Old and New Targets in Antimalarial Drug Discovery



Roberts, NJ
(2016) Old and New Targets in Antimalarial Drug Discovery. PhD thesis, University of Liverpool.

[img] Text
200409464_Sept2016.pdf - Unspecified

Download (10MB)

Abstract

The increasing emergence of resistance to commonly used therapies has placed a huge strain on the prevention and control of malaria; therefore, there is an urgent need to develop novel antimalarial agents. The aim of this research was to design and synthesise a library of potent antimalarial compounds, with desirable pharmacokinetic profiles, in order to identify a drug candidate suitable for preclinical development. This research was divided into two main sections: x The synthesis of compounds deigned to inhibit IspD, a novel target in antimalarial drug discovery x The late stage development of a series of endoperoxide-based antimalarials, which are derived from the structure of artemisinin A library of benzisothiazolinone compounds was generated to target the IspD enzyme. Many of these compounds displayed low micromolar inhibitory activity against both enzymatic and phenotypic assays in vitro and an investigation into structure-activity relationships around the core of these benzisothiazolinones was also conducted. The most potent compound to emerge, a CH2 linked benzisoselenazolone, had an IC50 of 0.17 μM against PfIspD and 5.54 μM against Pf3D7. These compounds represent a novel class of IspD inhibitor, which have the potential for further development as antimalarial agents. A number of 1,2,4,5-tetraoxane analogues were also prepared in order to develop an antimalarial agent suitable for a single-dose cure. The most potent analogue, N205, had an IC50 of 1.3 nM and an average mouse survival of 26.3 days (66% cure rate) following a single dose. A less than optimal stability profile for N205 led to the further development of another potent tetraoxane analogue, E209. Optimisation of the synthetic pathway led to the generation of E209 in a series of five high-yielding steps that are suitable for large-scale production. E209 represents the first 1,2,4,5-tetraoxane that is comparable, in terms of both efficacy and PK/PD profiles, to OZ439, and is a candidate for pre-clinical development.

Item Type: Thesis (PhD)
Divisions: Faculty of Science and Engineering > School of Physical Sciences > Chemistry
Depositing User: Symplectic Admin
Date Deposited: 21 Aug 2017 08:14
Last Modified: 16 Jan 2024 17:21
DOI: 10.17638/03007683
Supervisors:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3007683