Feasibility Study of Using the Housing Cases of Implantable Devices as Antennas



Kod, M, Zhou, J ORCID: 0000-0002-3940-3320, Huang, Y ORCID: 0000-0001-7774-1024, Stanley, M, Hussein, M ORCID: 0000-0003-4826-2168, Sohrab, AP, Alrawashdeh, R and Wang, G ORCID: 0000-0001-5525-3548
(2016) Feasibility Study of Using the Housing Cases of Implantable Devices as Antennas. IEEE Access, 4. pp. 6939-6949.

Access the full-text of this item by clicking on the Open Access link.
[img] Text
Housing antenna for pacemakers.pdf - Author Accepted Manuscript

Download (2MB)

Abstract

A novel antenna design for implantable pacemakers is proposed. The housing of a pacemaker is utilized as an antenna to cover both the 402-405 MHz Medical Implant Communication Service band and the 433-MHz Industrial, Scientific and Medical band. This is achieved by exploiting radiating characteristic current modes of the housing case. These modes are excited using a capacitive coupling element with the help of a matching circuit. The radiation pattern of this antenna is optimized to be in a desirable direction away from the body (off-body direction). The ability of the proposed antenna for communications is demonstrated using a transceiver and a base station at 433 MHz. A communication range of 1 m is established when a transmitter with the proposed antenna is implanted in a rabbit and the power fed by the transceiver to the antenna is 25 μW. A longer range of up to 19 m can be established with the maximum allowable transmit power within the safety limits. Furthermore, the far field wireless power transfer through the proposed antenna is investigated by experiment. A received power of up to 22.38 μW by the proposed antenna is demonstrated when an equivalent isotropically radiated power of 140 mW is transmitted 1 m away from a transmitting antenna. From the same transmitting antenna in the same distance, a power of 4 mW can be received when the transmit power is within safety limits. This power can be used to recharge a small battery or a capacitor, which can potentially cover the communication power consumption of the pacemaker and hence extend the life span of the primary battery.

Item Type: Article
Uncontrolled Keywords: housing antenna, MICS band antenna, pacemaker
Depositing User: Symplectic Admin
Date Deposited: 24 Apr 2020 12:38
Last Modified: 19 Jan 2023 07:24
DOI: 10.1109/ACCESS.2016.2613968
Open Access URL: https://ieeexplore.ieee.org/document/7579571
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3004865