vertical velocity accuratelyFurthermore, the 2D shallow water
equation is more efficierthan the 3D. Therefore, the 2D shallowteraequations are

used inthis thesis

The shallow water equations are derived from démtgrating the Naviei Stokes
equationg2.1) - (2.4) with assumption implying thdhe verticalvelocity of the fluid is
small with hydrostaticpressureand constant velocities ovéne water depth[3]. The
shallow water equations arauthderivedn the following section

The body forces for the flows can be divided into two categories: gravity and Coriolis
acceleratiorbecause of he e ar t fl@Js With the Cartesiamcoordinate system,
the body force can be described by

Q "Q,Q ™, Q (2.7)
in which, "Q=9.81m/¢ is the gravitational acceleratiol® ¢ { "Qis %bhe Coriolis
parameter with  x& pmi wMwhi ch s t he &arst hbtse reatrathid

latitude at theorrespondingsite.

Firstly, the continuity equation for shalv water equations is derived by integrating Eq.
(2.1) over depth,

— — — Q4T (2.8)

which resultan

—Q§_. —Qau 0 m (2.9)

where0 and0 are the vertical velocities at channebttom and the free surface,

respectively; and is the bed elevation aboeadatum (see Fig. 2.2).
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Figure 2.2 Shallow water flow sketch.

The Leibnitz rule can bexpresse(110],

0w — Qv Qo QMn — Q6 —, (2.10)

The first and second terms on the left hand side of Eg. (2.9) can be written as
—Qa —, 0Qadé — Q ¢ o —, (2.11)

—Q4 — 0Qav—"10 a o6 —, (2.12)

Substituting Egs. (2.11) and (2.12) into (2.9) leading to
htz, hig . .
AR RS TR RN R
Thekinematic conditions at the free surface and channel bottom are,
0 —10Q a 0 —"Q «a o— "0 a , (2.14)
6 — 6 — U —. (2.15)
Substituting Egs. (2.14) dr(2.15) into Eg. (2.13) results in
- — — T (2.16)
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which is just the continuity equation for the shallow water equationé andufare

depthaveraged velocity components and defined as

6 - 604217, of - 0 Qa (2.18)

Next, the momentum equation for shallow water flow will be derived. Eq. (2.2) is

integrated ovewaterdepth and the following expression can be obtained:

Jou. Yy (W (wg "F u K u juoe
d —- )7‘ 2.19
neut e Ty ol P ;g fiy Jed by g aneao)

Once gain, the Leibnitz rule (2.10) is used for the first three terms on thidett side
of theEq. (2.19)eads to

—Qd — 06Q@6o—10 a o —, (2.20)
— Q4 — 60QHB6—TQ & 60 —, (2.21)
— 0§ — LOQWO—TQ a 06 —. (2.22)

The last term on thieft hand side of Eq. (2.19) can be integrateddng to
—Qa V6 0O . (2.23)

Combiningit with Egs. 2.20) - (2.23) andrewriting the results yields the following

equation
h g h g
nZ}:[ltJ (W (L:‘)’ SZ = l’LJﬁIZ _X+ Huﬁz—+ \dezﬁ
Moy Hu  toH 3 B O Y. H (2.24)
u a a |z, 2 ¢
usfwS —(h —(h zF+ «—(h Ty ]
gw, fb)u;:( 4 \4y§ 3g%§’tp“_xuy_y

Referto the kinematic conditions (2.14) and (2.16pmbired with the Egs.(2.17) and
(2.18), Eq. (2.24) can be rewritten as

— Q4 — — 60Qa— 006Qa (2.25)

With the second mean value theorem for inte@ital§,
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VOQOQM Q- QOQG (2.26)

The second termantheright-hand side of Eq. (2.25) can be expressed as

66Q4 . 6Qa06"D, (2.27)

And the last term on theght-hand side of Eq. (2.25) can be expressed as

0O QQo | 0'Qa o6 "W, (2.28)
Assumingd —6andd  —o0 and substituting Eqgs. (2.27) and (2.28) into Eq. (2.25)
leads to
— Qo . (2.29)

where—and— aremomentum correction factors and atetermined by Egs. (2.27) and
(2.28) as

— — 0 6 Qq(2.30) — — 0 6 Qa(2.31)

Similarly, the following expression for the terms on the left hand side of equation (2.3)

can be obtained.

— Qd . (2.32)

in which, an additional momentum correction faeters defined by

— — 00 Qa (2.33)

The first termontheright hand side of Eq. (2.19 integrated as
QO Qo QW[ (2.34)

Since the vertical acceleration can be ignaredomparisorwith the horizontal effect in
shallow water flows, the momentum equation6)dn the z direction is reduced with

1 Ttto
— "0 (2.35)
19



whichis integrated and the following expression can be obtained
n " QAo , (2.36)

whered is anintegration constant.

The pressure at the free surface is the atmospheric pr@ssdoe examplery 1 at
a Q a,inabove equatiom can be calculated by
0 "M a n. (2.37)

Substituting Eq. (2.37) into Eq. (2.3@&sulsin
n "M a a n. (2.38)

Normally,r} is almost constant in theorrespondingarea and oftemssumedo be zero,
i.e.n 1. Because the difference in atmospheric pressure at water surfasaaity
smallin mostshallow water flowg112, Eq. (2.38) reads

n ""Ma a. (2.39)

The Equation Z.39 is often referred toas the hydrostatic pressure apprmation in

shallow water flows andifflerentiating itto x gives

— e A . (2.40)

Because both of water depthand the bed height are functions of the horizontal

coordinatex andy only, the following expression can be obtained:

——Q4 -—. (2.41)

Combining Eq. (2.40) with Eq. (2.4&an give
-——Qq —"10Q a . (2.42)

The following approximations amgiven for the third and fourth termsn the right hand
sideof Eq. (2.19).

Q4 ——, (2.43)

QY —— . (2.44)
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The lastterm on the right hand side Bfy. (2.19) is calculated as

—Q4 ' — '— h (2.45)

Normally, the terms on the right hand side of Eq. (2.45) can be approximated with the
surface wind shear stress and the bed shear strégmexidirection, respectively,

- — (2.46)

JU— (2.47)

Therefore Eq. (2.45) can be written as

Q4 — —. (2.48)

Combining Egs. (29), (2.34), (2.42)2.44),and (2.48) with Eq. (2.19) leads to

u(ho) | wghut) . fghvg =g_Lﬁhz gn 2(ht) ,ngiﬂ) hHZb v f_ Y (2.49)
Mt K yu x@+ xxuuyyuux roor

The above equation is the momentum equation for shallow water flalwsxmirection.

The momentum equation in thedirection for shallow water flows can be derived

similarly as
HhY) | Wghty) pghvy) K o Nn LUV ) gh- fchu _@. (2.50)
it K w oyFe Y0 W yy Wy r

Theoretically, ifthe velocity profiles foru andv are known, the momentum correction
factors—, — and— can be calculatedrom Egs. (2.30) (2.31) and (2.33). However,
normally it is not easyto calculatethese momentum correction facters — and—
because there are no universal velodistributionwhich arevalid for all flows. On the
other hand— p, — pand— p are usedwidely in numerical simulation for
shallow water flows anthesestudyshows thathis assumptiorcangive goodresultsfor

most shallow wateflows [113-114].

Thereforewhen— p, — pand— p are adopted, Egs. (2.49) and (2.50) become
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o — : w— g — —,

(2.51)

o — ' w— e — —,

(2.52)
After the overbars are dropped for convenience, the continuity equation (2.16) and the

momentum equations (2.51) and (2.52) cae@essetdh a tensor form concisely as

- — T (2.53)
Q- '— 0, (2.54)
in which, the force terriOis defined as
O w— — — 0, (2.55)
wherethe Coriolis termO can be calculated by
: Odh Q ah
@) "OBH O 8 (2.56)

The bed shear stregs in the i direction can be calculated by the deptleraged

velocities,

T "66 60, (2.57)
where,0 is the bed friction coefficient, estimatdtbm® Q06 , whered is the
Chezy coefficientalculatedby either Manning equatiof2.58), or the ColebrookVhite

equation(2.59)[117],
6 Q¢ , (2.58)

inwhich ¢ i s the Manning6s coefficient at the b

8 o i ¢c— — (2.59)

in which0 is the Nikuradse equivalent sand roughness and measured by experiments.

Furthermore, the wind shear stress canlitained by
T 00 o o0 (2.60)

in which,” is the density of aip  is the component of theelativewind velocity in

thei direction, ando is the resistance coefficient of the wadérinterface.

22



It should be pointed that the use of the second mean value theorem (2.26) implies that the
horizontal velocitie® afuhifd andd ¢hofoid do not change their directions along the
water depth. It indicates thatahufand 0 ord ahufhd 0 from channel bed to free
surface at locationx(y) and so is) ciufolo . This is the reason why a model based on

2D shallow water equations cannot predict flow separations in vertical direction
accurately.In this section, the shallow water equations are derived briefly from the N-S

equations and more details can be foundin [3].

2.4 TheAdvectiondiffusion Equation

Thewater depthaveragedidvectiondiffusion equatiorcan beexpressed as:

— 0— Y (2.61)

where the subscripts and ] are space direction indices and the Einstein summation
conventon is usedi is time, C is the deptkaveraged concentratio®, is the dispersion
coefficient in directioni, “Y is the deptkaveraged source terrh,is water deptho is
velocity, w stands for eithex or y in directioni or j. This equation isisedfor isotropic

flow.

2.5Numerical Methods for Turbuléfrlow

Most fluid flows encountered imature and engineering applicets are turbulent.
Numerical simulation of turbulent flows is important for researchers and engineers. Even
though turbulent flow can be observed easily, it is difficult to describe it accurately.

However, the following feates are expected to exhibit for turbulent flows according to

[119:

(a) They aredisorganized and chaaotic.

(b) There is nonrepeatability.

(c) They haveextremely large range of length and time scales but even the smallest scales
are stilllargeenough to satisfy the continuum hypothesis.

(d) Itis three dimensional, time dependend aotational.

(e) Itis intermittent in both space and time.
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In general thereare threekinds of numerical methods teimulate turbulenflow: Direct
Numerical $mulation (DNS), Large Eddy #nulation (LES) and BynoldsAveraged
Navieii Stokes (RANS). McDonough [118 compared these threenethods and

summarized resulis follows:

Firstly, although the DNS requiresmodelling, itdemands resolutioat all scales. This
leads to total arithmetic scaling at leasRa3(Reis the Reynolds numbemr worse. It is
clear that it is unacceptable for engineering fldvesausehe Re can be up to 10or
larger in engineering flows This requirement has beyond the power of present

computation.

For LES the amount of required modelling is dependent on the amount of resolution, but
it is unlikely that total arithmetic will scale worse thRe. LES has ben incorporated

into CFD softwarefor practical engineering applications. Furthermore, it has been shown
that LES procedures generally converge to DNS as discretization step size and filter

widths are refined.

Finally, theRANS requires modelling of everything of all scales. As a consequence, total
arithmetic is a weak function of Re at most. In which, @e- modelis most widely

used.

In the present studyhe LES is used tdescribe turbulenflow. In LES, the oldestput
yet still usedwidely, the Smagorinsky mod¢lL19 is used in this thesisecauseof its

simplicity and easy implementation ihelattice Boltzmann method

2.6 SubgridScale Stresslodel

The governing flow equations withthe LES for turbulent flowscan be derived by
including a spacdiltered quantity in the continuitgquation(2.5) and the momentum

equation(2.6). The spacdiltered governing equati@tan be expressed as

— T (2.62)

- — 0 —— — — (263



in which ¢ is the spacdiltered velocity component ithei directionand isdefined by

6 GGfiid @y, O QUG OTRRIRIRNOSRIEN (264

whereG is a spatial filter functiont isthesubgridscale stress (SGS) thaflects the

effect of the unresolved scales with the resolved scales and determined by
T 00 00. (2.65)
With the Bussinesq assumption for turbulent sges, the subgrscale stresgan be
expressed usingn SGS eddy viscosity as
T —_ — . (2.66)
Substitutingeq. (266) into Eq. (263) givesthe momentum equation
_ —  Q -—— T — (2.67)

If the standard Smagorinsky SGS moddl9 is adoptedand the eddy viscosity can be
expressed by
’ oa Y'Y, (2.68)

whered is the characteristic length scafe is Smagorinsky constarand™Y is the

magnitude of the large scale stra@te tensor and determined by
Y - — — . (269

The equations (B2) and (267) are the moified continuity and\-S equatiors used ashe

LES for turbulent flove. The finer the grid size, thede the unresolved scale eddies.

Similarly, the shallow water equations including the SGS mi@jlelan be derived as

— — 7 (2.70)

o ' ' —— 0 (2.72)

whered is the deptkaveraged spaefdtered velocity component,t is the depth

averaged subgridcale streswith eddy viscosityand is expresseday
T T — (2.72
The eddy viscosity takes the same form as Eqg. §8), but the'Y is represented by

Y- (273
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Chapter 3: Lattice Boltzmann éthod

3.1 Introduction

Lattice Boltzmann method is a modern method evolving from the lattice gas cellular
automata(LGCA) which was developedmore than twenty yearago. It has becoma
popular methodn various areasThe lattice Boltzmann methocbnsists oftwo steps:
collision and advection. It avoids the disadvantage o€AGuch as théack of Galilean
invariance(Galileaninvariancemeans that the fundamental laws of physics are the same

in all inertial fram@, and statistical noise.
3.2 Derivation otheLattice Boltzmann Buation

The lattice Boltzmann equation is not only evolved from the lattice gas automatanbut
also be derived from the continuum Boltzmann equafi@@0, 121] as shownin the

following.

The Boltzmann equation with BG&ollision operator read$9],

— B0 -0 (3.1)
in which,"Q "QoFHY) is the singleparticle distribution in continuum phase spaeés
the particle velocity, is a relaxation time} ‘@~ 'Q-is the gradient operatand™Q
is the MaxwelBoltzmann equilibrium distribution functioexpressedas

Q. ——QoN-m T (3.2)
whereD is the spatial dimensige is particle velocityandV is fluid velocity, e andV are

normalised by oYY (Ris the ideal gas constant amgis the temperature), whideads

to a sound speed 0¥ pj Mo [44]. The fluid density and velocity areomputed as

follows:
.0 T o mOR (3.3)
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If the fluid velocity V is relative small compared with the sound speed, the equilibrium
distribution functiondefined by Eg. (32) can beexpandedup to the secondrder
accuracyf127 asfollows:

Q. ——Q0ON-Q p o - @ -0 (3.4)
For the purpose afevelopng a discrete model, a limited number of particle velocities are
adoptedQ (| pfB hy), andthe distribution function including these velocities can be
changedo

Qad  Qdm,Q dd Q oo (3.5)
which satisfies Eq. (3.1),

— Q80 -0 Q (3.6)

In the limited discrete space and time, the left hand side of Eg. (3.6) is the Lagrangian

time derivative and can be discretized as

h Yy h Yy h

<
=xj
<

— Q80 5 0 e (3.7)
Ry P A Ay o~
> Q e -0 0 (3.8)

in whichQ can be defined b@  Yo#Yo. Combining the abovequationwith Eq.

(3.6) produceghe standrd lattice Boltzmann equatipn
Mo QYdd Yo Qo -Q Q (3.9)

wheret _¥¥o. In fact, T should be a single dimensionless relaxation time.

3.3 Lattice Boltzmann Buation

The governing equation which is generally valid for flfliews including theshallow

water flows[3] in LBM is as follows:

Ve QYR Yo Qb D -0 06D, (3.1p
0 is a constant anid determined by the lattice pattern as
0 —B QQ. (311
is the collision operator which represents the rate of change dufring collision.
Theoretically, is a complex matrix and ideterminedby the microscopic dynamics.

An idea to linearizeghe collision operator igiven firstly by Higuera and Jimend58§].

Based on this idea, can be expanded about its equilibrium vdll23 as follows
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S0 T o BRI B o M o S (3.12)

The solution process of the lattice Boltzmann equation is characteriz€byQ ,

indicating Q 1. Furthermore, if the higherder terms in EQ.3.12 are

neglected, a linearized collision operator can be obtained,

0

N Q. (313

The BhatnagaGrossKrook (BGK) scheme simplifies th&ttice Boltzmann equation
greatly and makes th&BM used widely invarious sectors. If the local particle

distribution is assumed to be relax® an equilibrium state at a single r&fg’0, 71],

— A, (3.19
in which] is the Kronecker delta function,
m  Th
~ A
| o 18 (3.19
EqQ. (3.13 can be rearranged as
Q - Q Q (3)16

Leading to the lattice BGK collision opera{@9],

Q -"Q Q| (3)17
in whichtis namedas the single relaxation time. Because the BGK simplifies the lattice
Boltzmann equation esgmely and increases efficiencit is widely used in lattice

Boltzmann nodel. Combing the equations 18) and (3.1, the following lattice

Boltzmann equation cabe obtained,
Qo QY Yo Qdd -0 0 20 0odd, (318

The above equatiobhecoms the most popular form of élattice Boltzmann equation
useal today
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34 Lattice Rttern

4 3 2
A

y| 5 1
A,

6 7 8
X

Figure 3.19-speed squarattice (D2Q9) in the horizontal plane.

-
3 L

Figure 3.2 7speed square lattice (D2Q7) in the horizontal plane.

As in traditional methog a lattice pattern is needed to represent the grid points and
discrete computational domain. Furthermore, the lattice pattern has been used to
det er mi ne par theldBM,ersvihichnaorticroscope madel for molecular
dynamics has been definededides, the constafit in Eq. (3.10) isdecidedby the

lattice pattern.

Generally, there are two kinds of lattice patterns: square lattice and hexagonal lattice for
2D cases which are shown Figs. 3.1 and 3,2espectively. The square lattice can have
4-speed, Espeed, &peed, or Speed, and the hexagonal lattice can haspegd and-7

speed model according to the number of particle speed at lattice node. However, not all of
these modelsan recover the correct flow equatsoand that require sufficient lattice
symmetry[65]. Studies show that both ofspeed square lattice anes@geed hexagonal
lattice have such property and can gsatisfactory performance in numerical simulations.

Therefore, these two kinds of lattice patterns have besa wvidely inthe LBM.
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However, the studies indicate that thep®ed square lattice usually can produce more
accurate result than that from the hexagonal laftl@¥]. Furthermore, the use of the
square latticdeads toan easy way to implement different boundary conditifi2y.
Consequentlythe 9speed square lattice is adopted in this thesis.

For the 9spee square latticéisplayedin Fig. 3.1, each particle moves one lattice unit at
its velocity along one of the eight links indicated witB &nd O indicates the rest particle
with zero speed. The velocity vector of particlegii@nby

Q Q o & H Q& h | photuixh (3.19
;‘;"I/IQQ(I)s ——Hf @&—h chiphs
It is not difficult to demonstrate that D2Q9 has the following features,
BQ BQQQ T, (3.20
BQQ Q) , (3.21
BQQQQ 1Q1 1 11 1 gQyY ., (322
y ph EZEQ Q «a
whereY T 1 OEAOxEOA

Substituting the Eq. (3.)9to the Eq. (31) andthe following equation can be obtained:
0 —B Q Q —B Q Q Q. (3.23)

Combning the equation (33) with the equation (3.)8the following equation can be

obtained:
Qo QY Yo Qe -0 0 LQ0dp, (329

The equation (3.24% the most common form of a lattice Boltzmann model Wi2Q9.

3.5 Local Equilibrium Distribution Enction

Deciding a suitable local equilibrium functioplays an important rolen the lattice
Boltzmann method ai$ decides what flow equatioreould besolved In order toapply
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the equation (24) to solve the 2D shallow water equationss8.and (254), a suitable

local equilibrium functiodQ must be derived.

According to the lattice gas automata, an equilibrium function is the MaBeéitmann
equlibrium distribution function whichis often expandedising a Taylor series in
macroscopic velocity to its second ordéd, 120. The NavierStokes equations can be
recovered byusing such equilibrium function in tle lattice Boltzmann equatiorjg4].
However, the shallow wat@guations cannot be recovered wvittis kind of method. On
the other hand, an alternativeethod is to assume that an equilibrium function can be
expressed as a power series in macroscopic vel¢t®y which has been used
successfully iM127, 128 and show its accuracy and suitabili8f, and thust has been
adopted here. The equilibm function can be expressed as

M 0 06Q6 6QQo66 0VobO. (3.25
Because the equilibrium function has the same symmetry as the lattice shBigari
3.1, there are

6 o o6 o6 ol o6 o6 o 0o (3.26)
and the similar expressions for, 6 , andO are used. Therefore, E¢3.25) can be
rewritten as,

6 0ooh | mh
Q ol 66 o6 Qoo ©Vooh| plovixh (327
6 6Q06 6QQ 66 0Vdo6h| chiphs

The coefficients such as , 6landd can be determined by the constraints on the
equilibrium distribution functionfor example mass and momentum conservations. For

the shallow water equatiorthe constraints aréhe following three conditions:

B Q ad Qafoh (329
BQWQ od "Qduvo o), (3.29
B'QQQ ad -0 Qa6 a6 ofd . (3.30)

Basing on the calculated local equilibriumnétion (325) obtainedunder the above
constraints, the 2D shallow water equation®3Rand (254) can be recovered by the

lattice Boltzmann equation @) (The proof is shown in secti@?).

When Eg. (7) is substituted into Eq. (33), thefollowing equation can be obtained:
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6 00606 10 B {rp6Q6 B srp6lQ Qo6 10606 16
B rrn0Qo0 B {rr6Q Q606 1006 'Q (3.3
Combing the Eqg. (39) and equating the coefficients bfand uju;, respectively, the
following equationsan be obtained:
6 tol 16 7 (332
0 ¢Qél Q6 10O 10 1 (3.33
Similarly, substituting Eq. (27) into Eq. (329) results in
60Q 0Qo66 B 6 6QQo6 Qo6 0RO
B 7p 0Q 60Q6 6QQQ 66 0Q606 @ (3.34)
Rearranged the aboeguation yields
¢Q6 1Q6 Q (3.35)
Inserting Eq. (27) to Eq. (330) leads to

Ag+Deun+a (Aege, Bee,euCress e yu Deeg hu
a=1,3,5,7

(3.36)
. ~ ~ ~ ~ 1
+ a (Aeai €, “BeiaejaQaku e 6 G M Dte ?xuk}) 5: @b,’ ih?f
a=2,4,6,8
Combing Eq. (39), the above equation can be expressed by
o1 9)] 666 coOQbdo6  10Q WQoo 16Q606 T1OQ606
- ®o (337)

Basing on the abovegeation, the following four equations can be obtained,

¢aol Qo -, (3.39
Qo Q (339
¢aol (3.40)
¢QO0 1TQO0 1Q06 ™. (341
Substituted the Equation &) into the Eq. (310), we can get the following equation
ol 16. (342
Becausef the symmetry of lattice and Eq. 42), the followingrelations can be assumed,
ol 16, (343
0 10 (344)
O 10. (345

Combing theEgs. (3.32), (3.33), (3.35) and (338)-(3.45) leads to

5 Q —, 0 —, (3.46)
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ofF — o6 —, 8 — 0 — (347
6 —, 6 —o6 —0 — (348)

Therefore, the local equilibrium function can be expressed by

0 — —066h T
QL —Q06 —QQb66 —o606h | pholixkh (349
— —006 —QQ66 —0606hR  clipys

With this local equilibrium function, the shallow water equati@h83) and (2.54¢an be
recovered correctly as shownthrelatersection.

3.6 Macroscopic RPoperties

The above sections have shown the lattice Boltzmann model for shallow water equations
proposed by Zho{d29. In order to recover the shallow water equation, the link between
microdynamic variables and macroscopic the physical quantities (such as the water depth
h and velocityu;) will be established in thisection. The macroscopic properties of the

lattice Boltzmann equation @) has been examined by Zh[i].

The sum of the zeroth moment of distribution function in Eq. (24) is shown by
B Qd QY Yo Qo B Q0 LBQO (350
It is easy to demonstrale ‘Q 'O 1, andEq. (350) can be simplified as
B Qwn QYdd Yo "Qafd -BQ Q . (351)
The cumulative mass and momenfuare the corresponding summations of the
microdynamic mass and momentwahich are conserved in lattice Boltzmanmethod

should also meet the requirement of mass conservailitve. continuiy equation with

microdynamic variables can be expressed by

B Qo QYo Yo kB "Qap (352

Substituting the above equation into Eq5(3results in
B Qad B "Q op (353
Combing Eq. (28) with the above expression, the water depth can be obtained as
Q. B Qd (359

Next, the velocity will be defined.

Similarly, the sum of the first moment of distribution function in Ec24Bis taken
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Dt

é.eaigfa(x-'- eant +1)D f'éxg Q %:a_Q(a f a fq)a@ ae ?aiFE 1)()1(355)

Combing with Eg. (21), the above equation can be expressed

BQ Qw QY Yo ™Qad "% -B'Q Q Q (3.56)
According to the Newtonds second | aw,
variables requires

BQ Qo QYddv Yo "Qdd k QYO (357)
Substituting Eqg. (&7) into Eg. (356) leads to
B'QQad B QQ op. (359
Combing Eq. (9) with above equatiorthe velocityy; can be defined as
6 oo —B Q "Q oo (359

It should be noted thale distribution functioriQ relaxes to its local equilibrium function

"Q by the lattice Boltzmann equation 23). Besides, the decided water depth and
velocity will make sure that both Egs. %3) and (358) keep true and the same is true for
Egs. (352) and (357). Therefore, the lattice Boltzmann method is conservative and

accurate.

3.7 Recovery dthe Shallow Water fuations

For the purpose alemonstratinghat the depth and velocities obtained from Eq&4]3.
and (359) arethe solution to the shallow water equations, the lattice Boltzmann equation
(3.24) will recover the shallow water equatiofi8], in which the ChapmaB&nskog

expansion and Tagt expansion are used.

If gpis assumed to be small and is equal,to

Yo - (3.60)

The equation (24) can be expressed by
Qe Q- - Qv -Q Q. —Q0 (361)
A Taylor expansion is applied to the first term on thelieitd side of Eq. (81) in time

and space around poin, €) and results in
-— Q9 —"1 -- — Q — "Q 0 - -'Q Q —Q 0
(3.62
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in which™Q "Q andQ can be expanded arouitd ,
Q Q -Q -"Q 0 - (3.63
Inseting Eq. (363) into Eq. (362) and ighoring the high order term (highthan second

order), the equations to ordeand- can be obtainedespectively,

— Q —0 -Q —Q 0 (3.64)

- Q—"10 -— Q0 — 0 -Q . (3.65)

Substituting Eg. (84) into Eq. (365) and rearranging lead

p — — Q —"Q -Q -—-— Q — —Q 0 (3.66)
FromB o® 1 - 0% @) about ,the following equation can kerived
— B Q — B QQ -—— B QQ0 (367

If the force term with the firsbrder accuracy is appliedombining Egs. (3.9) and (349)
with above equatioleads to

— — T (369

which is just the continuity equation §3) for shallow water flow

TakingB'Q o®t - o® @ about canresultin
— B QQ — B QQQ -p —— B QQQ 0
--BQ — Q — —Q 0 (369

Similarly, if the force term with the firsbrder accuracy is useccombiningit with Egs.

(3.19) and (349), the above equation che rearrangeds

o - —x 0, (3.70
in which
Q — ¢t pBQQQ. (3.71)

Combining Egs. (3.64), (319 and (349 and making some algebra, the following

expression can be obtained:
Q e—_— (3.72
Substituting Eqg. (3.2) into Eq. (370) results in
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— — '—— 0 (373
where the kinematic viscosityis defined by
J— ¢t p (3.79)
Andtheforce termF; by
o M- — — 0. (3.79)

Equation (373) is the momentum equatiofor the shallow flows.

Zhou [3] has pointedout that the lattice Boltzmann equation Z28). is only firstorder
accurate for the recovered shallow water equatiorsh@awnabove However, it has also
been proved that Eq. @) can become the secendler accurate if a suitable force term

is used (the process will be showrsattion3.9) [3].

3.8 Stability Conditions

The lattice Boltzmann equation can be interpreted as a Lagrangian finite difference
method[13(0. Therefore, it is not surprisirthat it may suffer from numerical instability.
Sterling and Chefl3( carried out an analysis of tisgability for the lattice Boltmann
methodusing perturbationamethod. In general, the stability conditions are not available
for the method. However, Zho[8] indicated the LABSWE is stable if some basic

requirements armet

Firstis the fluid resistancelt indicates that the kinematic viscositghould be positive
[130. With Eq. (374), the following expression can be obtained:

L ¢t p m (3.76)
Thus,the relaxation time needs to meet:

- (3.77)

Secondly, as indicated &hou[3] and Liu[93], the Courant number should be smaller
than unity. It implies that the magnitude of the resultard@crovelocity is smaller than

the lattice speed,

— P (3.78
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and the wave velocity also should be smaller than the lattice speed:
— P (3.79
Up to now, LABSWE is limited to subcritical shallow water flows, it means:

— P (3.80)

Meanwhile theFroude number should smaller than unit

0 — p, (381

It should be noted thdhe first three conditions (3.7(3.79 can be easily satisfied by
adjusting the relaxation tinie the lattice siz&mand time stepYo. It has been tested that

the lattice Boltzmann method is stable normally, if these four stability conditions can be
satisfied[3].

3.9 Force Terms
3.9.1 Centred 8heme

Practicalflows always involve internal or external foresgsuch asa tidal flow, dam
breaking flows, multiphase flasvand muticomponent fluids. Asuitable expressiofor

force is crical to predict the redlows accurately. Many researchers hauesuedthis

topic. Martys et al[13]] presented a force term with Hermite expansion and the scheme
is complicated. Buick and Great¢ti32 proposed a composite scheme for the gravity.
Guo et al.[133 improved the local equilibrium distribution function by including the

force tem.

Zhou[125 129 incorporated the force terms into the streaming step directheilattice
Boltzmann method andbtainedaccurate results for many flows. After thathou [3]
improved the method with seconeorder force scheme and shea\saisfactory results.

This scheme has been adopted in this thesis.

For the centred schemthe force term isleterminedat the midpoint between the lattice

point and its neighbouring lattice point as

O Ow -QYdd -Yo (3.82
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In order to be easy for parallel computation, the above equatidre@pressed in semi
implicit form:

O 0w -QYdv, (3.83
Next, the Chapmaknskog procedure is applied to lattice Boltzmann equati@)(3

study the accuracy of this scheme. With the centred scheme for the force tédrs, if

assumed tbe small and equal tq the equation (3.24)an be written as
f,(x+regt+p f[x1) %gf (x9 fiExd 36—22 & E;‘ex% e ,;a—; (3.84)
¢

A Taylor expansion is applied tbe first term on the lefhand side of the above equation

in time and space around poirf ) andthe force term on the riglitand side,

9 ~ 2
f,(xtept+p £[x1) Z ej;_"l é‘a% 2+e% eja—fuu féacé 2)—(3.83
Ow -Q- - Owd -- — Q — Odav U -. (3.89
Substituting Egs. (3.85) and (3.86) into Eq. (3.:@$ults in
-— Q—"0 - — 20— "0 -0 —Q0
— — Q —100 - . (3.87)
in which,"Q "Q and expandinfQto™Q gives,
e - - 0, (3.89
Taking the equation (3.37o0 order- and- leads to
— 0 — " -Q —Q 0o, (3.89
- Q—"0 -—-— Q— " -Q — — Q — Q0(3.90
Substituting Eq.3.89) into Eq. (3.90leads to
p— —Q—"0 -0 (3.99
From(B o® w - o0& p) about ,the following equation can laerived
— B Q — B QM . (3.92

Combinng Eqgs. (319) and (3.49 with the above equation gives the seceorder
accurate continuity equation (3)5 It can be noted that the assumption of finster

accuracy for the force term is not necessampasn Equation (367).
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TakingBQ o w - o®p)about resultsin
— B QQ — B QQQ -p —— BQQQ "0 (3.93

Again combimng Egs. (319) and (349), the above equation can be written as

n— - —Q 0 (3.99
in which

QO —c¢t pBQQQ. (3.95
Combining Egs. B.89), (3.19) and (3.49and making some algebra, the following

expression can be obtained:
Q — ¢t p — —. (3.96

Substituting Eq. 3.96) into Eqg.(3.94) gives the momentum equation (2)5& second

order accurate.

Similarly, it can be provedhat the use of the secondder scheme3(83 for the force
term in Eq. (4) also results in secormrder accurate macroscopic equations in space.
However usingthe basic schemgivesonly first-order accurate macroscopic equations in
time and space as shownsgction 37.

3.9.2 Improved Force Terrreatment methodnd New Treatment of Bed
Slope

In the above mdtod for the force term,it includesthe calculation of thefirst order
derivativerelated to the bed slopahich can be accurately determinég the centred
scheme. To improve the efficiency and remove the calculatérthe derivatives, Zhou
[134] introducedthe bed level intdhe lattice Boltzmann equatiom this new scheme

the lattice Boltzmanequation(3.24) can be rewritten as

1/ .. h . Dt
f,(x+eDtt + 1 ffx1) 7(:f‘; f); %g%( x eQr+ A kg § #3897
inwhich'Q @ Qe gwbd Qe .
In addition the calculation of theforce term caralso be improved for more accurate

results.The lastforce term in Eq. (3.24) can baefinedby ¥6 "Gvhere’'O ——in [3].
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In order to include the effect of direction on the distribution function, the force term can

beimproved by

O o — (3.98)
in which0 aretheweights defined as
TIw ® T
0 pfeh @& plotly (3.99)

plo @ & cliphy
The force termin Eq. (3.24)can becalculated usingq. (98) in whichF; is calculated by
the following equation

"0 ‘m * - (3.100)

3.9.3 Discussion

In section3.9.1, the implicit form of the centred schen882 was usedo show that the
scheme is secoratder accura in space and time. Similarlit,can be proved thahe
semtimplicit form of centred scheme (3.8% seconebrder accurate in space but only
first-order accurate in timdn practice a scheme with firsbrder accuracy in time can
still provideaccurate solutiofor most flow problems. In fact, this has been confirmed in
the numerical computation3.herefore Ecs. (3.83, (3.98}(3.100) are adopted in this

thesis

3.10 Turbulence Mdelling
3.10.1 LABSWE™

In order to simulatdows with relativdy higher Rgnolds number, LABSWE is extended
to the shallow water equations with turbulence modelling (LABSYyEwhich is
proposed by Zhou [3] in this section Comparing the turbulent shallow water equations
(2.70) and (271) with theequations Z.53) and (2.54without flow turbulence, it can be
noted that the onlyifference is the viscosity term. LABSWE includes the eddy
viscosity term which is ngiresenin the LABSWE. Because the kinematic viscositys
determined only by the relaxation time via E8.7é) with constant time step and space
step, this means that a new relaxation time&an be defined by

Tt T 1, (3.101
which yields a tal viscosity'

' T, (3.102



andthe Equation (24) can be rewritten as

Mo QY Yo 'Qud -0 0 290 (3.103

which can produce theolution to the shallow water equatio®s7Q) and (271). This is
consistent with the idea of the lattice Boltzmann model with suisgade stress designed
by Hou et al[135. Thereforgthe flow turbulence can ledictedeasilyby the standard

lattice Boltzmann equatior8(03) with the total relaxation time .

For the purpose of determinitige total relaxation tim& , the strairrate tensof5; needs
to be calculatedAs §; definedby Eq. (273) involves @lculation of derivatives, it is not
suitable or efficient to use in practieo keep consistent with the lattice gas dynanggs,
is expected to be expressed in terms of the distribution fundtising the Chapman
Enskog expansion, it can be seen that the stedntensorS; is related to the nen
equilibrium momentum flux tensor (seection3.10.2for detail)andS; can be calculated
by

ny

~B Qo0 0 Q. (3.100)

Assuming andt satisfy the relatioif3.74), the following expression can be obtained:

t - —- (3.106)

Substituting Egs.3(101) and 8.102) into theabove equation results in

Tt - . (3.10)
Combiredwith Eq. 3.74) yields

b= (3.107)

Substitutingeq. @.68) into the above equation provides

t — 6a YV, (3.1CB)

Combining Eg. @.104) with theabove equation gives

T —0a 9 (3.1®)

in which
BQQ Q Q . (3.110)
With Eq. 8.101), if &  Ywis adopted, Eq3(109) can be rewritten as

t — . (3.111)
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Solving the above equation gives:

t , (3.112)

With Eg. 3.101), the total relaxation tim& can be by

¥
t . (3.113)

3.10.2 Recovery oLABSWE™

With a similar procedure described saction 37, the shallow water equation2.70) and
(2.71) can be recovered frotie lattice Boltzmann equatior8{03 by the Chapman
Enskog expansion.

AssumingYois small and is equal tq

Yo -. (3.114)
The equation3.103) can be written as
Qo Q- - Qoo -0 Q@ —Q0 (3.115)

If a Taylor expansion is applied tie first term on the lefhand side of the above

eguation in time and space around paxt)( the following equation can be obtained:
-—-— Q—" -- — Q— Q U - —"Q Q —Q O
(3.116)

where'Q "Q ,"Qcan be expanded arouifd |,

QQ Q0 - "Q o - (3.117)

Substituting Eq.3.117) into Eg. (3.16), we have thdollowing expressiongo order-
and -

— Q — "Q -Q —Q 0 (3.118)

- Q. —"0 -—-— Q0 — " -"Q . (3.119)

Substituting Eq.3.118) into Eq.(3.119) results in

p — — Q —"Q -Q -—-— Q9 — —Q 0. (3.120
FromB o® p ¢ - o® ¢ mabout , the following equation can loerived
— B Q — B QQ -—— B QQ 0. (3.121)
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If the force term with the firsbrder accuracy is applied, comiig Eqgs. (319) and (349)

with theabove equation leads to the contindtyuaton2.70).

TakingB'Q o p y - o ¢ mabout , the following equation can be obtained
— B QQ — B QQQ -p ——BQQNQ 0
--BQ — Q — —Q 0. (3.122

Similarly, using the force term with tHest-order accuracy and referring to Eg3.19

and B.49, the above equation can be written as

Q— - —x 0Q (3.123
in which
QO —c¢t pBQQQ. (3.124)
Combinng Eqgs.(3.19),(3.49)and(3.118) with the above equation, one can get
Q -Q¢t p — —. (3.125)

Substituting Eqg.3.125) into Eq. 3.123) leads to anomentum equation,

o — ' —— (3.126)

in which, the total viscosity is defined by

—~L ¢t p. (3.127)
Combining Egs.(3.74), (3.101), (3102 and @.107) with the above equation, the total

viscosity can be expressed by

’ ’ ", (3.128)
andsoEqg. 3.126) is just the momentum equatich{1).

If the force term with the centred scheme described in se8t®is used, the shallow
water equabns with turbulence asecondorder accuracy in time and space can be

recovered.

The calculation of the strairate tensof; can be derived frorkgs.(3.124) and (3125),
Combinng the Egs.3.124) and (3125 canleadto

S — — B QQQ. (3.129)
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With Eq. 3.117), the following can be obtained:

N — 5. @ — (3.130)

ConsideringQ "Q ,- Yoand Eq. 2.73), substituting Eq. (330 into Eq. 8.129
gives Eq. 8.104) which is used to calculate the strafte tensos;.

3.11 Multiple-RelaxationTime

Compared with thd8GK scheme, the multiplezlaxationtime is less used in the lattice
Boltzmann model for shallow water flowis. order to impove the stability of the method
the collision operator of multipleelaxationtime is incorporated into th& ABSWE
(named LABSWHRT) in this section This model will be used in the latter chapter and
show its ability. Together with theew force termntroduced in sction 39.2, the shallow
water equations are recoveredrrectlyin this sction which is the firstderivationto

wr i tkeowlédge.

3.11.1 LABSWEMRT

As described in section 1.5.4, the multiptdaxationtime can improve the stability of
computation.It is incorporated into the LABSWE in this thesis (named LABS\WW/E
andthe shallow water equations will wecovered by Chapmainskoganalysisin the
next sectionlIf the D2Q9 model is adoptedhe httice Boltzmanrequations withthe
MRT for shallow water equations are as fali

e gl wo "Qad 4 4 & o a wv i (3.13)
wheeda 4,;Q°Q 4|, & andSis the relaxation matrig=diag(so, s1, 2, % S S 6,

Sz, $), T isthe transform matridefinedin [85],

PP P P P P PP P,
DT P ¢ P G P C P G,
nt C p q p ¢ P C Pn
11 L p p n p p p Lt p ]
4, wm ¢ p WM p ¢ p W pa (3139
I m p p p T p p pr
nmooMm o op ¢ P M p G P
"m p m p m p m p TH
ug nm p n p m p 1w pY

The relaxation parameters; and sg is chosen according to fluid viscosity

determined by Equation (1.113nd the other parameters can be chosen freely
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during the range of 0~2 for maximum stability. In practical application, these free

parameters are a little larger than 1 accordif@%.

Theequilibrium values omomentsx  is

3gh2 3E(u2+\f),4h 9git SF(UZ +\/2) Eu hu_hv hvd'f \%) huy (3.133
& 2¢ é e e e e %

y=(h 4h +—

3.11.2 Recovery othe LABSWEYRT
The Chapmaitnskog analysis is used to recover the shallow water equations from the
proposed MRTLBM model with improved force termfissumingw ads small andp 0 -,
equation (3L31) can be expressed as:

Qe g-M - Qo 4 4 & ao a o -0 (3.139
Take a Taylor expansion to the first term on the left hand side of the above equation in

time and space around po{®t t) leads to
-1 Qr T -1 Q! Q - 1l & «a -"0
(3.135)
According to the ChapmalBnskog expansiofi2 can be written in a series of
M - -9 0- (B6)
which can be expressed in a vector form,
il 1 -0 -, (BD)
The above equation can be easily converted into an expression in moment space by being
multiplied with T,
O O -0 - O o - (33B)
If the centered scherf@® is used, the expression f@ can be obtained
O Oe -g- -, (3.82)
Making a Taylor expansion to the above yields
O e -g-M -- O -1 QT Oed -, (3.BY
Combining Egs. (3.38), (3.139) and Eq. (3.18), the equations to orders , Rand- are
a a an
I Q1 I [ "0, (341)



ToQr Qe -1 Qr Q 4,4 «a -1 Q1 0. (3.1

Egs. (3.20-3.142) can be written with matrices and vectors,

O P (@3
S R S @)
1k pdoo b p 4O (O EREE A R ANCE

where kis the identity matrix;ris a diagonal matrix as
F QQJO0 QT RQT QT QT KT QT QT QT N (3.146)
O mQ i R ~ AR "/ " n (3.147)
0 mQ R AR~ "/ "/ (3149

and

(3.149
Substitutingeq. (3.144) into Eq.@3.145) leads to
O CIE S (3
Multiplying Eqgs. 8.144) and 8.150) by4|, gives
T EabmAls O o AHa (351)
thdis S0 o (3152
Writing out Eq.(3.15)) fori 1, 1, 3,5, 7, and 8 yields:
TQT ® T D (3.153)
T TQ i Q (3.1549)
1T — 7 = — 1 = = (3.155)
r-17MTrT— 1 — - (3.156)
I —— 1@ 1 ® i (3.157)
T — 10 10 i N (3.158)
Writing out Eq. (3152) for the conserved moments, o andu results in the follow
eqguations:
r =-p —Q -p —0n T p —1 Tt (3.159)
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' -p —Q -p =01 T p —N Tt (3.160)
Combining the zerotlorder equations (35b) and (3.56) with the firstorder equations
(3.159) and (3.80) respectively, we have

N0.0) Q i
§C) — U 0 -— —1 Q
! ! c I v m p c !
-—p =10 -Q p =1 N (3.161)
N00) Q i
() — O @ 0 -— —1 0
! ! c ! v m p c !
—p =1 17 -Qp =1 N (3.162)

Ignoring the higher order terms, the following expressions from Eq&43(B.157) and
(3.158) can be obtained

QT (3.163)
n —1 ® 1D (3.164)
N —1 0 10 (3.165)

Substituting Egs. (363)-(3.165) into Eq. (3.51) gives

0 Q
P 1 = B 1 o O '?F?TT"@ row
e R T < (3.166)
If settingi i pF T, in whicht is the single relaxation time, and defining the
kinematic viscosity -— ¢t p the equation (346) can be reduceat
T® T — T} T 0o O T ® 1T D (3.167)

Similarly the following equation can be obtained from Eq.G3)1

T 1T — D T o O 1T T WD (3.168)
Egs.(3.153) (3.167) and(3.168) are jus the shallow water equatioris may be notedhat
wheni 8 i pXt, the lattice Boltzmann method with a single relaxatidime is

recovered. Now, the shallow water equations are recovered from LABSWith

improvedcalculation for dorce termandits performance will be tested in chapger
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3.12 Solute TransporEquation

3.12.1 Lattice Boltzmanmodelfor Solute Transport Equation

Several lattice Boltzmann models for solute transparte been developdd6, 55, 136,

137). Ginzburg[82] developed a lattice Boltzmann model with tvadaxationtime (TRT)
collision operator foranisotropic advection dispersion equatiorzhang et al [46]
presented a lattice Boltzmann model for the advedalispersion equation with BGK
collision on rectanguldattice and discuss its boundary conditidd8§. In this thesis, a
D2Q5lattice Boltzmann moddbr advectiordiffusion developed by Zho{136 equation

is adopted The most important difference between this model and the ¢é&¥s5, 137

is that thedispersion coefficients not dependent on the relaxation time, and hence the
relaxation time can be chosen freely for better accuracy and stabitityever, in the
other models, the dispersiatoefficient is related to the relaxation time, and if the
relaxation time calculated by tlespersion coefficient very small, the computation will
become unstable. Furthermore, the other models appliedltde sransport by the lattice
Boltzmann method are based on D2Q9, but the model adopted in this paper isrbased
D2Q5 (seeFigure 3.3), which is simpler and saves computational effort. Another
advantage of the model applied is that a rectangular latick different dispersion
coefficients in thex andy directions can be used without modificatidi3g with a single
relaxation time.The lattice Boltzmann equation based on BGK for the advection

diffusion equation is
Mo Qb wd Q do —Qaad Q ad —Y (3.169
where,"Q is the distribution function of particle¥) is the local equilibrium distribution

function Y is the source ternt, is single relaxation time ar@ is the velocity vector

of a particle in link , as follows:

. i h |

qQ Q ®é+—H Q—h| pho (3.170)
P y y .
pQ wé+—H @—h| ¢

in which,Q @®&p6Q wdwd waandw care the lattice size in the and y

directions respectivelyn as equal taw afor simplicity in this paper.
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X

Figure3.3 5-speed square (D2Q5) lattice in horizontal plane.

The equilibrium distributioriunction is defined as

v p —— Bh @ m
1P
Q- — "Bh poE @ (3.172)
I’y - vy
yoT= T ®h coEn
in which,_ ——— is nondimensional andO is dispersion coefficient ithe ij

direction.The concentration can be calculated by

6 B "Qj0Q (3.172
The advectiordiffusion equation2.61) can be recoverefiom Eq. (3.169 by using the
Chapnan-Enskog analysi§136]. In order to simplify the process, the source term is not

included in theollowing derivation.

3.12.2 Recovery othe Advectiondiffusion Equation

In order to recover theadvectiondiffusion equation, the following constraints are

introduced:
B "Q KC) (3.173)
B Q"Q 0D (3.174)

Substituting thé=quation (3.173) into Equation (3.172) results in
B'Q B ™Q (3.175)
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The Chapmaiktnskog expansion is used recover the adveddiffasion equation (2.61)

from Equation (3.169s follows:

With the purpose of thi&/ois assumed to be small and equal to
Yo - (3.176)
Substituting Equation (3.176) into Equation (3.168% ignoring the source termasults
in
Qe g-M - Qe - 0 (3.177)
Applying a Taylor expansion to the léfand side of Equation (3.177) in time and space

around pointX, t), one can have
-— Q9 —" -- — Q— " 0 - —Q Q (3.178)

Using the ChapmaBnskog expansioriQ2 can be expressed as

M Q -Q -7 O - (3.179)

Taking the Equation (3.178) to order, -, - and the followingequationscan be
obtained:

Q Q (3.180)

— Q —"Q —-"Q (3.181)

- Q—"10 -—-— 70— " —-"Q (3.182)

Substituting Equation (3.181) into Equation (3.1@2ds to
p — — Q0 —Q -0 (3.183)
Taking [Equation (3.181) + Equation (3.183)xthe following equation can ksbtaired
- Q—"0 -p — — Q—"0 —"Q -Q (3.184)
Summing Equation (3.184) and rearranging it with the following equations.
BQ B™Q m (3.185)
—BQ ™ (3.186)
According to the conservation condition (3.175), the following equation can be given:
- BQ —BQQ -p ——BQQ m (3.187)
Substituting Equation (3.181ito Equation (3.187) gives
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: <& O § s <8 o
E e () +_P- 2 o9 qga 1 0 M 2 e a4y a _Q“a' ' () 3.188
g aaeag‘a 89,{ > O %ej 8 ah )I(g%gea : (3188)

According to[46] , comparing with the first term, the last term on the rlggntd side of
Equation (3.188)is smaller, so it can benored and treated as a truncation error.
Combining Equations (3.171), (3.173), (3.174) and (3.180) with Equation (3.188) leads to

— — — -t -Q0Q— (3.189)
with

-t -QQ © (3.190)

Then Equation (3.189) is the advectidiffusion equation (2.61yvithout source term
Considering- Y0 in Equation (3.176), rewriting Equation (3.190) can give the

expression of as

_ (3.191)
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Chapter 4:hitial and Boundary @nditions

4.1 Introduction

In this chapter, various boundary condis@nd inlet and outlet boundary conditsare

described such as stip, semislip and slip.Study showsthat the boundary condition

play a critical role on the results of si mu
efficiency and stability[93]. Some typical work can be found irf123 139141].

Boundary conditions and initial conditions are still the fundamental problem of LBM and

attract much attentiof@0, 107, 124, 1427]. But this isbeyond of this thesis, ange just

briefly introduce thecommon boundary conditions and more degail work can be

referred td 106, 143 144).

4.2 Solid Boundary ©ndition
4.2.1No-slip Boundary ©ndition

One of the most attractiveadvantages of LBM is its simplereatmentof boundary
conditiors such asthe bounceback scheme. It can be implemented easilyfifaws in
arbitrary complex geometriesThe bounceéback and similar scheraefor different
boundary conditions, is very simple and efficient forshp, semislip and slip boundary
conditions ands usedwidely for various flow problems. For example, in the bounce
back scheme as shown in Figdr#, the part below AB is a wall and defined as solid; the
part above is fluid. The unknown incoming distribution functi@gsQandQfrom the

solid are simply equal t@, "Qand’Q, respectivelyConsequently, the specific location of
solid points is not required and the programming is easy, making it the most efficient

treatment for a nglip boundary condition for flows in complgeometry[ 3, 44, 45, 145.
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Figure4.1 Layoutof wall boundary and lattice nodes.

4.2.2Slip Boundary ©ndition
If the boundary is smooth with little friction, tiséip boundary should be usek Figure
4.1 showsthe unknown distribution functieriQQ, "Q, and’Q

Mo o Q (4.1)
It means that no momentum is changethedirectionnormal to a walknd the velocity

along the wall is kept.

4.2.3Semislip BoundaryCondition

In practical flows, a large velocity gradient existear the boundary for turbulent flew
due tothe effect of wall friction. It cannot be described by slipnorslip boundary
conditions, and hendbe semislip boundary is descrdal to deal with this case. In order
to construct the senrslip boundary coritlon, the wall shear stress should be included.

According to[ 3], the wall shear streds can be expressed by
t "66 60 4.2)
in which,6 is the friction factor at the wall and can be constant or determined by
6 "Q—witheé i s the Manningo6s Byoadding the watt shear a t t he

stress to théorce term, the senslip boundary condition is developed together with slip
boundary. It should be noted that the distribution functiostiis dealt with bythe slip
boundary condition.
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4.3 Inflow and Outflow ®@ndition

In order to obtain the correct results, the proper inlet and outlet boundary condition

should be specifiedndit adds a onstraint to flow for consistenayith surrounding flow.

As the LABSWE is only applicabl® subcritical flow, the discharge and water depth are

specified at inlet ah outlet respectively normallyAs Figure 4.2shown, at inlet the

distribution functioriQ "Q "Qare unknown. If the water depth and velocity are known,

these unknown distribuin functions can be determined by the follogviequations as

Zou and Hg139, Zhou[3] proposed. According to mass and momentum conservation,

with the relations3.54) and (3.59), the following equations can be obtained:

MM QM QT QM Q Q Q (4.3)
NQ Q Q QQ Q Q (4.4)
NQ Q M QQ Q Q O (45)
If v=0 is assumed, based theabove equation& "Q "Qcan be expressed as
M Q —, (4.6)
N — Q —, 4.7)
MmN — Q —. (4.8)

Similarly, the unknown@Q "Q, "Qat outflow boundary can be calculated by

N 0 —, (4.9)
N - Q0 —, (4.10)
N - 0 —, (4.11)

But, normally the water depth and velocity are unknaivimlet andtheycan be assumed

by the zero gradient method or exploration method.
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Figure 4.2 Inlet and outlet boundary condison

For zeregradient method:

6 phQ 6 chQ (4.12)
0 phQ U ¢hQ, (4.13)
QphQ  Q¢h, (4.14)
or exploration:
QphQ ¢ QchQ "Qoh, (4.15)

and assuming phQ Ttaccording teequations4.3) and @.4), one has

6 phQ - pQ (4.16)
The water depth and water velocity obtained by zgealient method or exploration
cannot meet the requirement of constdisicharge at inletand arevised step is

needed as follows

Qoisthe specified dischargendQ is the calculated discharge. The equati®#d)(can be
revised by adding th&X-Qin)/b which isarevised unit discharge.

NQ Q Q QQ Q Q ®» — (4.17)
S0,"Q "Q "Qcan be updated as:
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N o —, (4.18)
Q — 1 0 — (4.19)

Q — 1 0 — (4.20)

For the outlet boundary, the water depth is fixed and velocity can be calculated by

6 0 &R pQ (4.21)
0O EQ VO B ErQ (4.22)
So, the'Q "Q "Qat outlet can be calculated as :
N 0 —, (4.23)
N - Q0 — — (4.24)
N - Q — — (4.25)

If the noslip boundarycondition is used for the wall boundary, the corner point at the
inlet needs to be treated carefulMoredetaik are givenn [93].

4.4 Periodic Boundary @ndition

A periodic boundary condition may be used for some specific ¢8sdsor exampleif a
flow region consists daditidal flow, a periodic boundary conditiazan be usedAccording
to the flow feature, a periodic boundargndition n the x direction can be achieved by
specifyng the unknownrnQ, "Qand’Qat inflow boundary (see Fige 4.2) with streaming

to the corresponding distributions at outflow boundary,

~

QphQ Q0 R  phchyh (4.26)
and the unknowriQQ "Qand’Qat outflow to that at inflow boundary,
Q0 hQ Qph| Tthhps (4.27)

Similarly, a periodic boundary condition they direction can bachieved

4.5 Initial Condition

Before computationthe initial condition fordistribution functionneed to be specified.
Generally there are two ways to specifiie initial condition in the lattice Boltzmann
method[3]. One is tospecify a random value between 0 andfdr the distribution
function The otheris to assumea flow field with water depth and velocitiyrstly, then

computethe local equilibrium distribution functioi® anduse it asan initial condition
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for "Q. Normally, it is easier to specify a macrosaoguantity than a microscopiggo, the

second method isetterin practicalcomputation which is used in the presemibdels It

is obvious thathere is no difference betweeasults calculatedvith these two initial

conditions for a steady flow problem

4.6 SolutionProcedure

The solutionprocedurs for the LABSWE,LABSWE™ and LABSWE'RT areextremely

simple. It involves only explicit calculations and s@ts of the following steps

For LABSWE or LABSWEV

1.
2.
3.

Assumeinitial water depth and velocity,

ComputeéQ from Eq. 3.49),

Calculatethe™Q from the lattice Boltzmanrequation 8.24), or from theEquation
(3.203) for turbulent flows together with the total relaxation tilnealculated from
Eq. G.113.

4. Renewthewaterdepthh and the velocity andv by Eqgs. 3.54 and 8.59),

5. Gobackto step2 and repeat the above procedure until a solution is obtained.

For LABSWE"RT

a k» DN

Assume initial water depth and velocity,

Computethe equilibrium values of moments from Eg. (3133
Calculatethe "Q from the lattice Boltzmanaquation (3131),

Renewthe water depth and the velocity andv from Egs. (3.54) and (3.59),
Go backstep 2 and repeat the above procedure until a solution is obtained.
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Chapter 5: Applicatiors of LABSWE™ and
LABSWEMRT for the Free Surfaddows

5.1 The Flows in Rectangular Shallow Basins

5.1.1 Introduction

In order to verify the presented model LABSWE its results are compared with
corresponding experimentg-urthermore,the asymmetrical flows occurring in the
rectangulabasins with different ratios of length to width are simulated. &ffexts of the

Froude number and bed friction on flow asymmetry and @&atiant length are
investigated The aim is to test the feasibilitynd accuracy of the lattice Boltzmann

method to study free surface flows in shallow rectangular basins.

5.1.2 Background

Shallow wates in open clannels with sudden expansions aften observed in natural
rivers and haveeceived much attention. Additionally, the instabilities of flow in a
symmetric expanded channel are well knqa46-148. Mullin et al.[147] examined he

effect of variable ratios of the inlet to outlet channel widths within a 1:3 expansion
experimentally and numerically and concluded that the length of the expanded section
played a critical role in evaluating the effect of the ratio on flow instabihityyhich the

flow is closed and limited to low Reynolds number (about 100). Gfdd€} developed a
mathematical stability criterion for subcritical flows in horizontal channels with
rectangular expansions. Babarutsi et [d49 15(Q investigated shallow recirculation

fl ows by experiments and numeri cal simul at i
focused on an expanded channethout contraction. The turbulent flows in shallow
basins have also been studied for their important effects on aquaddfdieand on
sedimentation patterrid52 153. Dufresne et al[154 investigated the symmetric and
asymmetric flows in rectangular shallow reservoirs with different lateral expansion ratio

and dimensionless length by numerical simulation.
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Of particular note, Dewals et §ll48 analyzed the free surface turbulent flows in several
shallow rectangular basins by experiments and numerical simulation usirg- the
turbulence model and an algebraic turbulence model for high Reynolds number of 17500.
They found that the flow pattern miglhecome asymmetric even if the inflow and
outflow boundary conditions and geometry of the basin were symmetric; the numerical

simulations were found to reproduce the global experimental flow patterns.

5.1.3 Boundary @nditions

The boundary conditions include inlet, outlet and sidewalls. In the present study, semi
slip boundary condition for sidewalls is used (as applied by Dewals[&&8]), in which

side wallfriction coefficientC,a=4CyandC,is bedfriction coefficient.The water depth

is determined at inleboundary, h(1,y)=h(2,y); and the velocity is calculated with
u(Ly)=a(y)/h(1,y), in which the unit dischargey(y) is linear variation along the
streamwise directiog following Dewals et al[14§. Stochastic treatment is not adopted

at inlet.For outlet, the wier depthhy is specified.

5.1.4 Numericd Simulation

It is known that open shallow flows in rectangular reservoirs can show a bifurcating
behaviour under certain conditiofis46, 148 152). This will be shown in this section.

The same channel used by Dewals efB48 is adopted and shown in Figurel5lt
consists of inlet channel with widtih= 0.25m expansion rectangular channel and outlet
channel. The expansion rectangular channels with different length and width are

considered, among which the channel with 6m long and 4m wide is studied in detail.

The simulated flow vectors for different lengihd width have been compared wilie
experiments irFigures5.2 and5.3 which indicate that the simulations qualitatively agree
with the experiments. Quantitative comparison will be discussed in the following sections.
Meanwhile, different aspect ratiols/B) and expansion ratio8(b) have been studied for
bifurcation phenomenon; here and B are the length and width of the rectangle,
respectively. The global momemi is used to quantify asymmetry of flow fields

2 B2
UB? nB/zuydy whereU = Q/(Bhy) and Q = 0.007n/s,

with the water deptlmy at the outlet channekigure 54 shows that the flow bifurcates

_1: , . _
N—Em|M|dx, in which M =
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when the aspect ratio exceeds 1.25 or expansion ratio exceeds 2.5, which is consistent
with that reported by Dewals et 48 although there is small difference in the global
momentN. This demonstrates that the model can predict bifurcating betvawbfree

surface flow in shallow rectangular basins.

In order to verify the method further, the numerical results are compared with those from
the experiments and conventional numerical methotth \&lgebraic model for flow
turbulence. The asymmetric flow pattern in this channel has been fgubdvinals et al.

[148 in experiments Accor di ng t o-undoemvspdciicischvaeprafile n o n
at the entrance to the inlet channel can generate the similar disturbaneestadithose

in the experimentThe present numerical simulations confirm that such an approach can

successfully produce asymmetric flows; hence it is used inuirerical studies.

In computation, uniform grids are used abid=0.01s. The single relaxation time ig

=0.53. The discharge is 0.007min all cases. For case 1, the rectangular basin is 6m

long and 4m wide; the bed friction coefficie@t = grf/ l*is 0.0017 accordy to the

Manning equation and inlet floky :u/Q/ghis 0.1. In outlet channeb; is the same as

b=0.25m.

In order to obtain the grid independent prediction, four different grid spapes (
0.0208m, 0.025m, 0.03125m and 0.042m) have been tested and the restikplayed

in Figure 55. It indicates that the calculated results fluctuates slightly as grid spacing
decreases and tlex= 0.025m is small enough for present studies; thergfoee0.025m

is adopted in all the computations. In the test, the reat@chlangth has been selected
here for assessing grid independence of the results. However, the grid spacing might turn
out not to be fine enough dther parameter like threshold geometry is chosen for the
assessment. Furthermore, the Smagorinsky conStan®.1, 0.2 and 0.3 were tested. The
results showed that the reattachment length is little sensitive to these values abg-then

0.3 has beensed in the present computation
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Figure5.1 Sketch of the channel.
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Figure5.2 Experimental (left) andimulated (right) flow vectors in the basin of 4m wide

and 4m long.

Figure5.3 Experimental (left) and simulated (right) flow vectors in the basin of 4m wide

and 6m long.
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Figure 5.4Bifurcation for different aspect ratie./B) and expansion ratidd(b)
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5.1.5 Comparisons of Bsults

In this section, the computed results for casel are compared with the experimental results.
The asymmetric momem is used to quantify the asymmetry of the flow fields. Figure
5.6 displays the intensities of asymmetry obtainedHh®ylattice Boltzmann modekhe

standardk - e model and the algebraic model as well asdhkperiments by Dewals et al.

M
[148. DE W is used to evaluate the relative error between the predictions

exp
and experiments. In the figure for sections befere.8m,M is small and the differences

among k- e model, algebraic model and lattice Boltzmann model are negligible

compared with that for the lnér sections; hence the relative erkde is calculated for

cross sections with > 1.8m:the maximum errors are 0.51, 0.44 and 0.33foe model,
algebraic model and lattice Boltzmann model, respectively. Their average relative errors
are 0.29, 0.16 and @Blrespectively Thus, the lattice Boltzmann model seems to have
equal ability of predicting flow fields to the algebraic model. Furthermore, compuwed

four representative crosections are compared with the experimental data and the
algebraic model results. Due to the large difference betweek-thenodel results and
experimental data, the results bi-e model are not considered in the subsequent
comparisons. Fronfigure 57 it is clear that the lattice Boltzmann model and algebraic
model produce very similar results. Overall, the lattice Boltzmann model is found to

predict the general flow patterns wellthrerectangular basins.

62



N

O Experiment

4 Algebraic model
3 — —k-epsilonmodel
- —LBM
-
1
0
-1
0 1 2 3 4 5 6
X (m)

Figure 5.6Comparisons of intensities of asymmetry.
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5.1.6 Sensitivity Analysis

Four different Froude numberEr=0.10, 0.15, 0.28 and 0.44, f@ =0.007n1/s with
variable water depth$¢=0.2, 0.15, 0.1, and 0.075m) and velocity at the channel inlet are
used to assess the influence of thensity on flow asymmetry. Figure&illustrates the
asymmetrical moment stiribution under different Froude numbers. It is apparent that the
global flow asymmetry reduces with increase of Froude number. Thisnigmed by
Dewal s 0 [148& Buetreermoré, Froude number has clearly more influence on flow

asymmety in the rangex = 1m andx = 5m compared to that outside this range.

According to Chen and Jirkfl55, the parameteG=Cyb/(2h) has been chosen to
guantify the stabilizing effé®f the beefriction, whereC, is bedfriction coefficient;b is

the inlet channel width artalis water depth. As Froude number increases, the water depth
reduces, and the® becomes larger; hence the flow becomes less asymmetric. However,
the above conclusion is only valid for the rage= 0.1 to 0.44.Outside this range, the

flow regime may be different.
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Figure 5.8Asymmetrical moment distributionith different Froude numbers.
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Figure 5.9Reattachment length for different Froude numbers.
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Figure 5.10Normalized streamwise velocityunax profiles atx = 2m.

Figure 5.9displays the relation between reattachment lengtfdB, in which DB=(B-

b)/2 is the expansion width) and the inlet Froude number. There is no doubt that
reattachment length will increase with Froude number; and the recirculation zone will

also become larger. However, this conclusion is a little different from those by Dufresne

et al [157 for two reasons: firstly, the lateral expansion ratio is different (1.25 in
Dufresneds paper but 7.5 in the present st uc
Dufresneds papegt bdupt) ;3.2ecionndplrye,seint Dufr esne
number changes with discharge for a constant water depth, while the water depth varies

and the discharge is kept constant in the present study.

The normalized streamwise velocityunax profiles at cros-sectionx=2m for different
Froude numbers are displayed kigure 5.10 If the flow is symmetrical, the nen
dimensional distribution oti component of the cross velocity should be symmetrical
about they axis, and vice versa. The farther the asymmetiy daviates from thg axis,

the more asymmetric the flow is. It can be seen fFogure 5.10that the effect of the
Froude number is different on both sides of the esession and is stronger in the vortex

zone on the right hand side.

65



As mentioned abee, three different values of paramet&e=Cyb/(2h) (bed friction
coefficients C,=0.00084, 0.0017, and 0.0034 with constant water depth) are tested to
quantify the stabilizing effect of bed frictioRigure 5.11reveals the asymmetric moment
with different bed frictions. It indicates that the asymmetry in the flow field becomes
weaker as the bed friction increases. When the bed friction increases, flow velocity is
slower and then the flow pattern becomes lessnasstric. However, the reattachment
length becomes longer as the bed friction increaségyase 5.12shows. In addition, the
effect of bed friction on asymmetry seems not to be strongaat Iethe rangeof C,
=0.00084-0.0034 investigatedThe asymmetryof flow is dsadvantageous in most of
engineering applications. Consequentiy, seems reasonable thdied roughness
adjustment offers an opportunity to reduce such disadvantage associated with the similar

structure in hydraulic engineering.
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Figure5.11Asymmetrical moment distribution for different parame&ds =
Cob/(2h)).
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Figure 5.12Reattachment length for different parameéer
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